Correlation, complexity, and coupling measures of time series

Dimitris Kugiumtzis

November 4, 2020

Time Series, time dependence

Time Series, time dependence

Time dependence? $\quad \Longrightarrow$ Test for independence (see below)

Time Series, time dependence

Time dependence? $\quad \Longrightarrow \quad$ Test for independence (see below)

Time dependence

- The time series is a function of time
- The time series is a realization of a stochastic process / dynamical system

Stationarity see [1]: Sec 2.1-2.4, [2] Chp 1 and $\operatorname{Sec} 2.1$

Stationary time series: the statistics do not change by the shift of time

Stationarity see [1]: Sec 2.1-2.4, [2] Chp 1 and $\operatorname{Sec} 2.1$

Stationary time series: the statistics do not change by the shift of time Different definitions: strict stationarity, weak stationarity.

Stationarity see [1]: Sec 2.1-2.4, [2] Chp 1 and Sec 2.1

Stationary time series: the statistics do not change by the shift of time Different definitions: strict stationarity, weak stationarity.

Non-stationarity may be due to deterministic trend or periodicity.

Non-stationarity may be due to deterministic trend or periodicity.
Time series decomposition: $y_{t}=\mu_{t}+s_{t}+x_{t}$,

Non-stationarity may be due to deterministic trend or periodicity.
Time series decomposition: $y_{t}=\mu_{t}+s_{t}+x_{t}$,
μ_{t} : trend component, slowly varying function of time

Non-stationarity may be due to deterministic trend or periodicity.
Time series decomposition: $y_{t}=\mu_{t}+s_{t}+x_{t}$,
μ_{t} : trend component, slowly varying function of time
s_{t} : periodic / seasonal component, periodic function of time

Non-stationarity may be due to deterministic trend or periodicity.
Time series decomposition: $y_{t}=\mu_{t}+s_{t}+x_{t}$,
μ_{t} : trend component, slowly varying function of time
s_{t} : periodic / seasonal component, periodic function of time
x_{t} : residual component, stationary time series.

Example: Monthly Greek General Index of Consumer Prices

Example: Monthly Greek General Index of Consumer Prices

$\left\{y_{t}\right\}_{t=1}^{56} \quad \mu_{t}=103.9+0.31 t$

Example: Monthly Greek General Index of Consumer Prices

Example: Monthly Greek General Index of Consumer Prices

... $y_{t}^{\prime}=y_{t}-\mu_{t}$

Example: Monthly Greek General Index of Consumer Prices

$\left\{s_{t}\right\}_{t=1}^{12}$

... $y_{t}^{\prime}=y_{t}-\mu_{t}$

Example: Monthly Greek General Index of Consumer Prices

... $y_{t}^{\prime}=y_{t}-\mu_{t}$

$\left\{s_{t}\right\}_{t=1}^{12}$
General Index of Comsumer Prices, year cycle

$$
x_{t}=y_{t}^{\prime}-s_{t}=y_{t}-\mu_{t}-s_{t}
$$

General Index of Comsumer Prices, trend and period comp. subtracted

Example: Monthly Greek General Index of Consumer Prices

... $y_{t}^{\prime}=y_{t}-\mu_{t}$

$\left\{s_{t}\right\}_{t=1}^{12}$
General Index of Comsumer Prices, year cycle

$$
x_{t}=y_{t}^{\prime}-s_{t}=y_{t}-\mu_{t}-s_{t}
$$

General Index of Comsumer Prices, trend and period comp. subtracted

Removing stochastic trends

non-stationary time
series with stochastic
trends $\left\{y_{t}\right\}$

Removing stochastic trends

USA index
non-stationary time
series with stochastic
trends $\left\{y_{t}\right\}$

Removing stochastic trends

non-stationary time
series with stochastic trends $\left\{y_{t}\right\}$

First differences:
$x_{t}=y_{t}-y_{t-1}$

Removing stochastic trends

non-stationary time series with stochastic trends $\left\{y_{t}\right\}$

USA index, first differences

Removing stochastic trends

non-stationary time series with stochastic trends $\left\{y_{t}\right\}$

USA index

USA index, first differences

Returns:
$x_{t}=\log \left(y_{t}\right)-\log \left(y_{t-1}\right)$

Removing stochastic trends

non-stationary time series with stochastic trends $\left\{y_{t}\right\}$

USA index, first differences

First differences:
$x_{t}=y_{t}-y_{t-1}$

USA index, returns

Returns:
$x_{t}=\log \left(y_{t}\right)-\log \left(y_{t-1}\right)$

Removing stochastic trends

non-stationary time series with stochastic trends $\left\{y_{t}\right\}$

USA index, first differences

First differences:
$x_{t}=y_{t}-y_{t-1}$

Returns:
$x_{t}=\log \left(y_{t}\right)-\log \left(y_{t-1}\right)$

Autocovariance and autocorrelation

Stationary process $\left\{X_{t}\right\}$ and its realization, time series $\left\{x_{t}\right\}_{t=1}^{n}$.

Autocovariance and autocorrelation

Stationary process $\left\{X_{t}\right\}$ and its realization, time series $\left\{x_{t}\right\}_{t=1}^{n}$. mean: $\mu_{X}=\mathrm{E}\left[X_{t}\right]$,

Autocovariance and autocorrelation

Stationary process $\left\{X_{t}\right\}$ and its realization, time series $\left\{x_{t}\right\}_{t=1}^{n}$. mean: $\mu_{X}=\mathrm{E}\left[X_{t}\right]$, and estimate from $\left\{x_{t}\right\}_{t=1}^{n}, \bar{x}=\frac{1}{n} \sum_{t=1}^{n} x_{t}$

Autocovariance and autocorrelation

Stationary process $\left\{X_{t}\right\}$ and its realization, time series $\left\{x_{t}\right\}_{t=1}^{n}$. mean: $\mu X=\mathrm{E}\left[X_{t}\right]$, and estimate from $\left\{x_{t}\right\}_{t=1}^{n}, \bar{x}=\frac{1}{n} \sum_{t=1}^{n} x_{t}$ variance: $\sigma_{X}^{2}=\operatorname{Var}\left[X_{t}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)^{2}\right]$,

Autocovariance and autocorrelation

Stationary process $\left\{X_{t}\right\}$ and its realization, time series $\left\{x_{t}\right\}_{t=1}^{n}$. mean: $\mu X=\mathrm{E}\left[X_{t}\right]$, and estimate from $\left\{x_{t}\right\}_{t=1}^{n}, \bar{x}=\frac{1}{n} \sum_{t=1}^{n} x_{t}$ variance: $\sigma_{X}^{2}=\operatorname{Var}\left[X_{t}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)^{2}\right]$, and estimate

$$
s_{X}^{2}=\frac{1}{n-1} \sum_{t=1}^{n}\left(x_{t}-\bar{x}\right)^{2}
$$

Autocovariance and autocorrelation see [1]: Sec 27, [2]: Chp 1

Stationary process $\left\{X_{t}\right\}$ and its realization, time series $\left\{x_{t}\right\}_{t=1}^{n}$. mean: $\mu X=\mathrm{E}\left[X_{t}\right]$, and estimate from $\left\{x_{t}\right\}_{t=1}^{n}, \bar{x}=\frac{1}{n} \sum_{t=1}^{n} x_{t}$ variance: $\sigma_{X}^{2}=\operatorname{Var}\left[X_{t}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)^{2}\right]$, and estimate

$$
s_{X}^{2}=\frac{1}{n-1} \sum_{t=1}^{n}\left(x_{t}-\bar{x}\right)^{2}
$$

autocovariance: $\gamma_{X}(\tau)=\operatorname{Cov}\left[X_{t}, X_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(X_{t+\tau}-\mu_{X}\right)\right]$,

