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Abstract—Passive global localisation is defined as locating
a robot on a map, under global pose uncertainty, without
prescribing motion controls. The majority of current solutions
either assume structured environments or require tuning of
parameters relevant to establishing correspondences between
sensor measurements and segments of the map. This article
advocates for a solution that dispenses with both in order to
achieve greater portability and universality across disparate
environments. A single 2D panoramic LIDAR sensor is used as
the measurement device, this way reducing computational and
investment costs. The proposed method disperses pose hypotheses
on the map of the robot’s environment and then captures
virtual scans from each of them. Subsequently, each virtual scan
is matched against the one derived from the physical sensor.
Angular alignment is performed via 2D Fourier-Mellin Invariant
Matching (FMI); positional alignment is performed via feedback
of the position estimation error. In order to deduce the robot’s
pose the method sifts through hypotheses by using measures
extracted from FMI. Simulations illustrate the efficacy of the
proposed global localisation solution in realistic surroundings
and scenarios. In addition, the proposed method is pitted against
the most effective ICP variant under the same task, and three
conclusions are drawn. The first is that the proposed method is
effective in both structured and unstructured environments. The
second is that it concludes to fewer false positives. The third
is that the two methods are largely equivalent in terms of pose
error.

I. INTRODUCTION

Mobile robot localisation on a plane is a well-studied field
in robotics and several diverse approaches to its solution
have been proposed in the past. The term “robot localisation”
conflates two distinct problems arising from practical needs.
The first one, termed Global Localisation, is the problem of
estimating the pose of a robot within a map of its surroundings
under global uncertainty of location and orientation. The
second, termed Pose Tracking, is the problem of estimating a
robot’s pose when past poses, controls, and measurements are
available. This article focuses on the first aspect of localisation.

When motion commands are dictated from the localisation
system itself, global localisation is termed “active” [1]-[9].
When they are dictated by some external system, global

localisation is termed “passive” [10]-[35]. However, in the
stringent context of autonomy, motion commands may be
denied altogether, since generating motion commands without
knowledge of the robot’s whereabouts may be considered a
mission safety risk. This article focuses on this last case of
systems.

Global localisation of a robot is conditioned on the knowl-
edge of the map of its environment and measurements of
the environment derived from on-board sensor(s). The correct
association between the two by a method of global localisation
determines the success of localisation. The association depends
on the nature of the sensor(s) used to generate the map
and the nature of the on-board sensor(s) used in solving
the problem of (global) localisation. LIDAR sensors capture
distances to objects within their range, producing 2D or 3D
point clouds, and therefore they are used in generating 2D or
3D maps [36]-[39]. Such sensors have been widely adopted
due to their low measurement error, real-time operability, and
almost no need for preprocessing [40]. In the context of
robot localisation LIDAR sensors have become the prominent
candidate for deriving information from, since they are the
same sensors used for mapping an environment. Other sensors,
such as RGB(D) cameras and sonar sensors, have also been
used to solve the problem of global localisation [3][24][26].
This article focuses on its solution with the use of a single
2D LIDAR sensor due to its superior measurement accuracy
compared to them, its significantly lower cost compared to
a 3D LIDAR sensor, and the need for fewer computational
resources compared to employing sensors producing 3D point
clouds.

Approaches to the solution of the problem of global lo-
calisation establish associations between measurements from
one or more sensors and the map of the robot’s surroundings,
either in the native measurement domain [18][20][33], or in
an extracted abstraction space. In the latter case, features of
the measurement vectors and the map are located, extracted
(coded), and associated—features such as lines, planes, cor-
ners, doors, or others [12][13][16][30]. Knowledge of the



environment as well as of its structure are presupposed, and
therefore these approaches cannot be employed in unknown or
unstructured environments. On the other hand, in structured
environments the sought-for features are not guaranteed to
exist in both surroundings of the robot and the map, or they
do exist but not in a sufficiently undisturbed state. In any
case, current approaches usually require manual tuning of
parameters governing their success, regardless of their reliance
on features; therefore they are conditioned in an ad hoc
manner on circumstance and intuition. Furthermore, different
environments exhibit different structures and geometry, and, if
robot portability is sought for, their adoption is hindered due to
the effort needed to tailor each approach to each environment.
Consequently it would be valuable to strive to develop methods
that do not depend on the existence of local features or the
tuning of internal parameters, and that can operate in a variety
of environments, without the need or overhead of adaptation.

The contribution of the proposed method is the solution of
the passive global localisation problem in a 2D setting with
a panoramic 2D LIDAR sensor (a) without knowledge of the
structure of the robot’s environment, and (b) without the need
of tailoring parameters to the particular characteristics of the
LIDAR sensor used to acquire knowledge of the environment.
The proposed solution operates directly in measurement space
(thus without information loss), does not require the existence
of features in either map or measurements, and requires
no parameters to be tuned—apart from an optionally set
parameter, which may be configured in order to help resolve
pose ambiguities in cases of repeating environment structures.
The proposed method requires only one information input,
whose value is, in principle, proportional to the area of the
map of the robot’s surroundings. Compared to state-of-the-
art methods in scan-matching, the proposed method exhibits
fewer false positives, especially in the case of missing range
measurements (which are due to sensor fault or shortness of
the sensor’s maximum range compared to the distances to its
surrounding objects).

The proposed method disperses hypotheses over the unoc-
cupied space of the map. It tries to match the input range
scan to the range scans captured from the hypotheses’ poses.
The latter are constructed by raycasting the map from each
hypothesis’ location and orientation. The rotation and trans-
lation correction between the pose of a hypothesis and the
unknown pose of the robot is therefore performed via scan-
to-map-scan matching, and the distinction between true and
false positives is performed via the similarity degree extracted
from the orientation correction method. The latter rests on
matching the projections of the two scans onto the 2D plane
via Fourier-Mellin Invariant Matching. The translation of a
pose hypothesis is performed by computing the centroids of
the two ray-endpoint-sets and moving the hypothesis’s position
by their difference.

The rest of this article is structured as follows: section II
formulates the problem, provides useful notions and clarifi-
cations, necessary definitions, and the systemic rationale of
tools used subsequently. Section IIl provides an overview

of solutions to the problem of global localisation heretofore
presented in the literature, and how the underlying method of
rotation correction used by the proposed method has been pre-
viously leveraged to serve robotics-related purposes. Section
IV states the objective of this article and illustrates the moti-
vation behind the introduced method. Section V describes its
internal structure and processes, and illustrates the latter along
with their effects in a model scenario. Section VI evaluates
the introduced method in various simulational scenarios and
(structured and unstructured) environments; simultaneously it
is pitted against the performance of the same method but
whose core method is substituted for a state-of-the-art scan-
matching algorithm, now repurposed in the scan-to-map-scan
context. The latter relies on establishing correspondences and
parameter-tuning. Finally, section VII sums up and analyses
the results of the previous section, while section VIII offers a
recapitulation and concludes this paper.

II. PRELIMINARIES
A. Definitions

Problem P. Global localisation in mobile robotics. Global
localisation is the problem of recovering a robot’s pose within
the global frame of reference of a map. The map of the
environment that the mobile robot operates in is given. No
initial assumption about the robot’s pose within the global
frame of reference of the map exists. Measurements from at
least one sensor source are provided.

Definition 1. Passive and Active global localisation. A way
to classify the existing solutions to the global localisation
problem is through the robot’s own navigation system. In order
to maximise the probability of successful localisation, Active
global localisation approaches generate motion commands that
move the robot into the environment in poses which enable
the localisation system to acquire additional information. If
motion commands—if any—are determined without advice
from the global localisation system, global localisation is
termed Passive.

Remark 1. Accuracy of solution. An accurate solution to the
global localisation problem is a necessary condition for the
solution of the subsequent pose-tracking problem, i.e. tracking
the pose of the robot with respect to the global reference
frame as the robot moves within its environment. In recent
years probabilistic approaches to the problem of pose tracking
[41]-[43] have become the standard. However, thanks to their
tolerance for increased pose uncertainty, the requirement of
maximum accuracy with regard to global localisation has
rather diminished. If probabilistic methods are used in the
subsequent task of pose-tracking then a larger set of poses can
be admitted as solution to the problem of global localisation.
A solution residing in the immediate vicinity of the true pose
of a robot, with direct line-of-sight to it, will be referred to as
a correct solution.

Remark IlI. Real-time solution. The requirement to calculate
a solution in real time is indispensable in the context of the
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Fig. 1: The (local) frame of reference of a typical conventional range
sensor. The sensor is located at O(0,0) and its heading is that of the
T axis

pose-tracking problem, as knowledge of the robot’s pose is
a condition for the successful operation of subsequent tasks,
e.g. navigation [44][45][46], or, for instance, localising RFID
tags within the the robot’s environment [47][48]. In the global
localisation problem, on the other hand, there is no strict
requirement for real-time solution in the case of passive global
localisation if the robot does not move at all.

Definition II. Definition of a range scan captured from a
conventional 2D LIDAR sensor. A conventional 2D LIDAR
sensor a finite number of ranges, i.e. distances to objects within
its range, on a horizontal cross-section of its environment, at
regular angular and temporal intervals, over a defined angular
range [40]. We define a range scan S, consisting of N rays
over an angular range )\, to be an ordered sequence of IV pairs
of (a) one range measurement and (b) one angle: i.e. the ray’s
angle relative to the sensor’s heading, expressed in the sensor’s
frame of reference, ordered by increasing angle:

_5+&)},n:{0,1,...,N—1} (D

S ={(d,, 5 TN

Remark III. The angular range of a conventional LIDAR
sensor is symmetrically distributed on either side of its x-axis,
and each ray is equiangularly spaced from its neighbouring
rays (with the exception of the first and last rays if A < 2).
If A = 27 then the sensor is termed panoramic.

Definition III. Scan-to-scan matching using a 2D LIDAR
sensor (adapted for use in two dimensions from [49].) Let two
range scans as defined by Definition II, S; and S,, be captured
from a LIDAR sensor operating in the same environment at
both capturing times. Let py(zy, yy, 6y) be the pose from which
the sensor captured Sy, expressed in some coordinate system
(usually a past pose estimate of the sensor). The objective
of scan-to-scan matching in two dimensions is to find the
roto-translation g = (t,0), t = (Ax, Ay) that minimises the
distance of the endpoints of S, roto-translated by g to their
projection on ;. Denoting the endpoints of S, by {p’}, in

formula:

. _ 2
min}_ ||pt @ ¢ — [[{S.p) @ a} @
The symbol “@” denotes the roto-translation operator p’ @
(t,0) = R(0)pi+t, where R(f) is the 2D rotation matrix for
argument angle 6, and [[{S;, p! @ g} denotes the Euclidean
projector on S;.

