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Abstract—In this paper, we propose a prototype method for
fast and accurate 3D localization of RFID-tagged items by a
mobile robot. The robot performs Simultaneous Localization
of its own pose and Mapping of the surrounding environment
(SLAM). It is equipped with RFID readers and antennas placed
at different heights, collecting phase-measurements by all tags.
Thanks to the self-localization property of the robot, a synthetic
aperture is created for each tag. In this paper, we have ma-
nipulated the set of phase-measurements, combined with the
known poses of the robot to craft an overdetermined system
of linear equations which pinpoints the location of the tag. The
linearity of the system preserves that localization is achieved
rapidly. The problem is solved for any arbitrary movement of the
robot and extended in three dimensions. The proposed method
is experimentally compared against the state-of-the-art in SAR-
based RFID localization. It is the fastest and the most accurate,
when the robot moves along straight-paths. Its accuracy slightly
worsens, when the robot moves along non-straight paths, while
preserving its exceptionally small running-time. It can be applied
in real-time 3D localization problems, demonstrating mean 3D
accuracy below 20 cm.

Index Terms—RFID, Localization, Linear Optimization, SAR,
Phase Unwrapping, Confidence Evaluation, Robotics, SLAM.

I. INTRODUCTION

RFID technology has received great attention over the
past years, penetrating many fields of the market, including
logistics, health care, industry, military, leisure activities, etc.
The advantages that make it beneficial against conventional
optical technologies rest on its low cost, its high read-rate
capabilities and its ability to perform without visual contact,
since it exploits principles of radio frequency. A typical
RFID system consists of an RFID reader, an antenna and
an RFID tag, usually attached to the object of interest. A
successful tag reading indicates that the tag is situated within
the reading range of the reader; however, from an application
perspective, this information is not always sufficient and more
accurate localization is desired. Such localization is achieved
by properly exploiting properties of the backscattered RFID
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signal measured at the reader, mainly the i) phase and ii) power
(also known as ”Received Signal Strength Indication” - RSSI)
of the tag’s backscattered signal. In such framework, various
localization systems and algorithms have been developed to
perform localization in two (2D) and three dimensions (3D).

Exploiting the signal’s power to locate a tag, usually refers
to the usage of a propagation model that estimates the antenna-
to-tag distance [1] - [3]. However, modeling the propagation
environment in an accurate way is quite challenging, while
the information of RSSI is pretty sensitive to the tag’s ori-
entation, its attachment to different materials and multipath
effects. From this perspective, phase represents a more reliable
information, thanks to its tolerance on the tag’s orientation, but
it is challenged by the 2π periodicity. Due to this periodicity,
a single value of phase cannot reflect the true antenna-to-tag
distance, hence multiple phase measurements are required.

Angle-of-Arrival (AoA) techniques [4]- [7] employ a pair of
antennas and calculate the difference of the recorded phase to
estimate the direction of the tag. When estimates by additional
pairs of antennas are combined, the exact position of the tag in
the 2D plane can be estimated via triangulation. Similarly, [8]
calculates the phase differences between two sufficiently close
antennas to define a two-dimensional hyperbolic locus, where
the tag may be located at. Additional antenna-pairs introduce
more hyperbolas, the intersection of which represents the tag’s
location. The accuracy of such methods strictly depends on the
number of antennas employed in the area of interest. However,
an inventory solution based on a fixed installation of multiple
antennas and readers has great cost, demands maintenance and
cannot adapt to changes in the environment.

Alternatively, Synthetic Aperture (SAR) systems exploit
mobility of the reader to collect measurements by a single
antenna at multiple locations. The SAR-based approach was
first applied for radar imaging [9] and adjusted to RFID tech-
nology in [10]. Phase measurements obtained along a single-
antenna synthetic aperture are fused to construct a holographic
image, which essentially represents the probability of each
image-point to be the actual tag’s location. The solution of
the problem is sought exhaustively over a grid assigned to the
space of interest. In such framework, [11] - [13] present the
deployment of inverse synthetic apertures that are generated by
moving tags and static antennas in order to track the trajectory
of a tag. Localization solutions that employ moving antennas
should be accompanied by a handling system that controls
and moves the antenna. Such systems are mostly operated
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manually and require human intervention and effort. Moreover,
some sort of information about the antenna’s locations over
time is a prerequisite for SAR-based methods, necessitating a
time-consuming manual measuring process.

On the contrary, RFID-augmented robots capable of navi-
gating autonomously to the vicinity of the tags and localizing
themselves inside the environment, can free the localization
process from human effort. [14] - [23] mount an RFID
reader and antenna on a robotic vehicle. In [14] - [16], tag’s
location is estimated in 2D, similarly to holographic imaging,
by deploying the Maximum Likelihood Estimation (MLE)
approach, according to which the tag’s location coincides with
the solution of a matching function. Due to the non-convexity
of the latter, the solution is identified by performing exhaustive
search over a grid of possible tag locations. The computational
burden of such techniques is proportional to the size of grid-
points and can be huge for large search spaces. The antenna
positions in [14] are made available by a camera system
installed on the ceiling, while [16] - [17] estimate the robot’s
trajectory by means of a Kalman-based algorithms which fuse
measurements of a few reference RFID tags with odometry
data.

[18] tackles the problem of the time-consuming search
over a grid, by performing phase unwrapping to the collected
measurements and exploiting an unwrapped phase-distance
model. This preserves convexity of the crafted matching
function, which is rapidly solved by standard non linear
optimization algorithms, an effect that supports the real-time
application of the method. In addition to RFID equipment,
the robotic vehicle employed in [18] carries laser and cameras
to perform Simultaneous Localization And Mapping (SLAM).
The robot can enter an unknown area, create a 2D/3D map
of the environment and constantly track itself inside it. [19]
also employs a SLAM-enabled mobile robot, while RFID
localization is performed by phase-based particle filtering.

As for localization in 3D space, measurements by at least
two antennas is often a prerequisite, while the expected local-
ization error decreases as the number of antennas increases.
[24] - [25] install a minimum of 4 antennas to record the power
of the tag’s signal and estimate the antenna-to-tag distances
computed. Instead of installing multiple antennas, a single
antenna that moves along two perpendicular directions is also
able to perform 3D localization, [26] - [27]. [20] deploys a
robotic vehicle that moves along a corridor to collect mea-
surements by a single antenna. It is proven, both theoretically
and experimentally, that any non straight trajectory of the
robot is able to solve the 3D problem by a single antenna,
while the localization problem is rapidly solved by convex
optimization. A numerical analysis investigates the correlation
of the robot trajectory’s curvature with the reliability and
accuracy of the tag estimations. The efficiency of single-
antenna solution is poor when the trajectory is not sufficiently
curved, an effect that raises the necessity of employing at
least two antennas on the robot, such that the localization
performance is independent of the robot’s path.