Autocovariance and autocorrelation see [1]: Sec 27, [2]: Chp 1

Stationary process $\left\{X_{t}\right\}$ and its realization, time series $\left\{x_{t}\right\}_{t=1}^{n}$. mean: $\mu X=\mathrm{E}\left[X_{t}\right]$, and estimate from $\left\{x_{t}\right\}_{t=1}^{n}, \bar{x}=\frac{1}{n} \sum_{t=1}^{n} x_{t}$ variance: $\sigma_{X}^{2}=\operatorname{Var}\left[X_{t}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)^{2}\right]$, and estimate

$$
s_{X}^{2}=\frac{1}{n-1} \sum_{t=1}^{n}\left(x_{t}-\bar{x}\right)^{2}
$$

autocovariance: $\gamma_{X}(\tau)=\operatorname{Cov}\left[X_{t}, X_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(X_{t+\tau}-\mu_{X}\right)\right]$, and estimate

$$
c_{x}(\tau)=\hat{\gamma}_{X}(\tau)=\frac{1}{n-\tau} \sum_{t=1}^{n-\tau}\left(x_{t}-\bar{x}\right)\left(x_{t+\tau}-\bar{x}\right)
$$

Autocovariance and autocorrelation see [1]: Sec 27, [2]: Chp 1

Stationary process $\left\{X_{t}\right\}$ and its realization, time series $\left\{x_{t}\right\}_{t=1}^{n}$. mean: $\mu_{X}=\mathrm{E}\left[X_{t}\right]$, and estimate from $\left\{x_{t}\right\}_{t=1}^{n}, \bar{x}=\frac{1}{n} \sum_{t=1}^{n} x_{t}$ variance: $\sigma_{X}^{2}=\operatorname{Var}\left[X_{t}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)^{2}\right]$, and estimate

$$
s_{X}^{2}=\frac{1}{n-1} \sum_{t=1}^{n}\left(x_{t}-\bar{x}\right)^{2}
$$

autocovariance: $\gamma_{X}(\tau)=\operatorname{Cov}\left[X_{t}, X_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(X_{t+\tau}-\mu_{X}\right)\right]$, and estimate

$$
c_{x}(\tau)=\hat{\gamma}_{X}(\tau)=\frac{1}{n-\tau} \sum_{t=1}^{n-\tau}\left(x_{t}-\bar{x}\right)\left(x_{t+\tau}-\bar{x}\right)
$$

autocorrelation: $\rho_{X}(\tau)=\frac{\gamma_{X}(\tau)}{\gamma_{X}(0)}=\frac{\gamma_{X}(\tau)}{\sigma_{X}^{2}}$,

Autocovariance and autocorrelation see [1]: Sec 27, [2]: Chp 1

Stationary process $\left\{X_{t}\right\}$ and its realization, time series $\left\{x_{t}\right\}_{t=1}^{n}$. mean: $\mu_{X}=\mathrm{E}\left[X_{t}\right]$, and estimate from $\left\{x_{t}\right\}_{t=1}^{n}, \bar{x}=\frac{1}{n} \sum_{t=1}^{n} x_{t}$ variance: $\sigma_{X}^{2}=\operatorname{Var}\left[X_{t}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)^{2}\right]$, and estimate

$$
s_{X}^{2}=\frac{1}{n-1} \sum_{t=1}^{n}\left(x_{t}-\bar{x}\right)^{2}
$$

autocovariance: $\gamma_{X}(\tau)=\operatorname{Cov}\left[X_{t}, X_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(X_{t+\tau}-\mu_{X}\right)\right]$, and estimate

$$
c_{X}(\tau)=\hat{\gamma}_{X}(\tau)=\frac{1}{n-\tau} \sum_{t=1}^{n-\tau}\left(x_{t}-\bar{x}\right)\left(x_{t+\tau}-\bar{x}\right)
$$

autocorrelation: $\rho_{X}(\tau)=\frac{\gamma_{X}(\tau)}{\gamma_{X}(0)}=\frac{\gamma_{X}(\tau)}{\sigma_{X}^{2}}$, and estimate

$$
r_{X}(\tau)=\hat{\rho}_{X}(\tau)=\frac{c_{X}(\tau)}{c_{X}(0)}=\frac{c_{X}(\tau)}{s_{X}^{2}}
$$

Examples of autocorrelation

Examples of autocorrelation

residuals of GICP

Examples of autocorrelation

Examples of autocorrelation

residuals of GICP

returns of USA
stock market
index

Examples of autocorrelation

residuals of GICP

USA stock market index, Autocorrelation
returns of USA stock market index

Examples of autocorrelation

residuals of GICP

USA stock market index, Autocorrelation
returns of USA stock market index

Example: Traces of packet arrivals

A trace containing packet arrivals seen on an Ethernet at the Bellcore Morristown Research and Engineering facility, regarding LAN traffic, period 11:25 on August 29, 1989.

Example: Traces of packet arrivals

A trace containing packet arrivals seen on an Ethernet at the Bellcore Morristown Research and Engineering facility, regarding LAN traffic, period 11:25 on August 29, 1989.

The time series
data are the times
between
successive arrivals.

Example: Traces of packet arrivals

A trace containing packet arrivals seen on an Ethernet at the Bellcore Morristown Research and Engineering facility, regarding LAN traffic, period 11:25 on August 29, 1989.

Time between packet arrivals
The time series data are the times between successive arrivals.

Example: Traces of packet arrivals

A trace containing packet arrivals seen on an Ethernet at the Bellcore Morristown Research and Engineering facility, regarding LAN traffic, period 11:25 on August 29, 1989.

Time between packet arrivals
The time series data are the times between successive arrivals.

A small data window

Example: Traces of packet arrivals

A trace containing packet arrivals seen on an Ethernet at the Bellcore Morristown Research and Engineering facility, regarding LAN traffic, period 11:25 on August 29, 1989.

Time between packet arrivals
The time series data are the times between successive arrivals.

Time between packet arrivals small data window

A small data window

Example: Traces of packet arrivals

Example: Traces of packet arrivals

Autocorrelation
Time between packet arrivals, Autocorrelation

- Are the residuals of GIPC correlated?

Example: Traces of packet arrivals

Autocorrelation
Time between packet arrivals, Autocorrelation

- Are the residuals of GIPC correlated?
- Are the returns of USA stock marker index correlated?

Example: Traces of packet arrivals

Autocorrelation
Time between packet arrivals, Autocorrelation

- Are the residuals of GIPC correlated?
- Are the returns of USA stock marker index correlated?
- Are the times between packet arrivals correlated?

