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Abstract—In this paper, we present a prototype method for
3D localization of UHF RFID tags by a moving robot. The
proposed method represents an extension of Phase ReLock,
[24], in 3D space. Phase measurements are collected by at
least two antennas, thus a multi-antenna synthetic aperture
is created. We propose a new optimization problem, which
involves measurements from all different antennas. Thanks to
phase-unwrapping, the new multi-antenna optimization problem
preserves its convex-like properties. Consequently, it is solved
rapidly by standard optimization techniques. Furthermore, we
introduce a confidence metric that can identify measured data,
which deteriorate the accuracy of the estimations. These can be
removed from the measurements’ dataset. We have conducted
extensive measurements, employing four antennas on top of a
SLAM-enabled robot; i.e. the robot is able to create a map of
the unknown environment and continuously estimate its pose
inside the map. The proposed method outperforms prior art with
respect to accuracy and computation time. It achieves mean 3D
error less than 20cm with an estimation-time of only 0.17s per
tag on an average laptop.

Index Terms—RFID, 3D Localization, Nonlinear Optimization,
Phase Unwrapping, Performance Evaluation, Robotics, SLAM.

I. INTRODUCTION

RFID technology attracts growing interest due to the wide
variety of related applications. In contrast to traditional optical
technologies (camera, laser, barcode), RFID technology does
not require visual contact, while its low cost and ability of
high reading-rates makes its deployment beneficial in the fields
of logistics, retail supply chain, healthcare, agriculture, smart
houses, access control systems, libraries, etc. Concurrently, the
proper utilization of the physical quantities measured by a
commercial RFID reader (i.e. the phase and power of the RFID
tag’s signal) has drawn increasing attention in research, [1] -
[6], in order to develop and improve localization methods that
can accurately estimate the tag’s location and essentially locate
the “tagged” objects in the environment.

Localization in three dimensions usually requires the in-
stallation of multiple RFID readers and antennas. Adaptive
Power Multilateration [7] proposes the deployment of a min-
imum of 4 antennas and the dynamical adjustment of their
transmit power to estimate the antennas-to-tag distances. 3D-
Batl [8] deploys again 4 antennas and exploits the power
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path loss model to compute the antennas-to-tag and inter-
tag distances. BackPos [9] is based on hyperbolic positioning;
phase-difference measurements from each antenna-pair creates
a hyperbolic locus of possible tag locations.

Accurate 3D localization demands for an increased number
of installed antennas. However, the cost of a fixed network
of multiple readers and antennas can be prohibitive and such
solutions may not be applicable, especially in large areas. An
alternative is to exploit moving antennas that can collect mea-
surements from multiple locations. The motion of the antenna
generates a virtual array, also known as synthetic aperture
(SAR), an approach already known from radar applications.

The technique of SAR was initially applied in RFID
technology by the holographic method [10] and later by
its variation [11]. In [10], phase measurements taken along
the antenna’s trajectory are exploited to create a holographic
image that quantifies the expectation a given point of the image
is the actual tag’s location. Eventually, it solves a Maximum-
Likelihood (ML) problem, where the peak of the (non convex-
type) image is found through an exhaustive search on all image
points. 3DLoc [12] and 3DinSAR [13] perform holographic
imaging in same manner, while they utilize a single antenna
moving in two perpendicular directions in order to accomplish
localization in three dimensions.

Such methods require antenna adjustment and control by a
handling system, at the expense of time and effort since the
presented process requires manual operation. On the contrary,
an RFID-equipped robot that can navigate inside the environ-
ment allows for automatic inventorying and localization of all
surrounding objects, without human intervention. Deploying
a moving robot, though, raises the necessity of continuously
tracing its pose while in motion, since SAR-based algorithms
request for knowledge of the antenna’s coordinates. Localizing
arobot that moves along random trajectories is definitely a task
that can be quite complex and challenging.

Antenna(s) mounted on robotic platforms are exploited in
[14] - [16] in order to estimate the tag’s location based
on a ML approach; the solution of the localization problem
corresponds to the maximum of a proper matching function,
which is non convex. Therefore, the global maximum is found
by exhaustive search over an assigned grid of possible tag
locations. The trajectory of the robot in [14] is accurately
obtained by a camera-system installed on the ceiling of the
area, which continuously monitors the robot’s motion, while
in [16], a different solution is presented, which fuses odometry
data with measurements from RFID tags placed at known
positions. The performance of such grid-based methods strictly
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depends on the grid resolution. The number of required
calculations is proportional to the number of the grid points;
hence, the computational cost for 3D problems and large tag
populations is prohibitive for real-time applications.

In such framework, PSO-SAR [17] applies particle swarm
optimization to the non-convex cost function, in order to re-
duce [14]’s computational cost, caused by the grid’s exhaustive
search. The algorithm moves a swarm of particles toward the
global solution of the problem, bypassing local maxima. In
[18], an extended Kalman filter is presented to online localize
the tags with respect to the employed robot. Kalman filters
have the ability to account for the variance of the phase
measurements’ Gaussian error, while relative localization is
achieved quite fast, in comparison with grid-based methods,
due to the filter’s low complexity. However, both methods have
the disadvantage of dependency on the algorithm’s parameters,
which necessitate preliminary investigation for the optimal
values.

In addition to the robot-location-aware methods, the ’fin-
gerprinting” methods do not require any knowledge of the
antenna’s position(s). They employ tags at known positions
as reference landmarks and evaluate the resemblance of the
measured quantities between reference and target tags; such
resemblance is quantified by a proper formula including sev-
eral design parameters. LANDMARC [19] compares the RSSI
values and estimates the location of the target tag as the middle
point of the K nearest reference tags. Vire [20] proposes
an improved method based on LANDMARC, by introducing
simulated tags, in addition to a few real reference tags. In
similar manner, the fingerprint technique can be applied to
measurements collected along synthetic apertures (i.e. by a
moving robot), as demonstrated in [21] and [22], while the
performance is online evaluated, by treating the reference
tags as target ones. Pinit [23] also employs a moving robot
to collect measurements and compares the multipath profile
between target and reference tags to accomplish accurate
localization in scenarios of severe multipath.

