Statistical Analysis of Networks Networks, correlation and time series

Dimitris Kugiumtzis

November 7, 2018

Contents

- $7 / 11 / 2018$ Networks, correlation and time series
- 14/11/2018 Correlation, complexity, and coupling measures of time series
- $21 / 11 / 2018$ Analysis of multi-variate time series by means of networks
- 16/11/2018 Connectivity networks and applications
- 5/12/2018 Networks from time series using Matlab

Introduction - Example: Games of world cup 1930-2006

Dimitris Kugiumtzis Statistical Analysis of Networks -Networks, correlation and tim

Introduction - Example: Flight connections

Data from: https://au.pinterest.com/pin/488077678338752549

Introduction - Example: Flight connections

Dimitris Kugiumtzis

Introduction - Example: Flight connections

Introduction - Example: Ship connections

Introduction - Example: similar web-pages

Data from: http://vlado.fmf.uni-lj.si/pub/networks/data/GD/gd97/B97.net see [1]

Introduction - Example: Finance

Dimitris Kugiumtzis Statistical Analysis of Networks -Networks, correlation and tim

Introduction - Example: Finance

Introduction - Example: Brain Data

Dimitris Kugiumtzis
Statistical Analysis of Networks -Networks, correlation and tim

Introduction - Example: Brain Data

Introduction - Example: brain network

PHYSICAL REVIEW E 79, 061916 (2009)

Network inference with confidence from multivariate time series

Mark A. Kramer, ${ }^{1, *}$ Uri T. Eden, ${ }^{1}$ Sydney S. Cash, ${ }^{2}$ and Eric D. Kolaczyk ${ }^{1}$

${ }^{1}$ Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA
${ }^{2}$ Department of Neurology, Epilepsy Service, Harvard Medical School, ACC 835, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
(Received 9 March 2009; revised manuscript received 14 May 2009; published 11 June 2009)
(a) Linear

20 Electrode No. 80

(b) Nonlinear

20 Electrode No. 80

Introduction - Example: brain network

PHYSICAL REVIEW E 79, 061916 (2009)

Network inference with confidence from multivariate time series
Mark A. Kramer, ${ }^{1, *}$ Uri T. Eden, ${ }^{1}$ Sydney S. Cash, ${ }^{2}$ and Eric D. Kolaczyk ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA
${ }^{2}$ Department of Neurology, Epilepsy Service, Harvard Medical School, ACC 835, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
(Received 9 March 2009; revised manuscript received 14 May 2009; published 11 June 2009)
(a) Linear

20 Electrode No. 80

(b) Nonlinear

20 Electrode No. 80

Introduction - Example: brain network

PHYSICAL REVIEW E 79, 061916 (2009)

Network inference with confidence from multivariate time series
Mark A. Kramer, ${ }^{1, *}$ Uri T. Eden, ${ }^{1}$ Sydney S. Cash, ${ }^{2}$ and Eric D. Kolaczyk ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA
${ }^{2}$ Department of Neurology, Epilepsy Service, Harvard Medical School, ACC 835, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
(Received 9 March 2009; revised manuscript received 14 May 2009; published 11 June 2009)
(a) Linear

20 Electrode No. 80

(b) Nonlinear

20 Electrode No. 80

Introduction - Example: brain network

PHYSICAL REVIEW E 79, 061916 (2009)

Network inference with confidence from multivariate time series
Mark A. Kramer, ${ }^{1, *}$ Uri T. Eden, ${ }^{1}$ Sydney S. Cash, ${ }^{2}$ and Eric D. Kolaczyk ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA
${ }^{2}$ Department of Neurology, Epilepsy Service, Harvard Medical School, ACC 835, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
(Received 9 March 2009; revised manuscript received 14 May 2009; published 11 June 2009)
(a) Linear

20 Electrode No. 80

(b) Nonlinear

20 Electrode No. 80

ECoG: "Linear and nonlinear association measures produce similar association matrices and networks." ?

It is important to:

- Use appropriate measure of correlation / association / causality.

Introduction - Example: brain network

PHYSICAL REVIEW E 79, 061916 (2009)

Network inference with confidence from multivariate time series
Mark A. Kramer, ${ }^{1, *}$ Uri T. Eden, ${ }^{1}$ Sydney S. Cash, ${ }^{2}$ and Eric D. Kolaczyk ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA
${ }^{2}$ Department of Neurology, Epilepsy Service, Harvard Medical School, ACC 835, Massachusetts General Hospital,
55 Fruit Street, Boston, Massachusetts 02114, USA
(Received 9 March 2009; revised manuscript received 14 May 2009; published 11 June 2009)
(a) Linear

20 Electrode No. 80

(b) Nonlinear

20 Electrode No. 80

ECoG: "Linear and nonlinear association measures produce similar association matrices and networks." ?

It is important to:

- Use appropriate measure of correlation / association / causality.
- Assess the significance of the measure.

Network

A network consists of nodes and links

Network

A network consists of nodes and links Node: national team, web-page, ...

Network

A network consists of nodes and links
Node: national team, web-page, ...
Link: match between two teams, link between two web-pages, ...

Network

A network consists of nodes and links
Node: national team, web-page, ...
Link: match between two teams, link between two web-pages, ...
Each node is an entity and the link denotes a connection between two entities.

Network

A network consists of nodes and links
Node: national team, web-page, ...
Link: match between two teams, link between two web-pages, ...
Each node is an entity and the link denotes a connection between two entities.

Here, we will study a different (specific) type of nodes and links:
Each node type is a variable.
The link denotes some form of association or correlation between the variables.

Association Network (link: association rule) see [2]. Sec 7.3

Link: association level between attributes of the two nodes.
Association is not necessarily determined by a statistical measure.

Association Network (link: association rule) see [2]. Sec 7.3

Link: association level between attributes of the two nodes.
Association is not necessarily determined by a statistical measure.

Example

Association Network (link: association rule) see [2]. Sec 7.3

Link: association level between attributes of the two nodes.
Association is not necessarily determined by a statistical measure.

Example

Scientometrics: Study the relationship among various scientific disciplines. see [2], Sec 3.5.1

Association Network (link: association rule) see [2]. Sec 7.3

Link: association level between attributes of the two nodes.
Association is not necessarily determined by a statistical measure.

Example

Scientometrics: Study the relationship among various scientific disciplines. see [2], Sec 3.5.1
Node (unit): scientific journal

Association Network (link: association rule) see [2]. Sec 7.3

Link: association level between attributes of the two nodes.
Association is not necessarily determined by a statistical measure.

Example

Scientometrics: Study the relationship among various scientific disciplines. see [2], Sec 3.5.1
Node (unit): scientific journal
Link: interaction between two journals,

Association Network (link: association rule) see [2]. Sec 7.3

Link: association level between attributes of the two nodes.
Association is not necessarily determined by a statistical measure.

Example

Scientometrics: Study the relationship among various scientific disciplines. see [2], Sec 3.5.1
Node (unit): scientific journal
Link: interaction between two journals,
e.g. a link is established if journal i cites journal j at least once within a given period (directed link), and vice versa (undirected link).

Association Network (link: association rule) see [2]. Sec 7.3

Link: association level between attributes of the two nodes.
Association is not necessarily determined by a statistical measure.

Example

Scientometrics: Study the relationship among various scientific disciplines. see [2], Sec 3.5.1
Node (unit): scientific journal
Link: interaction between two journals,
e.g. a link is established if journal i cites journal j at least once within a given period (directed link), and vice versa (undirected link).

Association Network (link: association rule) see [2]. Sec 7.3

Link: association level between attributes of the two nodes.
Association is not necessarily determined by a statistical measure.

