Greek Statistical Institute
Proceedings of the 29™ Panhellenic Statistics Conference (2016), pp.283-298

SEISMIC HAZARD ASSESSMENT OF
EARTHQUAKES IN GREECE USING DIRECTED
EARTHQUAKE NETWORKS

D. Chorozoglou’, D. Kugiumtzis’, E. Papadimitriou’
'Department of Geophysics, Aristotle University of Thessaloniki,
{chorozod, ritsa}@geo.auth.gr,

*Department of Electrical and Computer Engineering, Aristotle University of
Thessaloniki,
dkugiu@auth.gr.

ABSTRACT

The objective of this study is the seismic hazard evaluation in the area of Greece
based on modeling of the transition probabilities of seismicity as a Markov and semi-Markov
chain model. The data consist of strong earthquakes with magnitude M- & 5.3 that occurred
during the period 1911-2015 are considered. The study area is divided into 5 subareas (seismic
zones) that are homogenous from the seismotectonic point of view and the seismic catalog is
divided into subsets for four magnitude ranges. Two Markov chains are defined with respect
to predefined time window, one having as states the occurrence or not of strong earthquakes in
any of the 5 subareas (2¥ = 32 states), and one having as states the occurrence or not of strong
earthquakes anywhere in Greece at any of the four magnitude ranges (2% = 16 states). The
states constitute the nodes of a network with weighted directed connections defined by the
transition probabilities of the Markov chain. The null hypothesis that the Markov chain has no
memory is rejected using test statistics for three memoryless models (uniform, Poissonian and
fixed Markov chain). It is confirmed that the degree (strength) distribution of the network
matches well the limiting state distribution of the Markov chain. In a different approach, two
semi-Markov models are developed, one for subareas (5 states) and one for magnitudes (4
states), for the sequence of strong earthquakes using appropriate time step and core matrices.
The semi-Markov model on the subareas and magnitudes is found to give satisfactory aftcast
(estimation of the next transition considering the data until the time of forecast), which is
regarded an estimate of seismic hazard. Finally, a new approach that combines the Markov
and semi-Markov models is attempted in order to estimate the occurrence probability of the
next strong earthquake assuming that the previous strong earthquake (for semi-Markov model)
and the previous state (for Markov chain) are given.

Keywords: Complex networks, Seismic zones, Magnitude ranges, Markov chain, Semi-
Markov chain.
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1. INTRODUCTION

The seismic hazard assessment is one of the main targets of seismological
research aiming to contribute in reducing the catastrophic consequences from strong
earthquakes occurrence. By seismic hazard assessment we mean the probability of
occurrence of strong earthquakes within a given space, time, and magnitude ranges.
The most known model, which is referred for seismic hazard assessment, is the
Poisson model for random series of events (earthquakes). The main conditional of this
model is that the earthquake occurrences are independent in space and time.
Therefore, the Poisson model is frequently applied for statistical analysis of
seismicity (Lomnitz 1974, Bath 1978, Brillinger 1982, Lomnitz and Nava 1983). The
Markov chain model was introduced as a suitable means for earthquake probability
estimation, which contrary to the Poisson model, assumes that all events are
dependent on one another in space and time (Tsapanos and Papadopoulou 1999,
Console 2001, Console et al. 2002, Nava et al. 2005). The semi-Markov model
employed in order to estimate the waiting time and magnitudes of strong earthquakes
(Altinok 1991, Altinok and Kolgak 1999). According to the semi-Markov model, the
next strong earthquake depends on the previous one and the time elapsed between
them. A different emerging field for seismic hazard assessment is based on network
theory. The complex network analysis was introduced by Abe and Suzuki (2004) in
order to study seismicity as a spatiotemporal complex system. Considerable research
work was accomplished on network theory and its applications in different disciplines
ranging from communication and economics to biology and neuroscience (Wang and
Chen 2003, Emmert-Streib and Dehmer 2010, Rubinov and Sporns 2010).

The main purpose of this study is to provide earthquake estimates using
earthquake data for the Greek area. It is shown that the seismicity can be modeled as a
Markov and semi-Markov chain. Earthquake network is formed on the basis of the
transition probability matrix of the Markov chain model and the core matrix of the
semi-Markov chain model. A new approach that combines the Markov and semi-
Markov models is attempted in order to identify the space, time, and magnitude of the
next strong earthquake.

