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Abstract
Apart from perception, one of the most fundamental aspects of an autonomous mobile robot is the ability to adequately
and safely traverse the environment it operates in. This ability is called Navigation and is performed in a two- or three-
dimensional fashion, except for cases where the robot is neither a ground vehicle nor articulated (e.g. robotics arms). The
planning part of navigation comprises a global planner, suitable for generating a path from an initial to a target pose, and
a local planner tasked with traversing the aforementioned path while dealing with environmental, sensorial and motion
uncertainties. However, the task of selecting the optimal global and/or local planner combination is quite hard since no
research provides insight on which is best regarding the domain and planner limitations. In this context, current work
performs a comparative analysis on qualitative and quantitative aspects of the most common ROS-enabled global and
local planners for robots operating in two-dimensional static environments, on the basis of mission-centered and planner-
related metrics, optimality and traversability aspects, as well as non-measurable aspects, such as documentation quality,
parameterisability, ease of use, etc.

Keywords Path planning · Path traversing · Local planners · Global planners · Unmanned Ground Vehicles · ROS · RFID
localization

1 Introduction

Nowadays we are experiencing a significant penetration
of Radio Frequency Identification (RFID) technology in
the market, mainly in supply chain management (retail,
warehouses), health-care, and banking, establishing an
11.1 billion market in 2017 [1]. In the same time,
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“robotics” experience their own share of success in the
so-called “4th Industrial Revolution”, where a fusion of
interconnected technologies can communicate, have access
to big data, and take decisions, thereby improving the
efficiency of systems. Merging of these two technologies
enables robots to interact with RFID-tagged objects. Such
merging includes the domains of robot navigation [2,
3] and automated inventorying [4–6]. In this context,
we are building RFID-enabled, autonomous, unsupervised
robots, capable of performing continuous inventorying
and accurate localisation of RFID tags. The robots are
equipped with depth cameras, lidar sensors, UHF RFID
readers, and UHF RFID antennas, and are capable of
performing Simultaneous Localisation (of their own poses)
and Mapping (of the environment), as well as identifying
and locating RFID-tagged products inside the environment
by exploiting state-of-the-art localisation algorithms [7,
8]. The robots could be deployed inside warehouses or
large retail stores, possibly in the presence of people. The
sub-problems for the successful completion of our goal
are (i) the employment of the appropriate path-planning
and path-traversing strategy, in order for the robot to be
able to successfully navigate within its surrounding space,
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Fig. 1 Overview of the
move base package. Image
taken from move base’s
website

considering the generated map of the environment and the
obstacles in its operating area, (ii) the generation of the
accurate and undistorted map of the environment and the
accurate localisation of the robot within it and (iii) the
localisation of the RFID-tagged objects in the previously
created map. This work is focused in the first subproblem,
i.e. the selection of the appropriate path-planning and path-
traversing strategy for 2D environmental representations.

For an autonomous ground robot to traverse its environ-
ment, several steps have to be performed. First, a target-
selector algorithm should be employed, uptaking the task of
calculating/generating a target for the robot to reach. This
target is usually the desired pose of the robot, either in the
2D ([x, y, θ ]), or in the N−dimensional space if the robot
is, for instance, articulated. Next, an algorithm capable of
taking as input the robotic perception of the world (usually
a 2D or 3D map), as well as the current and goal robot
poses must be employed. Then, a geometric path is gener-
ated, which, if followed, will lead the robot from its current
pose to the goal pose. This path is generated by a global
(path-) planner, which deals with the global information
of the problem (i.e. the entirety of the map). Finally, a local
planner is needed, which takes the global path and the local
perception of the robot as inputs, and generates motor veloc-
ities, so as to guide the robot into following the global path,
while at the same time doing so as safely as possible (assum-
ing that the robot should avoid collisions with stationary or
moving objects, although this is not always the case [9]).
By local perception we denote the live raw sensory data
representing the dynamic alterations of the environment, in
contrast to the static overall map.

Currently, ROS (Robot Operating System)1, released
in 2009 [10], is one of the dominant robotic middleware
platforms. ROS is described as a meta-operating system
and is designed to offer hardware abstraction along with
standardised module-based development over a structured
communications layer. One of the main strengths of ROS

1http://www.ros.org/

is the standardisation of message types, using a simple
language-neutral IDL (Interface Definition Language) to
describe them, resulting in a theoretically language-
agnostic software implementation. This standardisation
allows for the development of decoupled ROS packages,
i.e. easily reusable collections of nodes that offer specific
functionality. A node is a computer process that performs
computations. Nodes are combined together into a graph
and communicate with one another using streaming
topics and/or Remote Procedure Call services.2 In ROS,
a robotic system usually comprises several nodes. For
example, in Fig. 1, map server provides the map
in which the robot is located, odometry source
provides odometric information, the amcl node performs
localisation, outputting to move base the relation between
the map’s and the robot’s odometric frames of reference, a
sensor transform node provides the relation between
two frames of reference (for example the relation between
the robot’s range finder frame of reference and the robot’s
base link), sensor sources provide move base with
readings from sensors, and base controller takes
as input the motor velocity commands computed by
move base and applies them to the robot’s motors. ROS’
hardware requirements are minimal in processing power and
memory, making it able of being executed in a Raspberry Pi
or a BeagleBone, nevertheless its actual requirements vary
depending on the number and type of nodes a robot is tasked
to run.

ROS has become widely popular in the robotics
community, since it offers an abundance of free-to-
use packages by research teams across the globe. It
already offers navigation capabilities in the form of
stacks (collections of ROS packages), the most well-
known and commonly-used of them being move base,
which internally employs a global and a local planner.
Furthermore, move base is famous for its plug-and-

2http://wiki.ros.org/Nodes
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play capabilities, but at the same time notorious for the
abundance of parameters it contains, as well as for the
not-so-obvious local navigation decisions it makes (e.g.
the decisions and actions it internally performs when it
perceives that the robot is stuck).

The goal of this work is to delve into the depths of the
move base package and evaluate different ROS-enabled
global and local planners so as to investigate which com-
bination performs better when tested under the simple task
of 2D traversability in heterogeneous environments repre-
sented by occupancy-grid maps. The paper is structured as
follows: Section 2 presents the state-of-the art in robotic
planning, describing theoretic approaches on global and
local planners, whereas Section 3 focuses on the practi-
cal side of ROS-enabled planning packages, including an
overview of move base’s functionality, as well as the most
common ROS global and local planners. Next, Section 4
presents the experimental formulation and methodology
of evaluation, along with the metrics used for evaluat-
ing each category (global and local planners, plus their
combinations), followed by Section 5 which discusses the
results. Finally, Section 6 presents the article’s conclu-
sions and Appendix holds a detailed account and analysis
of the results of the conducted simulations and real-world
experiments.

2 State of the Art on Robotic Planners

Even though typical robot navigation includes a global
planner for generating a path from a start pose to a goal
pose and a local planner for traversing this path, the usual
nomenclature may vary, since a global planner can be
referred to as Path-planner and a local planner as Navigator.

2.1 Global Planners

As far as global path planners are concerned, a plethora of
approaches suitable for 2D environment representations to
N−dimensional spaces have been proposed throughout the
years. Usually, global path-planning techniques belong in
one out of six main algorithmic families, namely Visibility
Graphs, Skeletonisation-based techniques, Probabilistic
Roadmaps, Rapidly exploring Random Trees, State Lattices,
and Navigation Functions.

Visibility Graphs were one of the first path-planning
methods proposed by Losano-Perez and Wesley in 1979
[11], describing a path-creation algorithm in a convex
environment, where the obstacles are transformed so as to
depict untraversable areas due to the geometric constraints
of the robot’s footprint. Then, the visibility graph containing
the transformed obstacles’ vertices as nodes is created.
Finally, a search algorithm is applied to generate the final

path. As described in [12] and [13], visibility graphs suffer
from high requirements in computational resources and
obstacle geometric restrictions in order to correctly operate,
thus other approaches have been proposed to deal with these
issues [14].

Among skeletonisation techniques, the Generalised
Voronoi Diagram (GVD) is the dominant algorithm
employed in order to produce a skeleton of the free space
the robot operates in. Examples of GVD employment in
global path-planning techniques are mentioned in [15],
where GVD is used to generate a collision-free and smooth
path, in [16], where GVD is followed by the application of
the Fast Marching algorithm to minimise the length of the
path, and in [17], which introduces the Voronoi Uncertainty
Fields (VUFs), combining GVD as a global planner and a
local planner to navigate the vehicle.

One of the most famous path-planning algorithmic
families are Probabilistic Roadmaps (PRMs). Their concept
is simple: sampling is performed in the environment’s
free/unoccupied space and a graph whose edges are safe for
traversing is created. Then, a search algorithm is applied
in the graph to find the minimum cost path. PRMs were
initially introduced by Kavraki et al. in [18], nevertheless
several alterations have been proposed, such as [19] where
the visibility graph concepts are used to enhance the PRM
graph, [20] which introduces the Lazy PRM algorithm that
dynamically minimises the graph’s connections, and [21]
where the Hybrid PRM is proposed, combining different
PRMs according to the environmental properties.

Another global path-planning methodology is that of
the Rapidly exploring Random Trees algorithms (RRTs),
initially proposed by La Valle in 1998 [22]. RRTs iteratively
generate tree-like structures, initiating from a root-node
and terminating when a leaf reaches the desired goal.
Several alterations exist, such as the Execution Extended
RRT (ERRT) [23], bidirectional RRTs [24], RRT* [25],
Cell-RRT [26], and T-RRT [27], among others.

Path-planning in state lattices emerged in 2005 by
Pivtoraiko and Kelly [28]. A state lattice is a search
space, comprising a discretised set of a system’s (the
robot’s kinematic model) reachable configurations which
can encode feasibly-traversable paths. The paths are formed
by local connections between constraint-compliant states.
After the development of the search space, a set of spatially
distinct path primitives are generated; this space encodes
the local connections and eliminates redundancies so that
a planning query on the connected search graph can be
efficiently executed.

Navigation functions are a special class of potential
functions [29] for the navigation of mobile robots. Potential
functions assume a known map; they assign a potential
value on every point (in landmark-based maps) or grid cell
(in grid-based maps), with each of them having a higher
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potential value the lower its distance from an obstacle.
Conversely, the goal position/configuration is assigned a
low potential value. The potential field principle is attractive
due to its simplicity and elegance, however a number of
substantial shortcomings were reported through the years
[30, 31], such as the susceptibility of making a robot getting
trapped at local minima and the rise of oscillations when
a robot gets near obstacles or narrow passages. Navigation
functions try to overcome these issues, being functions (a)
for which the goal’s potential is assigned zero value, or, if
the goal is unreachable, infinite value, and (b) that have a
monotonic gradient, i.e no local minima exists except at the
goal. However, the navigation function method may exhibit
slow convergence, especially when the robot’s environment
includes narrow passages, thus it requires tailored tuning
[32]. Furthermore, in high-dimensional spaces, where the
robot’s or obstacles’ shapes are complex, the computational
cost rises sharply [33].

2.2 Local Planners

Once the path has been generated using a global planner,
a local planner must be deployed in order for the robot to
follow the global plan and make sure it avoids both static
and dynamic obstacles.

One of the oldest local planners is VFH (Vector Field
Histograms), proposed in 1991 by Borenstein and Koren
[34]. VFHs generate a polar histogram, assigning each angle
with probability of that direction being occupied, relative to
the robot’s orientation. Then, sufficiently large openings for
the robot to navigate safely through are identified and a cost
function for each opening is calculated, ultimately selecting
the one with the smallest cost. Improvements on the VFH
are the VFH+, incorporating arc-like local trajectories in
contrast to VFH’s straight lines [35] and VFH* which
verifies that a candidate direction guides the robot around
the obstacle, using the A* algorithm and appropriate cost
and heuristic functions [36].

Another famous approach is DWA (Dynamic Window
Approach), suggested by Fox, Burgard and Thrun [37].
DWA samples the local environment with possible trajecto-
ries directly derived from the motion dynamics of the robot,
calculating a cost for each sample. Then, the velocities set
that maximises an objective function is selected for applica-
tion. This function includes the robot’s heading with respect
to the target, the clearance of the closest obstacle on the tra-
jectory and the previous linear-velocity in order to account
for the body’s inertia.

GNTs (Gap Navigation Trees) are tree-like structures
generated from online robot sensor measurements, encod-
ing paths from the current robot pose to any place in
the environment [38]. A GNT is updated as the robot
moves and produces optimal paths if the environment is

simply-connected, provided that the environmental bound-
aries are smooth, since the GNT tries to identify “gaps” in
the sensor measurements.