Example

Scientometrics: Study the relationship among various scientific disciplines. see [2], Sec 3.5.1
Node (unit): scientific journal
Link: interaction between two journals,
e.g. a link is established if journal i cites journal j at least once within a given period (directed link), and vice versa (undirected link).

Association Network (link: association rule) see [2]. Sec 7.3

Link: association level between attributes of the two nodes.
Association is not necessarily determined by a statistical measure.

Example

Scientometrics: Study the relationship among various scientific disciplines. see [2], Sec 3.5.1
Node (unit): scientific journal
Link: interaction between two journals,
e.g. a link is established if journal i cites journal j at least once within a given period (directed link), and vice versa (undirected link).

$$
C_{i j} \text { : times i cites } j \quad C_{j} \text { : times } j \text { cites } i
$$

Another association rule is the Jaccard measure:
$J A C_{i j}=J A C_{j i}=\frac{C_{i j}+C_{j i}}{\sum_{k \neq j} C_{i k}+\sum_{k \neq i} C_{j k}}$

A "backbone" map of Science and Social Science:

 7121 journals from year 2000

Source: http://grants.nih.gov/grants/KM/OERRM/OER_KM_events/Borner.pdf

The 212 nodes represent clusters of journals for different disciplines

Source: http://grants.nih.gov/grants/KM/OERRM/OER_KM_events/Borner.pdf

Association Network (node: vector of attributes)

Each node i is presented with a vector \mathbf{x}_{i} of n observed attributes

$$
\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}
$$

Association Network (node: vector of attributes)

Each node i is presented with a vector \mathbf{x}_{i} of n observed attributes

$$
\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}
$$

A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of association between two such nodes i and j.

Association Network (node: vector of attributes)

Each node i is presented with a vector \mathbf{x}_{i} of n observed attributes

$$
\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}
$$

A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of association between two such nodes i and j.
$\operatorname{sim}(i, j)$ may take numerical values.

Association Network (node: vector of attributes)

Each node i is presented with a vector \mathbf{x}_{i} of n observed attributes

$$
\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}
$$

A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of association between two such nodes i and j.
$\operatorname{sim}(i, j)$ may take numerical values.
A link is assigned if the level of $\operatorname{sim}(i, j)$ constitutes non-trivial association between i and j.

Association Network (node: vector of attributes)

Each node i is presented with a vector \mathbf{x}_{i} of n observed attributes

$$
\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}
$$

A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of association between two such nodes i and j.
$\operatorname{sim}(i, j)$ may take numerical values.
A link is assigned if the level of $\operatorname{sim}(i, j)$ constitutes non-trivial association between i and j.
$\operatorname{sim}(i, j)$ is not directly observable but can be inferred by the information in \mathbf{x}_{i} and \mathbf{x}_{j}.

Exercise 1: Profile of Department web-sites

Example

Consider as network an ensemble of Departments of some sort (e.g. of the same University, discipline, country etc).

Exercise 1: Profile of Department web-sites

Example

Consider as network an ensemble of Departments of some sort (e.g. of the same University, discipline, country etc). The interest is in studying the quality / strength / similarity of the web-profiles of the Departments.

Exercise 1: Profile of Department web-sites

Example

Consider as network an ensemble of Departments of some sort (e.g. of the same University, discipline, country etc). The interest is in studying the quality / strength / similarity of the web-profiles of the Departments.
Node: a Dept web-site, assigned with a number of attributes:

Exercise 1: Profile of Department web-sites

Example

Consider as network an ensemble of Departments of some sort (e.g. of the same University, discipline, country etc). The interest is in studying the quality / strength / similarity of the web-profiles of the Departments.
Node: a Dept web-site, assigned with a number of attributes:

- Staff members having their home-page linked to the Department web-pages (e.g. given as percentage).

Exercise 1: Profile of Department web-sites

Example

Consider as network an ensemble of Departments of some sort (e.g. of the same University, discipline, country etc). The interest is in studying the quality / strength / similarity of the web-profiles of the Departments.
Node: a Dept web-site, assigned with a number of attributes:

- Staff members having their home-page linked to the Department web-pages (e.g. given as percentage).
- Number of announcements within the last month.

Exercise 1: Profile of Department web-sites

Example

Consider as network an ensemble of Departments of some sort (e.g. of the same University, discipline, country etc). The interest is in studying the quality / strength / similarity of the web-profiles of the Departments.
Node: a Dept web-site, assigned with a number of attributes:

- Staff members having their home-page linked to the Department web-pages (e.g. given as percentage).
- Number of announcements within the last month.
- Other ???

Exercise 1: Profile of Department web-sites

Example

Consider as network an ensemble of Departments of some sort (e.g. of the same University, discipline, country etc).

The interest is in studying the quality / strength / similarity of the web-profiles of the Departments.
Node: a Dept web-site, assigned with a number of attributes:

- Staff members having their home-page linked to the Department web-pages (e.g. given as percentage).
- Number of announcements within the last month.
- Other ???

What is an appropriate $\operatorname{sim}(i, j)$ to infer links?

Exercise 1: Profile of Department web-sites

Example

Consider as network an ensemble of Departments of some sort (e.g. of the same University, discipline, country etc).

The interest is in studying the quality / strength / similarity of the web-profiles of the Departments.
Node: a Dept web-site, assigned with a number of attributes:

- Staff members having their home-page linked to the Department web-pages (e.g. given as percentage).
- Number of announcements within the last month.
- Other ???

What is an appropriate $\operatorname{sim}(i, j)$ to infer links?
... the above is the first exercise!

Exercise 1: Profile of Department web-sites

Example

Consider as network an ensemble of Departments of some sort (e.g. of the same University, discipline, country etc).

The interest is in studying the quality / strength / similarity of the web-profiles of the Departments.
Node: a Dept web-site, assigned with a number of attributes:

- Staff members having their home-page linked to the Department web-pages (e.g. given as percentage).
- Number of announcements within the last month.
- Other ???

What is an appropriate $\operatorname{sim}(i, j)$ to infer links?
... the above is the first exercise!
You should determine and collect data for: Departments (e.g. 5), attributes (e.g. 4-5), and determine a suitable $\operatorname{sim}(i, j)$.

Exercise 1: Profile of Department web-sites

Example

Consider as network an ensemble of Departments of some sort (e.g. of the same University, discipline, country etc).

The interest is in studying the quality / strength / similarity of the web-profiles of the Departments.
Node: a Dept web-site, assigned with a number of attributes:

- Staff members having their home-page linked to the Department web-pages (e.g. given as percentage).
- Number of announcements within the last month.
- Other ???

What is an appropriate $\operatorname{sim}(i, j)$ to infer links?
... the above is the first exercise!
You should determine and collect data for: Departments (e.g. 5), attributes (e.g. 4-5), and determine a suitable $\operatorname{sim}(i, j)$.
You may use a software (e.g. pajek) to draw the network.

Correlation Network see [2], Sec 7.3.1

For each node i, an attribute X_{i} is assigned that is considered as a continuous random variable.

Correlation Network see [2], Sec 7.3.1

For each node i, an attribute X_{i} is assigned that is considered as a continuous random variable.
For each X_{i} there are n observations: $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$.

Correlation Network see [2], Sec 7.3.1

For each node i, an attribute X_{i} is assigned that is considered as a continuous random variable.

For each X_{i} there are n observations: $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$. A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of correlation between X_{i} and X_{j}.

Correlation Network see [2], Sec 7.3.1

For each node i, an attribute X_{i} is assigned that is considered as a continuous random variable.