2. METHODOLOGY

The section of methodology is divided in 7 subsections. In the first subsection
the magnitude threshold of data and the states of systems are defined, in the second
subsection the time interval of chains is determined, in the next three subsections the
models (Markov, semi-Markov and new approach) are presented, in the sixth
subsection the evaluation scheme for the results is presented and in the seventh
subsection the network measures used in the study are briefly described.

2.1 The definitions of data and states

The data must satisfy the completeness requirements, namely, to contain all
the earthquakes. Thus, the data include earthquakes from seismic catalog with
magnitude M = My, where My, the magnitude of completeness. Concerning the

definition of states, we divide the study area into R seismic zones, which are
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homogenous from the seismotectonic point of view (faulting type, seismic moment
rate) and taking into account previous results (Papaioannou and Papazachos 2000). In
addition, to estimate the magnitude we create K magnitude ranges.

Regarding the Markov chain model, for each time interval AT (the way it is
defined is shown below, see section 2.2), we create two chains one for the regions and
one for the magnitudes. Each state of seismic zones (regions) or magnitude ranges
takes the value 0 or 1, corresponding to the absence or presence of earthquakes in the
respective seismic zones or magnitude ranges. The chain for the regions is created by
the earthquakes which are occurred in the seismic zones regardless of the magnitude
ranges. In the other case the chain for the magnitudes is created by the magnitude
ranges regardless of the seismic zones in which are occurred the earthquakes. The
total number of states of the system, for the seismic zones or the magnitude ranges,
are 2% (R denotes the number of seismic zones) or 2% (K denotes the number of
magnitude ranges). In the binary form, each state can be denoted Zg....Z22;
(21,82, wer 2 the seismic zones) or g wu.. Mgy (Fy, Mz, o, T the magnitude
ranges) is simply the right to left concatenation of the binary seismic zones or
magnitude ranges states. The disadvantage of this approach is that the succession of
earthquakes in each AT is not to be taken into account. Two successive states formed
at two subsequent time intervals AT, define the transition between of the states.

If the seismic activity within the time window AT were to be independent
with respect to the magnitude ranges or seismic zones, the construction of states
presented above would not be required and the analysis could be done separately at
each magnitude range or seismic zone. The correlation analysis showed that both
magnitude ranges and seismic zones are indeed correlated, as shown in Fig. 1.
Specifically, for a step A71=0.5 year, we consider the five series of earthquake
occurrence frequency of the five seismic zones as well as the four series of
earthquake occurrence frequency of the four magnitude ranges, having 210 data
points per series. For each pair of seismic zone series the Pearson correlation
coefficient is computed and the parametric significance test using the t-statistic is
performed at the significance level & = @.03. The results are shown in matrix form in
Fig. 1a and the same results are shown for the magnitude ranges in Fig.1b. The black
color (£ = 0/05) in the pairs of seismic zones and magnitude ranges reveals the
correlation between them (Fig. 1).

In case of a semi-Markov model we also create two chains where the state
space 5 is simply the R seismic zones or & magnitude ranges, respectively, as the
focus is on the region or magnitude of the next strong earthquake. Thus, the total
number of states of the system, for the seismic zones and the magnitude ranges, are R
and &, respectively. For the transitions we take into account the time units (holding
time), integer multiple of AT, where the process of semi-Markov chain may remain at

state I before made the transition in state j. Thus, two successive earthquakes define
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the transition between the respective states for the semi-Markov chain taking into
account the holding time.

Figure 1. The value of the test statistic t among of seismic zones in (a) and magnitude ranges

in (b). The black color in cells shows that the corresponding pairs are correlated (t = 0.03).

(@ (b)
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For example, if B =< and M =4 we define the two next transitions within

the three predefined time intervals At, separated by red lines in Figure 2, as described
below. For the Markov chain about regions for each time interval At, we have
ZgZpZgz = P10 (state 7), z4232,2; = 0000 (state 1) and zZ4232.5 = 10O (state

15), the occurrence of earthquake represented by 1, so the transitions are 7> 1->15.