Example: Traces of packet arrivals

Autocorrelation
Time between packet arrivals, Autocorrelation

- Are the residuals of GIPC correlated?
- Are the returns of USA stock marker index correlated?
- Are the times between packet arrivals correlated?

Are these autocorrelations statistically significant?

Example: Traces of packet arrivals

Autocorrelation
Time between packet arrivals, Autocorrelation

- Are the residuals of GIPC correlated?
- Are the returns of USA stock marker index correlated?
- Are the times between packet arrivals correlated?

Are these autocorrelations statistically significant?
Are the time series independent?

Statistical test for independence see [1]: $\operatorname{Sec} 2.7-2.8$, [2]: Chp 1

Completely random time series: it consists of a series of independent observations having the same distribution.

Statistical test for independence see [1]: $\operatorname{Sec} 2.7-2.8$, [2]: Chp 1

Completely random time series: it consists of a series of independent observations having the same distribution.

For large n and random time series, $r(\tau) \sim \mathrm{N}(0,1 / n)$.

Statistical test for independence see [1]: $\operatorname{Sec} 2.7-2.8$, [2]: Chp 1

Completely random time series: it consists of a series of independent observations having the same distribution.

For large n and random time series, $r(\tau) \sim \mathrm{N}(0,1 / n)$.
$r(\tau)$ is significant if it is outside the limits $\pm z_{\alpha / 2} \sqrt{1 / n}$ (for $\alpha=0.05, \pm 2 \sqrt{1 / n}$).

Completely random time series: it consists of a series of independent observations having the same distribution.

For large n and random time series, $r(\tau) \sim N(0,1 / n)$.
$r(\tau)$ is significant if it is outside the limits $\pm z_{\alpha / 2} \sqrt{1 / n}$ (for $\alpha=0.05, \pm 2 \sqrt{1 / n}$).
\ldots but for random time series and $\tau=1, \ldots, K$, where say $K=20$, on average one $r(\tau)$ will be outside the limits

Completely random time series: it consists of a series of independent observations having the same distribution.

For large n and random time series, $r(\tau) \sim \mathrm{N}(0,1 / n)$.
$r(\tau)$ is significant if it is outside the limits $\pm z_{\alpha / 2} \sqrt{1 / n}$ (for $\alpha=0.05, \pm 2 \sqrt{1 / n}$).
\ldots but for random time series and $\tau=1, \ldots, K$, where say $K=20$, on average one $r(\tau)$ will be outside the limits
\Longrightarrow Portmanteau test collecting all $r(\tau)$ (as modified by Ljung and Box):

Completely random time series: it consists of a series of independent observations having the same distribution.
For large n and random time series, $r(\tau) \sim N(0,1 / n)$.
$r(\tau)$ is significant if it is outside the limits $\pm z_{\alpha / 2} \sqrt{1 / n}$ (for $\alpha=0.05, \pm 2 \sqrt{1 / n}$).
\ldots but for random time series and $\tau=1, \ldots, K$, where say $K=20$, on average one $r(\tau)$ will be outside the limits
\Longrightarrow Portmanteau test collecting all $r(\tau)$ (as modified by Ljung and Box):
(1) statistic $Q=n(n+2) \sum_{\tau=1}^{K} \frac{r^{2}(\tau)}{n-\tau}$.

Completely random time series: it consists of a series of independent observations having the same distribution.
For large n and random time series, $r(\tau) \sim N(0,1 / n)$.
$r(\tau)$ is significant if it is outside the limits $\pm z_{\alpha / 2} \sqrt{1 / n}$ (for $\alpha=0.05, \pm 2 \sqrt{1 / n}$).
... but for random time series and $\tau=1, \ldots, K$, where say $K=20$, on average one $r(\tau)$ will be outside the limits
\Longrightarrow Portmanteau test collecting all $r(\tau)$ (as modified by Ljung and Box):
(1) statistic $Q=n(n+2) \sum_{\tau=1}^{K} \frac{r^{2}(\tau)}{n-\tau}$.
(2) $Q \sim \mathcal{X}_{K}^{2}$.

Completely random time series: it consists of a series of independent observations having the same distribution.
For large n and random time series, $r(\tau) \sim \mathrm{N}(0,1 / n)$.
$r(\tau)$ is significant if it is outside the limits $\pm z_{\alpha / 2} \sqrt{1 / n}$ (for $\alpha=0.05, \pm 2 \sqrt{1 / n}$).
... but for random time series and $\tau=1, \ldots, K$, where say $K=20$, on average one $r(\tau)$ will be outside the limits
\Longrightarrow Portmanteau test collecting all $r(\tau)$ (as modified by Ljung and Box):
(1) statistic $Q=n(n+2) \sum_{\tau=1}^{K} \frac{r^{2}(\tau)}{n-\tau}$.
(2) $Q \sim \mathcal{X}_{K}^{2}$.
(0) Reject null hypothesis of independence at significance level α if $Q>\mathcal{X}_{K, 1-\alpha}^{2}$ (or compute the corresponding p-value)

Examples of test for independence

GIPC, Jan 2001 - Aug 2005, Autocorrelation

Examples of test for independence

GIPC, Jan 2001 - Aug 2005, Autocorrelation

Examples of test for independence

Examples of test for independence

Examples of test for independence

Time between packet arrivals, Autocorrelation

Examples of test for independence

White noise and random walk see [1]: Chp 3, [2]: Chp 1

Two main stochastic processes:

- White noise process: Independent stochastic process, a series of iid variables X_{t}.

White noise and random walk see [1]: Chp 3, [2]: Chp 1

Two main stochastic processes:

- White noise process: Independent stochastic process, a series of iid variables X_{t}.
$X_{t} \sim \mathrm{WN}\left(\mu_{X}, \sigma_{X}^{2}\right):$ white noise with mean μ_{X} and variance σ_{X}^{2}.

White noise and random walk see [1]: Chp 3, [2]: Chp 1

Two main stochastic processes:

- White noise process: Independent stochastic process, a series of iid variables X_{t}.
$X_{t} \sim \mathrm{WN}\left(\mu_{X}, \sigma_{X}^{2}\right):$ white noise with mean μ_{X} and variance σ_{X}^{2}. Realization of white noise process: a series of iid observations.

White noise and random walk see [1]: Chp 3, [2]: Chp 1

Two main stochastic processes:

- White noise process: Independent stochastic process, a series of iid variables X_{t}.
$X_{t} \sim \mathrm{WN}\left(\mu_{X}, \sigma_{X}^{2}\right):$ white noise with mean μ_{X} and variance σ_{X}^{2}.
Realization of white noise process: a series of iid observations.
- Random walk process: at each step a white noise increment is added

$$
Y_{t}=Y_{t-1}+X_{t}, \quad X_{t} \sim \operatorname{WN}\left(0, \sigma_{X}^{2}\right)
$$

$\mu_{Y}=\mathrm{E}\left[Y_{t}\right]=0$ and $\sigma_{Y}^{2}=\operatorname{Var}\left[Y_{t}\right]=t \sigma_{X}^{2}$. The variance grows with time.