[21] processes phase measurements collected by multiple
antennas mounted on a robot to construct a multi-variable least
square problem. Phase unwrapping preserves the convex-type

property of the objective function, which is minimized by
non linear optimization. A proposed reliability metric based
on the curvature of the objective function, in combination
with the high execution speed of the algorithm, allows the
problem to be solved by considering measurements originated
by all possible combinations of antennas, while the most
reliable estimation represents the solution of the problem. [22]
exploits phase measurements collected by tmultiple antennas
mounted on a robotic vehicle and seeks the point of a grid
that corresponds to the global solution of a matching function.
Due to the existence of multiple local minima and maxima,
the solution is identified by a computationally expensive grid-
search, while [23] improves the algorithm’s execution speed by
performing particle swarm optimization on the search space.
Finally, the system proposed in [28] consists of multiple
transmitter and receiver antennas and it seeks the problem’s
solution by means of particle filtering.

In this paper, a prototype localization SAR method is
proposed, capable of solving both the two-dimensional and
three-dimensional localization problem. It employs multiple
antennas attached on a SLAM-enabled robotic base and by
exploiting differences of phase measurements and spatial prop-
erties of the problem’s geometry, it crafts a linear least square
problem, which essentially estimates the bearing and the range
of the tag on the antenna’s horizontal plane. Thanks to the
linear nature of the system, it can be rapidly solved by simple
matrix operations, an effect that supports the algorithm’s real-
time application. The proposed technique is developed for both
straight and non straight trajectories. Additionally, a metric has
been introduced to quantify the reliability of the estimation
based, among others, on the ”quality” of the available measure-
ments. Finally, the proposed method is extended in 3D space,
where data from multiple antennas, located at different heights
on top of the robot, are available. The linear least square
problem calculates a circular locus around each antenna’s
aperture. The 3D location of the tag is identified as the point
in space that minimizes the sum of its distances from all loci.

A numerical analysis and an excessive experimental cam-
paign evaluate the performance of the proposed method with
respect to accuracy and running-time, achieving 3D localiza-
tion error comparable to state-of-the-art and improved running
time. The experiments were conducted by a SLAM-enabled
robot, which is able to enter any unknown area, create a map
of the environment by fusing odometry, laser and camera data,
while it continuously estimates its own pose inside the map
as it navigates to the vicinity of the tags.

Section II addresses the characteristics and challenges of
the signal’s phase. The proposed two-dimensional localiza-
tion scheme that exploits a single antenna and the three-
dimensional scheme that exploits multiple antennas, are pre-
sented in sections III and section IV, respectively. Section
V evaluates the system’s 2D performance by conducting a
numerical analysis, while the experimental results and com-
parisons are presented in VI. Finally, section VII concludes
our findings.
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Fig. 1: An inventorying scenario where a RFID-equipped robot
localizes the surrounding RFID-tagged objects.

II. BACKGROUND

Fig. 1 depicts a typical indoor scenario, where a robot
equipped with RFID reader(s) and antenna(s) navigates in
a warehouse’s corridor and inquires the surrounding RFID
tags. The antennas are directional and laterally mounted on
the robot, thus illuminating a specific half-space as the robot
moves.

A static RFID tag placed at Atag = [xtag, ytag, ztag] is read
N times by the moving antenna, leading to the generation
of a synthetic aperture, Fig. 2 (a). Each reading refers to
the measurement of the backscatterred signal’s phase, denoted
as φmeasn , n ∈ [1, N ]. Phase is accompanied by knowledge
of the antenna’s pose, which consists of the coordinates of
the antenna An = [xn, yn, zn], n ∈ [1, N ], the direction
of motion represented by unit vector −→un, n ∈ [1, N ] and
the direction of of the main lobe of its radiation pattern
represented by unit vector −→vn, n ∈ [1, N ]; for now on, this
direction will be referred to as direction of radiation. Since
the antenna is mounted laterally on the robot, the direction
of radiation is always perpendicular to the moving direction,
namely −→vn⊥−→un, ∀n ∈ [1, N ]. The Euclidean distance between
antenna and tag is dn:

dn = ‖Atag −An‖2, n ∈ [1, N ]. (1)

Fig. 2 (b) shows the phase profile measured by an antenna
that moves along the trajectory of Fig. 2 (a):

• A → B: Phase decreases, as the antenna-to-tag distance
decreases; when phase decreases to the value of 0, a
discontinuity occurs and phase ”jumps” to the value of
2π.

• B: The phase profile exhibits a change of the slope’s
sign (local minimum) that corresponds to the minimum
antenna-to-tag distance, i.e. the antenna is perpendicular
opposite to the tag; phase stops decreasing and starts
increasing.

• B → C: Phase increases, as the antenna-to-tag distance
increases; a discontinuity occurs when phase increases to
the value of 2π and it drops to the value of 0.

(a) The synthetic aperture generated by a single antenna
moving along a straight path.

(b) The measured phase profile.

(c) The unwrapped phase profile.

Fig. 2: Visualization of the single-antenna synthetic aperture
and the collected set of phase samples.

The expected phase φexpn that would have been measured in
Line-of-Sight (LOS) conditions for given locations of antenna
and tag, is a function of their distance dn:

φexpn (dn) =

(
2π

λ
2dn + φ0

)
mod 2π, n ∈ [1, N ]. (2)

In (2), the first term of the summation corresponds to phase
rotation over the travelled distance of the signal; λ stands for
the wavelength of the carrier frequency, while 2dn accounts
for forth and back propagation since in backscatter commu-
nication, the signal travels a total distance of two times the
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Fig. 3: Distance ambiguity imposed by the 2π periodicity of
phase: a single phase measurement reflects a series of distance
values δn + kn

λ
2

antenna-to-tag distance. The second term, φ0, is an additional
phase rotation, independent of wave propagation. The tag’s
circuits, the electronics of the reader’s transmitter and receiver,
the antenna’s cables, etc, introduce a further shifting to the
measured phase, which should be accounted in (2). For the
same antenna-tag pair though, this offset is common for all N
phase measurements.

The modulo 2π operation is introduced so that the expected
phase takes values in 2π intervals, in accordance to the
measured phase. Due to this operation, any distance value with

dn = δn + kn
λ

2
, n ∈ [1, N ] (3)

outputs same expected phase in (2). This property raises an
ambiguity; phase cannot directly reflect the true value of
antenna-to-tag distance dn, but a series of possible values
which differ from each other by kn increments of half wave-
lengths. kn ∈ Z represents essentially an ambiguity term
and in general is not common for all measurements. Fig. 3
visualizes this issue.

Since the unknown phase rotation φ0 is considered common
for all measurements of same antenna-tag pair, it can be
cancelled out by exploiting the difference between any two
distance values dn and dm with n,m ∈ [1, N ], such that

∆dnm =
λ

4π
∆φmeasnm + ∆knm

λ

2
, n,m ∈ [1, N ] (4)

where ∆φmeasnm = φmeasn − φmeasm and ∆knm = kn − km. On
the contrary, the unknown variables kn and km may not be
equal and thus, ∆knm in (4) is nonzero and should be treated
accordingly.

This effect can be tackled by performing phase unwrapping;
i.e. the reconstruction of the original phase profile such that
the 2π jumps and drops are eliminated. By properly adding
multiples of 2π to each measured sample φmeasn , a continuous
phase curve is formed, free of discontinuities. The unwrapped
phase sample is denoted as φ̆measn . Fig. 2 (c) depicts the
unwrapped phase profile, which in contrast to the original one,
has support in (−∞,+∞).
• A → B: Phase decreases monotonously, as the antenna-

to-tag distance decreases.
• B: The global minimum of the unwrapped phase profile

corresponds to the minimum antenna-to-tag distance.

