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Time Series, time dependence

Time dependence? =⇒ Test for independence (see below)

Time dependence

The time series is a function of time

The time series is a realization of a stochastic process / dynamical
system
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Stationarity see [1]: Sec 2.1-2.4, [2] Chp 1 and Sec 2.1

Stationary time series: the statistics do not change by the shift of time

Different definitions: strict stationarity, weak stationarity.
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Time series decomposition see [1]: Sec 2.5-2.6 and [2]: Chp 1

Non-stationarity may be due to deterministic trend or periodicity.

Time series decomposition: yt = µt + st + xt ,

µt : trend component, slowly varying function of time

st : periodic / seasonal component, periodic function of time

xt : residual component, stationary time series.
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Example: Monthly Greek General Index of Consumer Prices

{yt}56t=1

... y ′t = yt − µt

{st}12t=1

xt = y ′t − st = yt − µt − st

independent time series?
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Removing stochastic trends

non-stationary time
series with stochastic
trends {yt}

First differences:
xt = yt − yt−1

Returns:
xt = log(yt)− log(yt−1)

independent time series?

independent time series?

Dimitris Kugiumtzis Correlation, complexity, and coupling measures of time series



Removing stochastic trends

non-stationary time
series with stochastic
trends {yt}

First differences:
xt = yt − yt−1

Returns:
xt = log(yt)− log(yt−1)

independent time series?

independent time series?

Dimitris Kugiumtzis Correlation, complexity, and coupling measures of time series



Removing stochastic trends

non-stationary time
series with stochastic
trends {yt}

First differences:
xt = yt − yt−1

Returns:
xt = log(yt)− log(yt−1)

independent time series?

independent time series?

Dimitris Kugiumtzis Correlation, complexity, and coupling measures of time series



Removing stochastic trends

non-stationary time
series with stochastic
trends {yt}

First differences:
xt = yt − yt−1

Returns:
xt = log(yt)− log(yt−1)

independent time series?

independent time series?

Dimitris Kugiumtzis Correlation, complexity, and coupling measures of time series



Removing stochastic trends

non-stationary time
series with stochastic
trends {yt}

First differences:
xt = yt − yt−1

Returns:
xt = log(yt)− log(yt−1)

independent time series?

independent time series?

Dimitris Kugiumtzis Correlation, complexity, and coupling measures of time series



Removing stochastic trends

non-stationary time
series with stochastic
trends {yt}

First differences:
xt = yt − yt−1

Returns:
xt = log(yt)− log(yt−1)

independent time series?

independent time series?

Dimitris Kugiumtzis Correlation, complexity, and coupling measures of time series



Removing stochastic trends

non-stationary time
series with stochastic
trends {yt}

First differences:
xt = yt − yt−1

Returns:
xt = log(yt)− log(yt−1)

independent time series?

independent time series?

Dimitris Kugiumtzis Correlation, complexity, and coupling measures of time series



Autocovariance and autocorrelation see [1]: Sec 2.7, [2]: Chp 1

Stationary process {Xt} and its realization, time series {xt}nt=1.

mean: µX = E[Xt ], and estimate from {xt}nt=1, x̄ = 1
n

∑n
t=1 xt

variance: σ2X = Var[Xt ] = E[(Xt − µX )2],
and estimate

s2X =
1

n − 1

n∑
t=1

(xt − x̄)2

autocovariance: γX (τ) = Cov[Xt ,Xt+τ ] = E[(Xt − µX )(Xt+τ − µX )],
and estimate

cX (τ) = γ̂X (τ) =
1

n − τ

n−τ∑
t=1

(xt − x̄)(xt+τ − x̄)

autocorrelation: ρX (τ) = γX (τ)
γX (0)

= γX (τ)
σ2
X

, and estimate

rX (τ) = ρ̂X (τ) =
cX (τ)

cX (0)
=

cX (τ)

s2X
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Examples of autocorrelation

residuals of GICP

returns of USA
stock market
index

independent time series?

independent time series?
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Example: Traces of packet arrivals

A trace containing packet arrivals seen on an Ethernet at the Bellcore
Morristown Research and Engineering facility, regarding LAN traffic, period
11:25 on August 29, 1989.

The time series
data are the times
between
successive arrivals.

A small data
window
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Example: Traces of packet arrivals

Autocorrelation

Are the residuals of GIPC correlated?

Are the returns of USA stock marker index correlated?

Are the times between packet arrivals correlated?

Are these autocorrelations statistically significant?

Are the time series independent?
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Statistical test for independence see [1]: Sec 2.7-2.8, [2]: Chp 1

Completely random time series: it consists of a series of independent
observations having the same distribution.