Although the fingerprinting-based methods have low com-
plexity and are considered real-time, their performance is
quite sensitive to the algorithm’s design parameters (e.g.
number of neighbors considered, etc), requiring an analysis
to find and use the optimal values. Most importantly, such
methods depend significantly on the number and density of
the employed reference tags; an increase of the reference tag
population may increase the achieved accuracy but it slows
down the estimation process by increasing the computational
cost. Especially for three-dimensional localization, a dense
3D reference grid is necessary, while measuring the ground
truth of the reference tags demands for excessive preliminary
preparation.

Recently, we proposed a novel SAR-based localization
method, called “Phase ReLock” [24], which exploits phase
measurements obtained by a single antenna mounted on top of
a prototype robotic vehicle. By performing phase-unwrapping
to the measured data and creating a new unwrapped phase
model, a convex-type optimization problem is built, which is
able to be rapidly solved by standard nonlinear optimization
algorithms. This property makes “Phase ReLock” indepen-
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dent of a calculation’s grid and prevents from performing a
computationally expensive search, in contrast to other SAR
methods which are grid-based. Experimental results prove
that tag-estimations are derived orders of magnitude faster
in comparison with state-of the-art grid-based methods, while
slightly better accuracy is delivered.

In [25] and [26], it was demonstrated that localization
in three dimensions can be feasible by a single antenna,
when non-straight synthetic apertures are exploited; i.e. the
robot moves in curved trajectories. In [25] particularly, a
simulation-analysis was implemented to evaluate the effect of
the robot’s trajectory on the achieved accuracy and reliability.
However, even if the 3D location of the tag is estimated in less
than a second, the delivered accuracy can not be considered
quite satisfactory for realistic inventorying applications (mean
localization error of about 0.5m).

Additionally, the required estimation of the robot’s trace
is accomplished through SLAM (Simultaneous Localization
and Mapping). In addition to RFID equipment, the robot
carries a set of sensors (laser and cameras), which enable it to
autonomously navigate in any a-priori unknown environment,
create a 2D/3D map of it, and continuously estimate its trace
in the created map by fusing odometry and laser data. Thus,
the complex task of the robot is to identify and pinpoint
the surrounding objects into the created map [27]. However,
a trajectory derived by any SLAM algorithm suffers from
various errors, induced among others by deformations of the
created map. Such errors are expected to directly affect the
accuracy of any RFID localization method applied.

In this paper, we present the extension of Phase ReLock
to multi-antenna synthetic apertures. Initially, the phase curve
obtained by each available antenna is unwrapped. In contrast
to [25], we create a new optimization problem, including
measurements from multiple antennas and searching for the
actual coordinates of the tag in 3D space. The new multi-
antenna optimization problem, preserves its convex-like prop-
erty. As a result, not only it can be solved rapidly by standard
optimization techniques, exactly as its equivalent 2D problem,
but it is also robust and independent of algorithm’s design
parameters. Furthermore, we introduce a confidence metric
that can identify less accurate estimations, which are then
treated accordingly. An experimental campaign is conducted
to evaluate the method’s performance under different environ-
mental conditions and algorithm’s parameters and compare it
against other localization methods.

The paper is organised as follows: Section II presents the
localization method “Phase ReLock 3D”. Section III intro-
duces a confidence metric that evaluates the performance of
the method, while Section IV gives the experimental results
and comparisons. Finally, Section V concludes our findings.

II. PROBLEM FORMULATION

Consider the objective of localizing a static RFID tag by
a moving robot that carries the required RFID equipment;
i.e. reader(s) and antenna(s). The position of a tag is denoted
as Aiag = [Tiag, Ytag, #tag)- The antenna’s location at time-
index ¢, is denoted as A; = [x¢,y:, 2¢|, while the phase of
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Fig. 1: Phase Unwrapping eliminates the 27 jumps and pro-
duces a continuous curve with support in (—oo, +00).

the backscattered signal from the tag to the antenna recorded
at the same time ¢ is denoted as ;. The measured phase is
associated with two times the Euclidean distance between the
antenna and the tag, ||Aiqg — A¢||2, in order to account for
the round trip propagation from a monostatic RFID reader.
The theoretical phase-distance model is:
27

Or = <2 | Atag — A2 +¢0> mod 27, e[1,T] (1)
where ¢; is the expected phase that would have been measured
if the tag’s and antenna’s locations were A;,, and A,
respectively; notice 6, is the measured phase sample. 7' is
the total number of recorded measurements. In (1), A stands
for the wavelength of the carrier frequency, while ¢¢ is an
additional phase-rotation, irrelevant to the wave propagation.
It corresponds to a phase offset induced by the tag’s and
the reader’s electronics, cable effects, antennas’ leakage, etc.
However, for the same RFID setup, i.e. same antenna and tag
pair, ¢ is common for all measurements, but unknown.

The final output of (1) is a remainder to 27, to indicate that
the phase takes values only in intervals of 2w, as shown in
Fig. 1 (a). Phase is a periodic function that repeats for every
A/2 change of antenna-to-tag distance. This kind of periodicity
introduces an ambiguity; phase cannot directly reflect the true
value of distance between tag and antenna, but just a series
of possible distance values, which differ from each other by
increments of half wavelengths, % Considering the above, an
alternative phase-distance model can be given by

¢t - 277(-2 ||Atag - S [].,T]

A2 + do + 2k, 2)
————

Ct
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Fig. 2: The motion of robot leads to the creation of a multi-
antenna synthetic aperture, composed by M single-antenna
apertures at different height.

where 2k, with k; € Z, represents the aforementioned cycle
ambiguity, which is not common for all measurements, as the
presence of subscript ¢ can imply.

