LOGARITHMIC DIMENSION BOUNDS FOR THE MAXIMAL FUNCTION ALONG A POLYNOMIAL CURVE

IOANNIS PARISSIS

Abstract. Let $d \mu$ be a probability measure on \mathbb{R}^{d} and $d \mu_{r}$ be appropriate dilations of the measure $d \mu$. The maximal operator associated with the measure $d \mu$ is then defined as

$$
\mathcal{M}(f)(x)=\sup _{r>0}\left(|f| * d \mu_{r}\right)(x)
$$

The usual maximal operators can be put in this general context. I will discuss an approach in proving L^{2} bounds for \mathcal{M} without using the endpoint weak L^{1} bounds and interpolation (initiated by Stein, Wainger, Bourgain and others). I will then study in more detail the maximal function along the polynomial curve $\left(\gamma_{1} t, \ldots, \gamma_{d} t^{d}\right)$:

$$
\mathcal{M}(f)(x)=\sup _{r>0} \frac{1}{2 r} \int_{|t| \leq r}\left|f\left(x_{1}-\gamma_{1} t, \ldots, x_{d}-\gamma_{d} t^{d}\right)\right| d t
$$

and outline the proof of the following estimate:

$$
\|\mathcal{M f}\|_{\mathrm{L}^{2}\left(\mathbb{R}^{\mathrm{d}}\right)} \leq \mathrm{c} \log \mathrm{~d}\|f\|_{\mathrm{L}^{2}\left(\mathbb{R}^{\mathrm{d}}\right)}
$$

where $\mathrm{c}>0$ is an absolute constant. The proof follows the ideas of Bourgain. The new element is a construction of an appropriate semi-group of operators which is compatible with the anisotropic structure implied by the curve $\left(\gamma_{1} t, \ldots, \gamma_{d} t^{d}\right)$.

E-mail address: ioannis.parissis@gmail.com
Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, PORTUGAL.

[^0]Key words and phrases. Maximal function, Polynomial curve, parabolic dilations, semigroup of operators.

[^0]: 1991 Mathematics Subject Classification. Primary: 42B20, 42B25 Secondary: 42B15, 43A15.