• B → C: Phase increases monotonously, as the antenna-
to-tag distance increases.

The unwrapped phase model is modulo-free:

φ̆expn (dn) =
2π

λ
2dn + φ0, n ∈ [1, N ]. (5)

Thanks to phase unwrapping and the removal of the mod-
ulo operation, the distance ambiguity is now common for
all samples, namely kn = k, ∀ n ∈ [1, N ] in (3) and
∆knm = 0 ∀ n,m ∈ [1, N ] in (4). The distance difference
∆dnm is now given by:

∆dnm =
λ

4π
∆φ̆measnm , n,m ∈ [1, N ] (6)

where ∆φ̆measnm = φ̆measn − φ̆measm refers to the unwrapped
phase.

III. TWO-DIMENSIONAL LOCALIZATION BY
SINGLE-ANTENNA APERTURE

The method proposed in this section deals with the problem
of localizing a static tag in 2D space, i.e. one coordinate of
the tag’s location is considered known. More specifically, by
exploiting phase differences and properties of the problem’s
geometry, one can estimate the range and bearing of the tag
with respect to the antenna. The problem is solved on the
horizontal plane defined by the antenna’s height; i.e. the tag is
assumed to be placed at the same height as the antenna. The
proposed method is called ”PD-Loc” after Phase Difference-
based Localization and requires small modifications depending
on the type of the synthetic aperture (the robot’s trajectory).

A. Straight Synthetic Aperture

Fig. 4 shows the geometry of a straight synthetic aperture
in x-y plane. The symbols depicted in Fig. 4 are addressed as
following:
• Atag: the unknown tag’s location.
• An, n ∈ [1, N ]: the antenna location that corresponds to

the nth phase measurement φmeasn .
• −→un, n ∈ [1, N ]: the unit vector that represents the di-

rection of antenna’s movement at location An. Since the
antenna is moving towards a straight line, the direction
of motion remains unchanged, −→un = −→u , ∀n ∈ [1, N ].

• −→vn: the unit vector that represents the direction of an-
tenna’s radiation at location An. Since the antenna is
moving towards a straight line, the direction of radiation
remains unchanged, −→vn = −→v , ∀n ∈ [1, N ].

• −→ex,−→ey ,−→ez : the unit vectors along x, y and z axis, respec-
tively; they form a set of mutually orthogonal vectors.
Since vectors −→u and −→v lay on the x-y plane, −→u , −→v
and −→ez also form a set of mutually orthogonal vectors,
−→v = −→ez ×−→u .

• dn, n ∈ [1, N ]: the distance between the tag and the nth

antenna location, dn = ‖Atag −An‖2.
• AR: a location among {A1, · · · ,AN} that will be used

as reference point to generate distance differences. Con-
textually, the phase measured at AR is denoted as φmeasR .

• dR: the distance between the tag and the reference
location, dR = ‖Atag −AR‖2.
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Fig. 4: Geometry of a straight synthetic aperture shown in plan
view.

• Ln, n ∈ [1, N ] − {R}: the known distance between the
reference and the nth antenna location, Ln = ‖AR −
An‖2.

• A⊥: the point on the direction of antenna’s motion, which
has the minimum distance from the tag. The line that joins
the tag with A⊥ is perpendicular to the antenna’s path-
line. As a result, that line is considered parallel to the
direction of radiation

−−−−−→
A⊥Atag ‖ −→v .

• r: the distance between the reference point and the
closest-to-tag point, r = ‖AR −A⊥‖2.

• h: the shortest distance between the tag and the antenna’s
path-line, h = ‖Atag −A⊥‖2.

According to the above scheme, the unknown tag’s position
Atag is given by:

A2D
tag = AR + r−→u︸ ︷︷ ︸

A⊥

+h−→v (7)

Thus, the method’s target should be the estimation of quantities
r and h. The distance between the reference location and the
tag is given by:

dR =
√
r2 + h2, (a)

while the distance between the nth, n ∈ [1, N ]−{R} antenna
location and the tag is given by:

dn =
√

(r ± Ln)2 + h2. (b)

For the nth, n ∈ [1, N ]−{R} antenna location, the difference
between the aforementioned distances is defined as:

∆dn = dR − dn ⇒

∆dn =
√
r2 + h2 −

√
(r ± Ln)2 + h2. (c)

By raising (c) to the square, the latter becomes

∆d2n = r2 + h2 − 2
√
r2 + h2

√
(r ± Ln)2 + h2+

+(r ± Ln)2 + h2. (d)

By substituting term
√

(r ± Ln)2 + h2 from (c) again in (d):

∆d2n = r2 + h2 − 2
√
r2 + h2(

√
r2 + h2 −∆dn)+

+(r ± Ln)2 + h2 ⇒

∆d2n = 2
√
r2 + h2∆dn ± 2rLn + L2

n. (e)

After substituting (a) in (e):

∆d2n − L2
n = 2∆dndR ± 2Lnr. (f)

Notice that we have managed to exclude the square-terms
r2, h2 from (f), thus creating a linear system of equations,
with respect to unknowns dR, r. By substituting (6) in (f),
an algebraic relation is formed, which associates the unknown
quantities dR and r with the measured phase difference:(

λ

4π
∆φ̆measn

)2

− L2
n = 2

(
λ

4π
∆φ̆measn

)
dR ± 2Lnr, (8)

where ∆φ̆measn = φ̆measR − φ̆measn is the difference between
the unwrapped phase recorded at the reference location φ̆measR

and the nth, n ∈ [1, N ]−{R} unwrapped phase measurement
φ̆measn . Again, it is reminded that distances Ln are known
from the localization-algorithm of the robot. Thanks to the
substitution taken place in (d), the resulted equation (8) is
linear in its unknown coefficients dR and r. Based on (8), a
linear system can be constructed, whose matrix form is given
by:

Ax = b,

A = 2



λ

4π
∆φ̆meas1 ±L1

λ

4π
∆φ̆meas2 ±L2

...
...

λ

4π
∆φ̆measN−1 ±LN−1


x =

dR
r



b =



(
λ

4π
∆φ̆meas1

)2

− (L1)
2

(
λ

4π
∆φ̆meas2

)2

− (L2)
2

...(
λ

4π
∆φ̆measN−1

)2

− (LN−1)
2


(9)

System (9) consists of N − 1 equations and two unknown
parameters. Since it is an overdetermined system, the solution
x = [dR, r]

T is computed in a least square sense, such that:

x = arg min
x
‖Ax− b‖22 = (ATA)−1AT b. (10)

As soon as dR and r are available, h can be computed by (a)
and eventually the tag’s location by (7).

Equation (7) solves the 2D localization problem on the an-
tenna’s horizontal plane. The 3D interpretation of the solution
though, is a circle in the plane defined by unit vectors −→v and
−→ez (with −→u being its normal vector), with center A⊥ and
radius h, see Fig. 5. The parametric equations of the above
circle are: 

x = A⊥x + h cos(θ)vx

y = A⊥y + h cos(θ)vy

z = A⊥z + h sin(θ)

(11)
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Fig. 5: The 3D locus of possible tag locations corresponding
to a straight synthetic aperture.

where A⊥x , A⊥y , A⊥z are the x, y, z coordinates of the
circle’s center A⊥ respectively, vx and vy are the x and y
components of unit vector −→v , respectively and θ goes from 0
to π. Assuming that one of the tag coordinates is known, the
remaining two can be easily derived by (11).