For large n and random time series, r(τ) ∼ N(0, 1/n).

r(τ) is significant if it is outside the limits ±zα/2
√

1/n

(for α = 0.05, ±2
√

1/n).

... but for random time series and τ = 1, . . . ,K , where say K = 20,
on average one r(τ) will be outside the limits

=⇒ Portmanteau test collecting all r(τ) (as modified by Ljung and Box):

1 statistic Q = n(n + 2)
∑K

τ=1
r2(τ)
n−τ .

2 Q ∼ X 2
K .

3 Reject null hypothesis of independence at significance level α if
Q > X 2

K ,1−α (or compute the corresponding p-value)
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White noise and random walk see [1]: Chp 3, [2]: Chp 1

Two main stochastic processes:

White noise process: Independent stochastic process, a series of iid
variables Xt .

Xt ∼WN(µX , σ
2
X ): white noise with mean µX and variance σ2X .

Realization of white noise process: a series of iid observations.

Random walk process: at each step a white noise increment is added

Yt = Yt−1 + Xt , Xt ∼WN(0, σ2X )

µY = E[Yt ] = 0 and σ2Y = Var[Yt ] = tσ2X . The variance grows with
time.

White noise is a stationary process and random walk a non-stationary
process.
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Linear autoregressive models see [1]: Chp 3, [2]: Chp 2

A linear stochastic process possessing significant autocorrelation is the
linear autoregressive process of order p, AR(p)

xt = φ0 + φ1xt−1 + · · ·+ φpxt−p + εt

where εt ∼WN(0, σ2ε ) (usually we assume for simplicity φ0 = 0).

Random walk is an AR(1) process with φ1 = 1.

The coefficients are such that the AR(p) process is stationary.
Stationarity condition: the roots of the equation

φ(B) = 1− φ1B − · · · − φpBp = 0

must lie outside the unit circle (roots, which may be complex, are greater
than one in modulus).
Other types of processes: moving average of order q, MA(q), mixed
processes ARMA(p, q).
To estimate the model AR(p) from a time series, we use least squares to
compute the coefficients φ0, φ1, . . . φp and σ2ε .
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Exercise 4: Nonparametric test for independence

What if the Q statistic does not follow exactly X 2
K?

Use resampling (randomization) to form the empirical distribution of Q:
Generate M randomized time series from {xt}nt=1 by random permutation
of the samples (destroy the time order but use the same distribution of the
original time series). [matlab: use randperm]

1 Generate a time series {xt}nt=1, n = 100.

2 Use parametric and nonparametric Portmanteau test (e.g. for K = 5,
M = 1000) [matlab: use portmanteauLB.m from the course files].

3 Repeat the tests 100 times. Are the proportions of rejection the same
for the two test types?

The following types of time series will be generated in (1):

1 White noise with normal distribution [matlab: use randn]

2 White noise with log-normal distribution [matlab: use lognrnd].

3 AR(1) with φ0 = 0 and φ1 = 0.2, 0.4 and 0.6 [matlab: use ARm.m

from the course files]
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Nonlinear correlations see [3], Chp 1,2,3

Logistic map:
Xt = 4Xt−1(1− Xt−1),
nonlinear dynamical
system
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Measure of nonlinear autocorrelation see [3]: Sec 9.2

Autocovariance: γX (τ) = Cov[Xt ,Xt+τ ] = E[(Xt − µX )(Xt+τ − µX )],

Extend joint moment of order one E[XtXt+τ ] to higher order joint moments
=⇒ nonlinear measures.

Entropy: information from each sample of X (assuming discrete X )

H(X ) = E[log pX (x)] =
∑
x

pX (x) log pX (x).

Mutual information: information for Y knowing X and vice versa

I(X ,Y ) = H(X ) + H(Y )− H(X ,Y ) =
∑
x ,y

pXY (x , y) log
pXY (x , y)

pX (x)pY (y)

For X → Xt and Y → Xt+τ , the delayed mutual information:

I(τ) = I(Xt ,Xt+τ ) =
∑

xt ,xt+τ

pXtXt+τ (xt , xt+τ ) log
pXtXt+τ (xt , xt+τ )

pXt (xt)pXt+τ (xt+τ )

To estimate I(τ) make a partition of {xt}nt=1 and compute probabilities for
each cell from the relative frequency.
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Mutual information: white noise and logistic map

Computation of I (τ):

1 Equidistant partition (histogram): split {xt}nt=1 to b equidistant
intervals.

2 Count xt , t = τ + 1, . . . , n in each interval. The same for xt+τ .

3 Count pairs (xt , xt+τ ), t = 1, . . . , n − τ in each of the b2 cells.

4 The relative frequencies in 2 and 3 are the estimates for pXt (xt),
pXt+τ (xt+τ ) and pXtXt+τ (xt , xt+τ ).
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Exercise 5: Nonparametric test for zero mutual information

How can we test for zero delayed mutual information ? [to compute I (τ) in
matlab use mutual.m from the course files]

Use resampling (randomization) to form the empirical distribution of I (τ),
as for Exercise 4.