Another strand of local planners initiated in 2004 with the
proposition of the Nearness Diagram navigation approach
(ND) by Minguez and Montano [39]. The ND methodology
initially generates two nearness diagrams: the PND (from
the central robot Point) and the RND (from the Robot) to
represent information about the obstacles’ proximity. Both
PND and RND are further analysed and special safety
sections and gaps are calculated, based on which the robot
is assigned a safety situation status among five different
ones. Ultimately, five motion laws are evaluated according
to the safety class of the robot, resulting in the proper
velocity command of the robot at that specific time. In [40]
the ND+ methodology is proposed, adding a sixth scenario
to balance the division of motion laws, increasing the
smoothness of transitions between some of the scenarios.
Finally, SND (Smooth Nearness-Diagram) navigation is an
evolution of ND+, where a single motion law, applicable
to all possible configurations of surrounding obstacles is
proposed, removing the abrupt behavior transitions when
the robot navigates close to obstacles.

The Elastic Band approach by Quinlan and Khatib [41]
bridges path planning and control theory: based on a global
plan, the local planner produces a deformable path in real-
time, so that changes in the environment (detected by
sensors), uncertainties in measurement, model uncertainties
or moving objects are incorporated into the robot’s path-
planning and path-following. To achieve its objectives (one
of which is to preserve the global nature of the planned
path), the approach builds on artificial forces: predefined
internal forces contract the path and make it smoother, while
external forces maintain separation from obstacles. How-
ever, the original approach does not explicitly incorporate
temporal or kinodynamic constraints. An extension of the
original approach, deforming trajectories rather than paths,
is presented in [42].

The Timed-Elastic-Band approach [43] on the other
hand, inspired by the idea of the Elastic Band method,
does take into account both temporal and kinodynamic con-
strains. The original approach provides a real-time online
trajectory planner for differential-drive robots. Mimicking a
predictive controller, it reformulates the trajectory planning
and the control inputs as an optimisation problem subject
to kinodynamic and obstacle-avoidance constraints, while
simultaneously taking temporal information into account.
An extension of the Timed-Elastic-Band is presented in
[44], where a more generic formulation is introduced,
extending its model support to ackerman steering models,
while making motion reversals possible (i.e. making pos-
sible for a robot with a car-like kinematics model to park
autonomously).
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3 ROS Enabled Global and Local Planners

As aforementioned, ROS offers a navigation stack which
essentially takes information from odometry, sensor streams
and a goal pose and outputs safe velocity commands to a
mobile base.3 The ROS package at the core of the navigation
stack is move base, a high-level architectural diagram of
which is depicted in Fig. 1.

When seen as a black box, move base outputs velocity
commands to a robot’s motors and assumes the existence of
the following inputs, either in the form of ROS messages
(structured data) or transformations (relations between
frames of reference):

• the robot’s estimated pose in the form of a transforma-
tion between the robot’s odometric frame of reference
and the map’s frame of reference, provided here by
the amcl4 ROS package. AMCL stands for Adaptive
Monte Carlo Localisation [45] and is currently the de
facto localiser in the ROS ecosystem

• transformations between coordinate frames of the
robot’s sensors and effectors using ROS’ own transfor-
mation mechanism (tf)

• odometry information and (optionally) a map of the
environment

• distance data from either a range sensor, or a sensor that
can output point clouds, such as a depth camera

Furthermore, ROS offers an environmental representa-
tion called a costmap, including information about the
traversability of the world, based on static and dynamic
obstacles (assuming it is more expensive to move close to
obstacles), as well as the footprint of the robot. When seen
as a white box, move base includes:

• A global costmap that is static and has the same size as
the map.

• A local costmap which is generated online in the
vicinity of the robot and is based on the sensory input
in order to deal with static and dynamic obstacles.

• A global planner taking as input a goal and the global
costmap and producing a global, geometric path.

• A local planner that takes as input the global path and
the local costmap and calculates velocity commands.

• A module called recovery behaviours that takes
both costmaps as input, identifies when the robot
cannot progress with the desired velocities, and applies
predefined sets of motions, aiming at “un-stucking” the
robot. These actions are triggered each time (a) the
robot is perceived to be oscillating, (b) a global plan
has not been received for some amount of time, or (c)

3http://wiki.ros.org/navigation
4http://wiki.ros.org/amcl

the local planner has failed to procure valid velocity
commands for a set amount of time.

Specifically, move base applies two kinds of
recovery behaviours: (a) a 360-degree rotation that
aims at clearing the local costmap of any spurious
measurements (falsely-positive perceived obstacles)
and (b) a costmap reset that clears the navigation stack’s
costmaps by reverting them to the static map outside
of a given radius away from the robot5. The latter is
usually employed multiple times and in a hierarchical
manner, starting from some radius within the local
costmap’s semiwidth and moving in closer towards the
robot’s footprint. If the robot is still perceived as stuck
after executing all predefined recovery behaviours,
navigation is aborted and the robot halts its motion, at
least until a new goal is provided.

3.1 Global Planners

This section provides a brief overview of the global planners
considered in this review.

3.1.1 navfn

The navfn6 ROS package is based on the NF1 navigation
function approach [29]. It provides a fast interpolated
function that can be utilised to produce plans for a mobile
base, assumed to have a circular footprint. The navigation
function takes as input the global costmap, a start and an
end point, and produces the minimum-cost plan from start
to end by employing the Dijkstra or A* search algorithms.
The main disadvantages of NF1 (and therefore of navfn)
are the lack of smoothness of the produced paths, since these
are constituted of straight-line segments joined by integer
multiples of π/4 angles, and, most importantly, that NF1
produces paths that graze obstacles [46]. As a ROS software
package, it is compatible with the latest stable version of
ROS (melodic) at the time of writing of this article.

3.1.2 global planner

The global planner package provides an implementa-
tion of a fast, interpolated global planner for navigation7. It
was designed as a flexible successor of navfn and is able to
generate paths using either the A* or Dijkstra’s algorithms,
so that the computational load can be lowered (the latter’s
is greater than the former’s), although the produced paths
are not considered optimal in the 8-connected sense. As a

5http://wiki.ros.org/clear costmap recovery
6http://wiki.ros.org/navfn
7http://wiki.ros.org/global planner

http://wiki.ros.org/navigation
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http://wiki.ros.org/clear_costmap_recovery
http://wiki.ros.org/navfn
http://wiki.ros.org/global_planner
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ROS software package, it is compatible with the latest stable
version of ROS.

3.1.3 asr navfn

The asr navfn8 package essentially operates in exactly
the same way as navfn, with the added benefit that, in
case the desired goal is infeasible (meaning within or too
close to an obstacle), it computes a feasible “nearest goal”
to the commanded one. As a ROS software package, it is not
compatible with the latest stable version of ROS.

3.1.4 MoveIt!

In contrast to navfn and the majority of the other global
planners presented here, MoveIt! does not come as a
move base plugin [47]. Its main limitations with respect
to path planning for mobile robots are that (a) it is primarily
targeted at and developed for robotic manipulators, i.e.
robots with (multiple-joint) arms, (b) it cannot plan for
multi-degree-of-freedom joints, i.e. it can only be used for
planning the motion of holonomic mobile robots, and (c) it
requires the transformation of costmaps into its own OMPL
state-space. As far as planners are concerned, MoveIt! can
internally utilise OMPL (Open Motion Planning Library9),
STOMP (Stochastic Trajectory Optimisation for Motion
Planning10), SBPL (Search-Based Planning Library11) or
CHOMP (Covariant Hamiltonian Optimisation for Motion
Planning12). As a ROS software package, it is compatible
with the latest stable version of ROS.

3.1.5 sbpl lattice planner

The sbpl lattice planner13 global planner is a state
lattice approach, utilising the SBPL library. In stark contrast
to all other global planners mentioned in this article, paths
are generated by combining a series of motion primitives,
valid motions based on the robot’s kinematic model. Among
its advantages are that (a) it takes account of the robot’s
kinematic model so that the produced path is actually
feasible by a local planner and (b) it provides the ability
of weighing motions: depending on what motions are
preferable (for instance when turning, the engineer can
choose whether it is more desirable for the robot to turn in-
place or plan ahead so that it traverses an arc), undesired
motions are penalised so that the robot’s trajectory is tuned

8http://wiki.ros.org/asr navfn
9http://ompl.kavrakilab.org/
10http://wiki.ros.org/stomp motion planner
11http://wiki.ros.org/sbpl
12http://www.nathanratliff.com/thesis-research/chomp
13http://wiki.ros.org/sbpl lattice planner

to fit given specifications, if any. Planning is performed
in the x, y, θ dimensions and takes the robot orientation
into account. Finally, the low-level ARA* [48] or AD*
[49] planners are used to create the global path. As a ROS
software package, it is compatible with the latest stable
version of ROS.

3.1.6 sbpl dynamic env global planner

The sbpl dynamic env global planner14 [50] is
similar to sbpl lattice planner, nevertheless it can
incorporate information both from the static costmap and
the predicted future trajectories of moving obstacles. This is
done by grouping spatio-temporal information of where and
when the motion will be safe and the planning is performed
in the standard three spatial dimensions, including a fourth
one concerning safety [51]. As a ROS software package, it
is not compatible with the latest stable version of ROS.

3.1.7 lattice planner

The lattice planner15 package provides a move
base global planner plugin for a time-bounded A* state
lattice planner. This planner utilises the ROS costmap
structure and can produce time dependent, dynamically
feasible navigation paths for robots with differential drive
constraints. As a ROS software package, it is not compatible
with the latest stable version of ROS.

3.1.8 waypoint global planner

Another ROS global planner is the waypoint global
planner.16 This planner takes as input manually-inserted
waypoints (therefore engineers must themselves take
caution to provide feasible poses as the planner has no
knowledge of obstacles in the map) and generates a path that
traverses them in sequence. The path is comprised of line
segments connecting one input point to the next and the final
pose of the robot adopts the orientation of the line segment
connecting the second-to-last and last path points. As a ROS
software package, it is not compatible with the latest stable
version of ROS.

3.1.9 voronoi planner

The voronoi planner17 package creates a global plan
from a point to another by using the GVD (Generalised

14http://wiki.ros.org/sbpl dynamic env global planner
15https://github.com/marinaKollmitz/lattice planner
16https://github.com/gkouros/waypoint-global-planner
17http://wiki.ros.org/voronoi planner

http://wiki.ros.org/asr_navfn
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Voronoi Diagram) of the environment. The GVD is con-
structed from the costmaps’ obstacles and, as aforemen-
tioned, contains all points that are equidistant from the two
closest obstacles, providing a skeleton of the free space.
The final global path is restricted to exist in the GVD (as
opposed to the planners that use search algorithms such as
A*). Of course, this ability forces to planner to generate
safer but non-optimal in length paths. As a ROS software
package, it is compatible with the latest stable version of
ROS.

It should be noted that among all global planners
considered in this subsection, only sbpl dynamic env
global planner is able to take account of moving
objects in the robot’s operating environment, that is,
estimate their motion and project it to the future given their
pose and velocity. The rest can only function by regarding
them as stationary for the time between two consecutive
global path generations.

An interesting comment on the ROS-available global
planners is that almost all of them are somewhat naive when
time and resources are concerned. For example, almost all
global planners use alterations of the well-known A* search
algorithm, which, even though it’s length-optimal, it can be
very slow when the map is large. Next, the available local
planners are described.

3.2 Local Planners

In contrast to the global planners, only a few available and
commonly used local planners exist.

3.2.1 dwa local planner

The dwa local planner18 is based on the work of
Fox et al. [37]. As explained earlier, DWA discretely
samples in the robot’s control space, performs forward
simulation for each sample, evaluates each trajectory against
the local costmap, discards the illegal trajectories and
finally selects the highest-scoring trajectory that satisfies
both the robot’s kinematic restrictions and traversability
safety. dwa local planner does not support obstacle
avoidance for moving obstacles. As a ROS software
package, it is compatible with the latest stable version of
ROS (melodic) at the time of writing of this article.

3.2.2 eband local planner

The eband local planner19 is based on the elastic
bands theory. An elastic band is a deformable collision-
free path generated by a global path, incorporating the

18http://wiki.ros.org/dwa local planner
19http://wiki.ros.org/eband local planner

information of obstacle proximity. This deformation from
the global path is performed during runtime, as the local
perception changes. eband local planner does not
support obstacle avoidance for moving obstacles and is not
compatible with the latest stable version of ROS.

3.2.3 teb local planner

The teb local planner20 package implements an
online local trajectory planner for control and navigation
of mobile robots. What this local planner does is to get
the path generated by a global planner and minimise
it during runtime with respect to trajectory execution
time, separation from obstacles and compliance with
kinodynamic constraints, such as satisfying maximum
velocities and accelerations. This planner supports non-
holonomic robots as well (differential drive and Ackerman-
steering cars) and is based on the theoretical work
presented in [43], which improves the elastic band theory.
teb local planner does support obstacle avoidance
for moving obstacles. As a ROS software package, it is
compatible with the latest stable version of ROS.