In order to deal with this issue, phase unwrapping can
be deployed. By properly adding multiples of 27w to each
measured sample, the phase curve is reconstructed, such that
it obtains a continuous form, free of jumps every 2m. The
unwrapped phase measurements, denoted as g, have now
support in (—oo, +00), as shown in Fig. 1 (b). In accordance
to the reconstructed measured phase, the unwrapped phase-
distance model becomes:

2

- T
o1 =2 [ Arag = Arlla + g0 + 2k, tELT],  (3)
——

c

where qvbt is the expected unwrapped phase that would have
been measured if the tag’s and antenna’s locations were Ay,
and Ay, respectively; notice 9t is the unwrapped measured
value. In (3), 2kn represents again the cycle ambiguity. How-
ever, this ambiguity term is now common for all unwrapped
phase samples, in contrast to the case of wrapped data. Since
both terms ¢ and 2k7 are common for all collected data of
same antenna-tag pair, their summation c, is also a common
constant, but still unknown.
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A. Multi-Antenna Synthetic Aperture

An antenna mounted on a moving robot allows tag-readings
from multiple locations, generating a synthetic aperture, also
known as virtual antenna array. When M antennas are em-
ployed at different heights on the robot, M synthetic apertures
are formed, composing a multi-antenna synthetic aperture, as
depicted in Fig. 2 (a). For the t** out of T} aperture locations
of the j** out of M antennas, we deﬁne the observation
sequence O(] ) = (A(j ) 90 ) AU )), which holds information
about the coordinates of the antenna, the unwrapped phase
value and the carrier wavelength, see Fig. 2 (b). The absence
of index ¢ in A implies that the operating frequency of each
antenna j is fixed for the entire inquiry process, but is not
necessarily the same for different antennas. By applying the
observation sequences Oﬁj), j € [1,M] and t € [1,T}],
to the theoretical phase model (3), a system of equations
S={sMW ... §0 ... SO s built:

y 47
1 1
o1 = A | Atag — AVl +
5(1) Am 1) (1)
05" = O} ”Atag_A ll2 +c
g A
o 47
1
o) = (w | Atag — AT ll2 +c<1>>
(s 47 .
0 = (A() | Aoy — Az + ¢ ﬂ>>
&) 306) Am )

S S <0 = 0 ||Amg — A ||2 + cl
o 47
07 = <)\(J) 14ty — AD |2 +C(j)>
5(M) dm (M) (a0
67" = W |Atag — A7 ]2+
JOn _ A — AMDI 1 0)
5(M) Sl A (M)
9T1\/1 = )\(M HAtag T]u ||2 +c

Sub-system SU) corresponds to the synthetic aperture of
the j'* antenna and c¢U) is the common offset applied to
all unwrapped measurements of j*" antenna. The unknown
parameters of each sub-system S) are 4: the tag’s coordinates
Aoy = [Ttags Ytags Ztag] and the phase offset c\9). Extending
to augmented system .S, the latter consists of Ziw T; equa-
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tions and 3 + M unknown parameters represented by vector
p= (Amg7c(1)7... , M)y,

System S represents a data-fit problem, according to which,
the set of unwrapped phase measurements d,, should match to
the set of theoretical/expected values ét, derived by (3). Since
S is an overdetermined system, the solution is obtained in a
least square sense and the optimum parameters represented
by vector pP! = (Ayqg, ¢V , c(M))ort are sought to min-
imize the sum of squared dlfferences between the measured
and expected values. Particularly,

p°P! = arg min F(p) 4)
p

where matching function £'(-) follows:

2
5 1Aty A§”||2—c<ﬁ> 5)

B. Nonlinear Optimization

Objective function F in (5) is nonlinear and cannot be
solved in closed form by simple matrix techniques. Minimiza-
tion across the parameter space is accomplished through non-
linear optimization that exploits iterative algorithms. Starting
from an initial selection of the unknown parameters, denoted
as pg, each iteration adjusts the solution, such that Fin %)
repeatedly decreases and the fit is improved. This procedure
stops when some convergence criteria are met; i.e. a (local,
in general) minimum is reached. Seeking the optimum values
p°Pt though, implies seeking the global minimum of F and
not just a local one. Therefore, in order for any of the standard
optimization algorithms to be used, the involved cost function
should exhibit one and only global minimum, in other words
be convex. Fig. 3 represents the 3D illustration of F along
the directions Z¢ag, Ytag» Ztags the three 2D slices of the main
plot pass through the tag’s estimated position. The smooth
change of coloring implies convex-type surfaces. Additionally,
the subplot at the upper left corner of Fig. 3 depicts the shape
of F on the Tpag — ¢(1) parameter-plane. indicating convexity
of the cost function with respect to the ambiguity term ¢(!). F
maintains the property of convexity along ¢\/) for j € (2, M],
as well. It is also worth noting, that the shape of F for the
Yiag — ¢V and 244y — ¢V planes is also similar. To better
demonstrate the cost-function, each slice of the main plot
is also shown separately in Fig. 4, where F’s smooth and
convex-type surface can be observed. The involved objective
function does not suffer from local extrema and deployment
of nonlinear optimization algorithms is feasible.

Depending on the way the minimization-problem is solved
at each iteration, there are various optimization algorithms.
Herein, the method adopted is based on the trust-region
strategy [28] - [30]. Let vector py, = (Asqag, ¢, , D),
denote the estimation of the unknown parameters at the k'"
iteration. According to the trust-region approach, the original
cost function F in (5) is approximated near p; with a model
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Fig. 3: Cost function F in (5) shown in 2D slices on the
(xtag - ytag)’ (ytag - Ztag)» (Ztag - -Ttag) and (mtag - C(l))
planes. The smooth change of coloring implies convex-type
surfaces. The black dots represent the synthetic aperture of
each employed antenna.

my, which is normally the second-order Taylor expansion of
the former:

my(s) = F(py, + s)
o o 1 o
= F(pr) + VF(pr)"s + 55TV2F(pk)S (6)

Model my(s) is then minimized, while its minimum is sought
within a trust-region of radius Ay, centered at py:

s, = argminmg(s), s.t. ||Dgsgll2 < Ak @)

where s;, is called trial step and Ay essentially determines
the maximum allowed value of sj. Furthermore, since the
problem’s parameters may take values that have widely dif-
ferent scales, a spherical trust region may not be efficient.
Dy, corresponds to a scaling matrix that ensures vector Dy sy,
has entries of same order of magnitude. Step si is only
the minimum of model my and its performance should be
evaluated with respect to F. We define the agreement between
the actual function F' and the approximate model my as the
ratio between their corresponding reductions:

_ F(px) — F(px + si)
k= my(0) — mp(sk) ®)