1) Reference Selection: In case of straight aperture, the
functionality of the method does not depend on the selection
of reference location AR and any antenna location An, n ∈
[1, N ] can be employed as reference. However, the reference
phase sample φ̆measR that is used to form the phase differences
∆φ̆measn , n ∈ [1, N ] − {R} is involved in all equations of
system (9) and hence, it contributes quite significantly to the
calculation of the system’s solution. Therefore, φ̆measR should
be a measurement as accurate as possible. Such measurement
would be the minimum of the unwrapped phase profile, since
it represents the minimum antenna-to-tag distance and the
LOS link is expected to have a strong contribution, whilst the
multipath contribution should be weak. Taking into account the
above, the antenna location that records the minimun phase is
chosen as reference point AR .

2) Evaluation of the solution: The performance of the
localization depends mainly on the number and quality of mea-
surements. Inadequate collection of measurements would lead
to a poor estimation, while noise/multipath corrupted measure-
ments are expected to deteriorate the method’s accuracy. This
effect will be reflected in the variance/standard deviation of
the estimated parameters x; i.e. a statistical measurement that
quantifies the (un)reliability of the computed solution based on
the quality of data. Small values of variance/standard deviation
indicate that the estimated solution is highly likely to be quite
close to the actual one, whilst larger variance values imply that
the estimation can significantly differ from the actual solution.
Thus, the smaller the variance, the greater the confidence of
the estimation.

Once the problem’s parameters are estimated, their variance
should be computed in order to obtain an intuition of their
reliability and expected error. The variance of each parameter
in x = [dR, r]

T is given by the respective diagonal element

of the covariance matrix:

σ2
dR = C(1, 1) (12)

σ2
r = C(2, 2). (13)

C is a 2× 2 matrix computed for linear problems by:

C = (ATA)−1σ2
r (14)

with σ2
r being the residuals’ variance. Eventually, the vari-

ances are exploited to derive the accumulated standard devia-
tion of the tag’s estimation, defined as:

σest =
√
σ2
dR

+ σ2
r . (15)

B. Non Straight Synthetic Aperture

The robot is expected to move across corridor-type envi-
ronments, which mostly require straight movements. Section
III-A presented the implementation of PD-Loc applied to
measurements collected along straight synthetic apertures.
However, there are cases where non straight robot paths
would be employed; e.g. a robot avoiding an obstacle along a
corridor. The complicated geometry of a non straight problem
necessitates some modifications to be made in order to craft
a system able to be solved similarly to Section III-A. In the
straight case, by computing parameter r, the point with the
minimum distance from the tag A⊥ can be estimated on
the direction of the antenna’s motion. On the contrary, such
computation is not feasible in non straight trajectories, since
the direction of motion does not remain stable. The problem
is treated under the assumption that the point with minimum
distance from the tag A⊥ is the antenna location at which
the minimum unwrapped phase was recorded. This location
is also used as reference AR, as will be demonstrated below.
Eventually, a solvable system is formed, which consists of
only one parameter.

Fig. 6 depicts the geometry of a non straight synthetic
aperture in plan view. The symbols of Fig. 6 are addressed
as following:
• Atag: the unknown tag’s location.
• An, n ∈ [1, N ]: the antenna location that corresponds to

the nth phase measurement φmeasn .
• −→un, n ∈ [1, N ]: the unit vector that represents the

direction of antenna’s movement at location An.
• −→vn: the unit vector that represents the direction of an-

tenna’s radiation at location An.
• −→ex,−→ey ,−→ez : the unit vectors along x, y and z axis, respec-

tively; they form a set of mutually orthogonal vectors.
Since vectors −→un and −→vn lay on the x-y plane, −→un, −→vn
and −→ez also form a set of mutually orthogonal vectors,
−→vn = −→ez × −→un, ∀n ∈ [1, N ]; i.e. in our case, the an-
tenna radiates perpendicularly with respect to the robot’s
movement.

• dn, n ∈ [1, N ]: the distance between the tag and the nth

antenna location, dn = ‖Atag −An‖2.
• AR: the location among {A1, · · · ,AN ]} used as refer-

ence point to craft distance differences. In the non straight
caseAR represents the minimum antenna-to-tag distance.
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Fig. 6: Geometry of a non straight synthetic aperture.

Contextually, the phase measured at AR is denoted as
φmeasR .

• −→uR: the unit vector that represents the moving direction
of the antenna at reference location AR. The line that
joins the tag with the reference location is considered
perpendicular to the direction of motion at reference
location,

−−−−−→
ARAtag⊥−→uR.

• −→vR: the unit vector that represents the direction of an-
tenna’s radiation at reference location AR. The line that
joins the tag with the reference location is considered
parallel to the direction of radiation at reference location,−−−−−→
ARAtag ‖ −→vR.

• dR: the distance between the reference point and the tag,
dR = ‖Atag−AR‖2. It is considered the shortest distance
between the tag and the trajectory of the antenna.

• Ln, n ∈ [1, N ]−{R}: the distance between the reference
and the nth antenna location, Ln = ‖AR −An‖2.

•
−→
ζn, n ∈ [1, N ] − {R}: the unit vector in the direction
of the line that joins the reference point with the nth

location,
−→
ζn =

−−−−→
ARAn =

An −AR

‖An −AR‖2
.

• αn, n ∈ [1, N ] − {R}: the acute value of the angle
between the direction of motion at reference point −→uR
and direction

−→
ζn, αn = arccos(−→u ·

−→
ζn). Moreover, the

angle defined by points AR, Atag and An is equal to
αn, since the sides of the former are perpendicular to the
sides of the latter.

• A⊥n , n ∈ [1, N ]− {R}: the point on the direction of
−→
ζn

with the minimum distance from the tag. The line that
joins the tag with A⊥n is perpendicular to

−→
ζn. As a result,

the formed triangles 4AtagAnA
⊥ and 4AtagARA

⊥

are right.
• hn: the altitude of triangle 4AtagAnA

R that is through
vertex Atag and perpendicular to the opposite side, hn =
‖Atag −A⊥n ‖2

• rn: the distance between reference point AR and A⊥n ,
rn = ‖AR −A⊥n ‖2.