After briefly describing the ROS-available global and
local planners, it is time to provide the experimental
formulation, i.e. in what environments the algorithms were
tested, under what conditions and, most importantly, which
evaluation metrics are employed.

4 Benchmarking Setup &Metrics Used

4.1 Methodology of Evaluation, Environmental
Setup, and Notation

The evaluation of all combinations of planners considered
in this document is performed both in simulated and
real environments. The robot used in all simulated and
real conditions is the second version of Turtlebot,21 a
differential-drive robot with a circular footprint of radius
r = 0.2m. The two simulated environments all planners
were benchmarked are readily-available worlds of the
Gazebo simulator. These worlds properly simulate most of
the conditions a 2D mobile base would face in a static,
indoor environment: corridors of different widths, open
narrow passages where satisfaction of constraints is critical
and easier to be violated while testing the ability of local
planners to procure and execute fine control maneuvers,
U-turns, multiple consecutive turns, and obstacles that the
local planner must negotiate on the robot’s way to the goal.
The real environment where planners were tested is the

20http://wiki.ros.org/teb local planner
21https://www.turtlebot.com/turtlebot2/

http://wiki.ros.org/dwa_local_planner
http://wiki.ros.org/eband_local_planner
http://wiki.ros.org/teb_local_planner
https://www.turtlebot.com/turtlebot2/
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Fig. 2 Map of the CORRIDOR gazebo world. The green arrow (top
right) signifies the robot’s initial pose pC

0 ; the red one (bottom left) the
goal pose pC

G

Computer Systems Architecture Laboratory (CSAL) of the
Electrical Engineering department of AUTh.

Figure 2 depicts the map of simulated world CORRI-
DOR, denoted hereafter by MC , Fig. 3 depicts a section
from a significantly larger in size map called WILLOW-
GARAGE, denoted by MW , and Fig. 4 depicts the map of
CSAL, denoted by ML.

Green arrows signify the robot’s initial pose, while red
ones signify the target pose. The maps of the two simulated
environments were constructed using ROS’ SLAM package
gmapping,22 while that of the real environment was
constructed using open-karto23 and they were provided
to the robot at the start of each simulation. While MC

is a map resembling the structure of a typical warehouse,
map MW is a floor plan resembling that of a typical
office floor. The former’s difficulty is significantly lower
compared to that of the latter: corridors are wide, no narrow
passages exist, and there are only two turns whose distance
is sufficiently large so that it’s expected that planners will
easily steer the robot away from both wall-ends − although
results show that even this expectation is optimistic for some
combinations of planners.

The goals’ poses were set as such in order to maximise the
difficulty the planners would face in both finding a feasible

22https://openslam-org.github.io/gmapping.html
23http://wiki.ros.org/open karto

Fig. 3 Section of the map of the WILLOWGARAGE gazebo world.
The green arrow (top right) signifies the robot’s initial pose pW

0 ; the
red one (bottom left) the goal pose pW

G

path and traversing it and, therefore, they facilitate the expo-
sition of the planners’ shortcomings. For map CORRIDOR
the robot’s initial pose was pC

0 ≡ (12.2m, 12.2m, 0.0 rad)
and the goal pose was pC

G ≡ (5.0m, 6.5m, π/2 rad). For
map WILLOWGARAGE pW

0 ≡ (69.0m, 79.0m, 0.0 rad)
and pW

G ≡ (58.0m, 45.0m, π/2 rad). Finally, for map CSAL
pL
0 ≡ (18.6m, 11.3m, 0.0 rad) and pL

G ≡ (11.3m, 2.86m,
0.0 rad).

Each global/local planner combination was tested in
each environment with the same initial and goal poses
for N = 10 times, and therefore the evaluation of the
performance of all combinations was made using statistical

https://openslam-org.github.io/gmapping.html
http://wiki.ros.org/open_karto
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Fig. 4 Section of the map of the CSAL environment. The green arrow
(top right) signifies the robot’s initial pose pL

0 ; the red one (bottom
left) the goal pose pL

G

means. Each combination was given a time-period to
execute its navigation from start to goal, set at tmax

C = 120
sec for world CORRIDOR, tmax

W = 180 sec for world
WILLOWGARAGE, and tmax

L = 600 sec in environment
CSAL.

All simulations were performed in Linux Ubuntu 16.04,
on a PC with a i7 CPU of 12 threads, 32GB of memory, and
a clock frequency of 4.00 GHz. All experiments performed
in environment CSAL were performed in Linux Ubuntu
16.04, on a PC with a i5 CPU of 4 threads, 8GB of memory,
and a clock frequency of 3.20 GHz.

4.2 Path-related Definition of Metrics

In what follows we make the following assumptions and
definitions: a path P : [1, n] → R

2 × (−π, π ] is
a sequence of poses pi, i ∈ [1, 2, . . . , n], i.e. P ≡
(p1, p2, . . . , pn), where pi = (xi, yi, θi), i.e. the x−wise
and y−wise coordinates of a point in R

2 and θi is the
orientation of a vector that originates at (xi, yi) with
respect to the x axis. The cardinality of P may also be
referred to as |P | and is equal to the number of poses
in P . A collection of N paths P j , j ∈ [1, N] shall
be denoted by P = {P 1, P 2, . . . P N }. The distance
between two poses pi and pj is selected to be the
Euclidean distance d(pi, pj ) = ((xi − xj )

2 + (yi −
yj )

2)1/2. An occupancy grid map M : [1, q] → R
2

is a non-ordered set of points in the 2D Cartesian plane:
M ≡ {(xM

1 , yM
1 ), (xM

2 , yM
2 ), . . . , (xM

q , yM
q )}. Furthermore,

μ(x), σ (x) denote the mean value and standard deviation of
variable x.

The length of a path P , denoted by l(P ), is calculated as

l(P ) =
|P |−1∑

i=1

d(pi, pi+1) (1)

i.e. it is the sum of distances between consecutive poses pi

and pi+1.
We denote the smoothness of a path P by s(P ) , and

define it as

s(P ) =
⎛

⎝ 1

|P | − 2

|P |−1∑

i=1

(θi+1 − θi)
2

⎞

⎠
1/2

(2)

The mean minimum distance of a path P from
obstacles in map M is the average distance of the poses
consisting the path to their closest obstacle. It is denoted by
d(P , M), and defined as

d(P , M) = 1

|P |
|P |∑

k=1

min
i=1,2,...,q

d(pk, mi) (3)

where pk ∈ P , k = 1, 2, . . . , |P |, and mi ∈ M , i =
1, 2, . . . , q.

The overall minimum distance of a collection of paths
P to obstacles in M , denoted by inf(d(P, M)) (so as
to point to the absolute nature of this minimum value), is
defined as

inf(d(P, M)) = min
j=1,2,...,N

⎧
⎪⎨

⎪⎩
min

k=1,2,...,|P j |
i=1,2,...,q

d(p
j
k , mi)

⎫
⎪⎬

⎪⎭
(4)

where P j ∈ P , pj
k ∈ P j , k = 1, 2, . . . , |P j |, and mi ∈ M ,

i = 1, 2, . . . , q.
The mean deviation of a path P 1 from a path P 2 is

calculated as the mean distance of each pose consisting P 1

to its nearest pose in P 2:

dδ(P 1, P 2) = 1

|P 1|
|P 1|∑

k=1

min
l=1,2,...,|P 2|

d(pk, pl) (5)

where pk ∈ P 1, k = 1, 2, . . . , |P 1|, and pl ∈ P 2, l =
1, 2, . . . , |P 2|.

The total deviation of a path P 1 from a path P 2 is
calculated as the sum of the distance of each pose consisting
P 1 to its nearest pose in P 2:

d�(P 1, P 2) = |P 1| · dδ(P 1, P 2) (6)

The Frechet distance metric, introduced by Maurice
Frechet for continuous curves in a metric space in 1906
[52], is a measure of similarity between two curves. In this
article’s context, it is preferred to the Pompeiu-Hausdorff
distance [53] due to the latter not accounting for the
location and ordering of the points along a curve/path.
For discrete curves P 1 : [1, m] → V, P 2 : [1, n] →
V (such as the actual path pose samples and global
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plans) consisting of a sequence of endpoints λ(P 1) ≡
(P 1(1), P 1(2), . . . P 1(m)) ≡ (v1, v2, . . . vp) and
λ(P 2) ≡ (P 2(1), P 2(2), . . . P 2(n)) ≡ (u1, u2, . . . ug)

respectively, the discrete Frechet distance is defined by:

δdF (P 1, P 2) = min{‖L‖ |
L is a coupling between P 1 and P 2} (7)

where ‖L‖ = max
i=1,...q

d(uai
, ubi

). A coupling L is a

sequence of distinct pairs from λ(P 1) × λ(P 2): L ≡
((ua1 , vb1), (ua2 , vb2), . . . , (uaq , vbq ) and d(a, b) is a metric
of distance (here equal to the Euclidean distance as defined
above) between points a and b.

Denoting by G a collection of N global plans produced
across N conducted simulations, G = {G1, G2, . . . , GN },
and by P a collection of N traversed paths P =
{P 1, P 2, . . . , P N }, the evaluation metrics for global
planners, local planners, and their combinations is featured
in Table 1.

4.3 Overall Evaluation and Ranking

The overall evaluation of each combination of global and
local planners shall be performed on the basis of the
performance of its two components and on their joint
performance. Each metric m described above shall be
taken into account and assigned a weight wm ∈ R≥0, so
that generic evaluation is made feasible and tractable for
variable specifications (depending on the application and
the uncertainty of the robot’s model, an engineer might
prefer to assign further importance on, for instance, the
length of the robot’s traversed path than its overall minimum
distance from obstacles). The utmost goal is the assignation
of a scalar value to each combination of global and local
planners that distinguishes them and ranks them based on
their performance.

We initially make the assumption that the value of a
combination of global and local planners should be strictly
increasing, so that larger values reflect better performance.
This value depends not only on the value of each metric
hitherto discussed, but, more specifically, on the nature
of the contribution of a metric. For instance travel times
between p

MC

0 and p
MC

0 contribute more the lower their
value is, but, with respect to the overall distance between
obstacles, the value of a combination of planners should
increase the greater that distance is. Therefore the value of
a combination of planners depends on the proportionality
contribution of each specific metric. Table 1 summarises the
contribution of each metric that pertains to global planners,
local planners, and their combinations. Arrows pointing
upward indicate proportionality; arrows pointing downward
indicate inverse proportionality. More details can be found
in Appendix A.

Since what we seek is the assignation of a scalar value
V (C) to each combination of global and local planners
C, we must pass through the construction of a valid value
function V . Function V must (a) be strictly increasing (so
that it accurately expresses the value of a combination based
on performance metrics, and at the same time provide a
meaning to their difference which can be traced back to
the difference between their performance) and (b) account
for metrics of different units of measurement. To this end,
we begin by normalising the values of metrics within their
respective interval of minimum and maximum values across
combinations of global and local planners − so that the
value of all metrics is expressed in the range of [0, 1]
(without a unit of measurement) − and depending on their
context. The latter means that the value of, for instance,
the mean length of N global plans will be expressed
between the global mean minimum length and global mean
maximum length of all combinations’ global plans − since
this metric is independent of the success or failure of the
mission of a combination −, but the mean travel time
between pM

0 and pM
G for a map M , which does depend on

it, can only and therefore will only be expressed between
the mean minimum and mean maximum travel times of
combinations that succeeded in getting the robot from pM

0
and pM

G . The normalising function for a metric m shall then
be N(m):

N(m) = m − min m

max m − min m
(8)

Let S denote the set of combinations of global and
local planners C that succeeded in making the robot travel
from pM

0 to pM
G for map M . Let D denote the set of

metrics that do not depend on the success of a mission
(in the above sense), i.e. metrics concerning global and
local planners but not their combination. Let also IA(x)

denote the indicator function for a metric x and set A:
IA(x) equals one if x ∈ A and zero otherwise. Then the
indicator function for combination C regarding metric m,
I (C, m) = IS(C) || ID(m) is zero whenC was unsuccessful
in its mission and m is a metric concerning the combination
of global and local planners; in all other cases, I (C, m)

equals one. The formulation of this indicator function in
such a way makes taking account of all metrics described
feasible and the calculation of V tractable.