Remark IV. The solution to (2) cannot, in principle, be found
in closed form due to the arbitrary nature of S; and the non-
linearity of the “@®” operator.

Remark V. Scan-to-scan matching is employed in robotics
as a means of odometry in non-wheeled robots, where no
encoders can be utilised, or as a useful ameliorator of the
ever-drifting encoder-ed odometry: scans captured at consec-
utive time instances, inputted to a scan-matching algorithm,
convey an estimate as to the pose of the scan sensor at the
second capture time relative to that captured first. Scan-to-
scan matching is being successfully employed in the tasks of
Simultaneous Localisation and Mapping [50]-[52], local map
construction [53]-[55], or in people-tracking systems [56].

Definition IV. Definition of a map-scan. A map-scan is a
virtual scan that encapsulates the same pieces of information
that a scan derived from a physical sensor does; only their
underlying operating principle is different due to the fact
the map-scan refers to distances to obstacles within the map
of the robot’s environment (hence its virtuality) rather than
within the environment itself. A map-scan is captured from a
virtual sensor and derived by means of locating intersections
of rays emanating from the estimate of the sensor’s pose and
boundaries demarcating obstacles in the map.

Definition V. Scan—to—map-scan matching in two dimensions.
Scan—-to-map-scan matching is defined in the same way as
scan-to-scan matching (definition III) but with S, now derived
not from the physical environment of the robot but from
its map. This subtle difference makes p,, the pose from
which the map-scan S, was captured, continually expressible
in the map’s frame of reference, and therefore in absolute
terms (rather than relative to its previous estimate, which
is recursively relative to a convention of the robot’s starting

pose).

Remark VI. The benefit of matching a scan derived from a
physical sensor from its actual pose and a map-scan derived
from a virtual sensor from its estimated pose comes now into
light: Assume that a pose hypothesis exists in the general
vicinity of the true pose of a mobile robot equipped with
a 2D range-scan sensor; assuming that the range sensor is
fixed at the same pose relative to the robot in both real and
virtual environments, the roto-translation of the virtual scan’s
endpoints that minimises their distance to their projection on
the physical scan equals the roto-translation that, when applied
to the robot’s estimated pose, will minimise its distance to its
real pose. Therefore extracting the relative roto-translation of



the virtual scan with respect to the real scan can be used as a
correction of the estimate of the robot’s pose within the map.
The significance of this correction lies both in the fact that it
may facilitate global localisation and that it may improve a
robot’s pose estimate during pose-tracking.

B. Fourier-Mellin Invariant Matching in 2D

In this section we recount how the Fourier-Mellin transform
can be used to match two 2D grids, hereafter also referred to as
images, related to one-another only by affine transformations,
namely translation, rotation, and/or scaling [57]-[59].

Consider two fixed-size images, 7(z,y), s(x,y), where the
latter is a translated, rotated, and scaled copy of the former:

s(z,y) = r(a(x cos& + ysing) — xo,

o(—zsiné +ycosé) — yo) 3)
Here z(, 1y are the translational offsets, £ the rotation angle,
and o the scale factor. Let the Fourier transform of a function
h be denoted by H = F{h}, the inverse Fourier transform of
H be denoted h = F~'{H}, and |H| denote the magnitude

of H; then the Fourier transforms of s, r are related by

S(u,v) = e*j‘j’s(“’”)a*ﬂR(J*l(u cos& +vsing),

oM (—using + vcosg)) ’ 4)
where j2 = —1, and ¢, is the spectral phase of s. ¢ depends

on the translation, rotation, and scale of s with regard to 7,
but the spectral magnitude |S(u,v)]

|S(u,v)| = ’e_j%(“’“)a_QR(a_l(u cos€ +vsing),
071(—usin§—|—vcos§))|

= ‘R(U‘l(ucosé +wvsing),o (—usiné + veos€))| (5)

is invariant to translation. Equation 5 shows that a rotation of r
rotates the spectral magnitude of s by the same angle, and that
a scaling of r scales the spectral magnitude of s by the inverse
of the scale factor. Now that translation has been decoupled
by the other two linear operations, rotation and scaling can
be further decoupled by defining the spectral magnitudes of r
and s in polar coordinates:

rp(6,0) 2 [R(pcost, psinb)|
5p(0,0) 2 |S(pcos b, psin b))
Using
o Nucos& +vsing) = gcos(ﬁ -§)
o (~usiné +vcos€) = gsin(e -§)
one obtains
sp(0,p) = 0721, (0 — €,p/0)

With the cast to polar coordinates, the rotation of s with
respect to r has been transformed into a translation of s,
with respect to 7, along the angular axis. However, scaling in
the original domain has not been transformed with this cast.

Using a logarithmic scale for the radial axis, scaling can also
be reduced to a translation. Let A = log p and x = log o. Then
by defining

rpl(ev >‘) £ TP(67P) (6)
sp1(0,0) 2 8,(0,p) = 021y (0 — &\ — K) (7)

rotation and scaling are reduced to translations in the angu-
lar and radial domain respectively. By Fourier-transforming
equations 6 and 7:

sz(a, B) = 0_26_2”<j(““+55)7€p1(a, 3)

Here the rotation angle ¢ and scale factor o = e appear as
phase shifts. The above-described technique decouples trans-
lation, rotation, and scaling from one-another and is therefore
effective, numerically tractable, and efficient.

Symmetric phase-only matched filtering [58] has been found
to be most effective and robust in matching two similar
(not necessarily identical) images, due to its ability to yield
high SNRs and sharp correlation peaks. The core process of
acquiring the rotation angle and scale of image s with regard
to r is summarised in algorithm L.

Algorithm I core FMI-SPOMF

Input: 2D grids / Images r, s
Output: Qp(a, f)
1: compute Ry (a, B) = F{ry(6,\)}
2: extract the phase e~7¢r(®5)
3: compute Spi(a, 8) = F{sp(0,)\)}
4: extract the phase e~7%=(f)
5. determine Qq(a, §) = e~ 7(9s(@.f)=dr(.f))
6: return Qo(c, B)

After computing (g, the rotation angle £ and scaling factor
o can be extracted by calculating the inverse Fourier transform
of Qo, g0 = F1(Qo), and detecting the arguments that
maximise it. In this sense, max gy can be interpreted as a
similarity measure of the two input images.

In image registration problems the two input images are
assumed to be identical and the aim is to determine all four
scalar parameters of the geometric transformation relating
one to the other. The process followed to extract them is
summarised in algorithm II.

In pattern recognition problems, on the other hand, where
the aim is to identify among a set of reference images the one
that best matches an observed image, one can potentially assert
the existence of this image by executing the core FMI-SPOMF
algorithm (algorithm I) for all reference images, identify the
maximum of each output )y, and place a threshold on it;
if the maximum exceeds it, it is a match. False positives
can be then filtered by executing algorithm II, comparing
the observed image with each input reference image after
translation, rotation, and scaling by its identified parameters,
and applying a threshold to the maximum of Q.



Algorithm II FMI-SPOMF for image registration

Input: 2D grids / Images r, s
Output: Translation (zg, yo), rotation angle &, scale o,
similarity measure w
1: Qo(a
2: Compute go(6, A)

,B) « execute algorithm I for input (7, s)
= fﬁl{QO(aa ﬂ)}

3: Determine (&, k) < arg max qo(0, )

—1 ’ —K

: 8< Rescale sbyc7" =e¢

.8 s

. 8 < rotate s’ by £+
s Q1
: Q2(a, B) + execute algorithm I for input (r, s)

10: q1(0,\) < F~HQ1(a, B)}

11: q2(0,\) +— F~HQa2(a, B)}

12: Determine ¢(0, \) < arg f;?,aq};{%’ g2}

4
5

6: s <— rotate s by &
7

8 , 8) < execute algorithm I for input (r, s)
9

13: Determine similarity measure w = maxq
14: (zo,yo)  arg max g

15: return (zo,Yo),&,0,w

C. Centroid of a polygon

Green’s theorem [60] states that for a piecewise smooth
curve C' forming the boundary of a region D:

j{ (xy)derQ:vydy—//aQ or

T A ®)
where A = [[, dA is the area of D. Clearly the area of
D can be calculated by choosing appropriate P, ) such that
%,%’ =1 Let P =0 and Q = z, then §,xdy =
JJ, dA = A. Now consider the polygon of figure 2, defined
by the ordered sequence of n vertices {Co,C1,...,Cph_1},
whose region is demarcated by the border C' = (CyCy) U
(C1C9)U- - -U(C,,—1Cp). Because line integrals over piecewise
smooth curves are additive in length:

A:%xdy:/ :z:dy+---+/ xdy (9)
C C()Cl Cn7100

To compute the k-th line integral C,C1, let the segment
from (zy,yr) t0 (Tk+1,Yr+1) be parameterised by

CrCry1 : 7= ((@rs1 — )t + 2k, (Yh1 — Ya)t + yr)
(10)

where t e R: 0<t< 1, keZ:0<k<n-—1, and
k+1 is substituted by 0 if K = n — 1. A single integral in the
right-hand side of equation (9) over CjCj41 is expressed as

1
/ rdy = /
CrCri1 o

Tpgpr — Tp)t + k) (Yrgr — yi) di

(1)

By plugging this parameterisation into equation (9) and sum-
ming over all lines one arrives at the following:

.
=3 Z Trr1 + k) (k1 — Uk) (12)
k=0

(xo,yo)-

where (z,,yn) =

Fig. 2: A polygon of n vertices whose boundary C' = CoC71 U
C1C2 U --- U (Cyp-1Cp demarcates region D

Calculating the polygon’s area allows one to obtain its
center of mass, i.e. its centroid. The centroid (z.,y.) of a
polygon is the average position of the area A:

(Tes Ye) = ( //rd:z:dy, //ydxdy) (13)
A

1
In order to compute ., let P =0 and Q = 5332; then from
equation (8):

1 1 1,
xc—Z//Axdxdy—Zy{cﬁx dy

Using the same parameterisation for each boundary CyCp41
as in equation (11):

(14)

1
Te= 57 / (mi + 22k (Tpa1 — Tx)t

+ (@rr1 — o1) %) (Yrr — yi) di

1
= 5 @1 + T+ 23) (Y41 — vi)
Therefore, for a polygon with a finite number of vertices:
1 n—1
Te = oy D @i+ ok + 23) (e — yr)
k=0
1 n—1
=6 D (“UTig1 + Y 1Tk 1T, — YrTp1Th + Y1 TR)
k=0
n—1
=64 D (@rr1+ o) @Yk 1 — Triyn) (15)
k=0
In the same fashion:
1 n—1
(16)

Ye=gx ;O(ka + Uk) (TrYrr1 — Trrayr)



where in both equations (15), (16) the coordinate of the n-th
point are those of the 0-th, and A is given by equation (12).