For each X_{i} there are n observations: $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$. A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of correlation between X_{i} and X_{j}.
A standard similarity measure is the Pearson correlation coefficient

$$
\operatorname{Corr}(X, Y)=r_{X Y}=\frac{s_{X Y}}{s_{X} s_{Y}}
$$

$s_{X Y}$: sample covariance of X and Y, s_{X} : sample SD of X

Correlation Network see [2], Sec 7.3.1

For each node i, an attribute X_{i} is assigned that is considered as a continuous random variable.

For each X_{i} there are n observations: $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$. A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of correlation between X_{i} and X_{j}.
A standard similarity measure is the Pearson correlation coefficient

$$
\operatorname{Corr}(X, Y)=r_{X Y}=\frac{s_{X Y}}{s_{X} s_{Y}}
$$

$s_{X Y}$: sample covariance of X and Y, s_{X} : sample SD of X

Example

Gene Regulation from Microarray Data: Patterns of regulatory interactions among genes can be described by networks.

Correlation Network see [2], Sec 7.3.1

For each node i, an attribute X_{i} is assigned that is considered as a continuous random variable.

For each X_{i} there are n observations: $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$. A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of correlation between X_{i} and X_{j}.
A standard similarity measure is the Pearson correlation coefficient

$$
\operatorname{Corr}(X, Y)=r_{X Y}=\frac{s_{X Y}}{s_{X} s_{Y}}
$$

$s_{X Y}$: sample covariance of X and Y, s_{X} : sample SD of X

Example

Gene Regulation from Microarray Data: Patterns of regulatory interactions among genes can be described by networks.
Node: the gene

Correlation Network see [2], Sec 7.3.1

For each node i, an attribute X_{i} is assigned that is considered as a continuous random variable.

For each X_{i} there are n observations: $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$.
A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of correlation between X_{i} and X_{j}.
A standard similarity measure is the Pearson correlation coefficient

$$
\operatorname{Corr}(X, Y)=r_{X Y}=\frac{s_{X Y}}{s_{X} s_{Y}}
$$

$s_{X Y}$: sample covariance of X and Y, s_{X} : sample SD of X

Example

Gene Regulation from Microarray Data: Patterns of regulatory interactions among genes can be described by networks.
Node: the gene
X_{i} : relative level of RNA expression of the gene i in a cell.

Correlation Network see [2], Sec 7.3.1

For each node i, an attribute X_{i} is assigned that is considered as a continuous random variable.
For each X_{i} there are n observations: $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$.
A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of correlation between X_{i} and X_{j}.
A standard similarity measure is the Pearson correlation coefficient

$$
\operatorname{Corr}(X, Y)=r_{X Y}=\frac{s_{X Y}}{s_{X} s_{Y}}
$$

$s_{X Y}$: sample covariance of X and Y, s_{X} : sample SD of X

Example

Gene Regulation from Microarray Data: Patterns of regulatory interactions among genes can be described by networks.
Node: the gene
X_{i} : relative level of RNA expression of the gene i in a cell.
\mathbf{x}_{i} : Microarray measurements of the RNA level at n experiments (different conditions).

Correlation Network see [2], Sec 7.3.1

For each node i, an attribute X_{i} is assigned that is considered as a continuous random variable.
For each X_{i} there are n observations: $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$.
A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of correlation between X_{i} and X_{j}.
A standard similarity measure is the Pearson correlation coefficient

$$
\operatorname{Corr}(X, Y)=r_{X Y}=\frac{s_{X Y}}{s_{X} s_{Y}}
$$

$s_{X Y}$: sample covariance of X and Y, s_{X} : sample SD of X

Example

Gene Regulation from Microarray Data: Patterns of regulatory interactions among genes can be described by networks.
Node: the gene
X_{i} : relative level of RNA expression of the gene i in a cell.
\mathbf{x}_{i} : Microarray measurements of the RNA level at n experiments (different conditions).
Link: regulatory relationship, $\operatorname{sim}(i, j):=\operatorname{Corr}\left(X_{i}, X_{j}\right)=r_{X_{i}, X_{j}}=r_{i j}$

Example: Gene Regulation from Microarray Data

Data from: http://m3d.bu.edu/cgi-bin/web/array/index.pl see [2], Sec 7.3.1 Three genes: Irp, aroG, tyrR, and 41 experiments.

Example: Gene Regulation from Microarray Data

Data from: http://m3d.bu.edu/cgi-bin/web/array/index.pl see [2], Sec 7.3.1
Three genes: Irp, aroG, tyrR, and 41 experiments.

Example: Gene Regulation from Microarray Data

Data from: http://m3d.bu.edu/cgi-bin/web/array/index.pl see [2], Sec 7.3.1 Three genes: Irp, aroG, tyrR, and 41 experiments.

Example: Gene Regulation from Microarray Data

Data from: http://m3d.bu.edu/cgi-bin/web/array/index.pl see [2], Sec 7.3.1
Three genes: Irp, aroG, tyrR, and 41 experiments.

Which links are "non-trivial"?

Example: Gene Regulation from Microarray Data

Data from: http://m3d.bu.edu/cgi-bin/web/array/index.pl see [2], Sec 7.3.1
Three genes: Irp, aroG, tyrR, and 41 experiments.

Which links are "non-trivial"?
Significance test for correlation coefficient?

Significance of correlation (parametric test)

Let $\rho_{X_{i}, X_{j}}=\rho_{i j}$ be the true Pearson correlation coefficient of X_{i} and X_{j}.

Significance of correlation (parametric test)

Let $\rho_{X_{i}, X_{j}}=\rho_{i j}$ be the true Pearson correlation coefficient of X_{i} and X_{j}.

Hypothesis test for significance:
$\mathrm{H}_{0}: \rho_{i j}=0, \quad \mathrm{H}_{1}: \rho_{i j} \neq 0$.

Significance of correlation (parametric test)

Let $\rho_{X_{i}, X_{j}}=\rho_{i j}$ be the true Pearson correlation coefficient of X_{i} and X_{j}.

Hypothesis test for significance:
$\mathrm{H}_{0}: \rho_{i j}=0, \quad \mathrm{H}_{1}: \rho_{i j} \neq 0$.
Estimate of $\rho_{i j}: r_{i j}=\frac{s_{i j}}{s_{i} s_{j}}$.

Significance of correlation (parametric test)

Let $\rho_{X_{i}, X_{j}}=\rho_{i j}$ be the true Pearson correlation coefficient of X_{i} and X_{j}.

Hypothesis test for significance:
$\mathrm{H}_{0}: \rho_{i j}=0, \quad \mathrm{H}_{1}: \rho_{i j} \neq 0$.
Estimate of $\rho_{i j}: r_{i j}=\frac{s_{i j}}{s_{i} s_{j}}$.
Parametric testing, assuming $\left(X_{i}, X_{j}\right) \sim \mathrm{N}\left(\left[\mu_{i}, \mu_{j}\right],\left[\sigma_{i}^{2}, \sigma_{j}^{2}\right], \rho_{i j}\right)$:

Significance of correlation (parametric test)

Let $\rho_{X_{i}, X_{j}}=\rho_{i j}$ be the true Pearson correlation coefficient of X_{i} and X_{j}.

Hypothesis test for significance:
$\mathrm{H}_{0}: \rho_{i j}=0, \quad \mathrm{H}_{1}: \rho_{i j} \neq 0$.
Estimate of $\rho_{i j}: r_{i j}=\frac{s_{i j}}{s_{i} s_{j}}$.
Parametric testing, assuming $\left(X_{i}, X_{j}\right) \sim \mathrm{N}\left(\left[\mu_{i}, \mu_{j}\right],\left[\sigma_{i}^{2}, \sigma_{j}^{2}\right], \rho_{i j}\right)$:
Test statistic:

- $t=\frac{r_{i j} \sqrt{n-2}}{\sqrt{1-r_{i j}^{2}}} \sim t_{n-2}$, or
- $z=\tanh ^{-1}\left(r_{i j}\right)=\frac{1}{2} \log \left[\frac{1+r_{i j}^{2}}{1-r_{i j}^{2}}\right] \sim N\left(0, \frac{1}{n-3}\right)$

Significance of correlation (parametric test)

Let $\rho_{X_{i}, X_{j}}=\rho_{i j}$ be the true Pearson correlation coefficient of X_{i} and X_{j}.