For global planners, local planners, or their combina-
tions, if their value regarding metric m is proportional to the
value of m (such as the value of the metric of the robot’s
overall minimum distance from obstacles), the value of a
planner, or a combination of planners C, for metric m shall
be expressed in the interval R≥0 × [0, 1] and expressed by
Vq(C, m):

Vq(C, m) = I (C, m) · wm · N(m) (9)
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Table 1 Evaluation metrics on global planners, local planners, and their combination (left), their description (middle), and the nature of their
contribution in the value of a combination of global and local planners (right): arrows pointing upward indicate that the higher the value of a
metric the higher the value of the combination; arrows pointing downward indicate that the value of a combination of a global and local planners
is higher the lower the value of that metric is

Type Proportionality
contribution

Global planner evaluation
metric

μl(G) The mean length of the global plans produced μl(G) = μ(l(Gj )) [m], j =
1, 2, . . . , N

↘

σl(G) The standard deviation around the mean global plan length σl(G) = σ(l(Gj )) [m],
j = 1, 2, . . . , N , which is a measure of consistency between plans

↘

μr(G) The mean number of global path poses over the mean global plan length μr(G) =
μ(|Gj |/l(Gj )) [poses / m], j = 1, 2, . . . , N ; a measure of the plans’ resolution:
the higher the resolution, the finer and more delicate the robot’s maneuvers (if, for
instance, specifications require it)

↗

μs(G) The mean smoothness of the produced paths μs(G) = μ(s(Gj )) [rad], j =
1, 2, . . . , N

↘

σs(G) The standard deviation around the mean global plan smoothness σs(G) = σ(s(Gj ))

[rad], j = 1, 2, . . . , N
↘

inf(d(G, M)) The overall minimum distance of global plans to obstacles in map M across all
simulations inf(d(G, M)) [m]; a measure of how well the global planner plans with
respect to obstacle clearance.

↗

μ(d(G, M)) The average mean minimum distance of global plans to obstacles in map M ,
μ(d(Gj , M)) [m], j = 1, 2, . . . , N

↗

σ(d(G, M)) The standard deviation around the mean minimum distance of global plans to
obstacles in map M , σ(d(Gj , M)) [m], j = 1, 2, . . . , N

↘

Local planner evaluation
metric

μA/N The mean number of aborted missions over the number of simulations conducted ↘
μRR The mean number of rotation recoveries ↘
σRR The standard deviation around the mean number of rotation recoveries ↘
μCC The mean number of costmap clearances ↘
σCC The standard deviation around the mean number of costmap clearances ↘
μPF The mean number of path failures; a measure of how many times the local planner

failed to procure valid control inputs
↘

σPF The standard deviation around the mean number of path failures ↘
μPF /μLPC The mean number of path failures over the mean number of local planner calls; a

measure of how often the local planner failed to control the robot’s trajectory
↘

Combination of planners
evaluation metric

μδ(P,G) The mean deviation between the actual pathsP the robot traversed compared to the
global plans G it was to follow μδ(P,G) = μ(dδ(P j , Gj )) [m], j = 1, 2, . . . , N

↘

μ�(P,G) The mean total deviation between the actual pathsP the robot took compared to the
global plans G it was to follow μ�(P,G) = μ(d�(P j , Gj )) [m], j = 1, 2, . . . , N

↘

μF
δ (P,G) The mean Frechet distance between the actual paths P the robot took and their

corresponding global pathsG, μF
δ (P,G) = μ(δdF (P j , Gj )) [m], j = 1, 2, . . . , N

↘

μt The mean travel time from initial pose p0 to goal pose pG [sec] ↘
σt The standard deviation around the mean travel time [sec] ↘
μl(P) The mean length of the actual paths P the robot traversed as a result of the local

planner’s performance μl(P) = μ(l(P j )) [m], j = 1, 2, . . . , N
↘
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Table 1 (continued)

Type Proportionality
contribution

σl(P) The standard deviation around the mean actual path length σl(P) = σ(l(P j )) [m],
j = 1, 2, . . . , N ; a measure of the consistency of the paths the local planner dictated
to the robot

↘

μs(P) The mean smoothness of the traversed paths μs(P) = μ(s(P j )) [rad], j =
1, 2, . . . , N

↘

σs(P) The standard deviation around the mean traversed paths’ smoothness σs(P) =
σ(s(P j )) [rad], j = 1, 2, . . . , N

↘

inf(d(P, MC)) The overall minimum distance of the actual paths the robot traversed to obstacles in
M across all simulations inf(d(P, M)) [m]; a measure of how well the local planner
plans the robot’s way around obstacles so as not to violate collision-avoidance
constraints

↗

μ(d(P, MC)) The average mean minimum distance of the actual paths the robot traversed to
obstacles in map M , μ(d(P j , M)) [m], j = 1, 2, . . . , N

↗

σ(d(P, MC)) The standard deviation around the average mean minimum distance of the actual
paths the robot traversed in map M σ(d(P j , M)) [m], j = 1, 2, . . . , N

Analogously, for global planners, local planners, or
their combinations, if their value regarding m is inversely
proportional to the value of m (such as the value of the
metric of time taken to get from the initial pose p0 to
the goal pose pG), the value of C for metric m shall be
expressed by Vq(C, m):

Vq(C, m) = I (C, m) · wm · (1 − N(m)) (10)

Therefore, based on the above, a generic but exact
formula for assigning a value V (C) to the performance
of each combination of global and local planners C

across all aforementioned evaluation metrics and across N

simulations in map M is:

VM(C) =
∑

m

IQ(m) · Vq(C, m) + IQ(m) · Vq(C, m) (11)

where Q denotes the set of metrics whose value is
proportional to the value of a combination of global and
local planners, and IQ(m) is the indicator function for m.
VM , as defined in Eq. 11, is strictly increasing for all values
of a metric m ∈ [min m,max m] on a given map, i.e.
for all values of metrics that result from either successful
or unsuccessful combinations of planners in that map (as
mentioned before, successful in the sense of completing all
missions).

The final overall ranking of the performance of all
combinations of global and local planners in a map M will
therefore be the result of a sort operation on the values
of VM(C), as given in Eq. 11, in descending order. The
final overall ranking of the performance of all combinations
across different maps will be the result of a sort operation
on the sum of values of VM across maps M .

4.4 Software-Oriented Qualitative Metrics

Along with the quantitative evaluation metrics mentioned
above we shall evaluate the global and local planners’ status
of their software form − their ROS package quality with
respect to the metrics below:

• Their documentation quality and wealth; a quality much
sought-after by robotics engineers or programmers,
regardless of whether their work is mostly focused on
theory or practice.

• Their up-to-dateness; a compound quality summing (a)
the package’s relevancy with respect to its peers, (b)
the support offered by its maintainers, (c) the package’s
maintenance status and (d) its ability to be installed on a
robot, i.e. its contemporaneousness with core software
such as the robot’s operating system, compiler, libraries
and, in general, dependencies such as these.

• Their ease of installation.
• Their self-containment/completeness, i.e. no additional

piece of software or care is required for the package to
operate as intended.

• Their computation needs.
• Their parameterisability; although the number of

package parameters increases the complexity of tuning,
the ability to (a) adapt the planners’ performance
to specific instantiations of robots’ properties (their
geometry in space, their kinematic model, etc), along
with (b) tune their parameters in finer detail, ergo their
performance (and ultimately the robot’s behaviour)
under various and variable specifications is paramount
to achieving the desired/prescribed task or motion
performance by the robot. This quality is coupled
with the one above: a wealth of parameters to tune is
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irrelevant if no or inadequate illustration about their
identity/effect on the whole is made.

• Their consistency in their performance, i.e. the failures
they exhibit due to inadequate translation of the theory
behind the software implementation into programming
code (this includes (in-)consistency in emergence of
software bugs, and speed of execution).

Before we move on to the evaluation of all planners’
combinations we shall sift through them based on the
first five qualitative metrics defined above: an obsolete,
non-self-contained, or misinstallable package is a package
that cannot be used in practice; a package lacking in
documentation is a package which, even if it’s usable, it
deprives the engineer of insight into its method, obstructs
access to or obscures the meaning of its parameters and
therefore hinders its parameterisability and, ultimately,
its usability and longevity; finally, a resource-hungry
package is a package denying other nodes resources they
need, therefore compromise their performance and the
performance of the joint robotic system.

5 Global-Local Planners Evaluation

5.1 Initial Sifting

Packages navfn and global planner are considered
to be the default choices for global planners in ROS:
they are the oldest and (considered to be−) the a priori

safest choices for navigation. Moreover, they require little
(if not no) tuning at all. They have been continuously
maintained since the early days of ROS (this applies
especially for navfn) and, as the de facto ROS global
planners to be used, they will be regarded as a baseline for
all other global planners that pass through the initial sifting
phase.

We consider package asr navfn to be redundant as (a)
its behaviour is exactly the same as navfn’s and (b) its
employability rests on the potential failure of the robot’s
target selector. Furthermore, it is not currently maintained
(the latest ROS-version supported is kinetic and the
latest gihub commit is two years old at the time of writing
of this article). Therefore this package will not be evaluated
in accordance with the second qualitative criterion.

Although package MoveIt! is heavily documented,
supported, and up-to-date, it is not targeted at 2D
navigation. Therefore this package will not be evaluated,
in accordance with the second qualitative criterion. In
Table 2, MoveIt! receives three bullets in the column for
computation needs due to its need for resources in order to
plan for multi-degree of freedom robotic arms with various
and varying spatio-temporal complicated constraints.

Package sbpl lattice planner is documented
both in theory and parametrically. It is currently up-to-
date with the latest ROS version (currently melodic),
maintained, and supported by ROS maintainers (a software
bug discovered during its evaluation was squashed within
8 days). Its installation (apart from that of its core library
SBPL) required virtually no effort.

Table 2 Qualitative metrics evaluation of (as defined in Section 4.4) and acceptance decision for inclusion in evaluation for all planners considered

Qualitative metrics

Planner DOC UTD INST SC/C PARAM CON COMP Accepted

navfn • • •• • • • • •
global planner • • •• • • • • •
asr navfn • ◦ • • • • • ◦
MoveIt! • • • • •• • • • • ? • • • ◦
sbpl lattice planner •• • •• • • ◦ • •
sbpl dynamic env global planner • ◦ • ◦ • ? • ◦
lattice planner • ◦ • • • • • ◦
waypoint global planner • ◦ • ◦ ◦ • • ◦
voronoi planner • ◦ • • • • • ◦

dwa local planner • • •• • • • • •
eband local planner • ◦ •• • •• • •• •
teb local planner • • • • •• • • • • •• •• •

Abbreviations are introduced to economize on space; DOC is an abbreviation of a package’s documentation quality, UTD of its up-to-dateness,
INST of its ease of installation, SC/C of its self-containment/completeness, PARAM of its parameterisability, CON of its consistency in execution,
and COMP of its computation needs. Hollow bullets indicate the inadequacy of planners with respect to each metric. Question marks indicate
unknown status
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The dynamic version of the sbpl lattice
planner, package sbpl dynamic env global
planner is considered to be redundant since this article
is dealing with navigation in static environments; never-
theless its reference page warns the reader that the tracker
used to track moving objects is not robust (especially when
the robot is on the move), advising her to provide a better
alternative. Furthermore, it requires the substitution of the
whole move base package with a modification of it, so
that both global and local planners run at the same time in
parallel. Finally, it is evaluated as not up-to-date, since the
latest confirmed ROS distribution is diamondback, and
its latest update was over 5 years ago at the time of writing
of this article. Ergo this package is neither self-contained
nor up-to-date, and, in accordance with criteria two and
four, will not be considered in the coming evaluation.

Although package lattice planner is documented
and self-contained, it is not actively maintained (its latest
github commit is three years old) and, therefore will
not be evaluated, in accordance with the second qualitative
criterion.

The same applies for package waypoint global
planner: it is minimally documented, not actively
maintained, and not self-contained in the sense that
providing the initial pose p0 and a goal pose pG is not
sufficient for the generation of a path connecting p0 to
pG since the planner is unable to consider obstacles in
the global costmap. Ergo it will not be considered for
evaluation, in accordance to the first, second and fourth
criteria.

As for package voronoi planner, it is also mini-
mally documented and not actively maintained (the latest
ROS-version supported is indigo and the latest github
commit is three years old) and, therefore, will not be consid-
ered for evaluation, in accordance with the first and second
criteria.

Regarding the local planners, the status of dwa local
planner is equivalent to that of navfn and global
planner: it is the baseline (local) planner in ROS.

Local planner eband local planner is docu-
mented, installed through the standard package installation
procedure, and self-contained. However, it has not been
updated to match the latest ROS versions24, nor does it
seem to be currently or actively maintained. Neverthe-
less, we shall include it in our local planners evaluation
as an exception due to the critical lack of local planners
in ROS. In Table 2, under the column for computation
needs, eband local planner receives two bullets due
to its need of solving a non-linear constrained optimisation
problem online.

24https://github.com/utexas-bwi/eband local planner/issues/28

Lastly, local planner teb local planner can be
said to be the most well- and thoroughly-documented
planner among all global and local ones, on both the-
oretical and parametric levels. It is up-to-date with the
latest ROS releases, self-contained, and it is the most
parameterisable planner in the ROS ecosystem. Just
as eband local planner, teb local planner
receives two bullets in the column for computation
needs in Table 2, due to its need of solving a non-linear
spatio-temporally constrained optimisation problem online.