Remark VII. The centroid of a polygon is unique. Its position
relative to the points constituting the polygon is independent
of the frame of reference in which all points (including the
centroid) are expressed.

III. LITERATURE REVIEW

A. Global Localisation

The problem of global localisation, defined in section II-A,
as a distinct component of the problem of pose estimation
in mobile robotics, has received extensive attention over the
years. The approaches adopted to tackle it, aside from the
categorisation into passive and active (ibid), can be also broken
down into two more categories: approaches that operate in
feature space, and approaches that directly exploit only raw
measurements. Furthermore, approaches may be probabilistic
filter-based in nature, or deterministic. Some approaches take
the minimalistic route, i.e. they rely solely on measurements
extracted from one sensor, while others fuse information from
various sources to achieve an enhanced result. In this section
we give a review of the landscape of solutions to the global
localisation problem in mobile robotics.

Active global localisation approaches require the assump-
tion that the robot is free to move in its surroundings even
before its pose has been conclusively estimated, thus leaving
the robot potentially susceptible to collisions with its environ-
ment. The robot’s movement in pose space is, in principle,
beneficial to the global localisation solution since movement
in pose space increases sensor measurements and therefore
the probability of sampling diverse and unique environment
portions, which subsequently increase the probability of suc-
cessful pose estimation and resolution of pose ambiguity.
In [1] a hybrid approach to global localisation based on
Bayesian theory [41] and multiple-hypothesis tracking using
Kalman filtering [43] of continuous Gaussian pose hypotheses
is presented. The latter and the world model, a topological
map of the world, are used to generate movement commands
so as to gain more information from the environment and
compensate for odometry drift in order to sift through the
standing pose hypotheses and resolve ambiguities. Motion
commands are generated heuristically by moving on the edges
of the topological map (so that the robot is unlikely to collide
with obstacles), avoiding to visit the same place twice (since
it is unlikely that new information can be gained from the
same pose), and selecting to visit the neighbouring node with
the maximum number of features in its vicinity. Features in
this case are extracted from a range-scan sensor, and comprise
door features, line features, and point-pair features, and they
are used to either generate new hypotheses or support already
existing ones. Each detected feature creates a set of possible
poses of the robot, which are treated as measurements of the
robot’s true pose. The internal operations of each Kalman filter
attached to each pose candidate then ensure that the probability

of valid hypotheses increases, while incorrect ones perish via
additional external thresholding.

Another active global localisation approach [2] commences
from an even more minimalist disposition with regard to the
number and type of sensors used, by employing only odometry
and bumper sensors, and reaches the astonishing (theoretical)
conclusion that, given an exact map, global localisation can be
achieved through the use of only these two types of sensors,
albeit the kinematic model of the robot is constrained to be
error-free and that the robot is allowed to collide with its
surroundings. The underlying method casts the problem in the
robot’s information space and solves a discrete-time planning
problem, showing that, with relatively common world/map
constraints, global localisation is indeed possible, but with a
degree of ambiguity proportional to the degree of symmetries
present in the environment.

In [3] a particle filter [42] is used as the probabilistic filter
of choice due to its inherent ability to represent arbitrary
non-unimodal probability distributions. In contrast to [1], a
sonar range-finder is employed as the exteroceptive sensor, and
no features are detected. At the initialisation phase, particles
are uniformly dispersed over the pose space and a weight is
calculated for each, according to the inverse least-squared-
distance error between the actual sensor measurement and the
output of the sensor’s observation model for that particular
pose hypothesis. The algorithm runs iteratively, without the
robot moving, thus realising an optimisation algorithm. In
order to avoid particle depletion at this stage, new samples
are generated using an evolutionary perspective, where the
surviving particles—those without negligible weights—serve
as the locus around which new particles are introduced in order
to reinforce the presence of particles where probability of find-
ing the robot is highest. In order to reduce the probability of
the filter getting trapped into local minima, new particles that
guarantee minimal space coverage are introduced randomly in
pose space. The algorithm stops when stable solution(s) are
identified. These are then used as initial poses from which
the closest obstacle to a hypothesis is identified through the
sonar sensor, and whose vicinity the robot is instructed to
move towards. During navigation each candidate hypothesis is
monitored by an Extended Kalman filter and a x square test
using the Mahalanobis distance is used to validate candidates
during data association between observed and theoretically
expected measurements.

Research in active global localisation methods seems to
have diminished in recent years, with older approaches, includ-
ing [4]-[9], giving rise to research towards the more demanding
problem of passive global localisation, where the robot is
denied additional sensor inputs except for those captured from
its unknown resting pose.

In [10] a trinocular camera is used to build a 3D map
of SIFT landmarks present in the robot’s environment, up-
dated over time, while adaptive to dynamic environments, by
creating, maintaining, and updating a Kalman filter for each
separate landmark detected in the camera’s field of view per
input frame. This 3D landmark map is built before global



localisation request time, at which, thanks to the specificity of
the SIFT features, the robot does not need to move within its
environment in order to localise itself. For solving the task of
global localisation, SIFT features extracted through the camera
at the robot’s true pose are matched against those already
stored in the 3D map by way of using Hough Transform
hashing [11] in order to acquire a rough estimate of the
robot’s pose (the HT bins with the most votes correspond to
pose configurations more likely to achieve a larger number of
matches). Then, iterative least-squares minimisation in order
to obtain progressively better pose estimates is carried out. The
final pose selected is that which has the maximum number of
matches and the lowest least-square error.

A method for solving the global localisation problem with
regard to robots using laser range finders is demonstrated in
[12]. As a preprocessing step, features are extracted from the
map of the robot’s environment and a database of visible fea-
tures and attributes from each of the map’s grid cells is built.
These features are natural landmarks found in both the map
and the robot’s range scans, and they comprise walls, extracted
as straight lines through the use of the Hough transform, con-
cave corners, and discontinuities between consecutive range-
scan rays. Landmarks from both sources are then matched
together in a two-step process: an initial filter dispenses with
the bulk of incorrect pose hypotheses by counting the number
of scan-derived landmarks that match the distance, orientation
and type of landmark stored in the map’s database. Then, a
modified discrete relaxation algorithm is employed, using the
information of attributes associated with each stored landmark.
The grid cell corresponding to the position of the robot is
determined among the remaining hypotheses by using a least-
square criterion on the distance difference between (a) that
cell and each landmark, and (b) the perceived distance to
a landmark, derived from the range scan, for all candidate
cells. The robot’s pose is then calculated as the mean angular
deviation between (a) the position of the robot and a perceived
landmark and (b) the estimated position of the robot with each
landmark visible from that cell.

A general methodology for analysing keypoint design for
place recognition is presented in [13], which, in the context
of robot navigation and mapping, can be utilised for global
localisation. This methodology is particularly informative to
the process of tuning the parameters for choice of particular
keypoint types, as not all of them are reliable in the presence of
noise or occlusions. The authors frame the problem of place
recognition as a nearest neighbour search by first selecting
a set of keypoints extracted from the field of view of a 2D
LIDAR which encode the local region around the robot, and
then searching in a database of keypoints previously generated
from the map in order to identify places with common
features. The map around the robot and the portions of the
environment’s map identified of having common features are
then fed to a pipeline of four verification methods (one of
which is the traditional scan-matching ICP method [14]), that
sift through false positives, until the best match is found.

Although [15] deals with global localisation in outdoor en-

vironments, the operating principle of its method is analogous
to those used in indoor ones. The author argues that in the full
3D scenario it is inefficient to match the 3D point cloud from
the robot’s LIDAR sensor to the 3D point cloud map of the
robot’s environment, and that, therefore, abstractions in the
form of landmarks extracted from the former are necessary
to be made in this case. The landmarks used in matching
are poles, such as traffic signs, traffic lights, and trees. The
author’s findings indicate that this type of landmark is not
reliable neither for global localisation nor pose tracking, since
approximately 40% of all received scans do not feature poles
in them, either due to actual absence or generation of false
positives by the introduced pole detection mechanism.

A method for global localisation in indoor environments
is presented in [16]. The authors argue that in this type
of environment, the major structures are walls, doors, or
cupboards, meaning structures that can be approximated by
straight lines in 2D space. Using this assumption, they build a
method that first estimates the orientation of the robot in the
map’s frame of reference by extracting line features from the
robot’s map and from the robot’s onboard 2D LIDAR sensor,
and then matching the latter against the former by using Hough
Scan Matching [17]. This estimation is conditioned on the
absence of symmetries in the environment. Given the robot’s
heading, its position can be estimated via the beam endpoint
model [41], where the likelihood that a cell of the grid map
made the scan measurement is computed for all cells in the
map; after this exhaustive search, the cell with the highest
likelihood is then selected as the position estimate of the robot.
Subsequently, a gradient descent algorithm is employed in
order to further eliminate the quantisation error induced by
the grid representation of the map.

Except for the map, the method introduced in [18] uses pre-
stored reference laser scans, extracted through a 2D LIDAR
sensor, and the poses from which these were captured prior
to global localisation execution. Upon commencement of
global localisation, a local grid map based on the first scan
measurements from the real sensor is constructed, and then
a number of copies are generated from it by rotating it by
integer multiples of 4 degrees until a complete circle is formed.
Then a local grid map is created from the pre-stored reference
scans for each corresponding reference pose, where each is
considered as a possible pose candidate. The two sets of local
maps are then matched against one another in an optimisation
process aiming to maximise the overlap between two submaps.
This process starts out in maps of low resolution, and is
progressively increased, whereby the output of the previous
step is fed as the initial one of the next.

An alternative to pairwise place-comparison of place de-
scriptors is proposed in [19], which reduces the linear query
time to sub-linear levels. This work aims at replacing com-
parisons at the place descriptor level by keypoint descriptors,
since the latter reside at a lower level and results in 2D have
demonstrated that their use results in high place recognition
rates. From a database of pre-stored local descriptors of the
map, a constant number of nearest neighbours is made to



vote for each keypoint extracted from 3D LIDAR scans, and
their aggregation determines the likely place matches. The
authors find that such a scheme results in vote scores whose
distribution follows a log-normal distribution, and are thus able
to fit a parametric model of hyperparameters in order for a
meaningful voting threshold to be established, one that can
reliably distinguish between true and false positives, providing
an automatic way of tuning critical algorithmic parameters.

