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ABSTRACT 

The objective of this study is the seismic hazard evaluation in the area of Greece 
based on modeling of the transition probabilities of seismicity as a Markov and semi-Markov 
chain model. The data consist of strong earthquakes with magnitude  that occurred 
during the period 1911-2015 are considered. The study area is divided into 5 subareas (seismic 
zones) that are homogenous from the seismotectonic point of view and the seismic catalog is 
divided into subsets for four magnitude ranges. Two Markov chains are defined with respect 
to predefined time window, one having as states the occurrence or not of strong earthquakes in 
any of the 5 subareas (  states), and one having as states the occurrence or not of strong 
earthquakes anywhere in Greece at any of the four magnitude ranges (  states). The 
states constitute the nodes of a network with weighted directed connections defined by the 
transition probabilities of the Markov chain. he null hypothesis that the Markov chain has no 
memory is rejected using test statistics for three memoryless models (uniform, Poissonian and 
fixed Markov chain). It is confirmed that the degree (strength) distribution of the network 
matches well the limiting state distribution of the Markov chain. In a different approach, two 
semi-Markov models are developed, one for subareas (5 states) and one for magnitudes (4 
states), for the sequence of strong earthquakes using appropriate time step and core matrices. 
The semi-Markov model on the subareas and magnitudes is found to give satisfactory aftcast 
(estimation of the next transition considering the data until the time of forecast), which is 
regarded an estimate of seismic hazard. Finally, a new approach that combines the Markov 
and semi-Markov models is attempted in order to estimate the occurrence probability of the 
next strong earthquake assuming that the previous strong earthquake (for semi-Markov model) 
and the previous state (for Markov chain) are given. 

Keywords: Complex networks, Seismic zones, Magnitude ranges, Markov chain, Semi-
Markov chain. 
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1. INTRODUCTION 

The seismic hazard assessment is one of the main targets of seismological 
research aiming to contribute in reducing the catastrophic consequences from strong 
earthquakes occurrence. By seismic hazard assessment we mean the probability of 
occurrence of strong earthquakes within a given space, time, and magnitude ranges. 
The most known model, which is referred for seismic hazard assessment, is the 
Poisson model for random series of events (earthquakes). The main conditional of this 
model is that the earthquake occurrences are independent in space and time. 
Therefore, the Poisson model is frequently applied for statistical analysis of 
seismicity (Lomnitz 1974, Bath 1978, Brillinger 1982, Lomnitz and Nava 1983). The 
Markov chain model was introduced as a suitable means for earthquake probability 
estimation, which contrary to the Poisson model, assumes that all events are 
dependent on one another in space and time (Tsapanos and Papadopoulou 1999, 
Console 2001, Console et al. 2002, Nava et al. 2005). The semi-Markov model 
employed in order to estimate the waiting time and magnitudes of strong earthquakes 
(Altnok 1991, Altnok and Kolçak 1999). According to the semi-Markov model, the 
next strong earthquake depends on the previous one and the time elapsed between 
them. A different emerging field for seismic hazard assessment is based on network 
theory. The complex network analysis was introduced by Abe and Suzuki (2004) in 
order to study seismicity as a spatiotemporal complex system. Considerable research 
work was accomplished on network theory and its applications in different disciplines 
ranging from communication and economics to biology and neuroscience (Wang and 
Chen 2003, Emmert-Streib and Dehmer 2010, Rubinov and Sporns 2010). 

The main purpose of this study is to provide earthquake estimates using 
earthquake data for the Greek area. It is shown that the seismicity can be modeled as a 
Markov and semi-Markov chain. Earthquake network is formed on the basis of the 
transition probability matrix of the Markov chain model and the core matrix of the 
semi-Markov chain model. A new approach that combines the Markov and semi-
Markov models is attempted in order to identify the space, time, and magnitude of the 
next strong earthquake. 