White noise and random walk see [1]: Chp 3, [2]: Chp 1

Two main stochastic processes:

- White noise process: Independent stochastic process, a series of iid variables X_{t}.
$X_{t} \sim \mathrm{WN}\left(\mu_{X}, \sigma_{X}^{2}\right):$ white noise with mean μ_{X} and variance σ_{X}^{2}. Realization of white noise process: a series of iid observations.
- Random walk process: at each step a white noise increment is added

$$
Y_{t}=Y_{t-1}+X_{t}, \quad X_{t} \sim \operatorname{WN}\left(0, \sigma_{X}^{2}\right)
$$

$\mu_{Y}=\mathrm{E}\left[Y_{t}\right]=0$ and $\sigma_{Y}^{2}=\operatorname{Var}\left[Y_{t}\right]=t \sigma_{X}^{2}$. The variance grows with time.

White noise is a stationary process and random walk a non-stationary process.

Linear autoregressive models see [1]: Chp 3, [2]: Chp 2

A linear stochastic process possessing significant autocorrelation is the linear autoregressive process of order $p, \operatorname{AR}(p)$

$$
x_{t}=\phi_{0}+\phi_{1} x_{t-1}+\cdots+\phi_{p} x_{t-p}+\epsilon_{t}
$$

where $\epsilon_{t} \sim \mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$ (usually we assume for simplicity $\phi_{0}=0$).

Linear autoregressive models see [1]: Chp 3, [2]: Chp 2

A linear stochastic process possessing significant autocorrelation is the linear autoregressive process of order $p, \operatorname{AR}(p)$

$$
x_{t}=\phi_{0}+\phi_{1} x_{t-1}+\cdots+\phi_{p} x_{t-p}+\epsilon_{t}
$$

where $\epsilon_{t} \sim \mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$ (usually we assume for simplicity $\phi_{0}=0$).
Random walk is an $\operatorname{AR}(1)$ process with $\phi_{1}=1$.

Linear autoregressive models see [1]: Chp 3, [2]: Chp 2

A linear stochastic process possessing significant autocorrelation is the linear autoregressive process of order $p, \operatorname{AR}(p)$

$$
x_{t}=\phi_{0}+\phi_{1} x_{t-1}+\cdots+\phi_{p} x_{t-p}+\epsilon_{t}
$$

where $\epsilon_{t} \sim \mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$ (usually we assume for simplicity $\phi_{0}=0$).
Random walk is an $\operatorname{AR}(1)$ process with $\phi_{1}=1$.
The coefficients are such that the $\operatorname{AR}(p)$ process is stationary.

Linear autoregressive models see [1]: Chp 3, [2]: Chp 2

A linear stochastic process possessing significant autocorrelation is the linear autoregressive process of order $p, \operatorname{AR}(p)$

$$
x_{t}=\phi_{0}+\phi_{1} x_{t-1}+\cdots+\phi_{p} x_{t-p}+\epsilon_{t}
$$

where $\epsilon_{t} \sim \mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$ (usually we assume for simplicity $\phi_{0}=0$).
Random walk is an $\operatorname{AR}(1)$ process with $\phi_{1}=1$.
The coefficients are such that the $\operatorname{AR}(p)$ process is stationary. Stationarity condition: the roots of the equation

$$
\phi(B)=1-\phi_{1} B-\cdots-\phi_{p} B^{p}=0
$$

must lie outside the unit circle (roots, which may be complex, are greater than one in modulus).

Linear autoregressive models see [1]: Chp 3, [2]: Chp 2

A linear stochastic process possessing significant autocorrelation is the linear autoregressive process of order $p, \operatorname{AR}(p)$

$$
x_{t}=\phi_{0}+\phi_{1} x_{t-1}+\cdots+\phi_{p} x_{t-p}+\epsilon_{t}
$$

where $\epsilon_{t} \sim \mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$ (usually we assume for simplicity $\phi_{0}=0$).
Random walk is an $\operatorname{AR}(1)$ process with $\phi_{1}=1$.
The coefficients are such that the $\operatorname{AR}(p)$ process is stationary.
Stationarity condition: the roots of the equation

$$
\phi(B)=1-\phi_{1} B-\cdots-\phi_{p} B^{p}=0
$$

must lie outside the unit circle (roots, which may be complex, are greater than one in modulus).
Other types of processes: moving average of order $q, \mathrm{MA}(q)$, mixed processes $\operatorname{ARMA}(p, q)$.

Linear autoregressive models see [1]: Chp 3, [2]: Chp 2

A linear stochastic process possessing significant autocorrelation is the linear autoregressive process of order $p, \operatorname{AR}(p)$

$$
x_{t}=\phi_{0}+\phi_{1} x_{t-1}+\cdots+\phi_{p} x_{t-p}+\epsilon_{t}
$$

where $\epsilon_{t} \sim \mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$ (usually we assume for simplicity $\phi_{0}=0$).
Random walk is an $\operatorname{AR}(1)$ process with $\phi_{1}=1$.
The coefficients are such that the $\operatorname{AR}(p)$ process is stationary.
Stationarity condition: the roots of the equation

$$
\phi(B)=1-\phi_{1} B-\cdots-\phi_{p} B^{p}=0
$$

must lie outside the unit circle (roots, which may be complex, are greater than one in modulus).
Other types of processes: moving average of order $q, \mathrm{MA}(q)$, mixed processes $\operatorname{ARMA}(p, q)$.
To estimate the model $\operatorname{AR}(p)$ from a time series, we use least squares to compute the coefficients $\phi_{0}, \phi_{1}, \ldots \phi_{p}$ and σ_{ϵ}^{2}.

Exercise 4: Nonparametric test for independence

What if the Q statistic does not follow exactly \mathcal{X}_{K}^{2} ?

Exercise 4: Nonparametric test for independence

What if the Q statistic does not follow exactly \mathcal{X}_{K}^{2} ?
Use resampling (randomization) to form the empirical distribution of Q : Generate M randomized time series from $\left\{x_{t}\right\}_{t=1}^{n}$ by random permutation of the samples (destroy the time order but use the same distribution of the original time series). [matlab: use randperm]

Exercise 4: Nonparametric test for independence

What if the Q statistic does not follow exactly \mathcal{X}_{K}^{2} ?
Use resampling (randomization) to form the empirical distribution of Q : Generate M randomized time series from $\left\{x_{t}\right\}_{t=1}^{n}$ by random permutation of the samples (destroy the time order but use the same distribution of the original time series). [matlab: use randperm]
(1) Generate a time series $\left\{x_{t}\right\}_{t=1}^{n}, n=100$.

Exercise 4: Nonparametric test for independence

What if the Q statistic does not follow exactly \mathcal{X}_{K}^{2} ?
Use resampling (randomization) to form the empirical distribution of Q : Generate M randomized time series from $\left\{x_{t}\right\}_{t=1}^{n}$ by random permutation of the samples (destroy the time order but use the same distribution of the original time series). [matlab: use randperm]
(1) Generate a time series $\left\{x_{t}\right\}_{t=1}^{n}, n=100$.
(2) Use parametric and nonparametric Portmanteau test (e.g. for $K=5$, $M=1000$) [matlab: use portmanteauLB.m from the course files].