The first use of scan-to-map-scan matching (section II-A)
with the use of a 2D range-scan sensor in the context of
global localisation is witnessed in [20]. The proposed method
first generates the generalised Voronoi diagram of the 2D grid
map, whereupon its nodes are taken to be initial hypotheses
of where the robot is posed, and from there virtual scans
over an angular range of 27 are taken using raycasting on the
grid map. Correspondences between each virtual scan and the
scan captured from the physical sensor are then established by
using a spectral technique [21] that finds pairwise geometric
relationships between them. These correspondences are then
used to generate 2D geometric histograms that encode a sense
of similarity between the true scan and all virtual scans. The
nodes from which the latter were captured are then ranked
according to this similarity measure and a threshold based on
the correlation coefficient of all combinations of scans is used
to extract a subset of candidate poses. This process is used to
quickly sift between all candidate poses. The final pose is that
which achieves the maximum number of correspondence pairs
after the same spectral scan matching process used before.

Inspired from the computer vision research, the method
introduced in [22] makes use of signatures of landmarks
extracted from 2D LIDAR scans, while explicitly taking into
account the relative orientation and distance of landmarks in
the same scan. Landmarks are points of high curvature, shown
to be adequately descriptive in the domain of 2D range data
[23]. For each set of landmarks extracted and stored a priori
during a SLAM session, the distribution of spatial relations be-
tween these landmarks is captured and stored. A 2D histogram
is then constructed from a 2D bin grid in which these relations
are encoded by centering a 2D normal distribution over each
bin. The signature of each landmark is computed as the sum
of of all Gaussians over that landmark, and the signature of
the range scan is consequently computed as the sum of all
signatures of that scan’s landmarks. The normal distribution
is used so that, in this procedure of voting, uncertainties in
relative depth and orientation can be incorporated. Once these
signatures are stored in a database, global localisation can
be performed on the basis of approximate nearest neighbour
search of signatures extracted from the real scan sensor at the
time of global localisation in this database. The resulting pose
is that whose signature has the least distance to that of the
input range scan.

Far from most established techniques in research around
global localisation, the method introduced in [24] utilises
neural networks as a means of acquiring the resting pose of
a robot, without the use of a traditional map. Instead, at the
initial step, the robot is made to traverse its environment and

an input pair of an image from the robot’s front-facing RGB
camera and a pose from which it was captured are stored in
a database. After collecting all such pairs, a neural network
is trained on the captured images so that the system learns to
output the unique index of each image. In this process, each
neuron samples the input image as a whole, and the gaussian-
filtered version of the same image in a feature-based fashion,
so that high frequency noise is effectively eliminated while
details of each scene are maintained. When global localisation
is requested, the system captures one image from the robot’s
camera, and inputs it to the neural network, where all neurons
output their inferred index. Voting for each index decides the
robot’s final pose estimate.

The authors of [25] argue that in [22], the geometric land-
mark relations signatures, although robust, are not invariant
to rotations. The method in this paper use improved falko
keypoints and fast point-to-point association in order to match
scans for place recognition. Although this technique is limited
to place recognition in the context of loop closure during slam,
we find that it could be extended to scan-to-map-scan matching
for global localisation. See therein for a survey on keypoint
and keypoint descriptors.

The method introduced in [26] and [27] globally localises
a robot using a RGBD camera together with a 2D LIDAR by
using visual features in assistance to the range scan sensor.
To this end, when the map of the environment is being built,
concurrently to the LIDAR-derived map, a visual information
map is constructed in a preprocessing step, and the poses from
where the visual info is captured are also stored along the way.
The visual info stored is a series of keyframes and their corre-
sponding GIST [28][29] descriptors. When global localisation
is triggered, the gist vector from a RGB image of the true
camera sensor is computed, and its Minkowski distance to all
stored pre-stored gist vectors is used to rank the n-top matches.
These are then clustered, and the transformation between the
robot’s pose and the global frame of reference is inferred by
computing the transformation between the closest image to the
cluster’s centroid and the input image, considering the pose
from which the former was captured.

The authors of [30] introduce a novel descriptor for 3D
LIDAR scans based not on their range component, but on
their intensity component. This descriptor is run for each
of the 3D point clouds that were stored at the time of the
environment’s map generation and also for the 3D point cloud
captured at global localisation time. The latter is first divided
into bins for which an intensity histogram is computed. These
histograms are then combined into an intensity-based global
descriptor whose similarity with those extracted from the
global 3D point cloud map is compared. Once the most similar
cloud is identified, local geometric descriptors are used to find
keypoint-to-keypoint correspondences, and these are used to
provide the full 6DOF transform between the two input point
clouds.

In a step forward from previously mentioned approaches,
the method proposed in [31], termed GLFP, does not rely on
an a priori built map but on a floor plan of the environment the



robot is tasked to globally localise itself in. In order to over-
come the gap between having visited the environment before
and the being supplied only with its floor plan, this method
identifies features that co-occur both in a low-quality bird’s eye
map and from the robot’s 3D LIDAR sensor: GLFP extracts
vertical edges from the input 3D point cloud and corners from
the map floor plan. Data association is then performed using
max-mixtures [32] and nearest neighbour methods. The robot’s
pose is then found via a factor graph-based algorithm, an
optimisation problem where both landmark positions and the
robot’s pose are treated as variables.

The method introduced in [33] extends SA-MCL [34] [35]
for use in conditions where multiple 2D or 3D LIDAR
sensors utilised for localisation are positioned on an AGV
in an arbitrary spatial configuration. Both use the underlying
MCL [42] mechanism for global localisation, i.e. particles are
dispersed over the map and the likelihood field is used as a
measurement model in order to locate the particle that explains
the measurement from the LIDAR the best among all particles.
However, in SA-MCL particles are not dispersed uniformly
over the entirety of the map, but only over similar energy
regions. In a preprocessing step, each cell of the 2D grid map
is associated with an energy value that encodes proximity to
obstacles. At global localisation time, the energy of the input
measurement is computed and compared against that of all
cells in the grid. Those under a certain manually-set threshold
are those over which particles will be distributed.

B. The Fourier-Mellin Transform in Robotics

The Fourier-Mellin Transform (FMT) has received limited
attention in the context of mobile robotics, both in scope and
extent, due mainly to its ability/constraint of being applicable
to 2D grids/images. Most of its applications are hence limited
to robots using sensors that directly or indirectly produce
images, i.e. monocular camera, sonar, or radar sensors. Addi-
tionally, it has been used in merging/aligning of digital maps,
while most applications exploit it in the task of mapping or
odometry estimation.

A method for ego-motion estimation using images from
a panoramic field-of-view radar sensor is presented in [61]
and [62], based on Frequency Modulated Continuous Wave
technology [63], in the context of Simultaneous Localisation
and Mapping (SLAM). The authors argue that the sensitivity of
2D range scans sensors to atmospheric conditions in outdoor
scenarios has given rise to carrying out SLAM with radars
and sonars, and their research focuses on the former due to
a radar sensor’s large range with low transmission power,
and its inherent ability to estimate sharp changes of temporal
variables more easily in the frequency domain rather than the
temporal one. Ego-motion estimation based on radar images is
carried out via the Fourier-Mellin Transform, where the latter
is inputted consecutive radar images and outputs their relative
translation and rotation parameters, which are exactly those
relating the pose of the robot from which the second image
was captured with respect to that from which the first one was
captured.

In [64], the basic principle of FMT is combined with a
Phase-Only Matched Filter (as opposed to a Symmetric Phase-
Only Matched Filter —SPOME, section II-B), due to the
lack of need to extract the scaling factor, in order to register
sonar range scans in the context of control of autonomous
underwater vehicles and mapping in underwater conditions.
The authors remark that a basic correspondence-finding scan-
matching algorithm, such as ICP [14] or its notably best-
performing variant PL-ICP [49], cannot be used with sonar
range scans as inputs, as sonar sensors report not only one
single range reading, but a multitude of values corresponding
to echo magnitudes at different ranges, thus violating the
fundamental assumption of range uniqueness that ICP and its
variants adhere to. Additionally, sonar sensors exhibit such
noise levels which cause ICP-based algorithms to yield sub-
optimal results, typically arising when a sonar beam hits a
surface at an angle. In [65] this approach is extended in
three dimensions, and in [66] it is adapted to the probabilistic
domain, where covariance matrices are fitted around all three
translation, rotation and scaling registration results, depending
on the intensity in each parameter space, and treated as
a probability mass function. This process is integrated into
a maximum likelihood mapping framework that is used to
build maps of underwater structures from overhead monocular
image sequences (rather than sonar sensors) via pose-based
graph optimisation.

The same principle is applied in [67] but with an improved
FMT method in the context of Unmanned Aerial Vehicles
(UAVy5s) for the purpose of capturing top-down view maps from
a camera sensor by stitching together matched images, and
which, at the same time, can be used as a form of (visual)
odometry for the vehicle. The same method is used in [68] to
solve the problem of identifying structural errors in occupancy
grid maps generated by SLAM algorithms running in Un-
manned Ground Vehicles (UGVs), which are those that arise
when regions of the overall map are locally consistent with a
ground truth map, but inconsistent with respect to each other,
by introducing the concept of a map’s brokenness. The solution
to this problem is of particular interest in the task of multi-
robot mapping, or during SLAM sessions where symmetries
in the environment result in erroneous loop closures. Partitions
of alignment between a reference (ground truth) map and
a potentially misaligned map are detected using a similarity
measure derived from this improved version.

In [69] FMT is used to provide the translation and rotation
of a UGV relative to a past pose, i.e. odometric information.
These transformation parameters are extracted by feeding two
images captured at consecutive time steps from a RGB camera
mounted at the underside of a vehicle and facing the ground
to a Phase-Only Matched Filter FMT algorithm, from which
the translation and rotation of the most recent image with
respect to the one preceding it are calculated. The pixel-wise
parameters are then transformed into robot motions through
the intrinsic calibration parameters of the camera sensor, and
from there the pose from which the second image was captured
is expressed with respect to that from which the first image



was captured.