Hypothesis test for significance:
$\mathrm{H}_{0}: \rho_{i j}=0, \quad \mathrm{H}_{1}: \rho_{i j} \neq 0$.
Estimate of $\rho_{i j}: r_{i j}=\frac{s_{i j}}{s_{i} s_{j}}$.
Parametric testing, assuming $\left(X_{i}, X_{j}\right) \sim \mathrm{N}\left(\left[\mu_{i}, \mu_{j}\right],\left[\sigma_{i}^{2}, \sigma_{j}^{2}\right], \rho_{i j}\right)$:
Test statistic:

- $t=\frac{r_{i j} \sqrt{n-2}}{\sqrt{1-r_{i j}^{2}}} \sim t_{n-2}$, or
- $z=\tanh ^{-1}\left(r_{i j}\right)=\frac{1}{2} \log \left[\frac{1+r_{i j}^{2}}{1-r_{i j}^{2}}\right] \sim \mathrm{N}\left(0, \frac{1}{n-3}\right)$

Test all pairs at the significance level α ? Multiple testing?

Example: Gene Regulation (continuing)

Parametric test for the significance of the correlation for the genes: Irp, aroG, tyrR, $n=41$.

Example: Gene Regulation (continuing)

Parametric test for the significance of the correlation for the genes:
Irp, aroG, tyrR, $n=41$.

gene pair	$r_{i j}$	t-statistic (p-value)	z-statistic $(p$-value $)$
Irp-aroG	0.78	$7.79(0.0000)$	$6.48(0.0000)$
Irp-tyrR	-0.36	$-2.41(0.0208)$	$-2.32(0.0202)$
aroG-tyrR	-0.21	$-1.36(0.1929)$	$-1.30(0.1942)$

Example: Gene Regulation (continuing)

Parametric test for the significance of the correlation for the genes:
Irp, aroG, tyrR, $n=41$.

gene pair	$r_{i j}$	t-statistic (p-value)	z-statistic $(p$-value $)$
Irp-aroG	0.78	$7.79(0.0000)$	$6.48(0.0000)$
Irp-tyrR	-0.36	$-2.41(0.0208)$	$-2.32(0.0202)$
aroG-tyrR	-0.21	$-1.36(0.1929)$	$-1.30(0.1942)$

Example: Gene Regulation (continuing)

Parametric test for the significance of the correlation for the genes: Irp, aroG, tyrR, $n=41$.

gene pair	$r_{i j}$	t-statistic (p-value)	z-statistic $(p$-value $)$
Irp-aroG	0.78	$7.79(0.0000)$	$6.48(0.0000)$
Irp-tyrR	-0.36	$-2.41(0.0208)$	$-2.32(0.0202)$
aroG-tyrR	-0.21	$-1.36(0.1929)$	$-1.30(0.1942)$

Example: Gene Regulation (continuing)

Parametric test for the significance of the correlation for the genes: Irp, aroG, tyrR, $n=41$.

gene pair	$r_{i j}$	t-statistic $(p$-value)	z-statistic $(p$-value $)$
Irp-aroG	0.78	$7.79(0.0000)$	$6.48(0.0000)$
Irp-tyrR	-0.36	$-2.41(0.0208)$	$-2.32(0.0202)$
aroG-tyrR	-0.21	$-1.36(0.1929)$	$-1.30(0.1942)$

Does significance level $\alpha=0.01$ establishes "non-trivial" links?

Example: Gene Regulation (continuing)

Parametric test for the significance of the correlation for the genes: Irp, aroG, tyrR, $n=41$.

gene pair	$r_{i j}$	t-statistic (p-value)	z-statistic $(p$-value)
Irp-aroG	0.78	$7.79(0.0000)$	$6.48(0.0000)$
Irp-tyrR	-0.36	$-2.41(0.0208)$	$-2.32(0.0202)$
aroG-tyrR	-0.21	$-1.36(0.1929)$	$-1.30(0.1942)$

Does significance level $\alpha=0.01$ establishes "non-trivial" links?
Does $\left(X_{i}, X_{j}\right) \sim \mathrm{N}\left(\left[\mu_{i}, \mu_{j}\right],\left[\sigma_{i}^{2}, \sigma_{j}^{2}\right], \rho_{i j}\right)$ hold?

Example: Gene Regulation (continuing)

Does $X_{i} \sim \mathrm{~N}\left(\mu_{i}, \sigma_{i}^{2}\right)$ hold?

Example: Gene Regulation (continuing)

Does $X_{i} \sim \mathrm{~N}\left(\mu_{i}, \sigma_{i}^{2}\right)$ hold?

Example: Gene Regulation (continuing)

Does $X_{i} \sim \mathrm{~N}\left(\mu_{i}, \sigma_{i}^{2}\right)$ hold?

The results of the parametric testing are called into question!

Significance of correlation (nonparametric test)

Nonparametric testing: draw the null distribution of $r_{i j}$ from resampled pairs consistent to $\mathrm{H}_{0}: \rho_{i j}=0$.

Significance of correlation (nonparametric test)

Nonparametric testing: draw the null distribution of $r_{i j}$ from resampled pairs consistent to $\mathrm{H}_{0}: \rho_{i j}=0$.
(1) For an "original" pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, generate B randomized sample pairs $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$. Generation of each b pair:

Significance of correlation (nonparametric test)

Nonparametric testing: draw the null distribution of $r_{i j}$ from resampled pairs consistent to $\mathrm{H}_{0}: \rho_{i j}=0$.
(1) For an "original" pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, generate B randomized sample pairs $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$. Generation of each b pair:

- Let first variable intact, $\mathbf{x}_{i}^{* b}=\mathbf{x}_{i}$.

Significance of correlation (nonparametric test)

Nonparametric testing: draw the null distribution of $r_{i j}$ from resampled pairs consistent to $\mathrm{H}_{0}: \rho_{i j}=0$.
(1) For an "original" pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, generate B randomized sample pairs $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$. Generation of each b pair:

- Let first variable intact, $\mathbf{x}_{i}^{* b}=\mathbf{x}_{i}$.
- Shuffle randomly the samples of the other variable to get $\mathbf{x}_{j}^{* b}$.

Significance of correlation (nonparametric test)

Nonparametric testing: draw the null distribution of $r_{i j}$ from resampled pairs consistent to $\mathrm{H}_{0}: \rho_{i j}=0$.
(1) For an "original" pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, generate B randomized sample pairs $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$. Generation of each b pair:

- Let first variable intact, $\mathbf{x}_{i}^{* b}=\mathbf{x}_{i}$.
- Shuffle randomly the samples of the other variable to get $\mathbf{x}_{j}^{* b}$.

Each sample pair $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$ is from $\left(X_{i}, X_{j}\right)$ under the hypothesis of independence ($\mathbf{x}_{i}^{* b}$ preserves the marginal distribution of \mathbf{x}_{i}, the same for j).

Significance of correlation (nonparametric test)

Nonparametric testing: draw the null distribution of $r_{i j}$ from resampled pairs consistent to $\mathrm{H}_{0}: \rho_{i j}=0$.
(1) For an "original" pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, generate B randomized sample pairs $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$. Generation of each b pair:

- Let first variable intact, $\mathbf{x}_{i}^{* b}=\mathbf{x}_{i}$.
- Shuffle randomly the samples of the other variable to get $\mathbf{x}_{j}^{* b}$.