2. METHODOLOGY 

The section of methodology is divided in 7 subsections. In the first subsection 
the magnitude threshold of data and the states of systems are defined, in the second 
subsection the time interval of chains is determined, in the next three subsections the 
models (Markov, semi-Markov and new approach) are presented, in the sixth 
subsection the evaluation scheme for the results is presented and in the seventh 
subsection the network measures used in the study are briefly described. 

2.1 The definitions of data and states 

The data must satisfy the completeness requirements, namely, to contain all 
the earthquakes. Thus, the data include earthquakes from seismic catalog with 
magnitude , where  the magnitude of completeness. Concerning the 

definition of states, we divide the study area into  seismic zones, which are 
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homogenous from the seismotectonic point of view (faulting type, seismic moment 
rate) and taking into account previous results (Papaioannou and Papazachos 2000). In 
addition, to estimate the magnitude we create  magnitude ranges.  

Regarding the Markov chain model, for each time interval  (the way it is 
defined is shown below, see section 2.2), we create two chains one for the regions and 
one for the magnitudes. Each state of seismic zones (regions) or magnitude ranges 
takes the value 0 or 1, corresponding to the absence or presence of earthquakes in the 
respective seismic zones or magnitude ranges. The chain for the regions is created by 
the earthquakes which are occurred in the seismic zones regardless of the magnitude 
ranges. In the other case the chain for the magnitudes is created by the magnitude 
ranges regardless of the seismic zones in which are occurred the earthquakes. The 
total number of states of the system, for the seismic zones or the magnitude ranges, 
are  (  denotes the number of seismic zones) or  (  denotes the number of 
magnitude ranges). In the binary form, each state can be denoted  
(  the seismic zones) or  (  the magnitude 
ranges) is simply the right to left concatenation of the binary seismic zones or 
magnitude ranges states. The disadvantage of this approach is that the succession of 
earthquakes in each  is not to be taken into account. Two successive states formed 
at two subsequent time intervals , define the transition between of the states. 

If the seismic activity within the time window  were to be independent 
with respect to the magnitude ranges or seismic zones, the construction of states 
presented above would not be required and the analysis could be done separately at 
each magnitude range or seismic zone. The correlation analysis showed that both 
magnitude ranges and seismic zones are indeed correlated, as shown in Fig. 1.  
Specifically, for a step =0.5 year, we consider the five series of earthquake 
occurrence frequency of the five seismic zones as well as the four series of 
earthquake occurrence frequency of the four magnitude ranges, having 210 data 
points per series. For each pair of seismic zone series the Pearson correlation 
coefficient is computed and the parametric significance test using the t-statistic is 
performed at the significance level . The results are shown in matrix form in 
Fig. 1a and the same results are shown for the magnitude ranges in Fig.1b. The black 
color ( ) in the pairs of seismic zones and magnitude ranges reveals the 
correlation between them (Fig. 1). 

In case of a semi-Markov model we also create two chains where the state 
space  is simply the  seismic zones or  magnitude ranges, respectively, as the 
focus is on the region or magnitude of the next strong earthquake. Thus, the total 
number of states of the system, for the seismic zones and the magnitude ranges, are  
and , respectively. For the transitions we take into account the time units (holding 
time), integer multiple of , where the process of semi-Markov chain may remain at 
state  before made the transition in state . Thus, two successive earthquakes define 
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the transition between the respective states for the semi-Markov chain taking into 
account the holding time. 

Figure 1. The value of the test statistic  among of seismic zones in (a) and magnitude ranges 

in (b). The black color in cells shows that the corresponding pairs are correlated ( ). 
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For example, if  and  we define the two next transitions within 

the three predefined time intervals , separated by red lines in Figure 2, as described 
below. For the Markov chain about regions for each time interval , we have 

 (state 7),  (state 1) and  (state 

15), the occurrence of earthquake represented by 1, so the transitions are 7 1 15. 

For the semi-Markov chain the respective transitions are 2 3 4 4, where the 
numbers above the arrows represent the holding time. The transitions in case of 
magnitudes are defined similarly. Therefore, for a Markov chain we have 

 (state 4),  (state 1) and 

 (state 10), so the transitions are 4 1 10. For the semi-

Markov the respective transitions are 2 1 4 (Fig. 2). 