Similarly to [64], FMT is employed in underwater mapping
conditions in [70]. The authors remark that, in underwater
situations, the use of optical cameras is prohibitive due to their
limited visibility range, but forward-looking sonar sensors are
not affected in this respect. However, the hostility of the en-
vironment, coupled with the acoustic nature of sonar sensors’
operating principle poses severe challenges, as sonar images
have low resolution, low signal-to-noise ratio, while they
are highly susceptible to inhomogeneous insonification and
intensity alterations due to changes in the sensor’s viewpoint.
These difficulties hinder successful operation of feature-based
methods [71][72], especially when accurate loop-closures need
to be established. Posing the mapping problem with a sonar
sensor as a pose-based graph optimisation problem, the authors
show that FMT-based registration of sonar images is robust in
the face of the aforementioned hindrances and lack of features,
with their method producing globally consistent results.

FMT is utilised in [73] in the context of SLAM-generated
occupancy grid maps through the use of standard 2D range
scan sensors. FMT is used to match submaps together: dur-
ing mapping, whenever a fixed number of new scans have
been processed, a local submap is generated and stored in a
database, along with its pose relative to the frame of reference
of the overall map and the pose of the robot relative to the
submap; when a loop closure needs to be detected, or when
two maps from two different mapping sessions of the same
environment need to be merged, FMT is used to find the
relative transformation parameters between either the latest
constructed submap and a submap generated from the previous
time the robot visited the same place, stored in memory, or
between the submaps generated and stored during the two dis-
tinct sessions, thus augmenting the operational functionality,
reliability, and operation time of a standard SLAM algorithm.

In [74] FMT is used in the context of outdoor localisation
with the use of a 3D lidar, wheel odometry, and a commer-
cial GPS sensor, as the means of calculating an additional
odometry source, and of pose tracking. With regard to the
former, successive 3D range scans are projected in the x — y
plane, converted to grids, and matched using FMT-SPOMF,
the extracted transformation parameters from which provide
the translation and rotation of the second scan with respect to
the former, and therefore those between the two successive
poses from which they were captured. With regard to the
latter, a 3D range scan is converted to a grid image, with its
center being the pose measured by the GPS sensor, and then
matched against a map whose dimensions depend on the pose’s
uncertainty. A coarse knowledge of the lidar sensor’s pose
makes it possible to extract a correction to the GPS sensor’s
pose estimate.

IV. MOTIVATION & OBJECTIVE

The majority of global localisation approaches identify
features in the map of the environment in which a robot is
placed, and in the measurement vector(s) derived from the
physical sensor(s) mounted on the robot before establishing

correspondences between them. In principle, unstructured en-
vironments cannot be relied upon for the existence of features,
due to their complete absense, or their sparse and fortuitous
distribution. Structured environments on the other hand, and
hence their maps, manifest different features depending on
the particularities of the environment. In any case, features
may be present but not in a sufficiently undisturbed state due
to sensor noise or map-to-environment mismatch. Therefore
one would not be unreasonable to investigate methods that
dispense with features altogether, so as to seek to achieve a
greater degree of universality and reliability in multiple and
disparate environments.

Another concern that needs to be given attention to is
the practice of establishing correspondences. This affects all
feature-finding approaches as well as approaches resting on
scan-matching and scan—to—map-scan matching, such as ICP
methods and its galore of variants. The problem here is that,
given the sensor noise and the map-to-environment discrep-
ancies, establishing correspondences may lead to inaccurate
results, or altogether to false ones. In practice, with regard to
methods that operate directly in measurement space, filtering
of outliers is performed through processes that depend on
the fulfillment of assumptions and the accurate setting of
externally-supplied parameters. The latter include for instance
an estimate of the standard deviation of normally distributed,
zero-mean noise acting on the measurements of a range scan
sensor—when the sensor’s measurements may actually be
biased, or escape the Gaussian assumption altogether [40]—,
or an estimate of the percentage of outliers within their inputs.

This leads us to another crucial point, namely the issue of
parameterisation. The performance of the majority of scan-(to—
map-scan-)matching methods—not only those based on ICP—
rests upon the accurate tuning of parameters that govern their
internal processes. In general it is rightly assumed that these
parameters need to be tuned for a specific environment and
for specific noise levels but in reality, in the absence of on-
line automatic parameter tuning, different parameterisations
can lead to volatile or unintuitive results; and this result may be
exhibited even for the same pose in the same environment. Let
us clarify this quality with a simple yet characteristic example.

Suppose a fairly common scenario: global localisation is to
be carried out in an environment by a robot equipped only with
a 2D LIDAR sensor. Suppose also that for generality purposes,
i.e. for use in unknown, different, and disparate environments,
the underlying method of localisation is required to be robust
and thus avoid using features. One way to solve this problem
is to disperse a finite number of pose hypotheses into the
unoccupied space confined within the borders of the map and
perform a scan—to—map-scan matching between the range scan
received from the physical LIDAR sensor and the map-scan
derived from each hypothesis. A natural choice would be to
employ ICP or one of its variants, as they have demonstrated
their efficacy and robustness in various contexts [46][49][14];
all deal in correspondences and require parameters to be tuned,
those relating to operations including, but not limited to,
establishing correspondences by filtering outliers. The result
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Fig. 3: The map of environment CORRIDOR, M, and two poses
within it, pa(11.56,12.2,0.0), and py(4.56,10.2, 0.0)

of this method of global localisation would then be the pose
for which ICP reports the lowest matching error (eq. 1).

Figure 3 shows the map of a simple, structured, non-
complex environment termed CORRIDOR, M, in which we
performed a number of simulations with a robot equipped with
a 2D panoramic LIDAR sensor. In order to examine how the
output of an ICP method is influenced by the modification of
its parameters, we choose PLICP [49]—the most robust and
best-performing variant of ICP-based scan-matching methods
in robotics—to carry out the localisation of the robot. A
default parameter configuration serves as the basis from which
8 key parameters are modified once and then set to their
default value. In order to survey its solution landscape, we
ran global localisation under the above-mentioned scan—to—
map-scan matching regime, for robot poses p, and p;, and
two different levels of noise, with a fixed number of fixed pose
hypotheses, for 10 times, making Ng = 2x2x 14 x 10 = 560
simulations. The placement of poses was kept fixed so as
to be able to perform direct comparisons; care was taken
so that the entirety of the unoccupied space was filled with
hypotheses, and hence PLICP was not starved for matches.
Table I illustrates the parameters under modification and the
total pose error for each solution found. The pose error
concerning true pose p(x,y,6) and the solution P(Z,y,6)
to the global localisation problem for that resting pose is
denoted by e(p) = ((z — &)? + (y — §)* + (6 — é)z)l/z. The
exceptional behaviour of PLICP—beyond the literature—and
the well-behavedness of the default parameter-set have been
determined as such after extensive tests during research over
tandem combinations of particle filters with scan—to—map-scan
matching [75]. Details of the meaning and use of each stated
and modified parameter can be found in [76] and [77].

Let us begin our analysis of the volatile behaviour of PLICP
by focusing on the results when sensor noise is absent. For
these two particular poses, in this particular environment,

modifying parameters relating to the use of enhanced methods
of finding correspondences (use_corr_tricks), restarting
when a solution exceeds a threshold (restart), clustering
of points in the plane (clustering_threshold), testing
a solution while considering the orientation of the normal
of the surface of scans (do_alpha_test), and the num-
ber of neighbouring rays used to estimate the orientation
(orientation_neighbourhood = 2 — 20)—modifying
these seems to have no effect on the solution for each tested
robot pose. If we examine the pose error with regard to
these parameters when sensor noise is present, we observe
that modification of a parameter may have positive impact
on the solution for one pose but negative for another (e.g.
use_corr_tricks, clustering_threshold). In ad-
dition, functionality whose purpose is to enhance the method’s
performance does not always lead to the desired result (e.g.
use_corr_tricks, restart). The positive modification
of other parameters (e.g. outliers_remove_doubles)
produces consistent results across sensor noise levels for
one pose (pp), inconsistent for others (p,), or altogether
catastrophically false (orientation_neighbourhood =
200).

The highest sensitivity of PLICP, however, is exhibited
with regard to parameters relating to filtering of outlier cor-
respondences, denoted by the prefix outliers_. The value
of 1.0—outliers_maxPerc determines the percentage of
correspondences with the most error to be discarded, while
the value of outliers_adaptive_order determines the
lower-most percentage of correspondences (according to their
error) on which an adaptive algorithm for discarding corre-
spondences is run. With regard to the former what we observe
for both robot poses is that discarding the top 30% of most-
erroneous correspondences results in catastrophic failure in the
absence of sensor noise, but accurate behaviour in the face
of disturbances. As for other values, no consistent behaviour
is observed, although all result in correct convergence. With
regard to the latter, the inconsistency between results emerges
at the level of different poses; setting this parameter to 70%
exhibits increased accuracy for p,, but catastrophic failure to
converge for py,.

The above-carried analysis was performed in order to il-
lustrate the perplexities into which a sound method can find
itself when relying on tuning of delicate intrinsic parameters.
Even if all tested values resulted in correct convergence, the
issue of (in)consistency across different sensor noise levels
and different poses within the same map would still remain,
along with that of inconsistency of intuition about their effect.
Wherefore we conclude that the advantage of tailoring param-
eters to specific circumstances is not without its merits but also
its side-effects. Subsequently, and in recapitulation, it would be
meritorious for research to focus on pose estimation methods
that dispense with establishing correspondences and tuning of
parameters for different poses and environments. This leads to
the formulation of the objective of this article:

Objective 0. The aim of this article is to formulate a



Solution error e regarding robot pose p. e(pa) e(py)
Sensor noise N (0,0), o: 0.0 0.01 0.0 0.01
Default parameter set 0.006579  0.005601 0.036817 0.037745
Parameter modified value  default
use_corr_tricks true false 0.006579  0.006401 0.036817 0.037744
restart true false 0.006579  0.007433 0.036818 0.037786
clustering_threshold 1.025 0.025 0.006579  0.006051 0.036818  0.038122
do_alpha_test false  true 0.006579  0.006972 0.036817 0.038493
orientation_neighbourhood 2 20 0.006579 0.006628 0.036818  0.037225
200 15.425727  15.425727 9.915300 9.915300
outliers_maxPerc 0.9 1.0 0.004319  0.006053 0.035770  0.035864
0.8 0.004486  0.005135 0.035900 0.038418
0.7 4.709158  0.004731 10.298579  0.037788
outliers_adaptive_order 0.9 1.0 0.004472 0.004722 0.035586  0.036388
0.8 0.004359  0.005790 0.036678  0.036897
0.7 0.004272  0.004062 2.922564  4.498574
outliers_remove_doubles true false 0.006227  0.006404 0.036268 0.036732

TABLE I: The pose error e(p) for the best match found by PLICP in the environment CORRIDOR (fig. 3) over Ng simulations for a
default parameter set and for varying values of core parameters, and two levels of sensor noise, which is assumed to be normally distributed
with standard deviation o [m]. The unit of measurement of the pose error is (m? + rad2)1/ 2

method that solves the passive variant of the problem of
global localisation (problem P, definition I), considering the
afforded laxness of remarks I and II, for a robot equipped
with a 2D LIDAR sensor, that does not require associating
correspondences, or the ad-hoc tuning of parameters that
govern its response.