Overall, none of the planners discussed above are exces-
sively resource-hungry, and therefore their employment
and operation beside the other packages (the localisation
or SLAM module for instance) does not compromise the
latter’s performance.

Table 2 illustrates the complete evaluation list based on
qualitative criteria of Section 4.4 for all planners considered.

Table 3 features the planners that will be considered for
evaluation. The notation GP and LP used hereafter in the
header of tables is shorthand for “Global Planners” and
“Local Planners” respectively.

5.2 Evaluation onMap CORRIDOR

Overall, all combinations of dwa local planner with
any global planner failed in making the robot reach pC

G,
and the same is observed for the combination of sbpl
lattice planner with eband local planner. The
remaining combinations were reliable each time run. Table 4
summarises the success rate of each combination of global
and local planners in map MC .

Figure 5 depicts the global plans produced by all global
planners featured in the first column of Table 3 for all
combinations of global and local planners of the same table,
and over N simulations for each combination, in regard to
navigation in map CORRIDOR MC .

Figure 6 depicts the actual paths traversed by the robot
for all combinations of global and local planners of the same
table, and over N simulations for each combination.

Table 4 features the value VMC
and rank of all

combinations of global and local planners evaluated on
all metrics exhibited in Tables 8, 9, 10, 11, 12, 13

Table 3 The list of global and local planners’ ROS packages whose
combination’s performance will be evaluated

Global planners (GP) Local planners (LP)

navfn dwa local planner

global planner eband local planner

sbpl lattice planner teb local planner

https://github.com/utexas-bwi/eband_local_planner/issues/28
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Table 4 The success rate, value
VMC

, and corresponding rank
of all combinations of global
and local planners evaluated on
their performance in the map of
world CORRIDOR MC across
N = 10 simulations

GP LP Successful missions / N VMC
rank

navfn teb 10/10 21.41 1

sbpl teb 10/10 20.35 2

globalplanner teb 10/10 19.29 3

navfn eband 10/10 15.96 4

globalplanner eband 10/10 14.70 5

sbpl eband 0/10 10.99 6

sbpl dwa 0/10 6.56 7

navfn dwa 0/10 6.46 8

globalplanner dwa 0/10 5.50 9

Fig. 5 Global plans G produced
by the three global planners with
regard to the initial and goal
poses of map CORRIDOR MC .
Each row depicts the global
plans produced by one global
planner when combined with
each of the reviewed local
planners. Navigation with each
combination of planners was run
N = 10 times
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Fig. 6 The paths traversedP by
the robot with regard to the
initial and goal poses of map
CORRIDOR MC . Each column
depicts the paths that were the
result of application of one local
planner when combined with
each of the reviewed global
planners. Navigation with each
combination of planners was run
N = 10 times

Table 5 The success rate, value
VMW

and corresponding rank
of all combinations of global
and local planners evaluated on
their performance in the map of
world WILLOWGARAGE
MW across N = 10 simulations

GP LP Successful missions / N VMW
rank

globalplanner teb 10/10 21.90 1

navfn teb 10/10 20.00 2

sbpl teb 10/10 12.27 3

globalplanner eband 0/10 11.95 4

navfn eband 0/10 11.76 5

sbpl eband 0/10 9.85 6

navfn dwa 0/10 9.31 7

globalplanner dwa 0/10 8.86 8

sbpl dwa 0/10 4.85 9
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and 14 regarding their performance in navigation on the
map of world CORRIDOR. For the calculation of the
value of all combinations, all weights wm = 1.0 except
that corresponding to the local-planner-specific metric of
μPF /μLPC , due to the fact that eband local planner
does not provide access to the number of times it was called

to direct the motion of the robot, which was set to 0.0.
Overall, local planner teb local planner occupied all
podium places, with its combination with global planner
navfn being the best-performing among the three. Details
on the performance of global planners, local planners, and
their combination, resides in Appendix B.

Fig. 7 Global plans G produced
by the three global planners with
regard to the initial and goal
poses of map
WILLOWGARAGE MW . Each
row depicts the global plans
produced by one global planner
when combined with each of the
reviewed local planners.
Navigation with each
combination of planners was run
N = 10 times
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5.3 Evaluation onmapWILLOWGARAGE

Overall, the combinations of dwa local planner and
eband local planner with all global planners failed
in making the robot reach pW

G . The remaining combinations
(all having teb local planner as their local planner)
were reliable each time run. Table 5 summarises the success

rate of each combination of global and local planners in map
MW .

Figure 7 depicts the global plans produced by all global
planners featured in the first column of Table 3 for all
combinations of global and local planners of the same table,
and over N simulations for each combination, in regard to
navigation in map WILLOWGARAGE MW .

Fig. 8 The paths traversedP by
the robot with regard to the
initial and goal poses of map
WILLOWGARAGE MW . Each
column depicts the paths that
were the result of application of
one local planner when
combined with each of the
reviewed global planners.
Navigation with each
combination of planners was run
N = 10 times
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Table 6 The success rate, value
VML

and corresponding rank of
all combinations of global and
local planners evaluated on
their performance in the map of
world CSAL ML across
N = 10 experiments

GP LP Successful missions / N VMC
rank

navfn teb 10/10 18.74 1

globalplanner teb 10/10 16.84 2

navfn eband 10/10 14.77 3

globalplanner eband 10/10 14.26 4

sbpl teb 10/10 13.57 5

navfn dwa 0/10 8.10 6

sbpl eband 10/10 7.80 7

sbpl dwa 0/10 6.47 8

globalplanner dwa 0/10 6.13 9

Figure 8 depicts the actual paths traversed by the robot
for all combinations of global and local planners of the same
table and over N simulations for each combination.

Table 5 features the value VMW
and rank of all

combinations of global and local planners evaluated on

all metrics exhibited in Tables 15, 16, 17, 18, 19, 20 and
21, regarding their performance in navigation on the map
of world WILLOWGARAGE. For the calculation of the
value of all combinations, all weights wm = 1.0 except
that corresponding to the local-planner-specific metric of

Fig. 9 Global plans G produced
by the three global planners with
regard to the initial and goal
poses of map CSAL ML. Each
row depicts the global plans
produced by one global planner
when combined with each of the
reviewed local planners.
Navigation with each
combination of planners was run
N = 10 times
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μPF /μLPC , which was again set to 0. Local planner
teb local planner again occupied all podium places
(this time by virtue of all other local planners failing to
complete the robot’s mission to travel from the initial to
the goal pose), with its combination of global planner
outperforming that with navfn, which was the overall
best in the map of world CORRIDOR. Details on the
performance of global planners, local planners, and their
combination, resides in Appendix C.

5.4 Evaluation onMap CSAL

Overall, as in simulations, all combinations of dwa local
planner with any global planner failed in making the
robot reach pL

G. The remaining combinations were reliable
each time run. Table 6 summarises the success rate of each
combination of global and local planners in map ML.

Figure 9 depicts the global plans produced by all global
planners featured in the first column of Table 3 for all
combinations of global and local planners of the same table,

and over N simulations for each combination, in regard to
navigation in map CSAL ML.

Figure 10 depicts the actual paths traversed by the robot
for all combinations of global and local planners of the same
table, and over N simulations for each combination.

Table 6 features the value VML
and rank of all

combinations of global and local planners evaluated on
all metrics exhibited in Tables 22, 23, 24, 25, 26, 27
and 28 regarding their performance in navigation on the
map of environment CSAL. For the calculation of the
value of all combinations, all weights wm = 1.0 except
that corresponding to the local-planner-specific metric of
μPF /μLPC , due to the fact that eband local planner
does not provide access to the number of times it was
called to direct the motion of the robot, which was set
to 0.0.

What stands out in real-life experiments is that
the performance of combinations of global planner
sbpl lattice planner with local planners decreased,
allowing eband local planner − although slower, as

Fig. 10 The paths traversedP
by the robot with regard to the
initial and goal poses of map
CSAL ML. Each column
depicts the paths that were the
result of application of one local
planner when combined with
each of the reviewed global
planners. Navigation with each
combination of planners was run
N = 10 times
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Table 7 The compound value V for and corresponding rank of all combinations of global and local planners evaluated on their performance in
the maps of worlds CORRIDOR MC , WILLOWGARAGE MW , and CSAL ML

GP LP VMC
VMW

VML
V rank

navfn teb 21.41 20.00 18.74 60.15 1

globalplanner teb 19.29 21.90 16.84 58.03 2

sbpl teb 20.35 12.27 13.57 46.19 3

navfn eband 15.96 11.76 14.77 42.49 4

globalplanner eband 14.70 11.95 14.26 40.91 5

sbpl eband 10.99 9.85 7.80 28.94 6

navfn dwa 6.46 9.31 8.10 28.64 7

globalplanner dwa 5.50 8.86 6.13 20.49 8

sbpl dwa 6.56 4.85 6.47 17.88 9

in simulations − and its combinations with the remaining
two global planners to displace teb local planner’s
combination with sbpl lattice planner from the top
positions. Setting the combinations of this global planner
with local planners aside, the combinations of the remaining
global planners exhibit the same pattern observed in simu-
lations: (a) given a global planner, teb local planner
outperforms eband local planner, which in turns
outperforms dwa local planner, and (b) given a local
planner, navfn outperforms global planner.

Details on the performance of global planners, local
planners, and their combination, resides in Appendix D.

5.5 Overall Evaluation

Table 7 features the values of all combinations of
global planners of Table 3 across maps of environments
CORRIDOR, WILLOWGARAGE, and CSAL.

Two definitive patterns emerge clearly: as regards
local planners, teb local planner outperforms
eband local planner, which outperforms dwa
local planner; as regards global planners, given a
local planner, navfn outperforms global planner by
a small margin, smaller than that between the latter and
sbpl lattice planner, and this applies for all combi-
nations of global planners with all local planners. Therefore,
it is reasonable to assume that the best combination of plan-
ners for use on autonomous navigation of ground vehicles
in 2D occupancy-grid maps employs navfn as its global
planner component and teb local planner as its
local planner component. Furthermore, the best candidates
for substitution of the above planners, depending on the
conditions of the environment and the setup of the robot,
are global planner global planner and local planner
eband local planner.

6 Conclusions

This work evaluates the state-of-the-art global and local
planners whose source code is available for direct deploy-
ment via the Robot Operating System (ROS) on the task
of navigation of Unmanned Ground Vehicles − specifi-
cally in this work a Turtlebot v2 − in 2D occupancy grid
maps. An initial sift was performed in order to distin-
guish robust planners based on software-oriented qualita-
tive metrics. The planners that passed through this sifter
were combined so that the performance of all combina-
tions of global and local planners would be evaluated.
Their performance was tested on two heterogeneous sim-
ulated environments and on one real-world environment,
so that both components would face appropriate stress
tests.

Overall, we discern the local planner teb local
planner as the most robust and definitively success-
ful local planner among the ones tested: it never failed
to navigate from an initial pose to a goal one, and it
always did so in the least amount of time. Local planner
eband local planner came in second, failing to nav-
igate in an appropriate amount of time in one simulated
environment map, while clearly directing the motion of
the robot in an overly-safe manner. However, in real-world
experiments, it performed better than in simulations. The
third local planner, dwa local planner did not suc-
cessfully complete a single mission in either environment,
simulated or real.

As regards global planners, navfn and global
planner are almost equivalent, with the former
outperforming the latter overall. On the other hand,
sbpl lattice planner’s gap of performance between
global planner is greater than that between the latter
and navfn.
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Appendix A: Proportionality Contribution
of Metrics to the Value of a Combination
of Planners

On the value of a combination of global and local planners
that pertains to metrics of its global planner component,
we make the following assumptions. The value of a
combination of global and local planners is: (a) higher the
shorter a global plan is − so that a robot traversing it in
constant speed takes less time to get from an initial to
a goal pose, (b) higher the higher its resolution is − the
finer a plan’s detail the more probable it is that a (sub)goal
exists within the horizon of the local costmap, and the more
smooth the path may be, (c) higher the more smooth it is −
the smoother the plan the more probable it is that the robot
takes less time to traverse the path from the initial pose to
the goal one (following the global plan to the letter is a
matter of the local planner as regards how fit it considers
the global plan to be, and how feasible it actually is) (d)
higher the larger its average mean minimum distance from
obstacles in a map is − so that collisions with obstacles are
less probable to occur (one must count on the uncertainty of
improbable events) (e) higher the larger its overall minimum
distance from obstacles in a map is across all simulations,
and (f) lower the more varied the value of each metric is −
so that the engineer can count on its reliability. As is evident,
these metrics are independent of the success or failure of
combinations of global and local planners in reaching the
goal pose pG from the initial one p0, i.e. they are included
in a combination’s calculation of value regardless if that
combination failed to complete all missions.