Each sample pair $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$ is from $\left(X_{i}, X_{j}\right)$ under the hypothesis of independence ($\mathbf{x}_{i}^{* b}$ preserves the marginal distribution of \mathbf{x}_{i}, the same for j).
(2) Compute $r_{i j}^{* b}$ on each pair $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$.

Significance of correlation (nonparametric test)

Nonparametric testing: draw the null distribution of $r_{i j}$ from resampled pairs consistent to $\mathrm{H}_{0}: \rho_{i j}=0$.
(1) For an "original" pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, generate B randomized sample pairs $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$. Generation of each b pair:

- Let first variable intact, $\mathbf{x}_{i}^{* b}=\mathbf{x}_{i}$.
- Shuffle randomly the samples of the other variable to get $\mathbf{x}_{j}^{* b}$. Each sample pair $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$ is from $\left(X_{i}, X_{j}\right)$ under the hypothesis of independence ($\mathbf{x}_{i}^{* b}$ preserves the marginal distribution of \mathbf{x}_{i}, the same for j).
(2) Compute $r_{i j}^{* b}$ on each pair $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$. The ensemble $\left\{r_{i j}^{* b}\right\}_{b=1}^{B}$ forms the empirical null distribution of $r_{i j}$.

Significance of correlation (nonparametric test)

Nonparametric testing: draw the null distribution of $r_{i j}$ from resampled pairs consistent to $\mathrm{H}_{0}: \rho_{i j}=0$.
(1) For an "original" pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, generate B randomized sample pairs $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$. Generation of each b pair:

- Let first variable intact, $\mathbf{x}_{i}^{* b}=\mathbf{x}_{i}$.
- Shuffle randomly the samples of the other variable to get $\mathbf{x}_{j}^{* b}$. Each sample pair $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$ is from $\left(X_{i}, X_{j}\right)$ under the hypothesis of independence ($\mathbf{x}_{i}^{* b}$ preserves the marginal distribution of \mathbf{x}_{i}, the same for j).
(2) Compute $r_{i j}^{* b}$ on each pair $\left(\mathbf{x}_{i}^{* b}, \mathbf{x}_{j}^{* b}\right), b=1, \ldots, B$. The ensemble $\left\{r_{i j}^{* b}\right\}_{b=1}^{B}$ forms the empirical null distribution of $r_{i j}$.
(3) Reject H_{0} if sample $r_{i j}$ is not in the distribution of $\left\{r_{i j}^{* b}\right\}_{b=1}^{B}$ (using rank ordering).

Example: Gene Regulation (continuing)

Nonparametric testing, 1000 randomized samples.

Example: Gene Regulation (continuing)

Nonparametric testing, 1000 randomized samples.

Example: Gene Regulation (continuing)

Nonparametric testing, 1000 randomized samples.

gene pair	$r_{i j}$	t-statistic $(p$-value $)$	rank (p-value $)$
lrp-aroG	0.78	$6.48(0.0000)$	$1001(0.0013)$
Irp-tyrR	-0.36	$-2.32(0.0202)$	$17(0.0333)$
aroG-tyrR	-0.21	$-1.30(0.1942)$	$99(0.1971)$

Example: Gene Regulation (continuing)

Nonparametric testing, 1000 randomized samples.

gene pair	$r_{i j}$	t-statistic $(p$-value $)$	rank (p-value $)$
lrp-aroG	0.78	$6.48(0.0000)$	$1001(0.0013)$
Irp-tyrR	-0.36	$-2.32(0.0202)$	$17(0.0333)$
aroG-tyrR	-0.21	$-1.30(0.1942)$	$99(0.1971)$

Correlation coefficient and correlation matrix

The correlation coefficients $r_{i j}, i, j=1, \ldots, N$ form a correlation matrix (positive semidefinite)

Correlation coefficient and correlation matrix

The correlation coefficients $r_{i j}, i, j=1, \ldots, N$ form a correlation matrix (positive semidefinite)
Establishing the statistically significant $r_{i j}, i, j=1, \ldots, N$, the correlation matrix is converted to the adjacency matrix.

Correlation coefficient and correlation matrix

The correlation coefficients $r_{i j}, i, j=1, \ldots, N$ form a correlation matrix (positive semidefinite)
Establishing the statistically significant $r_{i j}, i, j=1, \ldots, N$, the correlation matrix is converted to the adjacency matrix.

Example

Correlation for the genes: Irp, aroG, tyrR

gene	$r_{i j}$
Irp-aroG	0.78
Irp-tyrR aroG-tyrR	-0.36
-0.21	

0.78 \& 1 \& -0.21

-0.36 \& -0.21 \& 1\end{array}\right]\)

Correlation coefficient and correlation matrix

The correlation coefficients $r_{i j}, i, j=1, \ldots, N$ form a correlation matrix (positive semidefinite)
Establishing the statistically significant $r_{i j}, i, j=1, \ldots, N$, the correlation matrix is converted to the adjacency matrix.

Example

Correlation for the genes: Irp, aroG, tyrR

$$
\begin{aligned}
& \begin{array}{l}
\text { gene } \\
\begin{array}{l}
\text { Irp-aroG } \\
\text { Irp-tyrR } \\
\text { aroG-tyrR }
\end{array} \\
0.78 \\
-0.36 \\
-0.21
\end{array} \quad \longrightarrow \quad R=\left[\begin{array}{rrr}
1 & 0.78 & -0.36 \\
0.78 & 1 & -0.21 \\
-0.36 & -0.21 & 1
\end{array}\right] \\
& R=\left[\begin{array}{rrr}
1 & 0.78 & -0.36 \\
0.78 & 1 & -0.21 \\
-0.36 & -0.21 & 1
\end{array}\right] \quad \longrightarrow \quad R=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Are the link(s) found statistically significant also "non-trivial $\stackrel{\underline{\underline{E}}}{ }$?

Exercise 2: Micro-array Data

Use any subset (3 or more) of the genes in file Ecoliv4Build6ex1 (in ascii or excel format, see course web-page).
Using the 41 experiments for each gene, form the correlation network for the selected genes.

Exercise 2: Micro-array Data

Use any subset (3 or more) of the genes in file Ecoliv4Build6ex1 (in ascii or excel format, see course web-page).
Using the 41 experiments for each gene, form the correlation network for the selected genes.
You should:

Exercise 2: Micro-array Data

Use any subset (3 or more) of the genes in file Ecoliv4Build6ex1 (in ascii or excel format, see course web-page).
Using the 41 experiments for each gene, form the correlation network for the selected genes.
You should:
(1) Use the correlation coefficient $r_{i j}$ as similarity measure of two genes i and j.

Exercise 2: Micro-array Data

Use any subset (3 or more) of the genes in file Ecoliv4Build6ex1 (in ascii or excel format, see course web-page).
Using the 41 experiments for each gene, form the correlation network for the selected genes.
You should:
(1) Use the correlation coefficient $r_{i j}$ as similarity measure of two genes i and j.
(2) Use parametric and nonparametric test of significance for each correlation coefficient $r_{i j}$.

Exercise 2: Micro-array Data

Use any subset (3 or more) of the genes in file Ecoliv4Build6ex1 (in ascii or excel format, see course web-page).
Using the 41 experiments for each gene, form the correlation network for the selected genes.
You should:
(1) Use the correlation coefficient $r_{i j}$ as similarity measure of two genes i and j.
(2) Use parametric and nonparametric test of significance for each correlation coefficient $r_{i j}$.
(3) Identify whether the significant links are the same with parametric and nonparametric testing.