Ratio py, is exploited to decide whether trial step sy, is accepted
for next iteration and adjust the trust region’s radius Agyq.
Since the aim of each iteration is to decrease F, step sy
is accepted as long as py takes positive values. Rejecting a
step corresponds to a wasted iteration/computation time and
hence, a general strategy is to reject it only when it leads to
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Fig. 4: The x-y, x-z and y-z plane of objective function a
shown in Fig. 3. Additionally, the progress of the optimization
algorithm is shown, which iteratively converges to the global
minimum. Black circles represent the estimation at each it-
eration, green circle the accepted solution and red cross the
actual tag location.
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Fig. 5: Comparison between the measured unwrapped phase curves collected by the antennas and the estimated phase curves
produced by (3) for the parameter values (A¢qg, ¢, c(?) estimated at different algorithm’s iterations. The estimated curves
produced by the initial values have a bad fit to the measured ones (a), however as the values are refined, the fit is improved
(b)-(c), when eventually the optimum values deliver the best match.

an undesired increase of I, i.e. a negative pj. The parameter
vector of the next iteration is hence updated, such that

D+ 8k, if pp >0
Py = PR TSR WP )
Dk, if pr <0

Large values of p (close to 1) indicate that model my, is an
accurate approximation of F and hence, the trust region can
be enlarged to allow potential larger and ambitious steps. On
the contrary, small values of p; imply that there was a great
disagreement between my and F and the trust region should
be shrunk in order to restrict the maximum allowed value of
si. The region’s radius is updated as follows:

nAg, if pr>c
Appr =48k ifa>pp>e (10)
Ap/n, if c2> pr

where c1, co and 1 are non negative quantities for evaluating
the suitability of the approximate model and adjusting the
trust region’s radius for next iteration; typical values are
c1 =0.75,c0 =0.25,n = 2.

The iterative procedure shall be repeated until some solution
Py is accepted as the global solution of the original optimiza-
tion problem. Convergence to the minimum is identified by
evaluating the gradient of F at py; the algorithm stops when

IVE(pr)|]2 < €, (11)

where € is a small non negative value that represents the
termination tolerance. Alternative termination criteria are 1)
no further decrease of the amplitude of cost function F', ii) no

change of the parameter values pj, for consecutive iterations,
iii) a maximum number of iterations.

Fig. 4 demonstrates the progress of converging to the
global minimum of F (5) by applying the trust region al-
gorithm. The initial values of the parameters were py =
(Agag(em), M (rad), ¢ (rad))y = (2000,2000,500,0,0).
Starting by these parameter values, the algorithm adjusts them
at each iteration (depicted by black circles), until it eventually
reaches the global minimum of F' that corresponds to the
optimum values p°?* = (965.1,906.7,71.4, —54.3, —58.8).
The optimum solution is depicted with a green circle, while
the true tag’s coordinates are represented by the red cross.

Additionally, Fig 5 compares the measured (unwrapped)
phase curves obtained by the two apertures shown in Fig. 3,
with the estimated curves produced by (3) for the parameters
estimated at different algorithm’s iterations. Initially, there is a
great disagreement between the measured and estimated data,
see Fig. 5 (a), since the initial values p are far from the actual
solution. However, as the algorithm gets closer to the global
minimum of F' through the iterative process, the produced
estimated curves tend to resemble the measured ones, see Fig.
5 (b)-(c). Eventually, the algorithm converges to the global
minimum and the optimum parameter values p°P? deliver the
best match, see Fig. 5 (d).

Summarizing, "Phase ReLock 3D” solves the 3D localiza-
tion problem by initially unwrapping the phase measurements
obtained from a multi-antenna synthetic aperture. Then, it
crafts and solves an optimization problem by deploying the
trust-region optimization algorithm.
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Fig. 6: 3D illustration of F in (5), when different number of antennas are used to locate same tag.
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Fig. 7: The curves of F along Tiaq, Ytag and z;.4 direction, for different number of employed antennas. The curves have
been centered such that their minimums coincide. The x-axis of each plot represents the displacement from the estimated
parameter-value. The colored vertical dashed lines correspond to the actual coordinate of the tag with respect to the estimated

coordinate represented by the black dashed line passing through the minimum of each curve.

III. PERFORMANCE EVALUATION

After deriving the best-fit values of the unknown param-
eters, PP = (Azqg, V), - cM))P | the performance of
the optimization should be evaluated in order to obtain an
intuition of the expected localization error. Various factors
can deteriorate the efficiency of any localization method, such
as multipath/noise, inadequate collection of measurements,
inadequate number of employed antennas, errors induced by
the phase-unwrapping algorithm, improper robot trajectory,
etc. Either case will lead to a poor estimation.

This effect will be reflected in the variance of the estimated
parameters; i.e. a common measure in optimization that quan-
tifies the (un)certainty of the estimated solution based on the
quality of the fit. In fact, the variance represents how much
the fit will worsen, as the parameters take values away from
the optimum ones. Small variance indicates that only values,
which tend to be quite close to the best-fit values, can produce
an equivalently good fit as the latter. On the contrary, high
variance implies that a fit, almost as good as the best one, can
be achieved even for values that are quite spread out from the
optimum values. Thus, the smaller the value of variance is,

the better and more confidently the solution is identified.

Asking how much the fit worsens as the parameters take
values away from the optimum, is essentially asking how much
the amplitude of cost function F in (5) increases. When the
function’s curve is quite steep towards the minimum, values
away from it lead to a highly increased amplitude and a much
worse fit, whilst for nearly flat curves, Fs amplitude increases
slowly for values away from the optimum. As a result, quite
steep curves are likely to produce reliable estimations, whilst
for nearly flat curves, the ambiguity of the estimation is
increased.

Therefore, the local curvature around the global minimum
will be explored in order to evaluate the confidence of the
estimation and consequently, the expected localization error.
The information of curvature along each parameter-direction
is represented by the respective second partial derivative of F
in (5). Since the variance is inversely related to the curvature of
F, its value for each parameter in p = (Ayqg, D . ,c(M))
is given by:

C(i,i), i€[l,3+ M]

o2 =

p(i) = (12)
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where C(i,i) is the i*" diagonal element of the covariance
matrix C, given by

C=c’H! (13)

where o2 is the variance of the problem’s residuals and H
stands for the (34 M) x (3+ M) Hessian matrix of F in (5),
computed for the optimum values p°P*:

H = V2F(p°P). (14)

When the variance of each parameter is available, the
corresponding confidence intervals can be computed. The
confidence interval (CI) is essentially a range of values around
the estimated one, which contain the true value with a certain
degree of confidence; typically the 95% interval is exploited,
i.e. true value lies within the calculated range with a 95%
probability. The narrower the length of confidence interval,
the more confident the estimation. Hereinafter, C'I will refer
to the 95% confidence interval.