In section V it is demonstrated how scan—to—map-scan
matching (definition V), used in conjunction with Fourier-
Mellin Invariant matching (section II-B) and the calculation
of the centroid of the polygon whose vertices consist of the
projection of a 2D range scan’s endpoints in the £ — y plane
(section II-C) can be combined in such a way as to achieve
objective O.

V. METHODOLOGY
A. Overview

The structure of the overall passive global localisation
system proposed in this article, denoted by the acronym PGL-
FMIC (Passive Global Localisation—Fourier-Mellin Invariant
matching with Centroids for translation), is illustrated in figure
4. The system requires as inputs the scan captured from
the robot’s 2D LIDAR sensor S, the map of the robot’s
environment M, and the number of pose hypotheses to
generate over the unoccupied space demarcated by the borders
of the map, |H|. Once the set of hypotheses H = {h;},
i =1{0,1,...,[H| — 1} is generated, its contents are placed
in a queue g and serially dequeued and inputted to the core
method, denoted by the acronym FMIC (detailed in sections
V-B and V-C). Its output reports a global pose candidate h,
a scale factor o;, and a similarity measure w;; the external
meaning and utility of the latter two will be detailed in section
V-D. All three outputs per hypothesis are stored and, when the
queue empties, the fittest global pose candidate hypothesis is

reported as the system’s pose estimate via a sifting and ranking
process. The latter discards candidates based on their reported
scale factor o; before selecting that whose similarity measure
w; is the highest among all candidate hypotheses (subsection
V-D).

Figure 5 depicts the internal structure of the core method
proposed in this article, FMIC. Once a hypothesis h; is
inputted, the method tries to estimate the orientation of the
robot first, and then its position within the map M. The
internals of these two operations are detailed in sections V-B
and V-C respectively.

B. Extraction of Rotation and Scale

Figure 6 depicts the rotation and scale estimation process.

Given a pose hypothesis h;, the scan captured from the
physical sensor S,, and a map M, the rotation and scale esti-
mation subsystem tries to estimate (a) the relative orientation
of S, with regard to the virtual scan taken from h;, (b) the
scale factor between the two scans ¢; and (c) a measure of
their similarity w;.

The orientation estimation module first computes the virtual
scan from h; (definition IV), i.e. a range scan captured from
pose h; within M, producing a virtual scan S!. At this point
two range scans are available: one from the physical range
scan sensor of the robot (definition III), captured from its true
pose, and one from the virtual range scan sensor, captured
from random pose h;. The endpoints of the two scans’ rays
are then projected to the x — y plane, according to formulae

2

, ::roerrcos(% — 1+ 6p) (17)
2rr

n :y0+drsin(% — 7+ 6p) (18)
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Fig. 4: The structure of the overall passive global localisation system
PGL-FMIC. Once the set of pose hypotheses H is generated and
ordered in queue g, its contents are fed one-by-one to a system
estimating global pose candidates h! and measures of the value of
their estimate o; and w;. Once all hypotheses have been processed,
the two measures are used to determine the overall system’s global
pose estimate output p
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Fig. 5: The structure of the core algorithm of the system, FMIC.
Given the map of the robot’s environment M, the scan captured from
its true pose Sy, and a pose hypothesis h;, an estimate of the robot’s
orientation relative to h; is extracted first, £;, along with measures
04, w; that determine the output pose’s h” value as a global pose
candidate. Subsequently, the position of the global pose candidate is
determined

h;
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discretise discretise
T Vi
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Fig. 6: The internal structure of the rotation and scale estimation
subsystem (fig. 5)

where (x,,y,) are the coordinates of the endpoint of ray 7,
r={0,1,..., N —1}, d, the range reported for r, and N the
number of rays emitted by the physical range scan sensor. The
triplet (xq,v0,00) = (0,0,0), that is, the endpoints of both
scans are projected in the local coordinate system of each
range scan sensor. Point-sets P, and P! are then subject to
discretisation over a fixed grid size Ng x N (which is advised
to be square with Ng = 2¢ where ¢ € Z* due to the efficiency
of FFT when dealing with grids whose size is a power-of-two
[64]), which produces 2D grids 7 and v; respectively. The two
are then inputted to the FMI-SPOMF process (algorithm II),
which yields a rotation angle &;, scale factor o;, and similarity
degree between the two images = and v;, denoted by w;.

The applicability of FMI-SPOMF with respect to the dis-
cretised versions of point-sets P, and P! is feasible and valid
in both situations where a pose hypothesis falls in the vicinity
of the true pose and in that where it does not:

« In the former case the two point-sets consist of a majority
of points representing portions of the environment/map
visible from both poses, and a minority of points visible
exclusively from one but not the other. This effect is at-
tributed solely to the displacement of the pose hypothesis
with regard to the robot’s true position. Points in the
first category are related to one another via translation
and rotation due to world-to-map consistency (with scale
playing a role whose significance is inversely proportional
to the map’s resolution). Points in the second category are
viewed as noise or non-linear distortions, thereby having
a decreasing effect on the similarity measure between
the images corresponding to the two point-sets. Notwith-
standing this type of discrepancy, the similarity degree
between the two images and the quality of the estimate
of translation, rotation, and scale are proportional to
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the percentage of the points in the first category over
that of the second—an effect largely attributed to the
documented robustness of FMI-SPOMF [58].

o In the latter case the output of algorithms I and II and,
most crucially, the similarity measure w are all arbitrary;
yet, if a second pose hypothesis happens to fall in the
vicinity of the true robot’s pose, then, in addition, they
are also lower in magnitude than those of the second
hypothesis, making distinction between the two feasible.

Although FMI-SPOMF is able to extract the translation
offset between the two images, the fact that (a) these are
captured from each sensor’s local frame of reference, and (b)
the robot’s true pose is unknown, renders the translation vector
without physical meaning. However, if the pose hypothesis h;
resides in the vicinity of the robot’s true pose, once the former
is rotated by &;, an estimate of the translation of the former
with respect to the latter can be extracted. The positional
displacement correction process is detailed in section V-C.

C. Extraction of Translation

Once the pose hypothesis h; is rotated by the angle found
by FMI-SPOMEF, ¢;, the orientation of the robot has been
estimated. The resulting pose hypothesis, denoted by hl, is
then inputted to the position estimation module. Its block
diagram is depicted in figure 7.

At this point a new map scan SV is computed from the
angularly-corrected pose hypothesis h;. Its end-points along
with those of the range scan derived from the physical sensor
are again projected into the x — y plane with the use of
equations 17 and 18. In these equations, having the orientation
been estimated, the value of 6y is substituted by the robot’s

orientation estimate 6p, + ;. The two resulting point-sets
P, and PV are now aligned with respect to orientation and
centered around the origin O(0, 0). Subsequently the centroid
of each polygon with vertices P,. and P’ is calculated through
equations 15 and 16. If a pose hypothesis is in the vicinity
of the robot’s true pose, then the centroid of 773’ will be
translated with respect to that of P, by the offset between the
pose hypothesis h; and the robot’s true pose—due to remarks
VI and VII—plus some additional offset caused by points
which are visible from the one but not the other. This is again
due to the fact that different parts of the environment/map
become (in-)visible from different poses. The position of pose
hypothesis h/ is then corrected by the difference in position
between the two centroids C! and C,, and this process is
iterated until convergence has been achieved, or a maximum
number of iterations has been met. The output of this process
is the final pose estimate h.

D. Fittest Hypothesis Selection

After all |H| hypotheses have been processed, a collection
of equal in number triplets {h/, o;,w;} is due for sifting
in order to determine the final pose estimate of the robot.
In theory, for the closest pose hypothesis h. to the robot,
FMI-SPOMF should report a scaling factor . = 1.0 and the
highest similarity degree among all pose hypotheses, w. =
max{wo, w1, . .., w1} However, in practice, violations of
these conjectures may manifest in this article’s context due,
for instance, to ambiguities arising from similarities between
discrete portions of the map' or due to the fact that the map
may be an Occupancy Grid Map (as is typical in indoor
robotic applications) of finite resolution: obviously the lower
the resolution the more the absolute value of the scaling factor
deviates from its theoretical limit.

Although the relevant literature dispenses with the scaling
factor (since the environment, range scans derived in it, and
its map are all of the same scale), we have found that due
to discretisation errors,? sensor noise, map discrepancies with
respect to the modeled environment, and the existence of
map resolution, the scale factor varies around 1.0 even for
hypotheses lying in the vicinity of the robot’s true pose. For
pose hypotheses which do, the value of their corresponding
scaling factors may be closer to one than that for poses which
do not; therefore an initial sift of candidate poses consists
in discarding hypotheses h; for which ¢ < o; < @ applies,
where ¢ < 1.0 and & > 1.0. As for the remaining hypotheses
the value of the similarity degree w; between the true sensor’s
range image r and a virtual sensor’s range image Vv; is, in

IConsider for instance a map of two empty rooms, identical in proportions
but not in length and width; the similarity degree reported for two hypotheses
centered in each room may be equal, but the scale factor between them will
vary, and the pose hypothesis which should be reported as the robot’s pose
estimate should be the one for which the scaling factor is closest to 1.0

2Discretisation errors arise due to (a) intersections of rays with the map
during the computation of a virtual scan when the map is represented by an
occupancy grid, which is of finite resolution, and (b) the loss of resolution
during the discretisation procedure itself when converting a range scan to a
point-set and then to a 2D grid



theory, proportional to the similarity between the two images.
Therefore the same applies between the two range scans S,
and S!, and to the proximity between the true robot’s pose and
hypothesis h;. It is consequently reasonable that the hypothesis
with the highest similarity degree, after appropriate rotation
and translation, be the system’s reported final pose estimate

Pp.
E. Illustration

Let us illustrate the methodology introduced with an ex-
ample: consider again the map depicted in figure 3, and let
P.(11.56,12.20,0.0) [m, m, rad] be the robot’s true pose
and a pose hypothesis p.(7.56,11.20,7/4) [m, m, rad] be
disposed by (—4.0,—1.0,7/4). At the rotation estimation
stage the range scan captured from the robot’s true pose, S2,
and the virtual range scan captured from the hypothesis, S¢,
are projected to the x — y plane as if each was captured from
(0,0,0). Figure 8a shows the projected range scan points from
Pa, P2, while figure 8b shows those from p., Pg. Notice that
these connected point-sets consist of the surroundings of the
real and virtual range scan sensors from their local reference
frame perspective. These point-sets are then converted into
2D grids via discretisation, inputted to FMI-SPOMEF, and the
rotation angle between them is used to align the orientation
of p. with respect to that of p,.