On the value of a combination of global and local
planners that pertains to metrics of its local planner
component, we make the following assumptions. The value
of a combination of global and local planners is: (a) lower
the higher the mean number of aborted missions across the
sum of its performed simulations is, (b) lower the higher
the mean number of rotation recoveries performed is, (c)
lower the higher the mean number of costmap clearances

performed is, (d) lower the higher mean number of path
failures exhibited is, (e) lower the higher the relative number
of path failures is, and (f) lower the more varied the value
of each metric is. Again, these metrics are independent of
the success or failure of combinations of global and local
planners in reaching the goal pose, and will therefore be
included in a combination’s calculation of value regardless
if that combination failed every single mission or not.

On the value of a combination of global and local
planners that pertains to metrics referring to their joint
performance, we make the following assumptions. The
value of a combination of global and local planners is: (a)
lower the larger the mean deviation of the actual paths the
robot took − as a result of the application of the local
planner − from the paths the global planner designed the
robot to take, (b) lower the larger the mean total deviation
of the former from the latter is, (c) lower the larger the mean
Frechet distance of the former from the latter is, (d) higher
the lower the travel time from the initial to the goal pose
is, (e) higher the shorter the actual paths the robot took are,
(f) lower the less smooth the actual paths the robot took
are, (g) higher the larger the robot’s average mean minimum
distance from obstacles in a map is, (e) higher the larger the
robot’s overall minimum distance from obstacles in a map
is across all simulations, and (f) lower the more varied the
value of each metric is. The above metrics are dependent on
the success or failure of the combination of global and local
planners in reaching the goal pose, and will therefore not
be included in the calculation of the value of a combination
if that combination failed to reach pG for every simulation
that this occurred.

Appendix B: Details of Evaluation onMap
CORRIDOR

1) Global-planner-specific evaluation

Tables 8 and 9 illustrate the resulted values of the
quantitative metrics concerning global planners defined
in Table 1 over N = 10 simulations in environment
CORRIDOR.

Regarding the produced plans, global planner pro-
duced paths of the least length (Table 8), sbpl lattice
planner those of the most length and of the lowest
density but of the highest smoothness (lower numbers indi-
cate higher smoothness), and navfn produced the least
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Table 8 Mean global plan lengthμl(G) and standard deviation σl(G), mean global plan resolutionμr(G), and meanμs(G) and standard deviation
σs(G) of the global plans’ smoothness for map CORRIDOR MC

Global-planner-specific metrics

GP LP μl(G) [m] σl(G) [m] μr(G) [poses/m] μs(G) [rad] σs(G) [rad]

navfn dwa 19.63 0.00 76.18 2.42 0.00
navfn eband 19.63 0.00 76.18 2.42 0.00
navfn teb 19.61 0.02 76.20 2.42 0.00
globalplanner dwa 19.60 0.01 74.43 2.40 0.00
globalplanner eband 19.59 0.01 74.70 2.40 0.00
globalplanner teb 19.60 0.01 74.70 2.40 0.00
sbpl dwa 22.92 0.00 53.25 2.39 0.00
sbpl eband 22.92 0.00 53.41 2.39 0.00
sbpl teb 22.92 0.00 53.33 2.39 0.00

coarse plans but those of the lowest smoothness. The mid-
dle’s performance with respect to length is reasonable
since sbpl lattice planner does take account of the
robot’s kinematic model, which, being a differential drive
robot and therefore non-holonomic, is constrained in its
motion. In contrast, navfn and global planner do not
consider such constraints and, the latter being the succes-
sor of the former, produce slightly similar plans (this is also
observed when considering the figures of the two planners’
produced paths: they seem almost identical to the naked eye,
in stark contrast to those of sbpl lattice planner).
Another observable difference in Fig. 5 is that the plans of
navfn and most of those of sbpl lattice planner
are deterministic: given an initial pose p0, a goal pose pG

and a map, they produce the same plan each time, while
global planner introduces a slight degree of random-
ness, which explains why its plans’ standard deviation is
non-zero compared to the other two planners.

With regard to the crucial ability of a global planner
to plan around obstacles (Table 9), global planner
produced paths that did not fully take account of the
provided robot radius (subtracting the robot’s radius from

the overall minimum distance of its plans to the closest
obstacle gives −0.02m), and therefore (a) a local planner of
full fidelity to the global plan would, with certainty, force
the robot to halt its mission (until perhaps a new target was
set), or even to collide with obstacles in its environment and
(b) the engineer should increase move base’s view of the
robot’s radius in its costmap parameters. The two remaining
global planners produced paths that graze obstacles at least
once. Furthermore, sbpl lattice planner would like
to the robot to move parallel to walls, which is a behaviour
that can actually be dictated to the planner (the planner was
tuned so that the robot would prefer to move in straight
lines), which can be considered somewhat advantageous
since there is always an obstacle close enough so that it can
be exploited as a frame of reference under the task of either
mapping or localisation.

2) Local-planner-specific evaluation

Table 10 summarises the resulted values of the quantitative
metrics concerning local planners defined in Table 1 over N

simulations.

Table 9 Overall minimum
distance of the global plans
from any obstacle across all
experiments inf(d(G, MC)),
mean minimum distance
μ(d(G, MC)) and standard
deviation σ(d(G, MC)) from
all obstacles for map
CORRIDOR MC

Global-planner-obstacle-specific metrics

GP LP inf(d(G, MC)) [m] μ(d(G, MC)) [m] σ(d(G, MC)) [m]

navfn dwa 0.00 0.52 0.32

navfn eband 0.00 0.52 0.32

navfn teb 0.00 0.52 0.32

globalplanner dwa 0.00 (−0.02) 0.48 0.31

globalplanner eband 0.00 (−0.02) 0.48 0.31

globalplanner teb 0.00 (−0.02) 0.48 0.32

sbpl dwa 0.00 0.29 0.20

sbpl eband 0.00 0.29 0.20

sbpl teb 0.00 0.29 0.20
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Table 10 Mean number of aborted missions over the number of simulations conducted μA/N , mean number of rotation recoveries μRR and their
standard deviation σRR , mean number of costmap clearances μCC and their standard deviation σCC , mean number of path failures μPF and their
standard deviation σPF , and mean number of path failures over the mean number of local planner calls μPF /μLPC for all combinations of global
and local planners featured in Table 3 on map CORRIDOR MC

Local-planner-specific metrics

GP LP μA/N μRR σRR μCC σCC μPF σPF μPF /μLPC

navfn dwa 0.90 2.90 0.57 3.30 0.67 53.50 17.35 0.11

globalplanner dwa 0.90 3.30 1.16 2.70 0.95 58.90 22.29 0.10

sbpl dwa 0.50 3.30 0.67 3.00 1.41 8.50 5.58 0.02

navfn eband 0.00 0.00 0.00 0.00 0.00 1.10 1.66 N/A

globalplanner eband 0.00 0.00 0.00 0.00 0.00 1.60 1.84 N/A

sbpl eband 0.00 0.00 0.00 0.00 0.00 0.20 0.42 N/A

navfn teb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

globalplanner teb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sbpl teb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

All combinations of local planner dwa local
planner with global planners did not reach the goal pose
even once, and this is due to the fact that it spent most of
its time executing recovery behaviours (it has the highest
mean rotation recoveries and costmap clearances among
the three local planners), which resulted either in aborting
the missions or in timing-out (ultimately, this is due to the
fact that dwa local planner follows global plans with
high fidelity, plans which are actually infeasible, since the
overall minimum distance from obstacles is at most zero −
Table 9). What is more is that it features the highest ratio of
path failures (roughly one out of every ten times the local
planner was invoked when the global planner used did not
account for the robot’s kinematics, resulting in the former
not being able to find valid motor inputs).

Local planner eband local planner performed
better than dwa local planner: it never aborted a
mission, it did not execute a single recovery behaviour,
and it failed to procure valid motor commands with vastly
lower frequency (although this planner does not offer access
to its produced plans, and therefore there is no way of
knowing how many times it was called to procure them,
it is reasonable to assume that, given its low number of
mean path failures, its failure frequency follows from the
magnitude of the mean path failures, which was lower than
that of dwa local planner). Its ultimate failure is that
it is not fast enough (this can be observed in the mean travel
times featured in Table 11; recount that tmax

C = 120 sec),
i.e. its approach is overly safe. Its collaboration with global
planner sbpl lattice planner was the worst, which
could in theory be partially attributed to the fact that the
latter produces the coarsest and lengthiest plans, but is in
fact due to an unknown issue that causes the local planner
to declare that the robot reached its goal while in fact still

mid-way for some simulations (this is the second reason
why sbpl lattice planner was given an inadequacy
status in Table 2− the first being the bug found and resolved
that was mentioned in Section 5.1).

In contrast, local planner teb local planner cham-
pioned in every available local-planner-specific metric: it
never aborted a mission, it did not execute a single recovery
behaviour, it never failed to procure valid motor inputs, and
it never failed the robot in reaching the goal pose pG.

3) Global/local-planners-combination-specific evaluation

Tables 11, 12, 13, and 14 summarise the resulted values
of the quantitative metrics concerning the combination
of global and local planners defined in Table 1 over N

Table 11 Mean travel time μt from pC
0 to pC

G and standard deviation
σt for map CORRIDOR MC

Actual-path-time-specific metrics

GP LP μt [sec] σt [sec]

navfn dwa 47.53 14.85

globalplanner dwa 55.98 24.87

sbpl dwa 78.72 25.80

navfn eband 107.52 0.81

globalplanner eband 106.86 1.00

sbpl eband 70.80 17.93

navfn teb 44.89 0.44

globalplanner teb 44.83 0.44

sbpl teb 46.61 0.24

Combinations of planners that completed all missions and the values
of their corresponding metrics are noted with bold
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Table 12 Mean actual path
length μl(P) and standard
deviation σl(P), and mean
μs(P) and standard deviation
σs(P) of the actual path
smoothness for map
CORRIDOR MC

Actual-path-specific metrics

GP LP μl(P) [m] σl(P) [m] μs(P) [rad] σs(P) [rad]

navfn dwa 9.24 3.37 1.56 0.16

globalplanner dwa 8.62 3.23 1.66 0.15

sbpl dwa 9.12 3.01 1.60 0.23

navfn eband 20.15 0.09 2.36 0.01

globalplanner eband 20.04 0.07 2.36 0.01

sbpl eband 12.79 3.52 1.78 0.27

navfn teb 20.87 0.03 1.66 0.06

globalplanner teb 20.88 0.04 1.69 0.09

sbpl teb 22.99 0.06 1.65 0.02

Combinations of planners that completed all missions and the values of their corresponding metrics are
noted with bold

simulations for all combination of global and local planners
in map MC .

In terms of time taken to reach the goal pose pc
G from pC

0
(Table 11), all combinations of global planners with dwa
local planner are excluded from evaluation (since it’s
a condition that the robot reach its goal), and the same
applies to the combination of sbpl lattice planner
and eband local planner. The remaining combina-
tions illustrate (a) that under teb local planner the
robot takes the least amount of time to traverse the path from
p0 to pG (which is to be expected, since it approaches the
problem of navigation in terms of optimising with respect to
time), consequently (b) that eband local planner is
the slowest among the two− with a significant margin since
it takes more than twice as much time to complete a mission
−, and (c) that the former’s travel times are the most con-
sistent. The fact that sbpl lattice planner produces
plans of greater length − approximately 17% lengthier
than those of the other two global planners (Table 8) −

made its combination with teb local planner have
an impact on the robot’s travel time from start to fin-
ish, with a magnitude of about over two seconds, which
translates to roughly a 10% increase in travel times
compared to those of teb local planner with navfn
and global planner.

In terms of the traversed paths’ mean length
(Table 12), the same combinations of global planners with
eband local planner and teb local planner
make the robot travel greater lengths compared to
their global plans: both approaches deform the global
plan in order to gain more clearance from obstacles,
and this is the reason why dwa local planner
fails in every single simulation. Furthermore, the paths
that teb local planner dictated were the longest
but the most consistent, and the most consistent of
them all were observed when navfn was used as
the global planner, which is to be expected since the
plans produced by it are deterministic. In terms of path

Table 13 Overall minimum
distance of the actual pathsP
the robot took from any
obstacle across all experiments
inf(d(P, MC)), mean
minimum distance
μ(d(P, MC)) and mean
standard deviation
σ(d(P, MC)) from all
obstacles for map CORRIDOR
MC

Actual-path-obstacle-specific metrics

GP LP inf(d(P, MC)) [m] μ(d(P, MC)) [m] σ(d(P, MC)) [m]

navfn dwa 0.00 (−0.02) 0.17 0.19

globalplanner dwa 0.00 (−0.02) 0.15 0.18

sbpl dwa 0.06 0.21 0.16

navfn eband 0.07 0.55 0.27

globalplanner eband 0.09 0.53 0.27

sbpl eband 0.10 0.40 0.17

navfn teb 0.18 0.64 0.19

globalplanner teb 0.18 0.64 0.20

sbpl teb 0.18 0.49 0.16

Combinations of planners that completed all missions and the values of their corresponding metrics are
noted with bold
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smoothness, sbpl lattice planner’s combination
with teb local planner exhibited the highest and
least-varied path smoothness.