Figs 6 (a), (b) and (c) show the cost function F (5), when
measurements from 2, 3 or 4 antennas, respectively, are used in
order to locate the same tag. By observing the colors in Fig. 6,
one can notice that for values of A;,, away from the optimum,
the amplitude of F' increases more abruptly as the number
of employed antennas increases. Hence, the confidence of the
estimation is higher for the case of 4 employed antennas, since
the produced curve is much steeper around the minimum.

This effect is also addressed in Fig. 7, which depicts the
produced curves of F along each coordinate-axis Tiqg, Ytag
and 2444, when 2,3 and 4 antennas are employed. In order to
acquire a better comparison of the curvatures, all curves have
been centered such that their minimums coincide, while x-axis
of each plot represents the displacement from the estimated
coordinate z°P!, y°P' and z°P*. When measurements by 4
antennas are exploited, the produced curves are much steeper
around the minimum, leading to a more reliable and accurate
identification of the solution. Furthermore, the vertical dashed
lines indicate the localization error along each coordinate.
Since x-axis of each plot represents the displacement from the
estimated coordinate, the colored lines represent the difference
between the latter and the tag’s true coordinate; e.g. in 7 (a)
the yellow dashed line passing through the value of +25cm
implies that the localization error along the x coordinate
is 25cm. The closer each colored line lies to the optimum
value (displayed by the black dashed line passing through the
minimum), the lower the localization error. One can notice
that the error decreases for each coordinate, as the number of
antennas increases.

However, it should be noted that the curvature of the cost
function, and hence the confidence of the estimation, does
not always increase, by increasing the number of involved
antennas/measurements. Sometimes, data from an antenna
may be corrupted by noise or multipath. In such cases, the
corresponding reliability decreases when the specific data
are accounted by the cost function. Thanks to the proposed
criterion, i.e. the length of confidence interval C'I, such data
may be identified and excluded from the estimation-process.
Such experimental results will be presented in section IV-D.
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Fig. 8: Photo of robot “Frida” from a recent international
exhibition.

banners

Two
placed back-to-back

(@) Two banners placed (b)
side-by-side

Fig. 9: Photos during the experiments.

IV. EXPERIMENTAL CAMPAIGN

We have constructed a prototype robot, “Frida” (see Fig.
8), which was employed for the experimental campaign. Frida
carries 2 Impinj R420 readers and 4 circularly polarized UHF
RFID antennas per side, installed at different heights on the
robot; in the following experiments, only one reader and 4
antennas were activated, illuminating one half-space as the
robot moves. The heights of the antennas were 0.63m, 1.07m,
1.53m and 1.93m. The experiments took place in a laboratory
room where desks, chairs, shelves and many other scatterers
are located. 100 passive UHF RFID tags were attached on two
2-meters-tall banners and used to evaluate the performance
of our method, "Phase ReLock 3D”. Additionally, various
banner set-ups and robot trajectories were employed in order
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Fig. 10: The estimated robot trajectories inside the 2D map
created for the experiment with the side-by-side banners.

to test the method under different conditions. The employed
experimental set-ups were i) a single banner (50 tags), ii) two
banners placed back-to-back (100 tags) and iii) two banners
placed side-by-side (100 tags), see Fig. 9, while the robot
was forced to move along straight paths, ”V”-type paths (i.e.
making one turn) and random trajectories such as slaloms
(”S”-type). The employed robot’s speed was 1.5¢m/s.

The poses of the moving robot during the experiments
were not known but estimated by a SLAM algorithm [31]
- [33]. In addition to RFID equipment, the robot carries a
laser and 3D depth cameras that enable it to create a map
of the environment and continuously localize itself inside the
map, by fusing odometry, lidar and depth-camera data. Fig.
10 depicts the estimated trajectories of the robot (straight, ”V-
type” and ”S-type”) inside the 2D map that was created for
one of our experimental set-ups. However, a robot trajectory
estimated by any SLAM algorithm is inaccurate and suffers
from various errors, caused most importantly by sensor noise
and deformations of the created map. Such errors are expected
to propagate to the RFID localization error.

Both the robot’s (estimated) locations and the measured
phase samples are accompanied by their timestamp. The
operating system of the robot, which estimates the locations of
the latter, acquires the time through a Network Time Protocol
(NTP) server that gives a time resolution of us. Similarly, the
RFID reader’s clock is synchronized with the robot’s to obtain
a time resolution of us as well. Since the speed of the robot is
a few cm/ s, the ambiguity of the robot’s pose that corresponds
to each tag measurement, is in practice neglected. Hence, the
time resolution of the system is not considered as a source of
error that deteriorates the tag’s localization accuracy.

A. Phase ReLock 3D against prior art

”Phase ReLock 3D” is then applied to the collected mea-
surements and compared against other SAR based methods
that use the Maximum Likelihood approach; i.e. the location

http://dx.doi.org/10.1109/JRFID.2021.3070409

of the tag corresponds to the global solution of a matching
function. In particular, the convex optimization applied by
Phase ReLock is compared against two different approaches,
1) exhaustive search on an assigned grid of locations and 2)
particle swarm optimization along the search space.

1) Grid-based methods [10], [14], [15]: According to grid-
based methods, the tag’s location is sought along a grid of
possible locations such that a non convex cost-function is max-
imized; the cost function essentially represents the probability
of a grid-point to be the actual tag position. The presence
of multiple local minima and maxima though, necessitates an
exhaustive search on the assigned grid, in order identify the
global maximum over the local ones.

A main property of grid-based methods is that both accuracy
and execution-time strictly depend on the size of the grid; i.e.
the number of possible tag locations explored. For dense and
large grids the localization error is expected low; however, the
exhaustive search over the grid requires a high computational
cost and increased execution-time. On the contrary, a limited
and sparse grid can allow for high execution-speeds and real-
time applications, but the accuracy can be proven poor.