12 1
For the semi-Markov chain the respective transitions are 2-33=34—4, where the

numbers above the arrows represent the holding time. The transitions in case of
magnitudes are defined similarly. Therefore, for a Markov chain we have
MgMgMpty = 0011  (state  4), Mmgmgmgmy = 0000 (state 1) and
mymgmymy = 1001 (state 10), so the transitions are 4->1->10. For the semi-

1 2 1
Markov the respective transitions are 1 =2=+1-34 (Fig. 2).

Figure 2. An example about the definition of states systems (Markov and semi-Markov) about
the seismic zones in (a) and the magnitude ranges in (b). The red vertical lines divide the time
intervals At and the purple horizontal lines create the magnitude ranges.
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2.2 Determination of time interval of chains
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For the threshold time chosen, AT should be large enough to allow interaction

among seismic zones or magnitude ranges in order the transition probabilities to be
robust. On the other hand, 47 should be small enough such that the hazard assessment

be useful. If At is too small, the most frequently occurring transition is from state 1 to
state 1 (no earthquake occurs), whereas if it is too large state 2% or 2¥ to state 2% or
2% (earthquakes occur in all possible zones or magnitudes ranges) transitions are

dominant. We consider three criteria given by the following three functions in order
to determine the time interval At for the Markov chain model.

Function 1 is the difference between the number of transitions from state 1 to
state 1 and the number of transitions from state 2% or 2¥ to state 2% or 2%,

respectively.
Function 2 is the difference between the total number of transitions from state
1 and the total number of transitions from state 2% or 2%,

Function 3 is given by F = —Z;m; L1 ;i@ This function is based on
the maximum entropy principle as it is applied to finite Markov chains, where #; are
elements of the transition probability matrix P and & = {m;] is the stationary

distribution of the Markov chain.
To satisfy the functions 1-3, At is chosen so that both Functions 1 and 2 show
a value close to 0 and Function 3 is maximized.

2.3 Markov model

The Markov model is a probabilistic one useful in analysing stochastic
phenomena. Suppose § = {1,2, ...... 2% or 2&] is the state space of a Markov chain.

Let us define {X.}, where t is a time index (at multiples of A1), be a Markov chain

formed by the time succession of states with values from the state space 5. The

Markov chain is defined in terms of a transition probability matrix:
P=Pjtl= ‘.::n-,f}, where py; is the probability that the state j follows state I with

i, f=1,2,...2%gr 2%. From an observed Markov chain over 7 time units, the

transition probability g is estimated by the ratio of successions of the ordered pair

: : . = ey
{1, £).{1:5}, over all observed successions starting at state #, {pys} = fz‘flnﬂtf}'

The transition probabilities gy satisfy gy 2= @ and 2?;1?’# = 1. Given #y; and the

system is in state 1, we express the conditional probability of an earthquake occurring
in seismic zone zy, with b=1,... B, or regional activity probability, ®gas:

Bigp = Priz;li} =2 fizp s, where JozZy means that state j includes seismicity in zone
zy (Nava et al. 2005). The regional activity probability implies that the probability of

a Markov process which has entered state ¢ will enter zone Z on its next transition
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depends only upon the current state. The magnitude activity probability, Bm,, With
b =1, .. K is defined in a similar way.
2.4 Discrete semi-Markov model

The behaviour of a discrete semi-Markov model is similar with that of a pure
Markov model. A discrete time semi-Markov process is defined completely by the
transition probabilities, the holding time mass functions and the core matrices or
discrete semi-Markov kernels (Pyke 1961, Barbu and Limnios 2009). The transition
probability {@s} is the probability that a semi-Markov chain that entered state Z on its
last transition will enter state j on its next transition, allowing for a holding time m for

the transition to take place (Trevezas and Limnios 2011). The standard definition of a
semi-Markov chain thus excludes the transition from one state to the same state.
Applying directly the semi-Markov model to our setting, having the earthquakes at
any seismic zone or magnitude range as the R or K states, respectively, would require

to define the time steps by the running index in the sequence of successive
earthquakes, which is not a natural time parameter. In our setting, we have defined the
time steps in terms of the interval At. Since more than one earthquake at a different

seismic zone or magnitude range can occur in the interval AT we modify the

definition of the semi-Markov model and assume that transitions from state
(earthquake) 7 to j are allowed within the interval At and assign for such transitions