Exercise 4: Nonparametric test for independence

What if the Q statistic does not follow exactly \mathcal{X}_{K}^{2} ?
Use resampling (randomization) to form the empirical distribution of Q : Generate M randomized time series from $\left\{x_{t}\right\}_{t=1}^{n}$ by random permutation of the samples (destroy the time order but use the same distribution of the original time series). [matlab: use randperm]
(1) Generate a time series $\left\{x_{t}\right\}_{t=1}^{n}, n=100$.
(2) Use parametric and nonparametric Portmanteau test (e.g. for $K=5$, $M=1000$) [matlab: use portmanteauLB.m from the course files].
(3) Repeat the tests 100 times. Are the proportions of rejection the same for the two test types?

Exercise 4: Nonparametric test for independence

What if the Q statistic does not follow exactly \mathcal{X}_{k}^{2} ?
Use resampling (randomization) to form the empirical distribution of Q : Generate M randomized time series from $\left\{x_{t}\right\}_{t=1}^{n}$ by random permutation of the samples (destroy the time order but use the same distribution of the original time series). [matlab: use randperm]
(1) Generate a time series $\left\{x_{t}\right\}_{t=1}^{n}, n=100$.
(2) Use parametric and nonparametric Portmanteau test (e.g. for $K=5$, $M=1000$) [matlab: use portmanteauLB.m from the course files].
(0) Repeat the tests 100 times. Are the proportions of rejection the same for the two test types?
The following types of time series will be generated in (1):
(1) White noise with normal distribution [matlab: use randn]

Exercise 4: Nonparametric test for independence

What if the Q statistic does not follow exactly \mathcal{X}_{k}^{2} ?
Use resampling (randomization) to form the empirical distribution of Q : Generate M randomized time series from $\left\{x_{t}\right\}_{t=1}^{n}$ by random permutation of the samples (destroy the time order but use the same distribution of the original time series). [matlab: use randperm]
(1) Generate a time series $\left\{x_{t}\right\}_{t=1}^{n}, n=100$.
(2) Use parametric and nonparametric Portmanteau test (e.g. for $K=5$, $M=1000$) [matlab: use portmanteauLB.m from the course files].
(0) Repeat the tests 100 times. Are the proportions of rejection the same for the two test types?
The following types of time series will be generated in (1):
(1) White noise with normal distribution [matlab: use randn]
(c) White noise with log-normal distribution [matlab: use lognrnd].

Exercise 4: Nonparametric test for independence

What if the Q statistic does not follow exactly \mathcal{X}_{k}^{2} ?
Use resampling (randomization) to form the empirical distribution of Q : Generate M randomized time series from $\left\{x_{t}\right\}_{t=1}^{n}$ by random permutation of the samples (destroy the time order but use the same distribution of the original time series). [matlab: use randperm]
(1) Generate a time series $\left\{x_{t}\right\}_{t=1}^{n}, n=100$.
(2) Use parametric and nonparametric Portmanteau test (e.g. for $K=5$, $M=1000$) [matlab: use portmanteauLB.m from the course files].
(0) Repeat the tests 100 times. Are the proportions of rejection the same for the two test types?
The following types of time series will be generated in (1):
(1) White noise with normal distribution [matlab: use randn]
(2) White noise with log-normal distribution [matlab: use lognrnd].
(0) $\operatorname{AR}(1)$ with $\phi_{0}=0$ and $\phi_{1}=0.2,0.4$ and 0.6 [matlab: use ARm.m from the course files]

Nonlinear correlations see [3], Chp 1,2,3

Nonlinear correlations see [3], Chp 1,2,3

Nonlinear correlations see [3], Chp 1,2,3

Logistic map:
$X_{t}=4 X_{t-1}\left(1-X_{t-1}\right)$,
nonlinear dynamical
system

Nonlinear correlations see [3], Chp 1,2,3

Logistic map: $X_{t}=4 X_{t-1}\left(1-X_{t-1}\right)$, nonlinear dynamical system

Nonlinear correlations see [3], Chp 1,2,3

Logistic map:
$X_{t}=4 X_{t-1}\left(1-X_{t-1}\right)$,
nonlinear dynamical
system

Measure of nonlinear autocorrelation $\sec [3]: \sec 9.2$

Autocovariance: $\gamma_{X}(\tau)=\operatorname{Cov}\left[X_{t}, X_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(X_{t+\tau}-\mu_{X}\right)\right]$,

Measure of nonlinear autocorrelation see [3]: Sec 9.2

Autocovariance: $\gamma_{X}(\tau)=\operatorname{Cov}\left[X_{t}, X_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(X_{t+\tau}-\mu_{X}\right)\right]$,
Extend joint moment of order one $\mathrm{E}\left[X_{t} X_{t+\tau}\right]$ to higher order joint moments

Measure of nonlinear autocorrelation see [3]: Sec 9.2

Autocovariance: $\gamma_{X}(\tau)=\operatorname{Cov}\left[X_{t}, X_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(X_{t+\tau}-\mu_{X}\right)\right]$,
Extend joint moment of order one $\mathrm{E}\left[X_{t} X_{t+\tau}\right]$ to higher order joint moments \Longrightarrow nonlinear measures.

Measure of nonlinear autocorrelation see [3]: Sec 9.2

Autocovariance: $\gamma_{X}(\tau)=\operatorname{Cov}\left[X_{t}, X_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(X_{t+\tau}-\mu_{X}\right)\right]$, Extend joint moment of order one $\mathrm{E}\left[X_{t} X_{t+\tau}\right]$ to higher order joint moments \Longrightarrow nonlinear measures.

Entropy: information from each sample of X (assuming discrete X)

$$
\mathrm{H}(X)=\mathrm{E}\left[\log p_{X}(x)\right]=\sum_{x} p_{X}(x) \log p_{X}(x)
$$

Measure of nonlinear autocorrelation see [3]: Sec 9.2

Autocovariance: $\gamma_{X}(\tau)=\operatorname{Cov}\left[X_{t}, X_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(X_{t+\tau}-\mu_{X}\right)\right]$,
Extend joint moment of order one $\mathrm{E}\left[X_{t} X_{t+\tau}\right]$ to higher order joint moments \Longrightarrow nonlinear measures.
Entropy: information from each sample of X (assuming discrete X)

$$
\mathrm{H}(X)=\mathrm{E}\left[\log p_{X}(x)\right]=\sum_{x} p_{X}(x) \log p_{X}(x)
$$

Mutual information: information for Y knowing X and vice versa

$$
\mathrm{I}(X, Y)=\mathrm{H}(X)+\mathrm{H}(Y)-\mathrm{H}(X, Y)=\sum_{x, y} p_{X Y}(x, y) \log \frac{p_{X Y}(x, y)}{p_{X}(x) p_{Y}(y)}
$$