Among several grid-based methods, we have implemented
the holographic method presented in [10] and compared it
against “Phase ReLock 3D”. Different variations of [10] are
expected to have same performance regarding the delivered
accuracy and the required estimation-time, since they optimize
the same [15], or an equivalent [14], matching function. In
the experiments conducted, the space of interest is defined by
the length of the robot’s trajectory (4m), the reading range
(depending on the transmit power) of the reader (6m) and
the banner’s height (2m). As a result, the assigned three-
dimensional grid extends to an area of 4m X 6m X 2m,
while different grid-densities were tested; the distance between
adjacent grid-points takes the values of 2.5¢m, bem, 10em,
20cm and 30cm.

Fig. 11 shows the results of the two compared methods,
Phase ReLock 3D and [10]. In particular, it presents the cumu-
lative distribution function (CDF) of the achieved localization
error for each experiment. The accuracy of holographic is
inversely related to the grid-spacing. As the grid becomes
sparser, it is less likely that a grid point is close to the true tag’s
location and as a consequence, the achieved localization error
increases. Worst accuracy is delivered for the sparsest grid
(i.e. 30cm), while quite dense grids in the order of 2.5¢m and
5cm improved the performance. Concurrently, Phase ReLock
3D being grid-free, outperforms the holographic method for
all of the deployed steps.

The results of all experiments are summarized in Fig. 12 (a),
where the cumulative distribution function of error for all 550
estimated tag locations is presented. The performance of Phase
ReLock can only be compared against [10] when the latter
exploits 2.5¢m and S5em grid steps, but still is quite superior,
especially for CDF values above 0.7. Fig. 12 (b) corresponds
to the execution-time of each of the 550 estimations. Phase
Relock, being independent of a calculation’s grid, is executed
rapidly and any tag was estimated in ms order. On the
contrary, [10]’s speed depends on the density of the grid;
the denser the grid, the higher the computational cost of the
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Fig. 11: Cumulative distribution function (CDF) of the achieved localization error by Phase ReLock and grid-based [10] for

each of the experiment.

method, making essentially the method extremely slow for

1

large grid densities. 09}t

Table I summarizes the performance of each method in 0.8}
terms of accuracy and computation-time per tag. The total time 0.71
for all 550 tags is also given. Phase ReLock delivers the best w 06/

. . . Q0.57 -»-Phase ReLock

accuracy with the lowest computational cost. It accomplished Ooal -=-Grid 2.5cm
to locate 550 tags in about 1.5min, requiring less than 200ms 0.3} Grid 5cm
per tag, with a mean 3D error of slightly less than 20cm. On 0.27 -=-Grid 10cm
th . s . 0.1 -#-Grid 20cm

e contrary, the most accurate grid-based localization (grid of 0 Grid 30cm
2.5cm spacing), located all tags with a mean error of 24cm but 010 30 50 75 100 150
executed in more than 40 hours; i.e. 1600 times slower than localization error (cm)
Phase ReLock. The sparse grid of 30cm step managed to locate (a)

the tags in comparable time with Phase ReLock (1.8min), but
with much worse accuracy (around 90cm).

TABLE I: Phase ReLock 3D vs Grid-Search

localization error execution time

method mean std mean sum

Phase ReLock 3D 19.5cm 20.1cm 0.17s 1.5min

[10] (step 2.5cm) 24.5cm 27.5cm 4.2min 41.1h

[10] (step Scm) 26.2cm 29.1cm 36.8s 5.5h

[10] (step 10cm) 38cm 37.8cm 4.7s 43.2min 0 L | L | L |
[10] (step 20cm) 63.7cm 50.2cm 0.6s 5.7min 0.1 051 5 10 50100
[10] (step 30cm) 87cm 59.9cm 0.2s 1.8min execution time (sec)
2) Particle swarm optimization [17]: In order to speed up (b)

the identification of the global maximum, [17] proposes the
deployment of particle swarm optimization (pso). Each par-
ticle essentially represents a candidate tag location. Initially,
the algorithm randomly generates the population of particles

Fig. 12: Cumulative distribution function (CDF) of (a) the
achieved localization error (b) and the required estimation-time
by Phase ReLock and grid-based [10] for all experiments.
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(swarm) within the search-space bounds and it iteratively
updates each particle’s location according to its individual best
location and the best location of its neighbors. This procedure
is expected to move the particles toward the global maximum.

Whilst particle swarm optimization reduces the computa-
tional cost of localization, compared to grid-based methods, it
strictly depends on the initial (randomly generated) locations
of the particles and the values of the algorithm’s design
parameters, e.g. the swarm size, etc. Large search spaces, such
as three-dimensional, require a large particle population, while
improper selection of the algorithm’s parameters makes the
swarm trap to a local maximum and the global solution is not
identified.

We have implemented the pso algorithm by applying the
parameter values as proposed in [17], while the dimensions of
the search-space are defined same as before, 4m x 6m X 2m.
Fig. 13 investigates the method’s performance under the ef-
fect of different swarm sizes; 50, 100, 500, 1000 and 2000
particles. The cumulative distribution function of error for
all 550 estimated tag locations during all experiments is
presented in Fig. 13 (a). As expected, the delivered localization
error depends on the population of employed particles. Large
populations offer a more thorough search and increase the
chance of converging to the actual global maximum of the
cost function, whilst deploying few particles fails to identify
the global solution and method is trapped to a local maximum.
The performance of Phase ReLock can only be compared
against [17] when the latter employs a large swarm of particles,
but still is quite more accurate. Fig. 13 (b) corresponds to
the execution-time of each of the 550 estimations. Thanks
to the exploitation of an unwrapped phase model, Phase
ReLock preserves convexity of the cost function, which allows
the global minimum of the problem to be rapidly found by
iterative non-linear optimization. Any tag was estimated in
ms order. On the contrary, [17]’s speed mainly depends on
the swarm size; the more the employed particles, the more
the calculations required and the computational cost of the
method.

Table II summarizes the performance of each method in
terms of accuracy and computation-time. Phase ReLock again
delivers the best accuracy with the lowest computational cost.
On the contrary, [17] required a swarm of 2000 particles to
locate all tags with a mean error of 24cm but processing such
a large particle population increased the execution time to 5.5
hours; i.e. more than 200 times slower than Phase ReLock.