the holding time £;;=0. Accordingly, f;7=1 regards the transition from a state
(earthquake at a seismic zone or magnitude range) occurring at a time &y = kdr,
where this is actually the whole interval ({& — 1)4T, k47), to a state occurring in the
next time fxsq = (k& -+ 1)47r. In this case, the state I refers to the last earthquake
occurring at the time interval ((k = 114w, kdr). According to this definition of the

semi-Markov model, transitions from one state to the same state are allowed. The
probability mass function T;; is called the holding time mass function for a transition

from state i to j and is given as P‘r’{t} = m} = ?}f{m}, where 1 is the time unit (0
within AT, and otherwise multiples of &%). The final step is to define the core
matrices (discrete semi-Markov kernels). The r:ﬁ(m;) element of the core matrix
C{m) is the probability of the joint event that a system that entered state i makes its
next transition to state j and this takes place after a holding time m (Altinok and
Kolcak 1999). The core matrix is given by: €im} = eg{m) = iy & Tiy{m), where
& denotes multiplication of corresponding elements.

2.5 New approach combining the Markov and semi-Markov chain

Let us first concentrate on the seismic zones (the approach for the magnitude
ranges is similar). The interest here is to determine the probability of having a strong
earthquake at the next time interval A7 in one of the seismic zones given the
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information of earthquake occurrences at the present time interval. The states of the
Markov chain do not contain the information about the order of occurrences of
earthquakes at a time interval, and particularly the last earthquake in this interval
(referring to the states representing more than one earthquake occurrence in the time
interval). On the other hand, as the semi-Markov model is defined, its state carries the
information about the last earthquake occurrence regarding the present time interval.
In the proposed approach, we attempt to combine the information of the state of the
Markov model and the semi-Markov model for the same time interval, and further use
it to predict the occurrence of an earthquake at a specific seismic zone within the next
time interval. First, using the states of the Markov chain for the seismic zones, we
calculate the regional activity probability matrix P, of size 28x R with components

Pigp Where i =1, 2, wer 2% f=1,2, u, B, and 2, Zg, ..., Zg, are the R seismic zones.
The Pizy denotes the probability that given the Markov model state I at time

tp = k4, a strong earthquake occurs at seismic zone z; in the time interval

Tyag = (g fy + &F). We further involve the semi-Markov model defined in Section
2.4, and particularly the part of it that regards holding times #; =1, in order to use the

information about the last earthquake in the current interval and predict that a strong
earthquake occurs at seismic zone z; in the time interval iy, & +&e). This

information lies in the core matrix &;{1) of size #x& with 1, f= 1,2, ..,R. The
Eppld) = €az 1), denoted for simplicity €55, is the probability that given the last
strong earthquake is at seismic zone Z, in the current AT at time & = &, a strong
earthquake occurs at seismic zone z; in the time interval tyaq = (it + &) The
two transition probabilities Piay and Caray from the Markov and the semi-Markov

model, respectively, target in predicting the seismic zone an earthquake occurs in the
next time interval £sq = {3, -+ &4T), the former on the basis of the state of seismic

zones in &y = k&%, and the latter on the basis of the seismic zone of the last
earthquake in £z, We merge the two probabilities to the probability
Ftara; = PrayCapap which approximates the conditional probability #{zy|i,=Z,), i.e.
the occurrence of an earthquake in seismic zone z; within the interval Ijs; when in
the last interval t; the state of seismic zones is i and the last earthquake in &y, is zZ,.

The probability ;. = is an operationally suitable approximation rather than an exact

expression of P{z;|i, Z,.} using the probabilities obtained from the Markov and semi-
Markov model. The probabilities ;. = can be estimated by the corresponding

frequencies of . and €5z, The probability Gum.m; = Fim-Cmpm; 18 defined

similarly for the magnitude ranges.
2.6 Results Evaluation
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For evaluating the performance of the Markov chain, we will compare the
aftcast probability of the Markov model to a threshold formed according to the
hypothesis that the system has no memory, and the seismicity cannot be modeled as a
Markov chain. Three memoryless models are considered: uniform, Poisson and fixed
Markov ~ chain. The  uniform  model has  transition  probabilities
Ft? =p¥=5-1= {-pu}, where the probabilities {?l'i-_.,-] correspond to purely random
guessing. The Poisson model has transition probabilities
Péf,r = %F = [lgaffl — e_ﬂzbm}nﬂﬁ;; {e™%9T) where A, is the mean number of
earthquakes per unit time in zone = and Zz € f means that state j includes seismicity