According to the above scheme, the tag’s position is calcu-
lated by:

A2D
tag = AR + dR

−→vR (16)

where the unknown variable that seeks estimation is now dis-

tance dR. The distance between the nth with n ∈ [1, N ]−{R}
antenna location and the tag is:

dn =
√

(rn ± Ln)2 + h2n, (i)

while the distance between the reference location and the tag
is given by:

dR =
√
r2n + h2n, (ii)

For the nth antenna location, the difference between the
aforementioned distances is defined as:

∆dn = dR − dn ⇒
∆dn =

√
r2n + h2n −

√
(rn ± Ln)2 + h2n. (iii)

By raising (iii) to the square, the latter becomes

∆d2n = r2n + h2n − 2
√
r2n + h2n

√
(rn ± Ln)2 + h2n +

+(rn ± Ln)2 + h2n (iv)

By substituting (iii) into (iv):

∆d2n = r2n + h2n − 2
√
r2n + h2n(

√
r2n + h2n −∆dn) +

+(rn ± Ln)2 + h2n ⇒
∆d2n = 2

√
r2n + h2n∆dn ± 2rnLn + L2

n. (v)

However, in each triangle 4AtagAnA
⊥,

rn = sin(an)dR, n ∈ [1, N ]− {R} (vi)

and after substituting (ii) and (vi) in (v):

∆d2n = 2dR∆dn ± 2 sin(an)dRLn + L2
n (vii)

Angle an is known, because the trace of the robot, along
with its pose (position and orientation) are known. Eventually,
by substituting (6) in (vi), an algebraic relation is formed,
which associates the unknown quantity dR with a known phase
difference:(

λ

4π
∆φ̆measn

)2

− L2
n = 2

(
λ

4π
∆φ̆measn ± sin(an)Ln

)
dR,

(17)

where ∆φ̆measn = φ̆measR − φ̆measn is the difference between
the unwrapped phase recorded at the reference location φ̆measR

and the nth, n ∈ [1, N ] − {R} phase measurement φ̆measn .
The matrix form of the constructed linear system based on
(17), is given by:

Ax = b

A = 2



λ

4π
∆φ̆meas1 ± sin(a1)L1

λ

4π
∆φ̆meas2 ± sin(a2)L2

...

λ

4π
∆φ̆measN−1 ± sin(aN )LN−1


x =

[
dR

]
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Fig. 7: The 3D locus of possible tag locations corresponding
to a non straight synthetic aperture.

b =



(
λ

4π
∆φ̆meas1

)2

− (L1)
2

(
λ

4π
∆φ̆meas2

)2

− (L2)
2

...(
λ

4π
∆φ̆measN−1

)2

− (LN−1)
2


(18)

System is again an overdetermined system of N−1 equations
but with 1 unknown coefficient this time, x = [dR]. The so-
lution is computed in a least-square sense (10) and eventually
the tag’s location is derived by (16).

Equation (16) solves the localization problem at the an-
tenna’s horizontal plane. The 3D interpretation of the solution
though, is a circular locus lying in the plane parallel to −→vR
and −→ez (with −→uR being the normal vector), has center AR and
radius dR, see Fig. 7. In Fig. 7, we assume that the robot
always moves along the xy plane. The parametric equations
of the above circle are given by:

x = ARx + dR cos(θ)vRx

y = ARy
+ dR cos(θ)vRy

z = ARz
+ dR sin(θ)

(19)

where ARx , ARy , ARz are the x, y, z coordinates of center
point AR respectively, vRx

and vRy
are the x and y compo-

nents of vector −→vR, respectively and θ goes from 0 to π. By
exploiting (19) any two coordinates of the tag can be calculated
when one is known.

1) Reference Selection: In contrast to straight problems,
where any antenna location An, n ∈ [1, N ] could be used as
reference, non straight cases demand for a specific selection. In
particular, AR should be the antenna location that represents
the minimum antenna-to-tag distance and corresponds to the
minimum value of the unwrapped phase φ̆measn .

2) Evaluation: Similarly to III-A2, the confidence of the
estimation is quantified by the variance/standard deviation
of the problem’s unique unknown parameter dR. Equation
(18) defines a single-variable system; therefore, the covariance
matrix C is a scalar and the standard deviation of the tag’s
two-dimensional estimation is given by:

σest =
√
σ2
dR

=
√
C, (20)

where C is computed by (14).

IV. THREE-DIMENSIONAL LOCALIZATION BY
MULTI-ANTENNA APERTURE

The method proposed in III solves the two-dimensional
localization problem by exploiting a single antenna. The three-
dimensional interpretation of the solution corresponds to a
circular locus of potential tag locations. By employing multiple
antennas on the moving robot, the solution can be then reduced
to a single point.

More specifically, let M ≥ 2 moving antennas each of
which generates a synthetic aperture at different height. By
treating the measurements from each aperture independently
and solving (9) or (18) for each antenna, M loci defined by
(11) or (19) are introduced. Tag’s location is theoretically
released on their common intersection. However, since each
locus is computed with some error, practically the loci do not
intersect in 3D space. Therefore, the intersection problem is
treated in a least-square sense, according to which, the point
with the the minimum distance from all created loci represents
the estimated solution, as shown in Figs 8 (a) and (b).

Let the circle (C) of Fig. 9 , defined by center A, radius
R and normal vector

−→
N . Let also a point P in 3D space and

P ′ its projection to the circle’s plane. The distance between
points P and K represents the minimum distance between
point P and circle (C). This distance is denoted as DPC and
computed by:

DPC = ‖P −K‖ =
√
‖P − P ′‖2 + ‖P ′ −K‖2 =

=

√(−→
N · (P −A)

)2
+
(
‖
−→
N × (P −A)‖ −R

)2
(21)

Circle (C) of Fig. 21 essentially represents the circular locus
derived by PD-Loc. Therefore in (21), A = A⊥, R = h and−→
N = −→u in case of a straight synthetic aperture (see Fig. 5),
and A = AR, R = dR and

−→
N = −→uR in the non straight case

(see Fig. 7).
The point that minimizes the sum of squared distances from

all calculated circular loci (Ci), i ∈ [1,M ] corresponds to the
estimation of the tag’s location in 3D space:

A3D
tag = arg min

P

M∑
i

(wiDPCi
)
2 (22)

where (22) represents a weighted least square problem with
wi, i ∈ [1,M ] being the weight of the ith locus. For wi = 1,
(22) will identify the point that minimizes its sum of distances
from all loci. However, by properly sizing wi, we can identify
the solution to be closer to loci with greater ”trust”. Each locus
(Ci) has been calculated by estimating the solution of a linear
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Fig. 8: Solution of the 3D localization problem by multi-antenna aperture.

system and as a consequence, the reliability of each locus is
expected to differ. Loci based on reliable estimations of the
system’s parameters should have a great impact to the solution
and should be assigned with larger weights, whilst loci defined
by poor estimations should contribute less. In this context, we
propose to exploit the reciprocal of the variance, related to the
estimated locus from each antenna, such that:

wi =

(
1

σesti

)
, i ∈ [1,M ], (23)

where σesti represents the confidence of the ith locus, quan-
tified by the standard deviation of the corresponding two-
dimensional tag estimation (15); the smaller the standard
deviation of an estimation, the larger the assigned weight.

Fig. 8 (c) demonstrates the necessity of exploiting weights in
(22). The upper antenna collected an unsatisfactory amount of
measurements and led to a poor estimation of the tag’s locus.
The antenna’s locus is situated too far from the other three
loci, which were derived by data with better ”quality” (smaller
variance in the estimation). When each circle contributes
the same in (22), the unreliable locus ”pulls” the estimated
solution away from the actual. On the contrary, weighted least
square is able to neglect the upper circle and identify a solution
that is close to the other three circles.