Figure 2. An example about the definition of states systems (Markov and semi-Markov) about 
the seismic zones in (a) and the magnitude ranges in (b). The red vertical lines divide the time 

intervals and the purple horizontal lines create the magnitude ranges. 
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2.2 Determination of time interval of chains 
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For the threshold time chosen,  should be large enough to allow interaction 
among seismic zones or magnitude ranges in order the transition probabilities to be 
robust. On the other hand,  should be small enough such that the hazard assessment 
be useful. If  is too small, the most frequently occurring transition is from state 1 to 
state 1 (no earthquake occurs), whereas if it is too large state  or  to state  or 

 (earthquakes occur in all possible zones or magnitudes ranges) transitions are 
dominant. We consider three criteria given by the following three functions in order 
to determine the time interval  for the Markov chain model. 

Function 1 is the difference between the number of transitions from state 1 to 
state 1 and the number of transitions from state  or  to state  or , 
respectively. 

Function 2 is the difference between the total number of transitions from state 
1 and the total number of transitions from state  or .  

Function 3 is given by . This function is based on 

the maximum entropy principle as it is applied to finite Markov chains, where  are 

elements of the transition probability matrix  and  is the stationary 

distribution of the Markov chain.  
To satisfy the functions 1-3,  is chosen so that both Functions 1 and 2 show 

a value close to 0 and Function 3 is maximized.  

2.3 Markov model  

The Markov model is a probabilistic one useful in analysing stochastic 
phenomena. Suppose  is the state space of a Markov chain. 

Let us define , where  is a time index (at multiples of ), be a Markov chain 

formed by the time succession of states with values from the state space . The 
Markov chain is defined in terms of a transition probability matrix: 

, where  is the probability that the state  follows state  with 

. From an observed Markov chain over  time units, the 

transition probability  is estimated by the ratio of successions of the ordered pair 

, , over all observed successions starting at state , . 

The transition probabilities  satisfy  and . Given  and the 

system is in state , we express the conditional probability of an earthquake occurring 
in seismic zone , with , or regional activity probability, as: 

, where  means that state  includes seismicity in zone 

 (Nava et al. 2005). The regional activity probability implies that the probability of 

a Markov process which has entered state  will enter zone  on its next transition 
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depends only upon the current state. The magnitude activity probability, , with 

 is defined in a similar way. 

2.4 Discrete semi-Markov model 

The behaviour of a discrete semi-Markov model is similar with that of a pure 
Markov model. A discrete time semi-Markov process is defined completely by the 
transition probabilities, the holding time mass functions and the core matrices or 
discrete semi-Markov kernels (Pyke 1961, Barbu and Limnios 2009). The transition 
probability  is the probability that a semi-Markov chain that entered state  on its 

last transition will enter state  on its next transition, allowing for a holding time m for 

the transition to take place (Trevezas and Limnios 2011). The standard definition of a 
semi-Markov chain thus excludes the transition from one state to the same state. 
Applying directly the semi-Markov model to our setting, having the earthquakes at 
any seismic zone or magnitude range as the  or  states, respectively, would require 
to define the time steps by the running index in the sequence of successive 
earthquakes, which is not a natural time parameter. In our setting, we have defined the 
time steps in terms of the interval . Since more than one earthquake at a different 
seismic zone or magnitude range can occur in the interval  we modify the 
definition of the semi-Markov model and assume that transitions from state 
(earthquake) i to j are allowed within the interval  and assign for such transitions 
the holding time =0. Accordingly, =1 regards the transition from a state 

(earthquake at a seismic zone or magnitude range) occurring at a time , 

where this is actually the whole interval ( , to a state occurring in the 

next time . In this case, the state  refers to the last earthquake 

occurring at the time interval (  According to this definition of the 

semi-Markov model, transitions from one state to the same state are allowed. The 
probability mass function  is called the holding time mass function for a transition 

from state  to  and is given as , where  is the time unit (0 

within , and otherwise multiples of . The final step is to define the core 

matrices (discrete semi-Markov kernels). The  element of the core matrix 

 is the probability of the joint event that a system that entered state  makes its 

next transition to state  and this takes place after a holding time  (Altinok and 

Kolcak 1999). The core matrix is given by: , where 

 denotes multiplication of corresponding elements. 