Exercise 2: Micro-array Data

Use any subset (3 or more) of the genes in file Ecoliv4Build6ex1 (in ascii or excel format, see course web-page).
Using the 41 experiments for each gene, form the correlation network for the selected genes.
You should:
(1) Use the correlation coefficient $r_{i j}$ as similarity measure of two genes i and j.
(2) Use parametric and nonparametric test of significance for each correlation coefficient $r_{i j}$.
(3) Identify whether the significant links are the same with parametric and nonparametric testing.
(9) Form the networks from significant links from each test.

Exercise 2: Micro-array Data

Use any subset (3 or more) of the genes in file Ecoliv4Build6ex1 (in ascii or excel format, see course web-page).
Using the 41 experiments for each gene, form the correlation network for the selected genes.
You should:
(1) Use the correlation coefficient $r_{i j}$ as similarity measure of two genes i and j.
(2) Use parametric and nonparametric test of significance for each correlation coefficient $r_{i j}$.
(3) Identify whether the significant links are the same with parametric and nonparametric testing.
(9) Form the networks from significant links from each test. matlab:

- for the Pearson correlation coefficient you may use the function corrcoef
- for random shuffling you may use the function randperm

Partial Correlation Network see [2], Sec 7.3.1

If X_{i} and X_{j} are found to have a large $r_{i j}$:
(1) There is direct dependence of X_{i} on X_{j}, or of X_{j} on X_{i}, or both.

If X_{i} and X_{j} are found to have a large $r_{i j}$:
(1) There is direct dependence of X_{i} on X_{j}, or of X_{j} on X_{i}, or both.
(2) Both X_{i} and X_{j} are dependent on an other variable (node) X_{k} or on m other variables (nodes) $\mathbf{X}_{K}=\left\{X_{k_{1}}, \ldots, X_{k_{m}}\right\}$, where $K=\left\{k_{1}, \ldots, k_{m}\right\}$.

If X_{i} and X_{j} are found to have a large $r_{i j}$:
(1) There is direct dependence of X_{i} on X_{j}, or of X_{j} on X_{i}, or both.
(2) Both X_{i} and X_{j} are dependent on an other variable (node) X_{k} or on m other variables (nodes) $\mathbf{X}_{K}=\left\{X_{k_{1}}, \ldots, X_{k_{m}}\right\}$, where $K=\left\{k_{1}, \ldots, k_{m}\right\}$.
Case 2 may be considered as 'trivial' correlation and may not suggest a link (i, j).

If X_{i} and X_{j} are found to have a large $r_{i j}$:
(1) There is direct dependence of X_{i} on X_{j}, or of X_{j} on X_{i}, or both.
(2) Both X_{i} and X_{j} are dependent on an other variable (node) X_{k} or on m other variables (nodes) $\mathbf{X}_{K}=\left\{X_{k_{1}}, \ldots, X_{k_{m}}\right\}$, where $K=\left\{k_{1}, \ldots, k_{m}\right\}$.
Case 2 may be considered as 'trivial' correlation and may not suggest a link (i, j).

To maintain links of only direct dependence, the appropriate similarity measure is the partial correlation

$$
\rho_{i j \mid K}=\frac{\sigma_{i j \mid K}}{\sigma_{i i \mid K} \sigma_{j j \mid K}}
$$

If X_{i} and X_{j} are found to have a large $r_{i j}$:
(1) There is direct dependence of X_{i} on X_{j}, or of X_{j} on X_{i}, or both.
(2) Both X_{i} and X_{j} are dependent on an other variable (node) X_{k} or on m other variables (nodes) $\mathbf{X}_{K}=\left\{X_{k_{1}}, \ldots, X_{k_{m}}\right\}$, where $K=\left\{k_{1}, \ldots, k_{m}\right\}$.
Case 2 may be considered as 'trivial' correlation and may not suggest a link (i, j).

To maintain links of only direct dependence, the appropriate similarity measure is the partial correlation

$$
\rho_{i j \mid K}=\frac{\sigma_{i j \mid K}}{\sigma_{i i \mid K} \sigma_{j j \mid K}}
$$

$\rho_{i j \mid K}=0$ if X_{i} and X_{j} are independent, conditional to \mathbf{X}_{K}.
$\sigma_{i j \mid K}, \sigma_{i i \mid K}$ and $\sigma_{j j \mid K}$ are components of the 2×2 partial covariance matrix

$$
\Sigma_{11 \mid 2}=\left[\begin{array}{cc}
s_{i i \mid K}^{2} & s_{i j \mid K} \\
s_{i j \mid K} & s_{j j \mid K}^{2}
\end{array}\right]
$$

$\sigma_{i j \mid K}, \sigma_{i i \mid K}$ and $\sigma_{j j \mid K}$ are components of the 2×2 partial covariance matrix

$$
\Sigma_{11 \mid 2}=\left[\begin{array}{cc}
s_{i i \mid K}^{2} & s_{i j \mid K} \\
s_{i j \mid K} & s_{j j \mid K}^{2}
\end{array}\right]
$$

$\Sigma_{11 \mid 2}$ is defined as

$$
\Sigma_{11 \mid 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
$$

$\sigma_{i j \mid K}, \sigma_{i i \mid K}$ and $\sigma_{j j \mid K}$ are components of the 2×2 partial covariance matrix

$$
\Sigma_{11 \mid 2}=\left[\begin{array}{cc}
s_{i i \mid K}^{2} & s_{i j \mid K} \\
s_{i j \mid K} & s_{j j \mid K}^{2}
\end{array}\right]
$$

$\Sigma_{11 \mid 2}$ is defined as

$$
\Sigma_{11 \mid 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
$$

The matrices $\Sigma_{11}, \Sigma_{12}, \Sigma_{22}$ and Σ_{21} are components of the partitioned covariance matrix

$$
\operatorname{Cov}(\mathbf{W})=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

of all involved variables partitioned as $\mathbf{W}=\left[\mathbf{W}_{1}, \mathbf{W}_{2}\right]^{\prime}$, and $\mathbf{W}_{1}=\left[X_{i}, X_{j}\right]^{\prime}, \mathbf{W}_{2}=\mathbf{X}_{K}$.

Significance of Partial Correlation

How to select the variables (nodes), to which the correlation between X_{i} and X_{j} is to be conditioned on?

Significance of Partial Correlation

How to select the variables (nodes), to which the correlation between X_{i} and X_{j} is to be conditioned on?

- How many, that is what is m ?

Significance of Partial Correlation

How to select the variables (nodes), to which the correlation between X_{i} and X_{j} is to be conditioned on?

- How many, that is what is m ?
- Which m variables from a total of $N-2$ variables?

Significance of Partial Correlation

How to select the variables (nodes), to which the correlation between X_{i} and X_{j} is to be conditioned on?

- How many, that is what is m ?
- Which m variables from a total of $N-2$ variables?

Let us suppose we have decided the set of variables to condition on $\mathbf{X}_{K}=\left\{X_{k_{1}}, \ldots, X_{k_{m}}\right\}$.

Significance of Partial Correlation

How to select the variables (nodes), to which the correlation between X_{i} and X_{j} is to be conditioned on?

- How many, that is what is m ?
- Which m variables from a total of $N-2$ variables?

Let us suppose we have decided the set of variables to condition on $\mathbf{X}_{K}=\left\{X_{k_{1}}, \ldots, X_{k_{m}}\right\}$.
To assess for a "non-trivial" link, test for significance of $\rho_{i j \mid K}$: $\mathrm{H}_{0}: \rho_{i j \mid K}=0, \quad \mathrm{H}_{1}: \rho_{i j \mid K} \neq 0$.

Significance of Partial Correlation

How to select the variables (nodes), to which the correlation between X_{i} and X_{j} is to be conditioned on?