V. SIMULATIVE RESULTS

Monte Carlo simulations were conducted to evaluate the
effectiveness of the method’s variations in III-A and III-B
and discover their strengths and weaknesses at treating the
two dimensional localization problem by a single antenna.
Two types of antenna trajectories were simulated and Fig. 10
depicts the resulted synthetic apertures: i) a straight and ii) a
non straight of ”U”-type. The variables that were investigated
throughout the simulative analysis are the distance d between
the aperture and the simulated tag and the sampling interval

KA

P

P’

R

N

(C)

Fig. 9: Minimum distance between a point P and a circle (C).

of the aperture ∆s; i.e. the distance the antenna travelled
between two successive measurements of the tag. A uniform
sampling has been considered. Each aperture is determined by
a fixed length of 3m and the considered sampling interval es-
sentially defines the number of available phase measurements
for processing. For instance, an interval of 2 cm indicates
that the simulated antenna collects one measurement every
2 cm of spatial displacement, resulting in 150 measured
samples for a total travelled distance of 3 m. For each pair of
distance’s and sampling interval’s values, 50000 tag positions
were randomly generated at different locations to evaluate the
method’s performance.

The unwrapped phase model used through the numerical
analysis is:

φ̆simn = φ̆expn + φnoisen , n ∈ [1, N ] (24)

where φ̆expn represents the unwrapped phase of the direct
(LOS) field ray, which is given by (5) for φ0 = 0, while
φnoisen accounts for zero-mean Gaussian noise with standard
deviation 0.1 rads.

Fig. 11 demonstrates the main difference between the ex-
pected performance of a straight and a non straight trajectory.
In general, PD-Loc can be discriminated in two parts. The first
one corresponds to the computation of a line that the tag may
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Fig. 10: The simulated configurations. The sampling interval
of the apertures and the tag-to-aperture distance represent the
variables of the simulations.

be located, while the second part represents the computation
of the tag’s range along that line. Due to the geometry of a
straight problem, the corresponding system (9) is capable of
treating both parts. By estimating parameter r, a point A⊥

is found that is not necessarily a point at which the antenna
recorded a measurement. The tag may be located on the line
that goes through A⊥ and is perpendicular to the direction of
the antenna’s motion. By computing dR, the tag’s range along
that line is estimated. On the contrary, system (18) of the non
straight problem is capable of estimating only one parameter,
which is the tag’s distance along a given line. In a dissimilar
way to straight cases, point A⊥ that determines the line the
tag may be located on, is not computed but selected among
the locations at which the antenna recorded a measurement.
This point is also used as reference AR.

As a direct consequence of the above, the sampling interval
∆s of a straight antenna array is not expected to affect the
accuracy of the method. No matter how sparse the antenna
locations are, a point A⊥ could be always estimated in
between to define the perpendicular line the tag may be
situated; see Fig. 11 (a) and (b), where that line represents
the search direction of the tag. On the other hand, sampling
interval will play an important role in non straight cases, since
that line has to pass necessarily through an aperture’s location
and more specifically, reference location AR. The sparser the
aperture is, the more the search direction can miss the actual
tag’s position, as demonstrated in Fig. 11 (c) and (d).

The findings of the investigation are presented in Fig.
12, where the average localization error (of 50000 randomly
simulated tags) for increasing values of sampling interval and
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Fig. 11: Performance investigation for different types of aper-
tures.

tag-to-antenna distance is presented. Fig. 12 (a) corresponds
to the straight simulated aperture shown in Fig. 10 (a). The
achieved error is quite low, while the performance remains
unaffected by increasing either the sampling interval or the
distance of the tag. This effect is expected, since the search
direction of the tag, goes through the computed point A⊥,
which can be anywhere along the antenna’s path line, see
Fig. 11 (a) and (b). As a result, the method’s performance
is independent of the distance between successive locations of
the aperture. For instance, a tag placed 1m from the antenna’s
trajectory has been localized with a mean error of around 0.6
cm for any value of ∆s. Similar behavior is met for any tag
distance and aperture sampling.

Fig. 12 (b) demonstrates the localization error when the non
straight trajectory of Fig. 10 (b) is employed. In this case,
the achieved error mainly depends on ∆s. For instance, a
tag placed at 1 m distance from the synthetic aperture, has
been localized with a mean error of 6 cm for ∆s = 0.1cm,
8 cm for ∆s = 4cm, 10 cm for ∆s = 10cm for and 12 cm
for ∆s = 14cm, whilst the respective error achieved by the
straight aperture was consistent (0.6 cm) for every deployed
∆s. Furthermore, the further the tag is placed the higher the
recorded localization error.
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(a) straight aperture

(b) non straight aperture

Fig. 12: Localization error with respect to the tag-to-aperture
distance and the aperture’s resolution.

Straight trajectories outperform non straight ones, even
for cases where quite dense sampling is applied. For the
densest sampling interval of ∆s = 0.1cm, the straight aperture
estimates a tag placed at the shortest distance (d = 0.5m) with
a mean error of 0.4 cm, whilst the non straight aperture with
a mean error of 4 cm; ten times worse. This indicates that non
straight apertures require excessively dense sampling in order
to accomplish similar performances with straight ones, a fact
which may not be feasible in realistic applications, where the
sampling rate is non-uniform and dependent of many factors
(e.g. speed of robot, tag population in sight).

VI. EXPERIMENTS

An experimental campaign took place in a School’s lab-
oratory room, employing the mobile robot of Fig. 13. The
robot is equipped with the ROBOTNIK RB-1 mobile base and
carries one 2D LIght Detection And Ranging (LIDAR) sensor,
through which, it creates a 2D map of the environment and
localise itself in it. It also carries one frontal and two lateral
RGBD sensors for the purpose of creating a 3D map of the
environment. As for the RFID equipment attached, the robot
carries two RFID readers, and eight (four per side) laterally
mounted antennas at the heights of 0.65m, 1.05m, 1.45m
and 1.95m, respectively. Finally, a small form factor on-board

Fig. 13: Photo of robot ”Frida” from a recent international
exhibition.

(a) Two banners placed
side-by-side

(b) Two banners
placed back-to-back

Fig. 14: Photos during the experiments.

(a) 2D map (b) 3D map

Fig. 15: The maps of the laboratory room created by ”Frida”
during an experiment.
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Fig. 16: Tag configurations and estimated robot trajectories of the conducted experiments, pinpointed in the environment’s
map.

computer is also employed to concentrate the measurements
by the various sensors and process them online. 100 passive
UHF RFID tags were mounted on two banners on a millimeter
paper and the banners were set in various configurations to
evaluate different tag populations and propagation conditions,
as shown in Fig. 14.

The robot navigates in the vicinity of the RFID tags in var-
ious trajectories, while the RFID reader records the phase and
power of the tags’ backscattered signals. As the robot moves,
it continuously tracks its own pose (x,y,θ) over time; this
information is exploited to extract each antenna’s coordinates
and direction of motion. The existence of a map (Fig. 15) is
a prerequisite for robot localisation. A map is derived by the
continuous integration and matching of successive LIDAR or
RGBD measurements, usually considering an estimate of the
robot’s motion between two measurements, which is extracted
via odometry, while robot localization rests on the alignment of
LIDAR measurements to the map of the environment in which
the robot moves by considering the robot’s motion model. In
this specific implementation, mapping was performed via the
”karto” SLAM algorithm [29], and estimation of the robot’s
trajectory was carried out through a modified version of the
”amcl” algorithm [30].