Once the orientation of the hypothesis is corrected, a new
map scan is captured from the renewed hypothesis p/,. Then
the centroids of P and the point set of the newly projected
map scan PS¢ are computed. Figure 8c depicts PZ and its
centroid C,(—3.57,—0.78) [m, m], while figure 8d depicts
P¢ and its corresponding centroid C.(0.42,0.09) [m, m].
Notice how the two shapes are almost identical, but differ in
terms of their position in the z — y plane. Notice also the
discrepancy between these two points sets at the left-hand
side: due to the offset between the positions of p, and p.,
a larger proportion of the map is visible from the latter, and
therefore the difference between their corresponding points-
sets” centroids C, — C,. = [3.99,0.87] " does not correspond
exactly with the difference in position between the two poses,
which is [4.0,1.0]T. Adding, however, C, — C, to p’. and
repeating the same translation estimation process makes P¢’
converge to P2, and therefore p/, to p,. Figure 8¢ shows the
final point-set P&, which is overlaid in figure 8f (coloured
with red) on top of P2 (black).

Let us now examine the possible outcomes of the same
process for a false candidate pose, for instance py. In theory p;
would be either discarded at the end of the angular estimation
process due to the extraction of an (viewed externally) arbi-
trary scaling factor o € (—o0,g] U [7, +00), or accepted for
position estimation, whereupon the position of the hypothesis
would in all probability be moved divergently from the robot’s
true pose. If p. € H then FMT-SPOMF would report a higher
similarity degree w. > wy, and p, would be filtered out as a
true negative. Consequently, if no pose hypothesis resided in
the vicinity of p,, the projected range scan images captured
from every hypothesis would not be able to be angularly
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(d) The connected endpoints Pg’
of the range scan captured from
the robot’s angularly-aligned hy-
pothesised pose p., as seen from
the local reference frame of the
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centroid of the polygon formed
by them. Notice that the pose has
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Fig. 8: Illustration of orientational and then positional alignment
of candidate pose p. with respect to true pose p, in environment

CORRIDOR (figure 3)



aligned by FMI-SPOMF, and a false hypothesis would be
erroneously reported as the system’s pose estimate. This leads
to the formulation of the following observation:

Remark VIII. A pose hypothesis h € H that resides in the
vicinity of the robot’s true pose is a necessary condition for
a correct solution to problem P (in the sense of remark I)
when approached by a scan—to—map-scan method. In conse-
quence: the supplied number of pose hypotheses || should
be proportional to the area of M.

In more complex environments, where the environment and
its map feature repetitive structures, it may be the case that
ambiguity cannot be resolved at all regardless of the number
of pose hypotheses. In others, wide open spaces may result to
missing information due to sensor maximum range limits. The
effects of these conditions may be so pronounced that higher
similarity is established between an incorrect pose and the
robot’s true pose than between the robot’s true pose and a pose
residing near it. The first issue plagues all global localisation
methods as, even for a human, its solution is undecidable,
and maximum sensitivity is of paramount importance in such
conditions. The second issue is also uncontrollable, as it
manifests itself as a limitation imposed by the combination
of environment and robot equipment limits.

VI. SIMULATIONS & RESULTS

In order to test the efficacy of the proposed method
of correspondenceless passive global localisation, numer-
ous simulations are performed in disparate—structured and
unstructured—environments, map configurations and resolu-
tions. In order to test the proposed method’s robustness in the
face of disturbances, the noise acting on the measurements
of the physical range sensor is varied across levels taken
from the specifications of commercial sensors. The robot
used in all simulations was a Turtlebot v.2, equipped with
a single panoramic rangefinder of maximum range 10.0 m
and N = 720 rays emitted. The maximum range was set
to this value in order to be able to limit the volume of
information available to the sensor, and hence to the methods
under scrutiny, so as to test their robustness in the face of
missing information, in addition to that of uncertain informa-
tion. In parallel, the proposed method PGL-FMIC (Passive
Global Localisation—Fourier-Mellin Invariant matching with
Centroids for translation) is pitted against the state of the
art ICP algorithm PL-ICP (Point to Line Iterative Closest
Point) in an attempt to capture the comparative advantages and
disadvantages of the two methods. The fashion in which the
latter can be used to tackle the problem of global localisation
in a scan—to—map-scan fashion was described in section IV.

Both algorithms were tested in five environments termed
CORRIDOR, HOME, WAREHOUSE, WILLOWGARAGE,
and LANDFILL, over 38 robot poses in total, and over
four levels of sensor noise. The noise was set to be
normally distributed with standard deviation d € D =
{0.0,0.01,0.02,0.05} m, so that both methods are tested
against the accuracy of real commercial rangefinders. The
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Fig. 9: The map of environment CORRIDOR M and three tested
true robot poses

ranges of virtual scans are disturbed in proportion to a
map’s misrepresentation of the environment it corresponds
to. The maps of environments CORRIDOR (M), HOME
(M), WAREHOUSE (Myy), and LANDFILL (M) were
constructed with the same robot setup for sensor noise with
standard deviation d = 0.01 m. The environment from which
M; was generated was constructed from models of the
3DGEMS dataset [78], while map M was taken from [79].

A simulation over the determination of one robot pose was
conducted for both algorithms N, = 100 times for purposes
of reliability of conclusion. The total number of simulations
conducted was therefore 38 x 100 x 4 x 2 ~ O(4).

The five simulated environments are depicted in figures 9-
13; figure 9 depicts a simple and almost symmetric environ-
ment that was used for preliminary and distinction-of-place
assessment purposes. Figure 10 depicts a typical domestic
or commercial space cluttered with chairs, tables, columns,
and box-like furniture. Figure 11 depicts a typical warehouse
setting, with wide open spaces in which the methods’ ability
to cope with missing information is tested. Figure 12 depicts
a large office-like complex, where the methods are assessed
more closely as to their ability to resolve ambiguities. Figure
13 depicts a non-structured environment similar to a landfill
that was used to ascertain the validity of the claim that
PGL-FMIC'’s performance does not discriminate between non-
structured and structured environments. The maps of the latter
two environments (WILLOWGARAGE and LANDFILL) are
of resolution 0.05 x 0.05 m2, while that of the other three is
0.01 x 0.01 m2.

The positions at which the robot was placed in each envi-
ronment were determined by the target assessment purpose,
i.e. in environment CORRIDOR the robot was placed close
to one end of it so as to evaluate the methods’ response to
environmental symmetry, close to the middle so as to evaluate
their response with respect to ambiguity of orientation, and
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Fig. 11: The map of environment WAREHOUSE My, and seven
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0.0

near a turn so as to evaluate the effect of non-uniformity
of the environment. In environment HOME the robot was
positioned at random and at challenging positions, close to or
away from objects, and at locations whose surroundings were
near-similar to other parts of the environment. In environment
WAREHOUSE it was positioned in ways that one would
expect that the robot’s operation would first be initiated, and
in positions such that would challenge the methods’ response
to missing range of rays (a typical LIDAR sensor reports a
reading of maximum range when that ray does not encounter
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Fig. 12: The map of environment WILLOWGARAGE M and ten
tested true robot poses
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Fig. 13: The map of environment LANDFILL M/, and seven tested
true robot poses

objects in its path). In environment WILLOWGARAGE the
robot was positioned in rooms that where either identical or
near-identical to others and at random. The orientation of
the robot’s true pose is of no significance since the range
finder sensor is panoramic, and was determined at random
by sampling from a uniform distribution U (—, 7). Table II
shows the placement of poses in each environment/map along
with their signifiers in subsequent figures.

Given remark I, a correct global pose solution was regarded
as such when the deviation of its location from the true pose’s



pose id ‘ z [m] y[m] @ [rad] sign
CORRIDOR
p¢ 11.56 122 —0.79 +
py | 12.06 8.2 2.01 o
p¢ |806 920 -3.28
HOME
pH | 14.44 2404 0.065 +
pl | 1784 2484 1.33 o
p 15.0 14.68 0.68
pi | 220 1422 -266
p? 1260 1610 0.69 X
pg 24.46  9.68 —0.49 O
P 1826 11.02 —3.10 o
p%[ 27.64 778  —0.14 A
pH | 2428 2144 241 v
p 1290 28.64 031 >
pd | 310 122 -219 <
WAREHOUSE
pV 808 302 28 +
pY 3516 1525 -220 o
pY 13881 235 1.36 *
pV 3342 492 278
pY | 17.08 875 2.83 X
pg 8.63 1193 -1.26 O
Py 1.27 9.5 0.239 o
WILLOWGARAGE
p& 77.56 3748 —1.27  +
py | 67.85 66.90 0.13 o
p¢ | 81.0 57.60 —2.97
p§ | 7855 7835 —1.31
pS¢ | 84.0 7815 0.94 X
p§ | 8475 56.65 1.02 O
p; | 5115 44.65 1.29 o
¢ 61.95 37.80 —0.58 A
pf | 6220 3776 —1.22 vV
pS | 5520 37.76 0.91 >
LANDFILL
L 3.34 1719 —0.082 +
pl 1334 2619 -078 o
pLl | 834 2519 0.90
py | 334 1019 -297
ptL 734 819 —-193  x
pi 734 119  0.58 O
p; 834 1819 —2.02 o

TABLE II: The robot’s true poses tested per simulated environment
and the sign by which they are referred to in figures

location was less than 1.0 m.?