Perform the randomization test for the three real time series:

1 Residuals of GICP [course data file GPIC2001 2005residuals.dat]

2 Returns of USA stock marker index [course data file USAreturns.dat].

3 Times between packet arrivals [course data file PacketArrival.dat]
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Bivariate time series

Time evolution of two
stock market indices

Time evolution of two
stock market returns

Are there autocorrelations in the two indices?

Are there cross-correlations in the two indices?
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Cross-covariance and cross-correlation see [1]: Chp 8, [2]: Chp 7

Stationary processes {Xt} and {Yt} and their realizations, time series
{xt , yt}nt=1.

cross-covariance: γXY (τ) = Cov[Xt ,Yt+τ ] = E[(Xt − µX )(Yt+τ − µY )],
and estimate

cXY (τ) = γ̂XY (τ) =
1

n − τ

n−τ∑
t=1

(xt − x̄)(yt+τ − ȳ)

cross-correlation: ρXY (τ) = γXY (τ)
γXY (0) = γXY (τ)

σXσY
, and estimate

rXY (τ) = ρ̂XY (τ) =
cXY (τ)

cXY (0)
=

cXY (τ)

sX sY

Cross-covariance is not even function: γXY (τ) 6= γXY (−τ),
but it holds that γXY (τ) = γYX (−τ). Also it holds |ρXY (τ)| ≤ 1.
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cross-correlation: ρXY (τ) = γXY (τ)
γXY (0) = γXY (τ)

σXσY
, and estimate

rXY (τ) = ρ̂XY (τ) =
cXY (τ)

cXY (0)
=

cXY (τ)

sX sY

Cross-covariance is not even function: γXY (τ) 6= γXY (−τ),
but it holds that γXY (τ) = γYX (−τ). Also it holds |ρXY (τ)| ≤ 1.

Dimitris Kugiumtzis Correlation, complexity, and coupling measures of time series



Cross-covariance and cross-correlation see [1]: Chp 8, [2]: Chp 7

Stationary processes {Xt} and {Yt} and their realizations, time series
{xt , yt}nt=1.

cross-covariance: γXY (τ) = Cov[Xt ,Yt+τ ] = E[(Xt − µX )(Yt+τ − µY )],
and estimate

cXY (τ) = γ̂XY (τ) =
1

n − τ

n−τ∑
t=1

(xt − x̄)(yt+τ − ȳ)
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Example: two world stock indices

Limits of significance: ±zα/2/
√
n.

Large cross-correlations (X : USA, Y : UK):
rX ,Y (0) = Corr(Xt ,Yt): USA and UK returns are instantly correlated.
rX ,Y (1) = Corr(Xt ,Yt+1): USA return is correlated to UK return a day
ahead =⇒ USA returns influence UK returns.
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Measure of nonlinear cross-correlation

Cross-covariance: γXY (τ) = Cov[Xt ,Yt+τ ] = E[(Xt − µX )(Yt+τ − µY )],

Extend joint moment of order one E[XtYt+τ ] to higher order joint moments
=⇒ nonlinear measures.

For X → Xt and Y → Yt+τ , the cross-delayed mutual information:

IXY (τ) = I(Xt ,Yt+τ ) =
∑

xt ,yt+τ

pXtYt+τ (xt , yt+τ ) log
pXtYt+τ (xt , yt+τ )

pXt (xt)pYt+τ (yt+τ )

To estimate IXY (τ) make a partition of {xt}nt=1, a partition of {yt}nt=1 and
compute probabilities for each cell from the relative frequency,

... or better, standardize both time series and use the same partition for
each.
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Example: two world stock indices

Limits of significance for IXY (τ)?

rXY (0) and IXY (0): USA and UK returns are instantly correlated (linearly
and nonlinearly).

rXY (1) large but IXY (1) not large: do USA returns influence UK returns?
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Exercise 6: Correlation of two financial indices

Find the correlation between two financial indices

1 Choose two of the eights markets in file WorldMarkets.dat (1. USA,
2. Australia, 3. UnitedKingdom, 4. Germany, 5. Greece, 6. Malaysia,
7. SouthAfrica, 8. Croatia)

2 Compute the cross-correlation between the two indices and between
their returns.

3 Decide for the statistical significant cross-correlation between the two
markets (use a parametric significance test).
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