Measure of nonlinear autocorrelation see [3]: Sec 9.2

Autocovariance: $\gamma_{X}(\tau)=\operatorname{Cov}\left[X_{t}, X_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(X_{t+\tau}-\mu_{X}\right)\right]$,
Extend joint moment of order one $\mathrm{E}\left[X_{t} X_{t+\tau}\right]$ to higher order joint moments \Longrightarrow nonlinear measures.
Entropy: information from each sample of X (assuming discrete X)

$$
\mathrm{H}(X)=\mathrm{E}\left[\log p_{X}(x)\right]=\sum_{x} p_{X}(x) \log p_{X}(x)
$$

Mutual information: information for Y knowing X and vice versa

$$
\mathrm{I}(X, Y)=\mathrm{H}(X)+\mathrm{H}(Y)-\mathrm{H}(X, Y)=\sum_{x, y} p_{X Y}(x, y) \log \frac{p_{X Y}(x, y)}{p_{X}(x) p_{Y}(y)}
$$

For $X \rightarrow X_{t}$ and $Y \rightarrow X_{t+\tau}$, the delayed mutual information:

$$
\mathrm{I}(\tau)=\mathrm{I}\left(X_{t}, X_{t+\tau}\right)=\sum_{x_{t}, x_{t+\tau}} p_{X_{t} x_{t+\tau}}\left(x_{t}, x_{t+\tau}\right) \log \frac{p_{X_{t} X_{t+\tau}}\left(x_{t}, x_{t+\tau}\right)}{p_{X_{t}}\left(x_{t}\right) p_{X_{t+\tau}}\left(x_{t+\tau}\right)}
$$

Measure of nonlinear autocorrelation see [3]: Sec 9.2

Autocovariance: $\gamma_{X}(\tau)=\operatorname{Cov}\left[X_{t}, X_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(X_{t+\tau}-\mu_{X}\right)\right]$,
Extend joint moment of order one $\mathrm{E}\left[X_{t} X_{t+\tau}\right]$ to higher order joint moments \Longrightarrow nonlinear measures.
Entropy: information from each sample of X (assuming discrete X)

$$
\mathrm{H}(X)=\mathrm{E}\left[\log p_{X}(x)\right]=\sum_{x} p_{X}(x) \log p_{X}(x)
$$

Mutual information: information for Y knowing X and vice versa

$$
\mathrm{I}(X, Y)=\mathrm{H}(X)+\mathrm{H}(Y)-\mathrm{H}(X, Y)=\sum_{x, y} p_{X Y}(x, y) \log \frac{p_{X Y}(x, y)}{p_{X}(x) p_{Y}(y)}
$$

For $X \rightarrow X_{t}$ and $Y \rightarrow X_{t+\tau}$, the delayed mutual information:

$$
\mathrm{I}(\tau)=\mathrm{I}\left(X_{t}, X_{t+\tau}\right)=\sum_{x_{t}, x_{t+\tau}} p_{X_{t} x_{t+\tau}}\left(x_{t}, x_{t+\tau}\right) \log \frac{p_{X_{t} X_{t+\tau}}\left(x_{t}, x_{t+\tau}\right)}{p_{X_{t}}\left(x_{t}\right) p_{X_{t+\tau}}\left(x_{t+\tau}\right)}
$$

To estimate $\mathrm{I}(\tau)$ make a partition of $\left\{x_{t}\right\}_{t=1}^{n}$ and compute probabilities for each cell from the relative frequency.

Mutual information: white noise and logistic map

Computation of $I(\tau)$:

Mutual information: white noise and logistic map

Computation of $I(\tau)$:
(1) Equidistant partition (histogram): split $\left\{x_{t}\right\}_{t=1}^{n}$ to b equidistant intervals.

Mutual information: white noise and logistic map

Computation of $I(\tau)$:
(1) Equidistant partition (histogram): split $\left\{x_{t}\right\}_{t=1}^{n}$ to b equidistant intervals.
(2) Count $x_{t}, t=\tau+1, \ldots, n$ in each interval. The same for $x_{t+\tau}$.

Mutual information: white noise and logistic map

Computation of $I(\tau)$:
(1) Equidistant partition (histogram): split $\left\{x_{t}\right\}_{t=1}^{n}$ to b equidistant intervals.
(2) Count $x_{t}, t=\tau+1, \ldots, n$ in each interval. The same for $x_{t+\tau}$.
(3) Count pairs $\left(x_{t}, x_{t+\tau}\right), t=1, \ldots, n-\tau$ in each of the b^{2} cells.

Mutual information: white noise and logistic map

Computation of $I(\tau)$:
(1) Equidistant partition (histogram): split $\left\{x_{t}\right\}_{t=1}^{n}$ to b equidistant intervals.
(2) Count $x_{t}, t=\tau+1, \ldots, n$ in each interval. The same for $x_{t+\tau}$.
(3) Count pairs $\left(x_{t}, x_{t+\tau}\right), t=1, \ldots, n-\tau$ in each of the b^{2} cells.
(9) The relative frequencies in 2 and 3 are the estimates for $p_{X_{t}}\left(x_{t}\right)$, $p_{X_{t+\tau}}\left(x_{t+\tau}\right)$ and $p_{X_{t} X_{t+\tau}}\left(x_{t}, x_{t+\tau}\right)$.

Mutual information: white noise and logistic map

Computation of $I(\tau)$:
(1) Equidistant partition (histogram): split $\left\{x_{t}\right\}_{t=1}^{n}$ to b equidistant intervals.
(2) Count $x_{t}, t=\tau+1, \ldots, n$ in each interval. The same for $x_{t+\tau}$.
(3) Count pairs $\left(x_{t}, x_{t+\tau}\right), t=1, \ldots, n-\tau$ in each of the b^{2} cells.
(9) The relative frequencies in 2 and 3 are the estimates for $p_{X_{t}}\left(x_{t}\right)$, $p_{X_{t+\tau}}\left(x_{t+\tau}\right)$ and $p_{X_{t} X_{t+\tau}}\left(x_{t}, x_{t+\tau}\right)$.

Mutual information: real examples

Mutual information: real examples

Mutual information: real examples

Exercise 5: Nonparametric test for zero mutual information

How can we test for zero delayed mutual information ? [to compute $I(\tau)$ in matlab use mutual.m from the course files]

Exercise 5: Nonparametric test for zero mutual information

How can we test for zero delayed mutual information ? [to compute $I(\tau)$ in matlab use mutual.m from the course files]
Use resampling (randomization) to form the empirical distribution of $I(\tau)$, as for Exercise 4.

Exercise 5: Nonparametric test for zero mutual information

How can we test for zero delayed mutual information ? [to compute $I(\tau)$ in matlab use mutual.m from the course files]

Use resampling (randomization) to form the empirical distribution of $I(\tau)$, as for Exercise 4.

Perform the randomization test for the three real time series:
(1) Residuals of GICP [course data file GPIC2001_2005residuals.dat]

Exercise 5: Nonparametric test for zero mutual information

How can we test for zero delayed mutual information ? [to compute $I(\tau)$ in matlab use mutual.m from the course files]

Use resampling (randomization) to form the empirical distribution of $I(\tau)$, as for Exercise 4.

Perform the randomization test for the three real time series:
(1) Residuals of GICP [course data file GPIC2001_2005residuals.dat]
(2) Returns of USA stock marker index [course data file USAreturns.dat].