TABLE II: Phase ReLock 3D vs Particle Swarm Optimization

localization error execution time

method mean std mean sum
Phase ReLock 3D 19.5cm 20.1cm 0.17s 1.5min
[17] (2000 particles) | 24.6cm 30.5cm 36.9s 5.6h
[17] (1000 particles) | 25.2cm 29.8cm 17.2s 2.6h
[17] (500 particles) 33.1cm 46.3cm Ts 1h

[17] (100 particles) 59.2cm 74.8cm 1.7s 15.7min
[17] (50 particles) 83.5cm 89.5cm 0.77s 7min
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Fig. 13: Cumulative distribution function (CDF) of (a) the
achieved localization error (b) and the required estimation-time
by Phase ReLock and pso-based [17] for all experiments.

B. Effect of the robot’s speed

Next, we evaluate the performance of Phase ReLock 3D
for different robot speeds. The speed of the robot directly
affects the reader’s sampling rate and the number of collected
measurements per tag. Hence, it is expected to influence
the localization accuracy. When the antenna is moving in
relation to the tag, the latter is successfully inquired for
as long it is within the antenna’s reading range. Thus, the
number of the collected data is associated with the length of
time the antenna’s position allows for tag illumination. Small
speeds offer a large collection of data, whilst a poor set of
measurements is obtained for quite high speeds. The number
of obtained data per tag also depends on the tag population
within range; the more the existing tags that compete for
an interrogation time-slot, the less the time-slots that each
tag will eventually occupy and hence, the less the available
measurements of it. As a result, the performance of Phase
Relock as the speed increases, is expected to vary depending
on the tag population/density of each experimental set-up.

The speed of the robot that was experimentally deployed
was 1.5¢m/s. By downsampling the collection of measure-
ments, higher speeds of robot can be assumed; e.g. down-
sampling the collected set by a factor of two is considered
equivalent of doubling the robot’s speed, resulting in a speed
of 3em/s. We have tested values that are increments of the
actual speed; i.e. (x2), (x3), etc. Fig. 14 demonstrates the
effect of increasing the speed on the localization error for the
three banner arrangements: (a) a single banner with 50 tags

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JRFID.2021.3070409

IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION 12
1f -
091
-=(x1) 1 0.8}
(x2) -=(x1)| 0.7}
(x3) =(x2) w0.6¢ -=(x1)
(< 4) (x3) 0 0.5 -8=(x 2)
-8-(x5) -=(x4)) 0.4¢ / (x3)
(<6) =(x5) 0.3} (x4
~==(x7) (x6) 0.2} ~=(x5)
-=-(x8) =(x7) 0.1 (x6)
. . . —|-m=(x10) . . s —|-8~(x8) = s s — /)
0 20 50 100 150 200 0 20 50 100 150 200 0 20 50 100 150 200

localization error (cm)

(a) Single banner (50 tags)

localization error (cm)

localization error (cm)

(b) Two side-by-side banners (100 tags) (c)Two back-to-back banners (100 tags)

Fig. 14: Cumulative distribution function (CDF) of the achieved localization error for different robot speeds and experimental

tag set-ups.

attached on it, (b) two banners placed side by side (100 tags in
total), (c) two banners placed back to back (100 tags in total).
In the case of the single banner (lowest tag density), speeds up
to (x6) the original, seem not to deteriorate the performance
of the method, implying that a sufficient set of measurements
was available for processing. As the speed further increases,
the method finds difficulties in locating the tags accurately,
while localization fails for speeds higher than (x10). When
two banners are placed one next to the other, there is an
adequate collection of measurements only when speeds up
to (x3) the actual one are considered, whilst the method
completely fails when the robot moves faster than (x8). The
worst case scenario where the highest tag density is recorded,
is the back-to-back banners. In this case, the collection of
data per tag was quite poor and Phase ReLock performed
well only for (x2) the actual speed, while for speeds higher
than (x4) the original, the performance abruptly worsens. The
above experimental analysis verified the assumption that the
method’s performance changes depending on the tag density
in range, since the increase of speed affected the method’s
accuracy for each banner set-up differently.

C. Varying the number of employed antennas

The results of sections IV-A and IV-B correspond to the
usage of all 4 available antennas carried by the robot. Since the
3D problem requires a minimum of 2 antennas, we investigate
the effect of employing 2, 3 and 4 antennas on the performance
of Phase ReLock 3D. Fig. 15 (a) represents the achieved
localization error for all conducted experiments. In general,
the overall accuracy improves with the increasing number
of antennas. Specifically, best accuracy is delivered when
all 4 antennas are employed, while the performance of 2
antennas is quite inferior. Meanwhile, the number of antennas
also influences the computational cost of Phase ReLock, see
Fig. 15 (b). The execution time for locating a tag (i.e. the
time spent on unwrapping the measured phase curves and
solving the optimization problem (4)) increases proportionally
to the number of involved antennas. Each antenna introduces
an additional curve for phase unwrapping and an additional
parameter in the optimization problem; i.e. the constant offset
applied in all its collected measurements. As a result, the

0.2} -=- 4 antennas

0.1} -=- 3 antennas

0 2 antennas
010 30 50 75 100 150

localization error (cm)

(a)

-8- 4 antennas
-=- 3 antennas
2 antennas
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execution time (s)

(b)

Fig. 15: Cumulative distribution function (CDF) of (a) the
achieved localization error and (b) the required estimation-
time for an increasing number of deployed antennas

estimation-time per tag increases with the increasing number
of antennas linearly.

TABLE III: Effect of different number of employed antennas

localization error execution time
Phase ReLock 3D | mean std mean sum
2 antennas 39.3cm 46.7cm 0.08s 0.8min
3 antennas 24.6cm 29.2cm 0.11s 1min
4 antennas 19.5cm 20.1cm 0.17s 1.5min

Last but not least, Table III summarizes the results of our
investigation by presenting the mean and standard deviation
of the accomplished localization error, in combination with
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the mean execution time per tag and the total required time
for all 550 tags. It is worth noting that by doubling the
number of antennas, the achieved error is two times smaller
(4 antennas deliver a mean error of 20cm, while 2 antennas
deliver 40cm) and the speed of the estimation is two times
slower (4 antennas required 1.5min for 550 tags while 2
antennas required 0.8min).