occurrence in zone Zy. The third model is the fixed Markov chain model and is given
i .
by py = Zf}a= T—'ﬁ"'ﬁ, where &= Ezl;;. For magnitude states the three models are

defined accordingly. For the uniform model we consider a threshold probability
PE = {1+ u)PY, where p is an arbitrary non-negative constant. An aftcasted

transition is defined as successful if g; = PE_ For the Poisson or fixed Markov chain
model we have a successful aftcasted transition when Py = I‘n;'_‘; or Py _:::Ff.
Aftcasted, means that the probabilities ; are evaluated based on all available

information considering the data until the time of forecast.
For evaluating the performance of the semi-Markov chain, it is tested whether
the next predicted transition €p{m} of system having the maximum probability

among of the others pair of states is in agreement with the observed transition.
2.7 Network measures

Generally with the term «network» we mean the graph & = {N,E} that is
defined by the nodes and the connections between them, where IV is the set of nodes
and E the set of connections. In our analysis, the nodes are represented by the states
of system and the directed weighted connections are defined by the elements of the
transition probability matrix F (for Markov model) and core matrix C (for semi-
Markov model), respectively. The network properties are quantified with a number of
characteristics (network measures) computed on P and C.

The simplest and most known network measure is the degree (for binary

connections) or strength (for weighted connections). This characteristic measures the
number of connections or the sum of weights at each node i as & = Zyanpyy

Essentially, the measure reveals whether a node is active in the network. Another

well-known characteristic is the average clustering coefficient, which estimates the

tendency of any node 1t to form connected triads given as
R L iaRFIr et " - )
T= =1 ; ;

o m "'"E‘T":hf'“-ii'f%"'ll':hf“"r-ﬂf;“-izl-EE,c.mwp_ﬂ’ where ;" is the sum of connection

weights directed to the node and k%" is the sum of connection weights leaving the

node. A high value of the average clustering coefficient indicates higher likelihood
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existence of "clique" (clique is a group of fully connected nodes). The third
characteristic is the betweenness centrality defined as the number of shortest paths

between pairs of mnodes that pass through a specific node given as
- 1 ey .
b= —_E hia —h'l'_,—, where @g; is the number of the shortest paths
- hafhat.fat Th

between / and j nodes and @g{f) the number of the shortest paths between / and j

nodes through the node i. Nodes with a high betweenness have a high probability to
occur on a randomly chosen shortest path between two randomly chosen nodes. Such
nodes are critical to the network since their removal would destroy many short paths
in the network.

3. DATA AND APPLICATION

The data are obtained from the earthquake catalog compiled in the
Geophysics  Department of the Aristotle University of Thessaloniki
(http://geophysics.geo.auth.gr/ss/). They comprise crustal earthquakes (focal depth
less than 40 Km) that occurred in 1911-2015, and are divided in four subsets of
magnitude #gpp == S0 (574 events), Mgzt 20 (444 events, after declustering),

Mee 2 6.0 (188 events) and My 2= 6.8 (154 events, after declustering). The data are

complete for the study period and declustering was performed for testing subsets of
the entire catalog or after removing dependent events with respect to foreshocks and
aftershocks. Seismicity declustering is the identification and the separation of
seismicity catalogs into main shocks (independent events), foreshocks and
aftershocks (dependent events), so as to eliminate the interference of the already
dense occurrence and strong dependence of the events which belong to an aftershock
seismic excitation. The Reasenberg’s algorithm (1985) is used, here, for the
declustering procedure. The algorithm is used for identifying aftershock clusters
based on a two-parameter earthquake interaction model producing a Poissonian
declustered earthquake catalog which is deprived of correlated events.