The measurements were repeated five times, each of which
corresponds to a different banner configuration and type of
employed robot trajectory. Fig. 16 depicts the tags’ locations
and the estimated robot trajectories inside the created 2D map,
during each of the five conducted experiments.

RFID-localization rests on the integration of the tag’s mea-
surements acquired by the reader’s antennas, and the antennas’
coordinates at each measurement, which are made available
by the robot-localization algorithm. However, the locations of
the antennas are estimated by processing noisy sensor and
odometry data and thus, are expected to suffer from errors
depending on the amcl algorithm’s accuracy. Such errors will
propagate to the tag estimations as well, affecting the accuracy
of any method applied on such data.

A. Experimental Results of 2D localization

In this section, the problem of 2D localization by a sin-
gle antenna (see section III) is evaluated and the respective
results are presented. The tag’s height is considered known,
so the problem is reduced to the estimation of the x and y
coordinates.

1) Confidence Evaluation: The RFID tags are attached on
the banner at a minimum height of 0.1m and a maximum of
2.1m. Depending on their height, they will be illuminated and
read by a different number of robot’s antennas. For instance,
tags placed at the banner’s center ensure sufficient coverage
by all four antennas, whilst tags attached at the bottom or
top will be sufficiently read only by the antennas mounted
at a similar height of the robot. The method is applied to
estimate the location of a tag, despite the availability of
its measurements; if a tag is read by four antennas, the
method is applied independently to each of the four sets of
measurements resulting in four different estimations for the
same tag. Localization is performed even for cases where a
small number of measurements is collected. Estimations based
on such inadequate data will suffer from large localization
error and consequently, deteriorate the method’s accuracy.
However, by exploiting the confidence metric introduced in
section III, such estimation is possible to be identified and
discarded. More specifically, the standard deviation of each
estimation σest, calculated by (15) or (20), is examined and
in case it exceeds a predefined threshold, the corresponding
estimation is rejected. Recalling from section III, small values
of σest indicate stronger reliability.

Fig. 17 plots the mean and the standard deviation of
the achieved localization error for various values of desired
confidence. Fig. 17 (a) corresponds to the results of the three
experiments that employed a straight synthetic aperture, i.e.
the robot moved along a straight path while collecting data
and Fig. 17 (b) to the results of the two experiments, which
employed non straight trajectories. Initially, no confidence-
constraint is applied and the reported accuracy is quite low,
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Fig. 17: Error of two-dimensional localization when different
confidence-thresholds are applied to reject poor estimations.

since estimations based on inadequate measurements are in-
cluded. Especially the standard deviation of the error is quite
high, indicating the existence of estimations with significantly
increased error. However, when reliability is taken into ac-
count, poor estimations are identified and excluded, leading
to the improvement of the delivered accuracy. Even with
the most relaxed constraint (σest < 20cm), the localization
error decreases in the order of tens of cm compared to its
initial value. The stricter the desired constraint becomes, the
more the achieved error decreases at an expense of less
accepted estimations. This effect verifies the functionality of
the variance-based metric developed for both types of synthetic
apertures.

As the findings of simulation-analysis in section V pre-
dicted, the localization accuracy delivered by a straight path is
slightly better compared to a non straight path. For example,
in case of rejecting estimations with σest ≥ 15cm, the straight
synthetic aperture is more accurate by 5cm compared to the
non straight one.

2) PD-Loc vs prior art: Next, the method’s performance
is compared against prior art. Additionally to PD-Loc, three
other SAR-based methods have been implemented and tested
in the same experimental dataset to ensure fairness. The
common feature the selected methods share is the Maximum
Likelihood Estimation (MLE), according to which, the tag’s
estimated position should coincide with the global solution of
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Fig. 18: Error of two-dimensional localization achieved by
each applied method.

a constructed objective function. Depending on the technique
that global solution is sought, three approaches are identified:

a. Nonlinear Optimization (Phase ReLock [18]): The raw
phase measurements collected along the aperture are ini-
tially unwrapped and in combination with a nonlinear
phase-distance model, they represent the input to a data-
fit problem. where the model’s coefficients account for
the tag’s unknown coordinates in a 2D plane. The prob-
lem is solved in a least-square sense, while its convex-
type property preserved by phase-unwrapping, allows rapid
convergence to the problem’s unique minimum through
nonlinear optimization. This effect supports the real-time
application of Phase ReLock.

b. Exhaustive Search over a grid (SARFID [14]): In this
case, the matching function is non convex and suffers from
multiple local minima and maxima. In order to identify the
global solution, an exhaustive search is performed on a grid
of potential tag locations assigned on the search-space. The
grid point that maximizes a matching function corresponds
to the estimated tag location. The required computations are
proportional to the amount of candidate points and hence
the execution time is increased; although a dense grid-
resolution is expected to increase the method’s accuracy. As
a result, for dense and large grids, the real-time application
of the method is not supported. In this specific experimental
implementation , the exhaustive search was performed over
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a grid extended to an area of of 4m× 6m with a spacing
value of 1 cm.

c. Particle Swarm Optimization (PSO-SAR [23]): The non
convex cost function in [14] can be alternatively solved by
particle swarm optimization. According to it, a swarm of
particles that represent possible tag locations, is randomly
generated within the search bounds and moving around the
search space, seeking to identify the global solution. Each
particle’s evolution is affected by its own and its neighbors’
best recorded locations. Although this method improves the
computational cost of a grid-search, the accuracy and speed
are still dependent of the algorithm’s design parameters,
e.g. the size of the particle swarm, each particle’s initial
location assigned. In this specific experimental implemen-
tation, a swarm of 100 particles was employed within the
bounds of a 4m× 6m search space.

The methods were applied only to tags that were estimated
by PD-Loc with σest < 15cm to ensure fairness in the
comparisons, since a sufficient collection of measurements is
expected to be available for those tags.

The findings of our investigations are presented in Fig. 18.
In case of a straight synthetic aperture, PD-Loc outperforms
its competitors. It accomplished to locate the tags with a mean
error of 10 cm and a std of 11 cm, while Phase ReLock
delivered mean accuracy of 13 cm and std of 13 cm, PSO-
SAR mean error 18 cm and std 30 cm and SARFID mean
error 19 cm and std 35 cm. In case of the non straight paths
though, PD-Loc features a slight increase of the achieved error,
whilst the other three methods not. In general, SAR-based
methods produce more reliable and accurate estimations when
the synthetic aperture has component in two directions (the
antenna moves in non straight trajectory), a property, which
is not applicable in PD-Loc since the latter mainly depends
on the geometry of the problem. Therefore, those methods are
more accurate in comparison to their previous results regarding
the straight paths. More particular, Phase ReLock reported the
best accuracy (mean 11 cm and std 20 cm), PD-Loc delivered
a mean error of 15 cm with 16 cm std, SARFID a mean error
of 13 cm and a std 22 cm and finally PSO-SAR reported a
mean 14 cm and a std 26 cm.