Exercise 5: Nonparametric test for zero mutual information

How can we test for zero delayed mutual information ? [to compute $I(\tau)$ in matlab use mutual.m from the course files]
Use resampling (randomization) to form the empirical distribution of $I(\tau)$, as for Exercise 4.

Perform the randomization test for the three real time series:
(1) Residuals of GICP [course data file GPIC2001_2005residuals.dat]
(2) Returns of USA stock marker index [course data file USAreturns.dat].
(3) Times between packet arrivals [course data file PacketArrival.dat]

Bivariate time series

Time evolution of two stock market indices

Bivariate time series

Time evolution of two stock market indices

USA and UnitedKingdom index

Bivariate time series

Time evolution of two stock market indices

Time evolution of two stock market returns

Bivariate time series

Time evolution of two stock market indices

Time evolution of two stock market returns

USA and UnitedKingdom index

Bivariate time series

Time evolution of two stock market indices

Time evolution of two stock market returns

USA and UnitedKingdom index

Are there autocorrelations in the two indices?

Bivariate time series

Time evolution of two stock market indices

Time evolution of two stock market returns

USA and UnitedKingdom index

Are there autocorrelations in the two indices?
Are there cross-correlations in the two indices?

Cross-covariance and cross-correlation see [1]: Chp 8, [2]: Chp 7

Stationary processes $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ and their realizations, time series $\left\{x_{t}, y_{t}\right\}_{t=1}^{n}$.

Cross-covariance and cross-correlation see [1]: Chp 8, [2]: Chp 7

Stationary processes $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ and their realizations, time series $\left\{x_{t}, y_{t}\right\}_{t=1}^{n}$.
cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$,

Cross-covariance and cross-correlation see [1]: Chp 8, [2]: Chp 7

Stationary processes $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ and their realizations, time series $\left\{x_{t}, y_{t}\right\}_{t=1}^{n}$.
cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$, and estimate

$$
C_{X Y}(\tau)=\hat{\gamma}_{X Y}(\tau)=\frac{1}{n-\tau} \sum_{t=1}^{n-\tau}\left(x_{t}-\bar{x}\right)\left(y_{t+\tau}-\bar{y}\right)
$$

Cross-covariance and cross-correlation see [1]: Chp 8, [2]: Chp 7

Stationary processes $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ and their realizations, time series $\left\{x_{t}, y_{t}\right\}_{t=1}^{n}$.
cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$, and estimate

$$
c_{X Y}(\tau)=\hat{\gamma}_{X Y}(\tau)=\frac{1}{n-\tau} \sum_{t=1}^{n-\tau}\left(x_{t}-\bar{x}\right)\left(y_{t+\tau}-\bar{y}\right)
$$

cross-correlation: $\rho_{X Y}(\tau)=\frac{\gamma_{X Y}(\tau)}{\gamma_{X Y}(0)}=\frac{\gamma_{X Y}(\tau)}{\sigma_{X} \sigma_{Y}}$,

Cross-covariance and cross-correlation see [1]: Chp 8, [2]: Chp 7

Stationary processes $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ and their realizations, time series $\left\{x_{t}, y_{t}\right\}_{t=1}^{n}$.
cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$, and estimate

$$
c_{X Y}(\tau)=\hat{\gamma}_{X Y}(\tau)=\frac{1}{n-\tau} \sum_{t=1}^{n-\tau}\left(x_{t}-\bar{x}\right)\left(y_{t+\tau}-\bar{y}\right)
$$

cross-correlation: $\rho_{X Y}(\tau)=\frac{\gamma_{X Y}(\tau)}{\gamma_{X Y}(0)}=\frac{\gamma_{X Y}(\tau)}{\sigma_{X} \sigma_{Y}}$, and estimate

$$
r_{X Y}(\tau)=\hat{\rho}_{X Y}(\tau)=\frac{c_{X Y}(\tau)}{c_{X Y}(0)}=\frac{c_{X Y}(\tau)}{s_{X} s_{Y}}
$$

Cross-covariance and cross-correlation see [1]: Chp 8, [2]: Chp 7

Stationary processes $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ and their realizations, time series $\left\{x_{t}, y_{t}\right\}_{t=1}^{n}$.
cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$, and estimate

$$
c_{X Y}(\tau)=\hat{\gamma}_{X Y}(\tau)=\frac{1}{n-\tau} \sum_{t=1}^{n-\tau}\left(x_{t}-\bar{x}\right)\left(y_{t+\tau}-\bar{y}\right)
$$

cross-correlation: $\rho_{X Y}(\tau)=\frac{\gamma_{X Y}(\tau)}{\gamma_{X Y}(0)}=\frac{\gamma_{X Y}(\tau)}{\sigma_{X} \sigma_{Y}}$, and estimate

$$
r_{X Y}(\tau)=\hat{\rho}_{X Y}(\tau)=\frac{c_{X Y}(\tau)}{c_{X Y}(0)}=\frac{c_{X Y}(\tau)}{s_{X} s_{Y}}
$$

Cross-covariance is not even function: $\gamma_{X Y}(\tau) \neq \gamma_{X Y}(-\tau)$,

Cross-covariance and cross-correlation see [1]: Chp 8, [2]: Chp 7

Stationary processes $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ and their realizations, time series $\left\{x_{t}, y_{t}\right\}_{t=1}^{n}$.
cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$, and estimate

$$
c_{X Y}(\tau)=\hat{\gamma}_{X Y}(\tau)=\frac{1}{n-\tau} \sum_{t=1}^{n-\tau}\left(x_{t}-\bar{x}\right)\left(y_{t+\tau}-\bar{y}\right)
$$

cross-correlation: $\rho_{X Y}(\tau)=\frac{\gamma_{X Y}(\tau)}{\gamma_{X Y}(0)}=\frac{\gamma_{X Y}(\tau)}{\sigma_{X} \sigma_{Y}}$, and estimate

$$
r_{X Y}(\tau)=\hat{\rho}_{X Y}(\tau)=\frac{c_{X Y}(\tau)}{c_{X Y}(0)}=\frac{c_{X Y}(\tau)}{s_{X} s_{Y}}
$$

Cross-covariance is not even function: $\gamma_{X Y}(\tau) \neq \gamma_{X Y}(-\tau)$, but it holds that $\gamma_{X Y}(\tau)=\gamma_{Y X}(-\tau)$.

Cross-covariance and cross-correlation see [1]: Chp 8, [2]: Chp 7

Stationary processes $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ and their realizations, time series $\left\{x_{t}, y_{t}\right\}_{t=1}^{n}$.
cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$, and estimate

$$
c_{X Y}(\tau)=\hat{\gamma}_{X Y}(\tau)=\frac{1}{n-\tau} \sum_{t=1}^{n-\tau}\left(x_{t}-\bar{x}\right)\left(y_{t+\tau}-\bar{y}\right)
$$

cross-correlation: $\rho_{X Y}(\tau)=\frac{\gamma_{X Y}(\tau)}{\gamma_{X Y}(0)}=\frac{\gamma_{X Y}(\tau)}{\sigma_{X} \sigma_{Y}}$, and estimate

$$
r_{X Y}(\tau)=\hat{\rho}_{X Y}(\tau)=\frac{c_{X Y}(\tau)}{c_{X Y}(0)}=\frac{c_{X Y}(\tau)}{s_{X} s_{Y}}
$$

Cross-covariance is not even function: $\gamma_{X Y}(\tau) \neq \gamma_{X Y}(-\tau)$, but it holds that $\gamma_{X Y}(\tau)=\gamma_{Y X}(-\tau)$. Also it holds $\left|\rho_{X Y}(\tau)\right| \leq 1$.