- How many, that is what is m ?
- Which m variables from a total of $N-2$ variables?

Let us suppose we have decided the set of variables to condition on $\mathbf{X}_{K}=\left\{X_{k_{1}}, \ldots, X_{k_{m}}\right\}$.
To assess for a "non-trivial" link, test for significance of $\rho_{i j \mid K}$: $\mathrm{H}_{0}: \rho_{i j \mid K}=0, \quad \mathrm{H}_{1}: \rho_{i j \mid K} \neq 0$.
The estimate of $\rho_{i j \mid K}$ is the sample partial correlation $r_{i j \mid K}$.

Significance of Partial Correlation

How to select the variables (nodes), to which the correlation between X_{i} and X_{j} is to be conditioned on?

- How many, that is what is m ?
- Which m variables from a total of $N-2$ variables?

Let us suppose we have decided the set of variables to condition on $\mathbf{X}_{K}=\left\{X_{k_{1}}, \ldots, X_{k_{m}}\right\}$.
To assess for a "non-trivial" link, test for significance of $\rho_{i j \mid K}$: $\mathrm{H}_{0}: \rho_{i j \mid K}=0, \quad \mathrm{H}_{1}: \rho_{i j \mid K} \neq 0$.
The estimate of $\rho_{i j \mid K}$ is the sample partial correlation $r_{i j \mid K}$. Given n observations $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$ for each variable $X_{i}, r_{i j \mid K}$ is computationally derived in these steps:

Significance of Partial Correlation

How to select the variables (nodes), to which the correlation between X_{i} and X_{j} is to be conditioned on?

- How many, that is what is m ?
- Which m variables from a total of $N-2$ variables?

Let us suppose we have decided the set of variables to condition on $\mathbf{X}_{K}=\left\{X_{k_{1}}, \ldots, X_{k_{m}}\right\}$.
To assess for a "non-trivial" link, test for significance of $\rho_{i j \mid K}$:
$\mathrm{H}_{0}: \rho_{i j \mid K}=0, \quad \mathrm{H}_{1}: \rho_{i j \mid K} \neq 0$.
The estimate of $\rho_{i j \mid K}$ is the sample partial correlation $r_{i j \mid K}$. Given n observations $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$ for each variable $X_{i}, r_{i j \mid K}$ is computationally derived in these steps:
(1) Compute the residuals \mathbf{e}_{i} of multiple linear regression of X_{i} on \mathbf{X}_{K}.

Significance of Partial Correlation

How to select the variables (nodes), to which the correlation between X_{i} and X_{j} is to be conditioned on?

- How many, that is what is m ?
- Which m variables from a total of $N-2$ variables?

Let us suppose we have decided the set of variables to condition on $\mathbf{X}_{K}=\left\{X_{k_{1}}, \ldots, X_{k_{m}}\right\}$.
To assess for a "non-trivial" link, test for significance of $\rho_{i j \mid K}$:
$\mathrm{H}_{0}: \rho_{i j \mid K}=0, \quad \mathrm{H}_{1}: \rho_{i j \mid K} \neq 0$.
The estimate of $\rho_{i j \mid K}$ is the sample partial correlation $r_{i j \mid K}$. Given n observations $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$ for each variable $X_{i}, r_{i j \mid K}$ is computationally derived in these steps:
(1) Compute the residuals \mathbf{e}_{i} of multiple linear regression of X_{i} on \mathbf{X}_{K}.
(2) Similarly, compute the residuals \mathbf{e}_{j} of X_{j} on \mathbf{X}_{K}.

Significance of Partial Correlation

How to select the variables (nodes), to which the correlation between X_{i} and X_{j} is to be conditioned on?

- How many, that is what is m ?
- Which m variables from a total of $N-2$ variables?

Let us suppose we have decided the set of variables to condition on $\mathbf{X}_{K}=\left\{X_{k_{1}}, \ldots, X_{k_{m}}\right\}$.
To assess for a "non-trivial" link, test for significance of $\rho_{i j \mid K}$:
$\mathrm{H}_{0}: \rho_{i j \mid K}=0, \quad \mathrm{H}_{1}: \rho_{i j \mid K} \neq 0$.
The estimate of $\rho_{i j \mid K}$ is the sample partial correlation $r_{i j \mid K}$. Given n observations $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$ for each variable $X_{i}, r_{i j \mid K}$ is computationally derived in these steps:
(1) Compute the residuals \mathbf{e}_{i} of multiple linear regression of X_{i} on \mathbf{X}_{K}.
(2) Similarly, compute the residuals \mathbf{e}_{j} of X_{j} on \mathbf{X}_{K}.
(3) $r_{i j \mid K}=r_{\mathbf{e}_{i}, \mathbf{e}_{j}}$, the correlation coefficient of \mathbf{e}_{i} and \mathbf{e}_{j}.

Example: Gene Regulation (continuing)

Partial correlation for the three genes: Irp, aroG, tyrR, and 41 experiments.

Example: Gene Regulation (continuing)

Partial correlation for the three genes: Irp, aroG, tyrR, and 41 experiments.

Example: Gene Regulation (continuing)

Partial correlation for the three genes: Irp, aroG, tyrR, and 41 experiments.

gene pair	$r_{i j}$	$r_{i j \mid k}$	z-statistic $(p$-value $)$	rank $(p$-value $)$
lrp-aroG	0.78	0.77	$6.25(0.0000)$	$1001(0.0013)$
lrp-tyrR	-0.36	-0.32	$-2.04(0.0411)$	$23(0.0453)$
aroG-tyrR	-0.21	0.13	$0.77(0.4421)$	$765(0.4727)$

Example: Gene Regulation (continuing)

Partial correlation for the three genes: Irp, aroG, tyrR, and 41 experiments.

gene pair	$r_{i j}$	$r_{i j \mid k}$	z-statistic (p-value)	rank (p-value)
lrp-aroG	0.78	0.77	$6.25(0.0000)$	$1001(0.0013)$
lrp-tyrR	-0.36	-0.32	$-2.04(0.0411)$	$23(0.0453)$
aroG-tyrR	-0.21	0.13	$0.77(0.4421)$	$765(0.4727)$

Only the partial correlation of aroG-tyrR is substantially different from the correlation coefficient.

Exercise 3: Micro-array Data

Do the same as in Exercise 2 but using the partial correlation as similarity matrix.

Exercise 3: Micro-array Data

Do the same as in Exercise 2 but using the partial correlation as similarity matrix.
matlab: for the partial correlation you may use the function parcorr (in the Econometrics toolbox)

Correlation Network and Time Series

So far, the n measurements of attribute X_{i} are independent.

Correlation Network and Time Series

So far, the n measurements of attribute X_{i} are independent.
Further, we suppose that the n measurements may be ordered, typically being time dependent.

Correlation Network and Time Series

So far, the n measurements of attribute X_{i} are independent.
Further, we suppose that the n measurements may be ordered, typically being time dependent.

The vector $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$ denotes a time series of X_{i}.

Correlation Network and Time Series

So far, the n measurements of attribute X_{i} are independent.
Further, we suppose that the n measurements may be ordered, typically being time dependent.

The vector $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$ denotes a time series of X_{i}.
A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of

- correlation or coupling between X_{i} and X_{j} (undirected link)

Correlation Network and Time Series

So far, the n measurements of attribute X_{i} are independent.
Further, we suppose that the n measurements may be ordered, typically being time dependent.

The vector $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$ denotes a time series of X_{i}.
A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of

- correlation or coupling between X_{i} and X_{j} (undirected link)
- causality from X_{i} and X_{j}, and vice versa (directed link).