The study area is divided in 7 subareas and we define 5 seismic zones to
reduce complexity, which are homogenous from the seismotectonic point of view,
and are shown in Figure 3 along with the epicentral distribution of the earthquakes
used for the analysis. In addition, the seismic catalog is divided in 4 magnitude ranges
for each of the 4 data subsets with the purpose of distinguishing the different levels of
earthquake magnitudes (moderate, strong, major and great). In case of magnitude
My 55 we define the following magnitude ranges: 5.5 = M; =59,

G0 = M; =064 G2 =My =62 and My = 7.0 Then, with magnitude My 2= 6.0
we define: 6.0 = M, =62 53 =M, =65 65% My £ 69 and My = 7.0

For the five seismic zones and for the four magnitude ranges there are
2% = 32 and 2% = 16 states, respectively. For example in the case of seismic zones,

the state 1 (denoted 00000 in binary format) corresponds to no earthquake occurrence
in all five seismic zones in the chosen time interval, AT, unlike the state 32 (denoted

11111 in binary format) that represents earthquake occurrence in all five seismic. The
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combination of seismic zones or magnitude ranges gives the nodes of the network and
the states of a Markov chain system.

In the case of semi-Markov chain, the nodes of the network and the states of
the system correspond to the five seismic zones (5 states) and the four magnitude
ranges (4 states), respectively. The directed weighted connections of a network are
given by the transition probabilities 2y of the Markov chain and the elements of core

matrix &g{m} of the semi-Markov chain.

For the selection of the time interval AT of chains, the optimal AT should give

the largest entropy (Function 3) and the value of Functions 1 and 2 closes to zero (see
Subsection 2.2). So, in our analysis the time window that best meet the three criteria
is 6 months for Mgy = 5.5 and 12 months for Mype == 6.0 as evidenced in Figure 4.

We created the earthquake network based on the seismic zones and the
magnitude ranges for each model (Markov, semi-Markov) using the different data
settings. The construction of network allows us to check which distribution of
network measures (strength, clustering coefficient, betweenness centrality) matches
well with the limiting state distribution of the Markov chain.

Figure 3. Epicentral distribution of earthquake magnitudes My & 3.3, that occurred in

1911-2015 in the broader area of Greece. The division of the area in seismic zones is also
shown.

18" 19" 200 217 22" 23 24" 25" 26" 277 28 297 30

R S, 40

el 417

&

39
i

38"
ar
36"
35"

34"

7.0
B B B om i e oo m

Having defined the data, the system states and nodes, the time interval of
chains and the earthquake network, we now estimate the seismic hazard assessment
for the next strong earthquake occurrence. Thus, we compute the transition
probability and the regional or magnitude activity probability matrices of Markov
chain and the core matrices of semi-Markov chain for all cases (data settings, models
using as states the seismic zones and magnitude ranges).

The evaluation of the model performance is done by counting the number of
successes of aftcasted regions or magnitude ranges occurrences, respectively. The
aftcasts are used when the seismic catalog is not large and the number of transitions is
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not big in order to both obtain a robust transition probability matrix and have a
statistically significant sample of forecasts.

4. RESULTS

With the chosen time interval A1, which is 6 months for M. = 5.5 and 12
months for Mu.= &0, we compute the transition probability, the regional or

magnitude activity and the core matrices for all cases. In particular, in the case of
Mepe 2 5.5 and seismic zones as states, it is evident from Figure 5a that the states of

low occurrence of earthquakes in seismic zones have higher transition probabilities
than the states of high occurrence. In addition, from the estimated regional activity
probability matrix we notice that when the system is in state {=11,..,2%, the
probability of a strong earthquake occurring in seismic zone 1 in the next A1 is very
high for all cases (see Fig. 5b). Thus, we can assume that the seismic zone 1 has a
highest risk for a strong earthquake than the other seismic zones. This is the reason
that the states which include the seismicity of seismic region 1 have high transition
probabilities in Figure 5a. Also, from the core matrix (see Fig. 5¢) the key finding is
that the main shocks have the tendency to recur in a short time in the same seismic
zone that caused the earthquake. This fact is confirmed from the values at the main
diagonal (transitions among the same seismic zones) which shows higher
probabilities than the other pairs of states. This is in accordance with the clustering of

strong earthquakes observed in many others cases in Greece and worldwide (Kagan
and Jackson 1991, Papadimitriou 2002).