2.5 New approach combining the Markov and semi-Markov chain 

Let us first concentrate on the seismic zones (the approach for the magnitude 
ranges is similar). The interest here is to determine the probability of having a strong 
earthquake at the next time interval  in one of the seismic zones given the 
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information of earthquake occurrences at the present time interval. The states of the 
Markov chain do not contain the information about the order of occurrences of 
earthquakes at a time interval, and particularly the last earthquake in this interval 
(referring to the states representing more than one earthquake occurrence in the time 
interval). On the other hand, as the semi-Markov model is defined, its state carries the 
information about the last earthquake occurrence regarding the present time interval. 
In the proposed approach, we attempt to combine the information of the state of the 
Markov model and the semi-Markov model for the same time interval, and further use 
it to predict the occurrence of an earthquake at a specific seismic zone within the next 
time interval. First, using the states of the Markov chain for the seismic zones, we 
calculate the regional activity probability matrix Preg of size  with components 

, where , , and , are the  seismic zones. 

The  denotes the probability that given the Markov model state  at time 

, a strong earthquake occurs at seismic zone  in the time interval 

. We further involve the semi-Markov model defined in Section 

2.4, and particularly the part of it that regards holding times =1, in order to use the 

information about the last earthquake in the current interval and predict that a strong 
earthquake occurs at seismic zone  in the time interval . This 

information lies in the core matrix  of size  with . The 

, denoted for simplicity , is the probability that given the last 

strong earthquake is at seismic zone  in the current  at time , a strong 

earthquake occurs at seismic zone  in the time interval . The 

two transition probabilities  and  from the Markov and the semi-Markov 

model, respectively, target in predicting the seismic zone an earthquake occurs in the 
next time interval , the former on the basis of the state of seismic 

zones in , and the latter on the basis of the seismic zone of the last 

earthquake in . We merge the two probabilities to the probability 

, which approximates the conditional probability , i.e. 

the occurrence of an earthquake in seismic zone  within the interval  when in 

the last interval  the state of seismic zones is i and the last earthquake in  is . 

The probability  is an operationally suitable approximation rather than an exact 

expression of  using the probabilities obtained from the Markov and semi-

Markov model. The probabilities  can be estimated by the corresponding 

frequencies of  and . The probability  is defined 

similarly for the magnitude ranges. 

2.6 Results Evaluation 
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For evaluating the performance of the Markov chain, we will compare the 
aftcast probability of the Markov model to a threshold formed according to the 
hypothesis that the system has no memory, and the seismicity cannot be modeled as a 
Markov chain. Three memoryless models are considered: uniform, Poisson and fixed 
Markov chain. The uniform model has transition probabilities 

, where the probabilities {  correspond to purely random 

guessing. The Poisson model has transition probabilities 
, where  is the mean number of 

earthquakes per unit time in zone  and  means that state  includes seismicity 

occurrence in zone . The third model is the fixed Markov chain model and is given 

by , where . For magnitude states the three models are 

defined accordingly. For the uniform model we consider a threshold probability 
, where  is an arbitrary non-negative constant. An aftcasted 

transition is defined as successful if . For the Poisson or fixed Markov chain 

model we have a successful aftcasted transition when  or . 

Aftcasted, means that the probabilities  are evaluated based on all available 

information considering the data until the time of forecast. 
For evaluating the performance of the semi-Markov chain, it is tested whether 

the next predicted transition  of system having the maximum probability 

among of the others pair of states is in agreement with the observed transition.  