In terms of clearance with regard to obstacles in
map MC (Table 13), the combination of local plan-
ner eband local planner with global planner sbpl
lattice planner didn’t make the robot collide with
obstacles, while its clearance was lower than that of
teb local planner. The latter’s parameterisation fea-
ture regarding minimum clearance from obstacles (set at
0.10m) clearly played a significant role in the robot’s dis-
tancing from obstacles: at 0.18m the planner gave the robot
the largest minimum clearance from obstacles among all
other local planners and across all experiments (this was
a further reason why it scored as much with regard to the
qualitative metric of parameterisability − Table 2). Fur-
thermore, the same is observed with regard to the mean
distance of each robot pose to the closest obstacle in the
map of world CORRIDOR, while its variation is the least
(compared to combinations that did complete the mission).
As an aside, local planner dwa local planner failed to
avoid obstacles at least once across N simulations on both
occasions where the corresponding global planner was igno-
rant about the robot’s kinematics. On the other hand, when
sbpl lattice planner was employed as the global
planner, the robot did not collide with an obstacle even
once. Furthermore, its mean distance to the closest obstacle
was the highest among the three global planners employed,
while its standard deviation was the lowest.

In terms of the traversed paths’ deviation from their
corresponding global plans (Table 14), local planner
dwa local planner exhibited the lowest mean pose
deviation for its combinations with global planners that
do not account for the robot’s kinematics, which is to
be expected, since, as discussed earlier, it is the con-
troller of highest fidelity to the global plan among the

three. However, due to its inability to complete the mis-
sion, all of its combinations with global planners are
excluded from further evaluation, and the same applies
to its combinations with sbpl lattice planner and
eband local planner. From the rest of the combi-
nations, those employing teb local planner feature
the least mean deviation of each pose with respect to
the global plan, and, in particular, its combination with
sbpl lattice planner exhibited the least total devi-
ation among all other combinations. Furthermore, its mean
discrete Frechet distance was consistently lower than that of
its rival eband local planner.

Appendix C: Details of Evaluation onMap
WILLOWGARAGE

1) Global-planner-specific evaluation

Tables 15 and 16 illustrate the resulted values of the
quantitative metrics concerning global planners defined
in Table 1 over N = 10 simulations in environment
WILLOWGARAGE.

Regarding the produced plans (Table 15), and with
respect to the metrics concerning the evaluation of global
planners nothing changed compared to those concerning
map MC : global planner again produced paths of
the least length, sbpl lattice planner those of the
most length and of the lowest density but of the highest
smoothness, and navfn produced the least coarse plans,
but those of the lowest smoothness.

What did change was the overall minimum dis-
tance from obstacles of the plans of global planner
sbpl lattice planner (Table 16): while in the map
of world CORRIDOR it never once planned through obsta-
cles, in the map of worldWILLOWGARAGE it did− as did

Table 14 Mean deviation
μδ(P,G), mean total
deviation μ�(P,G), and mean
Frechet distance μF

δ (P,G)

between the actual pathsP the
robot took and their
corresponding global plans G
for map CORRIDOR MC

Actual-path-deviation-specific metrics

GP LP μδ(P,G) [m] μ�(P,G) [m] μF
δ (P,G) [m]

navfn dwa 0.04 45.98 5.58

globalplanner dwa 0.04 39.39 5.28

sbpl dwa 0.09 101.28 5.08

navfn eband 0.10 104.96 0.38

globalplanner eband 0.13 139.69 0.47

sbpl eband 0.13 145.06 5.06

navfn teb 0.07 81.96 0.26

globalplanner teb 0.08 89.89 0.29

sbpl teb 0.07 73.59 0.26

Combinations of planners that completed at least one mission and the values of their corresponding metrics
are noted with bold
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Table 15 Mean global plan length μl(G) and standard deviation σl(G), mean global plan resolution μr(G), and mean μs(G) and standard
deviation σs(G) of the global plans’ smoothness for map WILLOWGARAGE MW

Global-planner-specific metrics

GP LP μl(G) [m] σl(G) [m] μr(G) [poses/m] μs(G) [rad] σs(G) [rad]

navfn dwa 44.50 0.02 37.15 1.99 0.00

navfn eband 44.50 0.02 37.15 1.99 0.00

navfn teb 44.53 0.04 37.10 1.99 0.00

globalplanner dwa 44.48 0.00 36.76 1.97 0.00

globalplanner eband 44.49 0.01 36.61 1.97 0.00

globalplanner teb 44.49 0.01 36.64 1.97 0.00

sbpl dwa 48.01 0.00 30.93 2.02 0.00

sbpl eband 48.01 0.00 30.93 2.02 0.00

sbpl teb 48.01 0.01 30.95 2.02 0.00

global planner again. Except for this, it again exhib-
ited the lowest mean minimum distance from obstacles and
the most consistency around it. On the other hand, navfn
gained, on average, a centimeter of clearance, and its per-
formance with respect to the mean minimum distance of
each pose from obstacles was somewhat equivalent to that
of global planner’s, as was also its standard deviation.

2) Local-planner-specific evaluation

Table 17 summarises the resulted values of the quantitative
metrics concerning local planners defined in Table 1 over N

simulations.
The increased level of navigation arduousness of the

WILLOWGARAGE world exposed more of the local
planners’ shortcomings. What is impressive is that all
combinations of global planners with local planners
dwa local planner and eband local planner
failed to traverse the path from the initial to the goal pose in
all conducted simulations.

When global planners that do not account for the robot’s
kinematics were used, the former aborted all missions, and
it aborted most of them (7 out of 10) in the contrary case
(− it becomes clear that the use of a global planner mindful
of the robot’s kinematics is advantageous in the case of
an inflexible local planner). In the former case it again
exhibited the highest number of control failures and, in the
latter, the highest mean number of costmap clearances.

With regard to the performance of eband local
planner in map MW , the same as in map MC

applies for it in the case of its combination with
sbpl lattice planner: it exhibited the lowest
number of path failures (at least three times lower
than the next lower-most combination). Although
eband local planner managed to make the
robot travel significantly larger distances compared to
dwa local planner (Fig. 8), and although it was con-
sistent in its navigation (the software bug mentioned in
the previous subsection concerning its combination with
sbpl lattice planner did not emerge in map MW ),

Table 16 Overall minimum
distance of the global plans
from any obstacle across all
experiments inf(d(G, MW )),
mean minimum distance
μ(d(G, MW )) and standard
deviation σ(d(G, MW )) from
all obstacles for map
WILLOWGARAGE MW

Global-planner-obstacle-specific metrics

GP LP inf(d(G, MW )) [m] μ(d(G, MW )) [m] σ(d(G, MW )) [m]

navfn dwa 0.01 0.51 0.52

navfn eband 0.01 0.51 0.52

navfn teb 0.01 0.51 0.52

globalplanner dwa 0.00 (−0.02) 0.51 0.53

globalplanner eband 0.00 (−0.02) 0.51 0.53

globalplanner teb 0.00 (−0.02) 0.51 0.53

sbpl dwa 0.00 (−0.02) 0.35 0.43

sbpl eband 0.00 (−0.02) 0.35 0.43

sbpl teb 0.00 (−0.02) 0.35 0.43
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Table 17 Mean number of aborted missions over the number of simulations conducted μA/N , mean number of rotation recoveries μRR and their
standard deviation σRR , mean number of costmap clearances μCC and their standard deviation σCC , mean number of path failures μPF and their
standard deviation σPF , and mean number of path failures over the mean number of local planner calls μPF /μLPC for all combinations of global
and local planners featured in Table 3 on map WILLOWGARAGE MW

Local-planner-specific metrics

GP LP μA/N μRR σRR μCC σCC μPF σPF μPF /μLPC

navfn dwa 1.00 2.00 0.00 3.00 0.00 45.80 10.97 0.09

globalplanner dwa 1.00 2.30 0.48 3.00 0.00 35.40 10.94 0.08

sbpl dwa 0.70 3.20 1.48 3.60 1.07 12.00 4.85 0.03

navfn eband 0.00 0.00 0.00 0.00 0.00 20.10 25.78 N/A

globalplanner eband 0.00 0.00 0.00 0.00 0.00 8.00 10.87 N/A

sbpl eband 0.00 0.00 0.00 0.00 0.00 3.20 2.15 N/A

navfn teb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

globalplanner teb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sbpl teb 0.00 0.00 0.00 0.00 0.00 0.10 0.32 0.00

it required more than the specified amount of time on every
simulation, again exhibiting its overly-safe approach (its
mean times were consistently slow, as previously observed
in its simulations in map MC). Its mean travel times are
illustrated in Table 18 (recount that tmax

W = 180 sec).
In contrast to all combinations of global planners with

dwa local planner and eband local planner,
all combinations with teb local planner managed to
travel a path from the initial to the goal pose. Again, it
championed in not aborting a mission even once, in reaching
the goal pose on all simulations, in not executing a single
recovery behaviour, and only its combination with global
planner sbpl lattice planner failed to procure valid
motor inputs, but only minimally (− the use of a global
planner mindful of the robot’s kinematics seems not to be as

Table 18 Mean travel time μt from pW
0 to pW

G and standard deviation
σt for map WILLOWGARAGE MW

Actual-path-time-specific metrics

GP LP μt [sec] σt [sec]

navfn dwa 20.46 19.24

globalplanner dwa 22.76 18.85

sbpl dwa 78.91 48.12

navfn eband 158.14 5.25

globalplanner eband 151.23 2.00

sbpl eband 147.53 2.46

navfn teb 95.45 0.34

globalplanner teb 95.50 0.41

sbpl teb 100.55 1.56

Combinations of planners that completed all missions and the values
of their corresponding metrics are noted with bold

advantageous in the case of a flexible local planner as it is
in that of an inflexible one).

3) Global/local-planners-combination-specific evaluation

Tables 18, 19, 20, and 21 summarise the resulted values
of the quantitative metrics concerning the combination
of global and local planners defined in Table 1 over N

simulations for all combination of global and local planners
in the map of world WILLOWGARAGE.

In terms of time taken to reach the goal pose pW
G from

pW
0 (Table 18), all combinations of global planners with

dwa local planner and eband local planner
are excluded from evaluation due to their inability to make
the robot travel the whole path and reach pW

G . − How-
ever, it should be noted that while dwa local planner’s
combination with global planners ignorant of the robot’s
kinematics could not even pass through the first chal-
lenging opening on walls (a door), its combination with
sbpl lattice planner managed to do so, and do it
for the next four openings, before caving in. The remaining
combinations − all of them having teb local planner
as their local planner − make the robot take just
over half the allocated maximum time to travel the
entirety of the path from pW

0 to pW
G . The fact that

sbpl lattice planner produces plans of greater
length − approximately 4.5% lengthier than those of
the other two global planners (Table 15) − made its
combination with teb local planner have an impact
on the robot’s travel time from start to finish, with a
magnitude of just over 5 seconds, which translates to
roughly the same (5%) increase in travel times com-
pared to those of teb local planner with navfn and
global planner.
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Table 19 Mean actual path
length μl(P) and standard
deviation σl(P), and mean
μs(P) and standard deviation
σs(P) of the actual path
smoothness for map
WILLOWGARAGE MW

Actual-path-specific metrics

GP LP μl(P) [m] σl(P) [m] μs(P) [rad] σs(P) [rad]

navfn dwa 2.35 0.03 0.67 0.13

globalplanner dwa 2.35 0.03 0.63 0.17

sbpl dwa 7.94 7.62 0.81 0.35

navfn eband 29.80 1.26 1.83 0.02

globalplanner eband 28.83 0.43 1.84 0.01

sbpl eband 26.98 0.53 1.78 0.02

navfn teb 46.53 0.08 1.57 0.04

globalplanner teb 46.55 0.04 1.61 0.02

sbpl teb 48.73 0.09 1.61 0.01

Combinations of planners that completed all missions and the values of their corresponding metrics are
noted with bold

In terms of the traversed paths’ mean length (Table 19),
it is again observed that, due to the deformation of
the global plan by teb local planner so that the
set minimum obstacle clearance is achieved, the actual
paths are longer than their corresponding global plans;
and this to a degree of roughly 4.5% with regard to
navfn and global planner, and 1.5% with regard to
sbpl lattice planner. In terms of path smoothness,
its combination with navfn gave the smoothest paths, with
the other two combinations following closely behind.