Figure 4. Determination of time interval At when My = 5.5 in (a) the entire catalog and
(b) after declustering, and respectively for Mgpy = R in (c) and (d).
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Then, the limiting state distribution corresponding to the Markov chain model
in relation with the distribution of network measures (strength, clustering coefficient,
betweenness centrality) is shown in Figure 6. It can be observed that the limiting state
distribution of the underlying directed network with weighted connections is in full
agreement with the distribution of strength where the states (nodes) are represented
by seismic zones and magnitude ranges in Figure 6a and 6d, respectively. This is due
to the way that the weighted directed networks were constructed. Matching is also
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observed in the distributions between of the limiting state distribution and the
betweenness centrality as shown in Figures 6¢ and 6f unlike the case of clustering
coefficient (see Fig. 6b and 6e).

The last step in our analysis is the evaluation of the performance of each
model with respect to the null model of no memory (see Fig. 7). The evaluation
results for Markov and semi-Markov model are obtained by quantifying the aftcast
success rate from the last 20 transitions corresponding to 20% of the total transitions
in the case of Mgy = 6 and 10% of M. = 5.5. The transitions that are under

testing come from the transition probability and core matrix for Markov and semi-
Markov model, respectively (see Fig. 7a, 7b and 7c). The success rate is better for the
magnitude states than the zoning states, the latter going beyond 90% for the Markov
model and 80% for the semi-Markov model, respectively. On the other hand, the
success rate for zoning states is about 50% for both cases (Markov, semi-Markov) if
we exclude the 85% success rate when the null model is based on the uniform
distribution constituting the most random scenario. The performance evaluation for
the new approach is done on the basis of the latest 10 transitions for Mgy == G0

(without and after declustering) and the time step AT at 12 months, for data sets in
2005-2015.
Figure 5. The transition probability matrix and the regional activity probability matrix,

shown as color maps (black for zero and white for 1) in (a) and (b), respectively, which come
from Markov chain and the core matrix for s = 1 in (c¢) which come from semi-Markov chain

in all cases with magnitude ¥z, & 5.3 and states referring to seismic zones.
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Figure 6. The comparison of the limiting distribution of Markov chains with Mgy & 2.2 on
the basis of the strength in (a) and (d), clustering coefficient in (b) and (e), and betweenness
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centrality in (c) and (f), for the states of seismic zones (2¥) and magnitude ranges (2*),
respectively.
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In these 10 years (10 transitions), 14 strong earthquakes with Mgy == G0

have occurred, four of them being removed after declustering. Similarly to the
previous cases (see Fig. 7a, 7b and 7c¢) the results of evaluation are better for the
magnitude states, the highest success rate being 65%, than the zoning states where the
highest success rate is 50% (see Fig. 7d). In particular, the results are better when the
entire catalog is used. This remark can be substantiated by the fact that when
declustering algorithm is applied, main shocks considered dependent are removed
from the catalog, therefore the estimation of the next transition (the next strong
earthquake) becomes more unpredictable.

Figure 7. The performance evaluation in (a) with Markov model for seismic zones, in (b)
with Markov model for magnitude ranges both of cases with & = 1 for the uniform null model,
in (c) with semi-Markov model and (d) with new approach. The suffix ‘d’ in (c) and (d) means
that the data come from declustering algorithm and the suffix ‘R’ and 'M' in (d) means that the

data are referred in seismic zones and magnitude ranges, respectively.
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5. CONCLUDING REMARKS

The seismic hazard assessment performed by means of network and analysis
and Markov models shows that the occurrence of strong earthquakes could have been
predicted to some extent. Application of the models (Markov, semi-Markov, new
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approach) to the Greek area yields significant results that have negligible probability
of being obtained by purely random guessing. The transition probabilities, or for the
case of semi-Markov models the transition probability and core matrices, between the
states (seismic zones, magnitude ranges) of the system generate useful seismic hazard
estimates, on which the forecast of transitions with high probability may be based.
The results of model performance evaluation in all cases are better for the estimation
of the next magnitude states than the zoning states. In addition, the results of
evaluation are better when we do not use the declustering algorithm.

The latter is attributed to the occurrence of dependent strong earthquakes, but
given the fact that strong earthquakes cause huge disasters, it is preferable not to
exclude these main shocks from the seismic catalog. The network theory can
contribute to improve our understanding of these complex systems, such as the
seismicity, as the limiting distribution of Markov chain is in agreement with the
distribution of some network measures (strength, betweenness centrality). An open
issue arising from this study is the application of the same analysis using synthetic
seismic catalogs in order to provide more data (simulation data), i.e. more transitions,
and thus the results become more robust.