2.7 Network measures 

Generally with the term «network» we mean the graph  that is 

defined by the nodes and the connections between them, where  is the set of nodes 
and  the set of connections. In our analysis, the nodes are represented by the states 
of system and the directed weighted connections are defined by the elements of the 
transition probability matrix  (for Markov model) and core matrix  (for semi-
Markov model), respectively. The network properties are quantified with a number of 
characteristics (network measures) computed on  and .  

The simplest and most known network measure is the degree (for binary 
connections) or strength (for weighted connections). This characteristic measures the 
number of connections or the sum of weights at each node i as . 

Essentially, the measure reveals whether a node is active in the network.  Another 
well-known characteristic is the average clustering coefficient, which estimates the 
tendency of any node  to form connected triads given as 

, where  is the sum of connection 

weights directed to the node and  is the sum of connection weights leaving the 

node. A high value of the average clustering coefficient indicates higher likelihood 
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existence of "clique" (clique is a group of fully connected nodes). The third 
characteristic is the betweenness centrality defined as the number of shortest paths 
between pairs of nodes that pass through a specific node given as 

, where  is the number of the shortest paths 

between  and  nodes and  the number of the shortest paths between  and  

nodes through the node . Nodes with a high betweenness have a high probability to 
occur on a randomly chosen shortest path between two randomly chosen nodes. Such 
nodes are critical to the network since their removal would destroy many short paths 
in the network. 

3. DATA AND APPLICATION 

The data are obtained from the earthquake catalog compiled in the 
Geophysics Department of the Aristotle University of Thessaloniki 
(http://geophysics.geo.auth.gr/ss/). They comprise crustal earthquakes (focal depth 
less than 40 Km) that occurred in 1911-2015, and are divided in four subsets of 
magnitude  (574 events),  (444 events, after declustering), 

 (188 events) and  (154 events, after declustering). The data are 

complete for the study period and declustering was performed for testing subsets of 
the entire catalog or after removing dependent events with respect to foreshocks and 
aftershocks. Seismicity declustering is the identification and the separation of 
seismicity catalogs into main shocks (independent events), foreshocks and 
aftershocks (dependent events), so as to eliminate the interference of the already 
dense occurrence and strong dependence of the events which belong to an aftershock 
seismic excitation. The Reasenberg�s algorithm (1985) is used, here, for the 
declustering procedure. The algorithm is used for identifying aftershock clusters 
based on a two-parameter earthquake interaction model producing a Poissonian 
declustered earthquake catalog which is deprived of correlated events. 

The study area is divided in 7 subareas and we define 5 seismic zones to 
reduce complexity, which are homogenous from the seismotectonic point of view, 
and are shown in Figure 3 along with the epicentral distribution of the earthquakes 
used for the analysis. In addition, the seismic catalog is divided in 4 magnitude ranges 
for each of the 4 data subsets with the purpose of distinguishing the different levels of 
earthquake magnitudes (moderate, strong, major and great). In case of magnitude 

 we define the following magnitude ranges: , 

,  and . Then, with magnitude  

we define: , ,  and . 

For the five seismic zones and for the four magnitude ranges there are 
 and  states, respectively. For example in the case of seismic zones, 

the state 1 (denoted 00000 in binary format) corresponds to no earthquake occurrence 
in all five seismic zones in the chosen time interval, , unlike the state 32 (denoted 
11111 in binary format) that represents earthquake occurrence in all five seismic. The 
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combination of seismic zones or magnitude ranges gives the nodes of the network and 
the states of a Markov chain system. 

In the case of semi-Markov chain, the nodes of the network and the states of 
the system correspond to the five seismic zones (5 states) and the four magnitude 
ranges (4 states), respectively. The directed weighted connections of a network are 
given by the transition probabilities  of the Markov chain and the elements of core 

matrix  of the semi-Markov chain. 

For the selection of the time interval  of chains, the optimal  should give 
the largest entropy (Function 3) and the value of Functions 1 and 2 closes to zero (see 
Subsection 2.2). So, in our analysis the time window that best meet the three criteria 
is 6 months for  and 12 months for  as evidenced in Figure 4. 