Those residing outside this circle are hereafter termed
outliers. No error threshold was placed on orientation, as
it is not certain that a probabilistic pose tracking method,
used in subsequence to global localisation, would fail to
further localise the robot and track its pose. In terms of
the magnitude of the hypothesis set H of the hypotheses
dispersed in each environment, contingent on remark VIII,
no method was starved for matches in either environment:
for environment CORRIDOR |H¢| = 100; for environments
HOME and WAREHOUSE |H | = |Hw | = 200; for environ-
ment WILLOWGARAGE |H¢| = 500; and for environment
LANDFILL |#H;| = 100. The scale thresholds were set to
(g,7) = (0.9,1.2). The width and height of images inputted to
FMI-SPOMF was set to N = 28; experimental tests showed
that such setting resulted in both low execution times and
accurate distinction between true and false positive solutions.
Higher values of Ng would increase the method’s sensitivity
with regard to distinguishing between poses set at similar
surroundings, but at a cost of increased execution time.

All simulations were conducted in the Gazebo environment*
through ROS?, in C++ and Ubuntu 16.04, with a processor
of 12 threads, running at 4.00 GHz, using up to 32Gb of
RAM. Maps of environments were constructed using ROS’s
slam_karto package®. As an implementation note with re-
gard to maps and mapping, we stress caution in that the result
of the mapping algorithm may be imperfect in the sense that
free space may be introduced in-between the continuity of even
a single obstacle.” This type of structural error may corrupt the
result of scan—to—map-scan matching, and therefore caution
must be taken so that either maps are correct by default,
or erroneously-generated free space be corrected manually.’
For the implementation of the 2D Fourier-Mellin transform
the imgreg_dft python modules were used.” With regard
to its inputs, these were images produced via GNU Octave
v.4.0.0:'° real and virtual scans were plotted at standard pixel

3The value of the arbitrary outlier/inlier discrimination threshold was set
as such after experiments in real conditions with the same robot when Monte
Carlo Localisation (MCL) was utilised for pose tracking. The methodology
was the following: first the provided initial estimate of the robot’s position
was set to a given offset from its true position. Then the robot was tasked
with navigating autonomously to a set position on the map using MCL'’s pose
estimate as the robot’s pose. If the robot did not manage to arrive at the set
position, the offset was lowered until it repeatedly did

“https://www.gazebosim.org/

Shttps://www.ros.org/

Shttp://wiki.ros.org/slam_karto

TImperfections of this type are due to the discrete nature of the range
sensor with regard to angular sampling, the maps’ requested resolution, or
the algorithm’s execution time compared to the volume of input information

8Consider for instance the case where a wall separates one room from
another. In the case of an occupancy grid map the introduction of free space
as a “crack” in the wall would result in a state where, if a virtual scan is taken
at a distance to the wall that is within the range sensor’s maximum range,
at least one ray may seep through that crack and report an erroneous range
measurement. This behaviour may be exacerbated if that wall separates the
mapped region with the unmapped region and the intersection-finding routine
is not designed to handle unmarked space

%https://pypi.org/project/imreg_dft/

10https://www.gnu.org/software/octave/
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Fig. 16: The distribution of outliers with regard to environment
CORRIDOR per sensor noise level tested

size N X N and then written to disc as . png images. Images
of formats .gif, . jpg, and . tiff did not produce adequate
results. A delay between producing an image and processing a
pose hypothesis was needed in order for images to be stored to
disc; execution times of PGL-FMIC in subsection VI-C reflect
the algorithm’s net execution times. The proposed method’s
computation cost was 483MB (including Octave) in memory
and approximately 25% usage of one CPU core.

The following sections present the results of simulations
conducted with the proposed method (PGL-FMIC) and a state-
of-the-art algorithm (PL-ICP) for solving the same problem
of global localisation under motionlessness in the above five
environments over the conditions described.

A. Results with regard to location and orientation error

Figure 14 depicts the mean solution location errors of PGL-
FMIC and PL-ICP for solutions whose location error did not
exceed the outlier classification error. Figure 15 depicts the
corresponding mean solution orientation errors. The results in
each environment were recorded over N = 100 simulations
per pose (table II) and per sensor noise level tested.

B. Results with regard to outlier solutions

Figures 16-20 depict the corresponding percentage of solu-
tions over NNy simulations outputted by PGL-FMIC and PL-
ICP that are considered to be outliers. Dark blue denotes the
percentage of outliers when d = 0.0 m, light blue when
d = 0.01 m, yellow when d = 0.02 m, and brown when
d =0.05 m.

C. Results with regard to execution time
Figure 21 depicts the corresponding mean execution times
of PGL-FMIC and PL-ICP.
VII. DISCUSSION

Examining figures 14-21 overall, what is discerned at first
glance is that the location and orientation errors of PGL-
FMIC were uncorrelated to the amount of noise disturbing

the ranges of the physical LIDAR sensor. Those of PL-ICP
were proportional or invariant to it, owing to its exceptional
performance in finding correspondences between rays when-
ever possible. As for their magnitudes, there is no clear pattern
of dominance of one algorithm over the other. For PGL-FMIC
the maximum inlier location error was less than 0.30 m over all
tested configurations with regard to structured environments,
and its execution time was roughly 50% more than that of
PL-ICP.

Examining the results more closely reveals that PGL-
FMIC'’s responses included a lower number of solution outliers
than those of PL-ICP. In environment CORRIDOR the former
produced one outlier over 3 x 4 x 100 = 1200 simulations.
PL-ICP failed approximately once every four attempts to solve
the problem when the robot was posed at pl?, being unable
to differentiate between the two near-identical bifurcations in
the environment.

In environment HOME both algorithms failed to localise the
robot when its true pose was ij due to the repetition of its
surroundings in the environment and the map, and therefore
to the ambiguity of the robot’s surroundings. PL-ICP failed
to localise the robot for an additional two poses (pi and
pf ), and overall exhibited more outliers than PGL-FMIC with
regard to all eleven tested poses in this environment. The above
lead to the expected conclusion that, whenever and if at all
possible, it is better to place the robot at locations whose
surroundings are non-repeating in the entirety of the map.'!

In environment WAREHOUSE the inadequacy of maximum
range by the robot’s LIDAR sensor with respect to the dis-
tances between objects and their sparsity resulted in PL-ICP
being unable to localise the robot over all but one tested poses.
In comparison PGL-FMIC was less affected by the effect of
missing information, being unable to localise the robot when
its pose was p’. This leads to the conclusion that, at least as

Placing a disambiguating object in the environment before constructing
its map would at least increase the probability of successful resolution of pose
ambiguity in environments exhibiting repetitive structures
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regards PGL-FMIC, the robot should be placed at a location
that maximises the number of range measurements that report
values other than that of the LIDAR’s maximum range.

In environment WILLOWGARAGE PL-ICP was unable to
localise the robot for four out of ten poses tested. For those
four poses only a limited number of rays carried missing in-
formation. Perhaps this effect, coupled with the conjecture that
these must be regarded as outliers by PL-ICP—and therefore
that parameters relating to rejection of outliers should be tuned
accordingly—Iled to its inadequacy in this setting. Accordingly,
if the same rationale is applied and followed, the same could be
said for simulations in environment WAREHOUSE; however
our goal here is to avoid tuning parameters in an ad hoc fashion
or in a per location or environment manner altogether, as ex-
plained in section IV. On the contrary PGL-FMIC was unable
to localise the robot only in one instance (p]) for which
both algorithms could not resolve the eight-way ambiguity of
the true pose’s surroundings. Curiously though, PGL-FMIC
managed to resolve the same ambiguity for poses pf and
p§, while PL-ICP surpassed itself significantly for the former
but marginally for the latter. Overall PGL-FMIC managed to
produce correct solutions for all cases and resolve all pose
ambiguities arising from repetition of surroundings, except for
the cases of pJG and pg. For the latter almost 50% of all
solutions were false and PGL-FMIC exhibited more outliers
than PL-ICP. Additional ambiguity resolution was facilitated
by decreasing the upper scale threshold & from 1.2 to 1.1 in the
cases where the robot was placed in ambiguous surroundings.
PGL-FMIC produced a limited number of outlier solutions
when the standard distribution of the noise acting on the real
scan’s rays was set to its highest value. Given the results for
this environment, where the resolution of its map is cruder
than in the three cases that precede it, there is no evidence to
support that varying resolution deteriorates (or enhances) the
outcome of either method tested.

In environment LANDFILL PGL-FMIC exhibited fewer
outliers than PL-ICP, with different poses challenging each
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algorithm: PL-ICP was unable to globally localise one robot
pose (pg), while PGL-FMIC successfully localised the robot
approxiinately 3 out of 10 times when it was placed at pJLc .
The unstructured nature of environment LANDFILL affected
PGL-FMIC’s performance more than the other (structured)
environments, and most in terms of its positional response
rather than its orientation errors.

Overall, with respect to criteria on pose solutions, PGL-
FMIC exhibited significant difference in the number of pose
solutions that would be admissible in the subsequent task of
pose tracking compared to PL-ICP. PGL-FMIC’s failure with
respect to admissible solutions was due to (a) failure of reso-
lution of identical or similar surroundings, (b) missing range
information to an excessive degree, and (c) excessive range
noise. In terms of the accuracy of admissible pose solutions, no
significant difference in pose accuracy is observed compared
to PL-ICP. The final criterion of global pose determination
based on the similarity degree outputted by FMI-SPOMF and
the scale thresholds used (subsection V-D) were, within reason,
well-behaved universal distinctors between hypotheses.

VIII. CONCLUSIONS & FUTURE STEPS

This article introduced a method for solving the problem of
motionless passive global localisation in the context of robot
localisation on a plane using solely a 2D LIDAR sensor. The
proposed method’s contribution to the state of the art is that it
approaches the solution to the problem without using features
or other ad-hoc mediators for estabilishing correspondences
between measurements from the environment and its map.
Thereby it is suitable for application in structured as well
as unstructured environments. By the same virtue it does not
require tuning of internal parameters, which bodes well for
portability across different and disparate environments, and
different poses in the same environment. This exceptional
ability is facilitated by the employment of the closed-form
Fourier-Mellin transform. Simulations showed that, compared
to a non-feature-finding state of the art method, the proposed
method achieves a greater degree of global pose discover-
ability, and that it can accommodate LIDAR sensors of short
maximum range compared to the area of a robot’s unoccupied
surroundings. However, its main limitation is in terms of the
physical sensor’s field of view, where that must be 360°.

Future work will focus on the reduction of the execution
time, investigating more sophisticated and accurate methods
for estimating the position of the global pose, and research
on whether more distinctive measures can be extracted from
FMLI, so that pose ambiguities can be further reduced.
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