D. Treating poor estimations

An estimation derived by Phase ReLock 3D is accompanied
by the 95% confidence interval of each estimated parameter,
calculated by the variance in (12). We exploit this reliability
metric in order to identify and treat poor estimations. Recalling
from section III, the confidence interval is a range of values
around the estimated one, which contains the true value with
a certain degree of confidence; the narrower that range is, the
more reliable the estimation can be considered, and hence,
the more accurate. Fig. 16 plots the localization errors for all
550 estimations vs the confidence intervals of their parameters
Ttags Ytag aNd 2444 large values of ClI indicate poor confidence
and vice versa.

Figs 16 (a) and (b) show that C1,,,, and CI,,, demon-
strate the expected behavior; increased values of C'I,, = or

tag
Cl,,,, indicate poor estimations. On the contrary, the corre-

sponding confidence of 24, parameter, C'I.,, , is not a reliable
indicator of poorly estimated positions (see Fig. 16 (c)), since
there is no variation of the antenna’s trajectory along the z-
axis; i.e. the antenna’s height on top of the robot is fixed. For
this purpose, we will exploit the sum C1,, +C1,,,  as shown
in Fig. 17 (a), such that estimations whose C'I,,,, + Cly,,,
is higher than a threshold, will be considered unreliable and
treated accordingly. The 99*" and 95" percentiles of variable
Cly,,, + Cl,,,, were chosen and tested as values for the
threshold; the latter are represented in Fig. 17 (a) by the red
dashed vertical lines.

tag

Those tags with confidence interval greater than the thresh-
old are then treated as explained next. Phase ReLock 3D is
re-applied for all possible antenna-combinations. Since there
are 4 available antennas the remaining possible combinations
are 10; i.e. antenna-pairs: 1-2-3, 1-2-4, 1-3-4, 2-3-4, 1-2, 1-3,
etc. Having now 11 different estimations (including the initial
estimation where all 4 antennas were accounted), we select
the one with the smallest C1,,, + CI,,, . Figs 17 (b) and
(c) depict the correction of the estimations for the two applied
thresholds, respectively. Notice that each corrected estimation
lay on the southwest of the respective initial one, indicating
that both localization error and confidence were improved.

Last, Table IV concludes the results of Fig. 17. When the
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threshold of 73.95cm (99" percentile) was utilized, 6 tags
were identified as poorly located and after the repetition of
the optimization for all antenna combinations, the achieved
mean error was improved by 60cm. Similarly, for a threshold-
value of 14.04cm (95" percentile), 32 unreliable estimations
were identified and an improvement of 40cm was recorded.

TABLE IV: Correction of poor estimations

Clz;,, + Cly,,, threshold mean error (cm)
percentile | value tags | initial final
99th 72.95 6 96.87 36.88
95th 14.04 32 74.59 37.6

Besides the poor estimations that were successfully identi-
fied and corrected, there are others which were not recognized
by the variance-threshold, as shown in the northwest corner of
Fig. 17 (a). These samples demonstrate estimations with large
localization error (about 1m) accompanied by high confidence
(i.e. small variance). This effect is mainly resulted by the
quality of the collected measurements from the specific tags. In
particular, the presence of a reflector in the propagation envi-
ronment (e.g. a wall behind the tags), could contribute a strong
field’s component throughout the whole set of measurements
(i.e. in all positions of the robot). The strong propagation
ray that corresponds to such reflector will be summed to
the direct (LOS) ray, affecting all phase measurements in
the same manner. As a result, the method would estimate
an erroneous location with high confidence. Despite the fact
that the experiments were conducted inside a multipath-rich
indoor environment, the number of such bad estimations was
quite small. It is worth noting that even if Phase ReLock was
re-applied for all possible antenna-pairs for those tags, the
estimation of their locations would not have been corrected.

V. CONCLUSION

In this paper we have proposed a novel method for 3D
localization of UHF RFID tags by a SLAM-enabled robot.
Four reader’s antennas collect phase measurements. Initially,
the phase-measurements are unwrapped. Localization is ac-
complished by solving the proposed optimization function,
through a rapid iterative convergence to its global minimum.
The proposed method exploits the ensemble of the collected
measurements from all antennas and derives the 3D coordi-
nates of the tag that best match the measurements. As a result,
the proposed method is accurate and fast. Furthermore, a new
metric for the identification of measurements that reduce the
estimations’ accuracy is proposed. The metric is quantified by
the size of the 95% confidence intervals around the estimated
values of the problem’s parameters.

Experimental comparison with prior art confirms the su-
periority of the proposed method with respect to accuracy
and computation time. Aggregate results from the experiments
indicate a mean expected 3D error less than 20cm, while esti-
mations are derived in 170ms per tag; i.e. a huge improvement
compared to prior art.

The high localization accuracy and computational speed
of Phase ReLock, in combination with the advantages of
a self-navigating ground robot, make the proposed method

http://dx.doi.org/10.1109/JRFID.2021.3070409

beneficial for many practical applications. Among others, it
can be applied in logistics management, 24/7 inventorying
and localization of goods in large warehouses, instant tracking
of misplaced products in retail stores, book management in
smart libraries, location-aware games between young visitors
and social robot inside a museum, identification of targets for
interaction, etc.

However, since in real scenarios the number of tagged
objects and hence, the tag population within the reader’s
reading range, can be uncontrollably huge (e.g. tiny products
on shelves of retail store), the read-rate of the employed
reader(s) needs to be increased, in order to obtain a fair
collection of measurements from all tags. To address that,
multiple readers need to be installed, operating at distant
central frequencies, in order to ensure a large frequency
separation in the front-end electronics of the readers. The read-
rate per target volume, would be multiplied by the number of
readers. As RFID technology continues to penetrate the market
replacing traditional barcode-tagging, additional bandwidth is
expected to be given to the technology and possible increase
of the reader’s read-rate.

Adaptation of the robot’s moving strategy can also improve
the performance. By adjusting the speed of the robot, such that
it travels fast in regions of the environment with few tags and
quite slow in tag-crowded regions, a rich set of measurements
can be preserved for all tags, while the time required for the
robot to traverse the spaces of interest and inquire all tags is
optimized.
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