Example: two world stock indices

Limits of significance: $\pm z_{\alpha / 2} / \sqrt{n}$.

Example: two world stock indices

Limits of significance: $\pm z_{\alpha / 2} / \sqrt{n}$.
Large cross-correlations (X : USA, $Y:$ UK):

Example: two world stock indices

Limits of significance: $\pm z_{\alpha / 2} / \sqrt{n}$.
Large cross-correlations (X : USA, $Y:$ UK): $r_{X, Y}(0)=\operatorname{Corr}\left(X_{t}, Y_{t}\right)$: USA and UK returns are instantly correlated.

Example: two world stock indices

Limits of significance: $\pm z_{\alpha / 2} / \sqrt{n}$.
Large cross-correlations (X : USA, Y : UK):
$r_{X, Y}(0)=\operatorname{Corr}\left(X_{t}, Y_{t}\right)$: USA and UK returns are instantly correlated. $r_{X, Y}(1)=\operatorname{Corr}\left(X_{t}, Y_{t+1}\right):$ USA return is correlated to UK return a day ahead \Longrightarrow USA returns influence UK returns.

Measure of nonlinear cross-correlation

Cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$,

Measure of nonlinear cross-correlation

Cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$, Extend joint moment of order one $\mathrm{E}\left[X_{t} Y_{t+\tau}\right]$ to higher order joint moments

Measure of nonlinear cross-correlation

Cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$, Extend joint moment of order one $\mathrm{E}\left[X_{t} Y_{t+\tau}\right]$ to higher order joint moments \Longrightarrow nonlinear measures.

Measure of nonlinear cross-correlation

Cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$,
Extend joint moment of order one $\mathrm{E}\left[X_{t} Y_{t+\tau}\right]$ to higher order joint moments \Longrightarrow nonlinear measures.
For $X \rightarrow X_{t}$ and $Y \rightarrow Y_{t+\tau}$, the cross-delayed mutual information:

$$
\mathrm{I}_{X Y}(\tau)=\mathrm{I}\left(X_{t}, Y_{t+\tau}\right)=\sum_{x_{t}, y_{t+\tau}} p_{X_{t} Y_{t+\tau}}\left(x_{t}, y_{t+\tau}\right) \log \frac{p_{X_{t}} Y_{t+\tau}\left(x_{t}, y_{t+\tau}\right)}{p_{X_{t}}\left(x_{t}\right) p_{Y_{t+\tau}}\left(y_{t+\tau}\right)}
$$

Measure of nonlinear cross-correlation

Cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$,
Extend joint moment of order one $\mathrm{E}\left[X_{t} Y_{t+\tau}\right]$ to higher order joint moments \Longrightarrow nonlinear measures.
For $X \rightarrow X_{t}$ and $Y \rightarrow Y_{t+\tau}$, the cross-delayed mutual information:

$$
\mathrm{I}_{X Y}(\tau)=\mathrm{I}\left(X_{t}, Y_{t+\tau}\right)=\sum_{x_{t}, y_{t+\tau}} p_{X_{t} Y_{t+\tau}}\left(x_{t}, y_{t+\tau}\right) \log \frac{p_{X_{t}} Y_{t+\tau}}{\left.p_{X_{t}}\left(x_{t}\right), y_{t}\right) p_{Y_{t+\tau}}\left(y_{t+\tau}\right)}
$$

To estimate $\mathrm{I}_{X Y}(\tau)$ make a partition of $\left\{x_{t}\right\}_{t=1}^{n}$, a partition of $\left\{y_{t}\right\}_{t=1}^{n}$ and compute probabilities for each cell from the relative frequency,

Measure of nonlinear cross-correlation

Cross-covariance: $\gamma_{X Y}(\tau)=\operatorname{Cov}\left[X_{t}, Y_{t+\tau}\right]=\mathrm{E}\left[\left(X_{t}-\mu_{X}\right)\left(Y_{t+\tau}-\mu_{Y}\right)\right]$,
Extend joint moment of order one $\mathrm{E}\left[X_{t} Y_{t+\tau}\right]$ to higher order joint moments \Longrightarrow nonlinear measures.
For $X \rightarrow X_{t}$ and $Y \rightarrow Y_{t+\tau}$, the cross-delayed mutual information:

$$
\left.\mathrm{I}_{X Y}(\tau)=\mathrm{I}\left(X_{t}, Y_{t+\tau}\right)=\sum_{x_{t}, y_{t+\tau}} p_{X_{t} Y_{t+\tau}}\left(x_{t}, y_{t+\tau}\right) \log \frac{p_{X_{t}} Y_{t+\tau}}{} p_{X_{t}}\left(x_{t}\right) x_{Y_{t+\tau}}, y_{t+\tau}\right),
$$

To estimate $\mathrm{I}_{X Y}(\tau)$ make a partition of $\left\{x_{t}\right\}_{t=1}^{n}$, a partition of $\left\{y_{t}\right\}_{t=1}^{n}$ and compute probabilities for each cell from the relative frequency,
... or better, standardize both time series and use the same partition for each.

Example: two world stock indices

Example: two world stock indices

Example: two world stock indices

Limits of significance for $\mathrm{I}_{X Y}(\tau)$?

Example: two world stock indices

Limits of significance for $\mathrm{I}_{X Y}(\tau)$?
$r_{X Y}(0)$ and $I_{X Y}(0)$: USA and UK returns are instantly correlated (linearly and nonlinearly).

Example: two world stock indices

Limits of significance for $\mathrm{I}_{X Y}(\tau)$?
$r_{X Y}(0)$ and $I_{X Y}(0)$: USA and UK returns are instantly correlated (linearly and nonlinearly).
$r_{X Y}(1)$ large but $I_{X Y}(1)$ not large: do USA returns influence UK returns?

Exercise 6: Correlation of two financial indices

Find the correlation between two financial indices

Find the correlation between two financial indices
(1) Choose two of the eights markets in file WorldMarkets. dat (1. USA, 2. Australia, 3. UnitedKingdom, 4. Germany, 5. Greece, 6. Malaysia, 7. SouthAfrica, 8. Croatia)
(2) Compute the cross-correlation between the two indices and between their returns.
(3) Decide for the statistical significant cross-correlation between the two markets (use a parametric significance test).

Literature

[1] Chatfield C (2004) The Analysis of Time Series, An Introduction, Sixth Edition, Chapman \& Hall.
[2] Brockwell PJ and Davis RA (2002) Introduction to Time Series and Forecasting, Second Edition, Springer.
[3] Kantz H and Schreiber T (2003) Nonlinear Time Series Analysis, Second Edition, Cambridge.