INIEPIAHYH

O oKomodg NG Tapodoas HEAETNG eival 1) a&lOAGYNOT| TG CEICIIKNG EMKLVOLVOTITAG
otov yopo ™G EAMGSag pe Bdon tov vmoroyopd twv mibavotitov pstdfoong and éva
Mapiofiavo kat nui-Mopkofiavd povtéro, aviictoryo. Bempovpe 000 cHVOAN SEG0UEVAOV Ta
omnoia meprapPfdvovy 16 vpods 6elUoVG pe nEye0os Mgy = B2 Kot e = &, avriotoya,
mov cuvéPnoav katd v mepiodo 1911-2015. H meproyn peréng yopileton og 5 vrmomepioyég
(ostopcég Lmvec) mov €ivol OUOLOYEVELG OO TNV GEIGUOTEKTOVIKT GTOYN KOl O GELGUIKOG
KOTOAOYOG Sla1peital 68 LITOGVLVOAL Y10 TEGGEPT. 0PN peyEBovc. Avo Mapkoflovég aAvoideg
opifovtor og oyéon pe &va KOTOAANAO emAgypévo ypovikd mapdbvpo, 1 pio &gl g
KOTOOTAGELS TNV EUPAVION OYLPAOV CEWGUAV G Koo, [ia 1) 08 TEPIOGOTEPES VITOTEPLOYES
(2°=32 KOTOGTAGEL), Kat 1) deOTEPN &XEl WG KOTUGTAGELS TNV EUQAVIOT 1GYVPDOV GEIGHOV
onovdnmote otV EALGS0 amd kabéva amd o Técoepa g0pn peyEbovg (2*=16 kataoTdocsiC).
O1 kotootdoelg ivat ot KOUPBoL Tov KOTEVOVLVOUEVOD O1KTVOV Kol Ol GTUOUIGUEVEG GUVOECELG
opilovtor amd Tig mbaviTNTEG peTafoons g Mapkofiavig olvcidag ot omoieg EKTILMVTOL
amd to dgdopéva Tov oelopkod kataAdyov. H ektipmon tng emduevng petoPotikng
Katdotaong pe v xpniomn s Mapkoflovig odlucidag £xet Ppedel oTOTIOTIKG GNUAVTIKT TOGO
Yy TG vnomePloyés 0060 Kot Yy to peyedn. Ewdwotepo, M undevikn vmobeon Ot 1
Mopxofiovi aAvcido dev £yl VAN OTTOPPITTETOL HUE YPNOT G GTATIGTIKOD EAEYYOL Tpia
povtéda pviung (opotdpopeo, Poisson kot kabopiopévn odvcida Markov). EmPefoidvera,
ot N KoTavoun tov Babuod (tng 1yHog) Tov SIKTOOL TAIPLALEL [LE TNV OPLOKY] KOTOVOUY TMV
Kotaotdoeny g Mapkofavig odvcidag. Xe o d10popeTiky Tpocéyyion Oewpoldvral 600
nui-MapxoBilavég alvcideg, pio yio Tic viroreployEés (5 KoTaoTdoels) Kat pio yuo ta ueyédn (4
KOTOOTAGELS), Yo TNV AKOAOLOI T®WV 1GYVPMOV GEIGUMOV HE XPAON KATAAANAOL ¥POVIKOD
mapabvpov kat Tvakmv tov Tupnvo. H nui-Mapkofiavi aivcida kot yio v nepintoon tov
VITOTEPLOYDV KOl Yl AVTH TV peyebmv £xel Ppedet va divel a&ldmiotn ektiunon g emdpevng
petafoong Aappavoviag voyn ta dedopéva pEXPL T otrypn g mpopreyns. Tékog, wa véa
Tpocgyyon, mov cvvdvalel v Mapkofiavi kat Tnv nui-MaopkoPuaviy aAvoida, entyeipeiton
mpokeévoy vo ektiunfel o endpevog oyvpog Gelopdg av vrotebel 0Tt 0 TPONYOULEVOS
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1oYVPOG GEIGHOG (amd TV Nu-Mapiofiavn aivcida) Kot 1 Tponyoduevn katdotacn (ord tnv
Maopkofiovi aAvcida) divovtar.
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