Correlation Network and Time Series

So far, the n measurements of attribute X_{i} are independent.
Further, we suppose that the n measurements may be ordered, typically being time dependent.

The vector $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$ denotes a time series of X_{i}.
A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of

- correlation or coupling between X_{i} and X_{j} (undirected link)
- causality from X_{i} and X_{j}, and vice versa (directed link).

A standard similarity measure is again $\operatorname{Corr}\left(X_{i}, X_{j}\right)=r_{X_{i}}, Y_{j}$.

Correlation Network and Time Series

So far, the n measurements of attribute X_{i} are independent.
Further, we suppose that the n measurements may be ordered, typically being time dependent.

The vector $\mathbf{x}_{i}=\left[x_{i 1}, \ldots, x_{i n}\right]^{\prime}$ denotes a time series of X_{i}.
A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of

- correlation or coupling between X_{i} and X_{j} (undirected link)
- causality from X_{i} and X_{j}, and vice versa (directed link).

A standard similarity measure is again $\operatorname{Corr}\left(X_{i}, X_{j}\right)=r X_{i}, Y_{j}$.
Others ???

Example: World financial markets

$N=8$ world stock markets, daily indices, $n=100$ days.

Example: World financial markets

$N=8$ world stock markets, daily indices, $n=100$ days.

Example: World financial markets

$N=8$ world stock markets, daily indices, $n=100$ days.

Similar indices, links among world stock markets?

Example: World financial markets

$N=8$ world stock markets, daily indices, $n=100$ days.

Similar indices, links among world stock markets?
Can we use the same similarity measure as for time-independent observations?

Upper triangular: sample correlation coefficient $r_{i j}$.
Lower triangular: p-value for significance test for $\rho_{i j}$ (z-statistic)

	USA	AUS	UK	GER	GRE	MAL	SAF	CRO
USA		0.86	0.92	0.88	0.89	0.33	0.27	0.75
AUS	0		0.91	0.82	0.90	0.56	0.27	0.83
UK	0	0		0.88	0.92	0.40	0.31	0.74
GER	0	0	0		0.84	0.44	0.53	0.61
GRE	0	0	0	0		0.40	0.16	0.82
MAL	0.0008	0	0	0	0		0.54	0.38
SAF	0.0057	0.0065	0.0017	0	0.1154	0		-0.15
CRO	0	0	0	0	0	0.0001	0.1408	

Example: World financial markets, correlation coefficient

Upper triangular: sample correlation coefficient $r_{i j}$.
Lower triangular: p-value for significance test for $\rho_{i j}$ (z-statistic)

	USA	AUS	UK	GER	GRE	MAL	SAF	CRO
USA		0.86	0.92	0.88	0.89	0.33	0.27	0.75
AUS	0		0.91	0.82	0.90	0.56	0.27	0.83
UK	0	0		0.88	0.92	0.40	0.31	0.74
GER	0	0	0		0.84	0.44	0.53	0.61
GRE	0	0	0	0		0.40	0.16	0.82
MAL	0.0008	0	0	0	0		0.54	0.38
SAF	0.0057	0.0065	0.0017	0	0.1154	0		-0.15
CRO	0	0	0	0	0	0.0001	0.1408	

Almost all indices are strongly correlated.

Example: World financial markets, correlation network
Adjacency matrix, threshold at $\alpha=0.01$ (multiple testing?)

	USA	AUS	UK	GER	GRE	MAL	SAF	CRO
USA	0	1	1	1	1	1	1	1
AUS	1	0	1	1	1	1	1	1
UK	1	1	0	1	1	1	1	1
GER	1	1	1	0	1	1	1	1
GRE	1	1	1	1	0	1	0	1
MAL	1	1	1	1	1	0	1	1
SAF	1	1	1	1	0	1	0	0
CRO	1	1	1	1	1	1	0	0

Example: World financial markets, correlation network
Adjacency matrix, threshold at $\alpha=0.01$ (multiple testing?)

	USA	AUS	UK	GER	GRE	MAL	SAF	CRO
USA	0	1	1	1	1	1	1	1
AUS	1	0	1	1	1	1	1	1
UK	1	1	0	1	1	1	1	1
GER	1	1	1	0	1	1	1	1
GRE	1	1	1	1	0	1	0	1
MAL	1	1	1	1	1	0	1	1
SAF	1	1	1	1	0	1	0	0
CRO	1	1	1	1	1	1	0	0

Example: World financial markets, partial correlation

Upper triangular: partial correlation $r_{i j \mid K}$, conditioned on all $|K|=6$ rest variables.
Lower triangular: p-value for significance test for $\rho_{i j \mid K}$ (z-statistic)

	USA	AUS	UK	GER	GRE	MAL	SAF	CRO
USA		0.01	0.37	0.27	0.07	-0.27	0.11	0.27
AUS	0.9378		0.42	-0.02	0.15	0.30	0.10	0.38
UK	0.0002	0		0.08	0.36	-0.16	0.08	-0.11
GER	0.0081	0.8469	0.4693		0.38	-0.31	0.66	0.26
GRE	0.4946	0.1392	0.0003	0.0001		0.19	-0.36	0.01
MAL	0.0083	0.0033	0.1232	0.0026	0.0710		0.68	0.46
SAF	0.2908	0.3554	0.4321	0	0.0003	0		-0.70
CRO	0.0079	0.0002	0.3149	0.0099	0.9083	0	0	

Example: World financial markets, partial correlation

Upper triangular: partial correlation $r_{i j \mid K}$, conditioned on all $|K|=6$ rest variables.
Lower triangular: p-value for significance test for $\rho_{i j \mid K}$ (z-statistic)

	USA	AUS	UK	GER	GRE	MAL	SAF	CRO
USA		0.01	0.37	0.27	0.07	-0.27	0.11	0.27
AUS	0.9378		0.42	-0.02	0.15	0.30	0.10	0.38
UK	0.0002	0		0.08	0.36	-0.16	0.08	-0.11
GER	0.0081	0.8469	0.4693		0.38	-0.31	0.66	0.26
GRE	0.4946	0.1392	0.0003	0.0001		0.19	-0.36	0.01
MAL	0.0083	0.0033	0.1232	0.0026	0.0710		0.68	0.46
SAF	0.2908	0.3554	0.4321	0	0.0003	0		-0.70
CRO	0.0079	0.0002	0.3149	0.0099	0.9083	0	0	

Correlation between any two indices decreased when conditioned on all others.

Example: Financial markets, partial correlation network

Adjacency matrix, threshold at $\alpha=0.01$

	USA	AUS	UK	GER	GRE	MAL	SAF	CRO
USA	0	0	1	1	0	1	0	1
AUS	0	0	1	0	0	1	0	1
UK	1	1	0	0	1	0	0	0
GER	1	0	1	0	1	1	1	1
GRE	0	0	1	1	0	0	1	0
MAL	1	1	1	1	0	0	1	1
SAF	0	0	1	1	1	1	0	1
CRO	1	1	1	1	0	1	1	0

Example: Financial markets, partial correlation network

Adjacency matrix, threshold at $\alpha=0.01$

	USA	AUS	UK	GER	GRE	MAL	SAF	CRO
USA	0	0	1	1	0	1	0	1
AUS	0	0	1	0	0	1	0	1
UK	1	1	0	0	1	0	0	0
GER	1	0	1	0	1	1	1	1
GRE	0	0	1	1	0	0	1	0
MAL	1	1	1	1	0	0	1	1
SAF	0	0	1	1	1	1	0	1
CRO	1	1	1	1	0	1	1	0

Literature

[1] Data sets for pajek software, http://vlado.fmf.uni-lj.si/pub/networks/data.
[2] Kolaczyk ED (2009) Statistical Analysis of Network Data, Springer.