We created the earthquake network based on the seismic zones and the 
magnitude ranges for each model (Markov, semi-Markov) using the different data 
settings. The construction of network allows us to check which distribution of 
network measures (strength, clustering coefficient, betweenness centrality) matches 
well with the limiting state distribution of the Markov chain. 

Figure 3. Epicentral distribution of earthquake magnitudes , that occurred in 
1911-2015 in the broader area of Greece. The division of the area in seismic zones is also 

shown. 

 

Having defined the data, the system states and nodes, the time interval of 
chains and the earthquake network, we now estimate the seismic hazard assessment 
for the next strong earthquake occurrence. Thus, we compute the transition 
probability and the regional or magnitude activity probability matrices of Markov 
chain and the core matrices of semi-Markov chain for all cases (data settings, models 
using as states the seismic zones and magnitude ranges).  

The evaluation of the model performance is done by counting the number of 
successes of aftcasted regions or magnitude ranges occurrences, respectively. The 
aftcasts are used when the seismic catalog is not large and the number of transitions is 
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not big in order to both obtain a robust transition probability matrix and have a 
statistically significant sample of forecasts. 

4. RESULTS 

With the chosen time interval , which is 6 months for  and 12 

months for , we compute the transition probability, the regional or 

magnitude activity and the core matrices for all cases. In particular, in the case of 
 and seismic zones as states, it is evident from Figure 5a that the states of 

low occurrence of earthquakes in seismic zones have higher transition probabilities 
than the states of high occurrence. In addition, from the estimated regional activity 
probability matrix we notice that when the system is in state , the 
probability of a strong earthquake occurring in seismic zone 1 in the next  is very 
high for all cases (see Fig. 5b). Thus, we can assume that the seismic zone 1 has a 
highest risk for a strong earthquake than the other seismic zones. This is the reason 
that the states which include the seismicity of seismic region 1 have high transition 
probabilities in Figure 5a. Also, from the core matrix (see Fig. 5c) the key finding is 
that the main shocks have the tendency to recur in a short time in the same seismic 
zone that caused the earthquake. This fact is confirmed from the values at the main 
diagonal (transitions among the same seismic zones) which shows higher 
probabilities than the other pairs of states. This is in accordance with the clustering of 
strong earthquakes observed in many others cases in Greece and worldwide (Kagan 
and Jackson 1991, Papadimitriou 2002).  

Figure 4. Determination of time interval  when  in (a) the entire catalog and 
(b) after declustering, and respectively for  in (c) and (d). 
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Then, the limiting state distribution corresponding to the Markov chain model 

in relation with the distribution of network measures (strength, clustering coefficient, 
betweenness centrality) is shown in Figure 6. It can be observed that the limiting state 
distribution of the underlying directed network with weighted connections is in full 
agreement with the distribution of strength where the states (nodes) are represented 
by seismic zones and magnitude ranges in Figure 6a and 6d, respectively. This is due 
to the way that the weighted directed networks were constructed. Matching is also 
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observed in the distributions between of the limiting state distribution and the 
betweenness centrality as shown in Figures 6c and 6f unlike the case of clustering 
coefficient (see Fig. 6b and 6e). 

The last step in our analysis is the evaluation of the performance of each 
model with respect to the null model of no memory (see Fig. 7). The evaluation 
results for Markov and semi-Markov model are obtained by quantifying the aftcast 
success rate from the last 20 transitions corresponding to 20% of the total transitions 
in the case of  and 10% of . The transitions that are under 

testing come from the transition probability and core matrix for Markov and semi-
Markov model, respectively (see Fig. 7a, 7b and 7c). The success rate is better for the 
magnitude states than the zoning states, the latter going beyond 90% for the Markov 
model and 80% for the semi-Markov model, respectively. On the other hand, the 
success rate for zoning states is about 50% for both cases (Markov, semi-Markov) if 
we exclude the 85% success rate when the null model is based on the uniform 
distribution constituting the most random scenario. The performance evaluation for 
the new approach is done on the basis of the latest 10 transitions for  

(without and after declustering) and the time step  at 12 months, for data sets in 
2005-2015. 