In terms of clearance with regard to obstacles in mapMW

(Table 20), teb local planner just about managed to
achieve the minimum set robot-obstacle distance (set as
before to 0.10m) when combined with ROS’s default plan-
ners; when combined with sbpl lattice planner,
however, it failed to do so. Its combination with global
planner navfn gave the robot the largest mean clear-
ance from obstacles across all simulations; its combination
with sbpl lattice planner gave it the least mean

clearance and the least variation around it (5cm less), a
behaviour consistent with that exhibited in the map of world
CORRIDOR.

In terms of the traversed paths’ deviation from
their corresponding global plans (Table 21), no con-
sistency is observed compared to the results regarding
MC , while teb local planner’s combination with
global planner exhibited the largest mean, total mean
deviation and mean discrete Frechet distance in MC ,
in MW it exhibited the least; and its combination with
sbpl lattice planner gave the largest mean discrete
Frechet distance, when in MC it gave the least.

D. Details of evaluation onmap CSAL

1) Global-planner-specific evaluation

Tables 22 and 23 illustrate the resulted values of the
quantitative metrics concerning global planners defined in

Table 20 Overall minimum
distance of the actual pathsP
the robot took from any
obstacle across all experiments
inf(d(P, MW )), mean
minimum distance
μ(d(P, MW )) and mean
standard deviation
σ(d(P, MW )) from all
obstacles for map
WILLOWGARAGE MW

Actual-path-obstacle-specific metrics

GP LP inf(d(P, MW )) [m] μ(d(P, MW )) [m] σ(d(P, MW )) [m]

navfn dwa 0.33 0.37 0.14

globalplanner dwa 0.30 0.38 0.14

sbpl dwa 0.01 0.36 0.23

navfn eband 0.03 0.61 0.51

globalplanner eband 0.01 0.61 0.52

sbpl eband 0.00 0.65 0.53

navfn teb 0.10 0.82 0.47

globalplanner teb 0.10 0.79 0.48

sbpl teb 0.09 0.67 0.42

Combinations of planners that completed all missions and the values of their corresponding metrics are
noted with bold
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Table 21 Mean deviation
μδ(P,G), mean total deviation
μ�(P,G), and mean Frechet
distance μF

δ (P,G) between
the actual pathsP the robot
took and their corresponding
global paths G for map
WILLOWGARAGE MW

Actual-path-deviation-specific metrics

GP LP μδ(P,G) [m] μ�(P,G) [m] μF
δ (P,G) [m]

navfn dwa 0.14 226.98 34.12

globalplanner dwa 0.12 185.54 34.06

sbpl dwa 0.27 457.42 31.29

navfn eband 0.12 194.53 11.98

globalplanner eband 0.12 190.02 12.74

sbpl eband 0.18 271.59 15.89

navfn teb 0.11 174.18 0.43

globalplanner teb 0.10 152.02 0.43

sbpl teb 0.11 162.33 0.54

Combinations of planners that completed at least one mission and the values of their corresponding
metrics are noted with bold

Table 1 overN = 10 real-world experiments in environment
CSAL.

Regarding the produced plans (Table 22), and with
respect to metrics metrics concerning the evaluation of
global planners, navfn produced paths of the least length,
sbpl lattice planner those of the most length, of
the lowest density, and of the highest variability, but of the
highest smoothness; and global planner produced the
least coarse plans.

Global planner sbpl lattice planner exhibited
the same behaviour as that in simulated world WILLOG-
ARAGE: the overall minimum distance from obstacles
of its plans (Table 23) was zero, and so was that
of global planner, which in all three study cases
consistently planned through obstacles. Except for this,
sbpl lattice planner exhibited again the lowest
mean minimum distance from obstacles and the most con-
sistency around it. On the other hand, navfn produced the

best plans with respect to mean distance from obstacles, but
those of the largest inconsistency among the three global
planners.

2) Local-planner-specific evaluation

Table 24 summarises the resulted values of the quantitative
metrics concerning local planners defined in Table 1 over N

simulations.
What is impressive here is that all combinations of global

planners with local planner dwa local planner again
failed to traverse the path from the initial to the goal pose in
all conducted experiments.

With regard to the performance of teb local
planner in environment CSAL, it again championed
− never aborting any mission, and making no recovery
attempts, although it experienced a minimal number of path
failures. As for eband local planner, it exhibited

Table 22 Mean global plan length μl(G) and standard deviation σl(G), mean global plan resolution μr(G), and mean μs(G) and standard
deviation σs(G) of the global plans’ smoothness for map CSAL ML

Global-planner-specific metrics

GP LP μl(G) [m] σl(G) [m] μr(G) [poses/m] μs(G) [rad] σs(G) [rad]

navfn dwa 21.87 0.14 199.84 2.33 0.00

navfn eband 21.78 0.13 199.96 2.33 0.00

navfn teb 21.87 0.16 199.95 2.33 0.00

globalplanner dwa 21.90 0.06 200.06 2.33 0.00

globalplanner eband 21.89 0.10 200.06 2.33 0.00

globalplanner teb 21.84 0.13 200.07 2.33 0.00

sbpl dwa 22.07 0.04 131.61 2.31 0.01

sbpl eband 22.09 0.10 131.66 2.31 0.01

sbpl teb 22.12 0.39 133.03 2.30 0.04
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Table 23 Overall minimum
distance of the global plans
from any obstacle across all
experiments inf(d(G, ML)),
mean minimum distance
μ(d(G, ML)) and standard
deviation σ(d(G, ML)) from
all obstacles for map CSAL
ML

Global-planner-obstacle-specific metrics

GP LP inf(d(G, ML)) [m] μ(d(G, ML)) [m] σ(d(G, ML)) [m]

navfn dwa 0.01 0.47 0.42

navfn eband 0.01 0.47 0.42

navfn teb 0.01 0.47 0.42

globalplanner dwa 0.00 (−0.02) 0.45 0.40

globalplanner eband 0.00 (−0.02) 0.45 0.40

globalplanner teb 0.00 (−0.02) 0.45 0.41

sbpl dwa 0.00 (−0.02) 0.41 0.37

sbpl eband 0.00 (−0.02) 0.41 0.37

sbpl teb 0.00 (−0.02) 0.41 0.37

minimal recovery attempts, but significant path failures
when paired with global planners that do not account for the
robot’s kinematics.

3) Global/local-planners-combination-specific evaluation

Tables 25, 26, 27, and 28 summarise the resulted values
of the quantitative metrics concerning the combination
of global and local planners defined in Table 1 over N

simulations for all combination of global and local planners
in environment CSAL.

In terms of time taken to reach the goal pose pL
G

from pL
0 (Table 25), all combinations of global planners

with dwa local planner are excluded from evaluation
due to their inability to make the robot travel the whole
path and reach pL

G. Local planner teb local planner
traversed the assigned paths in the less amount of mean time
compared to eband local planner for the same global
planner.

In terms of the traversed paths’ mean length (Table 26),
teb local planner did not deform its given global plans
to the degree it did in simulations, and this is observable as
it produced paths with the least mean length. On the other
hand, eband local planner’s dictated paths were the
longest, but most consistent in length. The latter produced
paths of lower smoothness, compared to the former, and
those of the most consistency with regard to smoothness.

In terms of clearance with regard to obstacles in map
ML (Table 27), teb local planner did not manage
to achieve the minimum set robot-obstacle distance (set as
before to 0.10m) when combined with any global planner
(its mean value was 0.08m), however, under its control,
the robot’s mean minimum distance to obstacles and its
standard deviation around it were lower than those when
local planner eband local planner was employed.
The latter was the only local planner that did achieve to
exhibit more than the set robot-obstacle threshold distance,
and it did so consistently.

Table 24 Mean number of aborted missions over the number of simulations conducted μA/N , mean number of rotation recoveries μRR and their
standard deviation σRR , mean number of costmap clearances μCC and their standard deviation σCC , mean number of path failures μPF and their
standard deviation σPF , and mean number of path failures over the mean number of local planner calls μPF /μLPC for all combinations of global
and local planners featured in Table 3 on map CSAL ML

Local-planner-specific metrics

GP LP μA/Ns μRR σRR μCC σCC μPF σPF μPF /μLPC

navfn dwa 1.00 2.20 0.42 3.00 0.00 37.40 17.85 0.08

globalplanner dwa 1.00 2.60 0.70 3.20 0.63 30.20 23.66 0.06

sbpl dwa 1.00 2.40 0.70 3.30 0.95 4.10 3.14 0.01

navfn eband 0.00 0.60 0.97 0.90 1.45 57.00 26.72 N/A

globalplanner eband 0.00 1.00 0.67 0.40 0.97 65.00 29.84 N/A

sbpl eband 0.00 1.40 0.52 1.10 1.37 5.80 4.13 N/A

navfn teb 0.00 0.00 0.00 0.00 0.00 1.10 0.88 0.00

globalplanner teb 0.00 0.00 0.00 0.00 0.00 1.40 1.17 0.00

sbpl teb 0.00 0.00 0.00 0.00 0.00 2.70 3.27 0.00
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Table 25 Mean travel time μt

from pW
0 to pL

G and standard
deviation σt for map CSALML

Actual-path-time-specific metrics

GP LP μt [sec] σt [sec]

navfn dwa 47.47 15.29

globalplanner dwa 56.24 15.44

sbpl dwa 60.30 22.58

navfn eband 356.25 9.88

globalplanner eband 354.89 10.05

sbpl eband 392.16 21.29

navfn teb 326.70 12.88

globalplanner teb 330.25 13.77

sbpl teb 363.16 42.35

Combinations of planners that completed at least one mission and the values of their corresponding metrics
are noted with bold

Table 26 Mean actual path
length μl(P) and standard
deviation σl(P), and mean
μs(P) and standard deviation
σs(P) of the actual path
smoothness for map CSAL ML

Actual-path-specific metrics

GP LP μl(P) [m] σl(P) [m] μs(P) [rad] σs(P) [rad]

navfn dwa 2.97 1.00 0.58 0.42

globalplanner dwa 2.65 1.50 1.16 0.51

sbpl dwa 2.99 1.36 0.79 0.54

navfn eband 22.81 0.12 2.32 0.01

globalplanner eband 22.79 0.13 2.33 0.01

sbpl eband 22.78 0.13 2.32 0.01

navfn teb 22.71 0.18 2.35 0.02

globalplanner teb 22.73 0.28 2.34 0.02

sbpl teb 23.47 0.87 2.30 0.04

Combinations of planners that completed at least one mission and the values of their corresponding metrics
are noted with bold

Table 27 Overall minimum
distance of the actual pathsP
the robot took from any
obstacle across all experiments
inf(d(P, ML)), mean
minimum distance
μ(d(P, ML)) and mean
standard deviation
σ(d(P, ML)) from all
obstacles for map CSAL ML

Actual-path-obstacle-specific metrics

GP LP inf(d(P, ML)) [m] μ(d(P, ML)) [m] σ(d(P, ML)) [m]

navfn dwa 0.02 0.24 0.09

globalplanner dwa 0.02 0.25 0.07

sbpl dwa 0.03 0.26 0.04

navfn eband 0.11 0.52 0.20

globalplanner eband 0.11 0.54 0.20

sbpl eband 0.13 0.57 0.19

navfn teb 0.08 0.51 0.18

globalplanner teb 0.08 0.52 0.19

sbpl teb 0.08 0.56 0.17

Combinations of planners that completed all missions and the values of their corresponding metrics are
noted with bold



J Intell Robot Syst

Table 28 Mean deviation
μδ(P,G), mean total
deviation μ�(P,G), and mean
Frechet distance μF

δ (P,G)

between the actual paths P the
robot took and their
corresponding global plans G

for map CSAL ML

Actual-path-deviation-specific metrics

GP LP μδ(P,G) [m] μ�(P,G) [m] μF
δ (P,G) [m]

navfn dwa 0.03 1.74 12.69

globalplanner dwa 0.05 3.41 12.43

sbpl dwa 0.04 2.32 12.58

navfn eband 0.12 48.34 0.35

globalplanner eband 0.13 51.63 0.35

sbpl eband 0.15 62.71 0.43

navfn teb 0.10 40.19 0.31

globalplanner teb 0.11 42.84 0.33

sbpl teb 0.12 50.56 0.35

Combinations of planners that completed at least one mission and the values of their corresponding metrics
are noted with bold

In terms of the traversed paths’ deviation from their
corresponding global plans (Table 28), teb local
planner produced paths of the lowest mean and total
deviation, which is consistent with the mean mini-
mum robot-obstacle distance values exhibited. Conversely,
eband local planner, consistent with its own mean
minimum robot-obstacle distance, produced paths of the
greatest mean and total deviation from global plans, and,
overall, those of the largest Frechet distance.
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