The authors here define the method as ”real-time”, because
the collection of the measurements takes more time than
the derivation of the estimations. This is the case for both
”PD-Loc” and ”Phase Relock”. During the movement of the
robot, as soon as some data have been collected, (e.g. after
60s), PD-Loc is initiated, while the robot’s readers continue
to collect measurements; PD-Loc derives the estimations long
before the robot requests new estimations with the updated
measurements. Therefore, there is no queue (no buffering)
whenever the localization method is invoked.

On the contrary, SARFID required about 1.8hour to perform
the same amount of estimations, while PSO-SAR 0.8hours. It
is worth noting that the estimation time of the latter methods
depends on the size of grid and particle swarm deployed in
this specific implementation and for denser grids and more
particles, this time will be further increased. On the contrary,
the speed of PD-Loc is stable, since it does not depend on any
algorithm’s design parameters.
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Fig. 19: Execution time required by each applied method for
two-dimensional localization.

B. Experimental Results of 3D Localization

In this section the problem of 3D localization by multiple
antennas (see section IV) is evaluated. During an experiment,
each tag is interrogated by a maximum of four antennas. PD-
Loc solves a linear system for each antenna independently
and estimates a 3D locus around its trajectory, where the tag
may be located; eventually it solves a least square problem to
compute the location with the smallest distance from the loci.

1) PD-Loc vs prior art: Fig. 20 exhibits the localization
error of PD-Loc compared to the three dimensional versions
of the SAR-based methods of section VI-A2:

a. Nonlinear Optimization (Phase ReLock [21]): exploits a
multi-antenna synthetic aperture and an unwrapped model
to solve a multivariable convex-type optimization problem.

b. Exhaustive search over a grid (SARFID [22]): Similarly to
the two-dimensional problem, SARFID seeks for the global
maximum through exhaustive search over an assigned 3D
grid of possible tag locations. In this specific experimental
implementation, the search space is defined as an area of
4m× 6m× 2m with a grid resolution of 5 cm.

c. Particle Swarm Optimization (PSO-SAR [23]): The exhaus-
tive search of [22] is replaced by a swarm of particles
that move along the 3D space of interest to identify the
global solution of the problem. In this specific experimental
implementation, a swarm of 2000 particles was employed
within the bounds of the 4m×6m×2m search space. Since
the space of interest extends now in three dimensions, a
greater number of particles is required in comparison to
the 2D search-space.

Initially, PD-Loc solved the loci-intersection problem without
accounting for the confidence of each locus, i.e. no weights
were assigned to the least square problem of (22). In such case,
the achieved localization error is about 45 cm for both straight
and non straight path. However, the introduction of confidence-
based weights improved the accuracy by decreasing the ac-
complished mean error to half (17 cm for straight apertures
and 23 cm for non straight), verifying again experimentally
the necessity of computing and exploiting the estimations’
reliability. In case of straight aperture, PD-Loc outperformed
its SAR-based competitors. In case of non straight aperture,
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Fig. 20: Error of three-dimensional localization achieved by
each applied method.

only Phase ReLock managed to deliver better performance (5
cm lower).

Last but not least, Fig. 21 compares the execution time of
each method for all experiments (straight and non straight tra-
jectories). The computational cost of the 3D extension of PD-
Loc refers to the cost of unwrapping the phase measurements
by each antenna, solving a linear least square problem for each
antenna and solving the non linear least square problem of the
loci-intersection. The cost of Phase ReLock refers to the cost
of unwrapping the phase measurements by each antenna and
solving a multi-antenna nonlinear optimization problem. The
cost of SARFID refers to the cost of evaluating a matching
function for an amount of grid-points and finally the cost
of PSO-SAR refers to the cost of updating the swarm of
particles in a three-dimensional search space. Again, PD-Loc
outperformed all methods and achieved to estimate 450 tags
in only 55s, while Phase ReLock ”finished” second in 75s.
The time consuming search of SARFID in 3D-grid required
much more time, nearly 5h, while processing a large number
of particles delayed PSO-SAR, which executed in 4.5h.

C. Source of error

The proposed localization system deals with the actual
problem, according to which its task is to localize both the
robot’s poses and the surrounding RFID tags. Therefore, the
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Fig. 21: Execution time required by each applied method for
three-dimensional localization.

presented experimental accuracy is affected by various error
sources.

The phase recorded by the RFID reader is essentially the
phase of the resultant signal generated by the direct propaga-
tion ray (Line of Sight) and the rays from the various scatterers
and reflectors (multipath). Since the presented localization
algorithm exploits the free-space phase model (2), which
does not account for multipath contributions, such mismatch
between the actual and modeled phase is expected to introduce
a localization error. Phase is also subjected to the effect of
thermal noise and contains a random error that follows a
typical Gaussian distribution [13], with a standard deviation
of 0.1 radians.

Additionally, SAR-based localization algorithms require
some sort of the antenna’s position. In the proposed system,
the antennas are mounted on a SLAM-enabled robot, which is
capable of constructing a map of the environment and estimate
its pose in it. However, such estimation is erroneous since
it is based on noisy sensor data, while disformations of the
produced map also influence the accuracy of the robot self-
localization. Such errors propagate to the localization error of
the RFID tags.

Finally, the tag locations on the banners have been measured
with respect to a local coordinate system, the millimeter
paper’s system. The tag locations estimated by any RFID
method applied refer to the map’s coordinate system. These
two systems should coincide in order to be able to evaluate
the method’s accuracy. Therefore, the locations of the banners
inside the map are pinpointed and the local coordinate system
of the banner is transformed to the map’s system. This is a
manual process and it is expected to introduce error in the
influence the delivered accuracy.

VII. CONCLUSION

In this paper, we propose ”PD-Loc”, a novel SAR-based
localization method that properly exploits phase differences
and spatial properties of the problem’s geometry to construct
a linear overdetermined system. The solution of the system
pinpoints the location of the tag. Thanks to the linearity of the
problem, the system is solved rapidly by simple matrix oper-
ations. By properly exploiting the system’s covariance matrix,
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computed for the estimated parameter-values, the reliability of
the tag’s extracted location is quantified. This metric is then
used to weight the importance of each synthetic aperture when
3D localization is sought by multiple antennas.

Initially, the problem is solved in 2D-space for straight
and non-straight robot’s trajectories. Simulations showed that
the non-straight trajectories are vulnerable to larger errors as
the aperture’s sampling interval increases, because, for non-
straight paths, the method is sensitive to the sampling point,
where the minimum unwrapped phase was recorded; a finding
which was also experimentally verified.

By extending the solution in 3D-space, circular loci of
possible tag locations around each antenna’s aperture are
derived. We identify the 3D location of the tag to be the
point that minimizes its weighted Euclidean distance by all
loci. The weights are assigned on each sythetic aperture,
based on the variance-reliability metric related to the collected
measurements by each antenna.

Experimental results and comparisons against state-of-the-
art methods evaluate the system’s efficiency. PD-Loc delivers
best performance when straight antenna trajectories are de-
ployed (11 cm error in 2D localization and 17 cm in 3D) and
slightly reduced (but still better than other methods) when the
antenna moves along non straight paths (15 cm error in 2D
localization and 23 cm in 3D). Most importantly though, such
accuracy has been accompanied by the smallest estimation-
time. Thanks to the linearity of the crafted system, real-time
applicability of the proposed method is feasible.
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