Figure 5. The transition probability matrix and the regional activity probability matrix, 
shown as color maps (black for zero and white for 1) in (a) and (b), respectively, which come 
from Markov chain and the core matrix for  in (c) which come from semi-Markov chain 

in all cases with magnitude  and states referring to seismic zones. 
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Figure 6. The comparison of the limiting distribution of Markov chains with  on 
the basis of the strength in (a) and (d), clustering coefficient in (b) and (e), and betweenness 
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centrality in (c) and (f), for the states of seismic zones ( ) and magnitude ranges ( ), 
respectively.

10 20 30
0

5

States

(a)

10 20 30
0

0.2
Strenght
Limiting distribution

10 20 30
0

0.02

0.04

0.06

0.08

States

(b)

10 20 30
0

0.05

0.1

0.15

0.2
Clustering
Limiting distribution

10 20 30
0

20

40

States

(c)

10 20 30
0

0.1

0.2
Betweenness
Limiting distribution

5 10 15
0

5

10

States

(d)

5 10 15
0

0.2

0.4
Strenght
Limiting distribution

5 10 15
0

0.05

0.1

0.15

0.2

States

(e)

5 10 15
0

0.1

0.2

0.3

0.4
Clustering
Limiting distribution

5 10 15
0

5

10

States

(f)

5 10 15
0

0.2

0.4
Betweenness
Limiting distribution

 
In these 10 years (10 transitions), 14 strong earthquakes with  

have occurred, four of them being removed after declustering. Similarly to the 
previous cases (see Fig. 7a, 7b and 7c) the results of evaluation are better for the 
magnitude states, the highest success rate being 65%, than the zoning states where the 
highest success rate is 50% (see Fig. 7d). In particular, the results are better when the 
entire catalog is used. This remark can be substantiated by the fact that when 
declustering algorithm is applied, main shocks considered dependent are removed 
from the catalog, therefore the estimation of the next transition (the next strong 
earthquake) becomes more unpredictable. 

Figure 7. The performance evaluation in (a) with Markov model for seismic zones, in (b) 
with Markov model for magnitude ranges both of cases with  for the uniform null model, 
in (c) with semi-Markov model and (d) with new approach. The suffix ‘d’ in (c) and (d) means 
that the data come from declustering algorithm and the suffix ‘R’ and 'M' in (d) means that the 

data are referred in seismic zones and magnitude ranges, respectively. 
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5. CONCLUDING REMARKS 

The seismic hazard assessment performed by means of network and analysis 
and Markov models shows that the occurrence of strong earthquakes could have been 
predicted to some extent. Application of the models (Markov, semi-Markov, new 
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approach) to the Greek area yields significant results that have negligible probability 
of being obtained by purely random guessing. The transition probabilities, or for the 
case of semi-Markov models the transition probability and core matrices, between the 
states (seismic zones, magnitude ranges) of the system generate useful seismic hazard 
estimates, on which the forecast of transitions with high probability may be based. 
The results of model performance evaluation in all cases are better for the estimation 
of the next magnitude states than the zoning states. In addition, the results of 
evaluation are better when we do not use the declustering algorithm. 

The latter is attributed to the occurrence of dependent strong earthquakes, but 
given the fact that strong earthquakes cause huge disasters, it is preferable not to 
exclude these main shocks from the seismic catalog. The network theory can 
contribute to improve our understanding of these complex systems, such as the 
seismicity, as the limiting distribution of Markov chain is in agreement with the 
distribution of some network measures (strength, betweenness centrality). An open 
issue arising from this study is the application of the same analysis using synthetic 
seismic catalogs in order to provide more data (simulation data), i.e. more transitions, 
and thus the results become more robust. 
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