Journal Pre-proof

Correspondenceless scan-to-map-scan matching of 2D panoramic range
scans

Alexandros Filotheou, Andreas L. Symeonidis, Georgios D. Sergiadis,
Antonis G. Dimitriou

PII: $2590-0056(23)00013-9
DOI: https://doi.org/10.1016/j.array.2023.100288
Reference: ARRAY 100288

To appear in:  Array

Received date: 23 February 2022
Revised date: 15 October 2022
Accepted date: 19 April 2023

Please cite this article as: A. Filotheou, A.L. Symeonidis, G.D. Sergiadis et al., Correspondenceless
scan-to-map-scan matching of 2D panoramic range scans. Array (2023), doi:
https://doi.org/10.1016/j.array.2023.100288.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Inc. This is an open access article under the CC BY license (http:
/lcreativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.array.2023.100288
https://doi.org/10.1016/j.array.2023.100288
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Correspondenceless Scan-to-Map-scan Matching of 2D Panoramic Range Scans

Alexandros Filotheou*, Andreas L. Symeonidis*, Georgios D. Sergiadis*, Antonis G. Dimitriou*

Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

In this article a real-time method is proposed that reduces the pose estimate error for robots capable of motion on
the 2D plane. The solution that the method provides addresses the recent introduction of low-cost panoramic range
scanners (2D LIDAR range sensors whose field of view is 360°), whose use in robot localisation induces elevated pose
uncertainty due to their significantly increased measurement noise compared to prior, costlier sensors. The solution
employs scan—to—map-scan matching and, in contrast to prior art, its novelty lies in that matching is performed without
establishing correspondences between the two input scans; rather, the matching problem is solved in closed form by virtue
of exploiting the periodicity of the input signals. The correspondence-free nature of the solution allows for dispensing
with the calculation of correspondences between the input range scans, which (a) becomes non-trivial and more error-
prone with increasing input noise, and (b) involves the setting of parameters whose output effects are sensitive to the
parameters’ correct configuration, and which does not hold universal or predictive validity. The efficacy of the proposed
method is illustrated through extensive experiments on public domain data and over various measurement noise levels
exhibited by the aforementioned class of sensors. Through these experiments we show that the proposed method exhibits
(a) lower pose errors compared to state of the art methods, and (b) more robust pose error reduction rates compared to

those which are capable of real-time execution. The source code of its implementation is available for download.
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1. Introduction

Mobile robot localisation on one plane is a well-studied
field in robotics and several diverse approaches have been
proposed in the past. Probabilistic methods, e.g. the
Kalman filter [1] or Monte Carlo Localisation (MCL) meth-
ods [2]-[4] have been applied to the task of pose tracking
and have proven their success with respect to tracking ef-
ficacy. At the same time, probabilistic methods are robust
to sensor noise, discrepancies between the robot’s environ-
ment and its corresponding map, motion model mismatch
with regard to the true kinematics of the robot, and pose
uncertainty [5]-[7]. These methods have also been em-
ployed for global localisation, where a system is tasked
with estimating the robot’s pose under global pose uncer-
tainty [8]-[10].

In practice, the pose estimate of localisation methods
is beset by an error which is often measured in centimeters
or even decimeters [11][12]. These errors are due to range
scan measurements being distorted by noise, or the map
of the environment not matching the latter adequately.
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Other reasons include the map being expressed as a finite
resolution grid, noisy or faulty and ever-drifting odome-
try (if at all available), and the nature of the observa-
tion model. In certain conditions such as industrial ones
[13][14], the magnitude of the estimate’s error is required
to lie within constrained specifications. Therefore, stan-
dalone or prosthetic methods have been employed or used
in tandem with well-established sturdy probabilistic (or
otherwise) localisation methods, with many of them lever-
aging measurements from onboard pre-existing LIght De-
tection And Ranging (LIDAR) sensors.

LIDAR sensors have become popular in robot locali-
sation due to their high measurement precision, high up-
date frequency, and almost no need for preprocessing. The
use of panoramic LIDAR sensors was for a long time con-
strained to higher price ranges, low measurement noise,
and in the context of industry. In recent years, however,
cheaper but less accurate LIDAR sensors have become
available. The former fact facilitates their adoption and
usage in research, but the latter poses a challenge to both
the robustness and accuracy of localisation methods.

A class of prosthetic localisation methods improves the
robot’s pose estimate by extracting the relative translation
and orientation between (a) the range scan captured from
the robot’s actual pose and (b) a virtual range scan derived
by ray-casting the map of the robot’s environment from
the robot’s pose estimate. Due to its operating principle,
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this technique may be termed scan—to-map-scan matching.
Related methods rest on establishing correspondences be-
tween features, points, points and lines, distributions, or
points and distributions. However, methods resting on
locating features presuppose structured environments and
the existence of features in a sufficiently undisturbed state.
Furthermore different environments exhibit different fea-
tures, and therefore the use of feature-finding methods
must be tailored in an ad-hoc manner. The majority of
the rest use scan-matching methods based on the Iterative
Closest Point (ICP) method [15]-[17], research on which
is ongoing for several decades [18]-[23]. However, ICP-
based methods are subject to the perplexities delimited
by the underlying process of establishing correspondences
between the two input scans, which are exacerbated in
high levels of measurement noise. Furthermore, their use
and performance is hindered by the needed tuning of the
plethora of parameters governing their response [24]. In
any case, the methodology of approaches that solve the
scan—to—map-scan matching task rests on establishing cor-
respondences between the input scans.

In this article we propose a method that solves scan—
to—map-scan matching in real time and in closed form that
specifically targets panoramic 2D LIDAR sensors. The
central contributions of this article are the following:

e To the best of the authors’ knowledge, the first real-
time method addressing the full 3D-matching of real-
to-virtual 2D panoramic range scans that operates
without establishing correspondences of any kind be-
tween input scans

e The introduction of a method that aims at reducing
the orientation error to lower than the sensor’s angle
increment compared to relevant prior work

e The parameter set needed by the proposed method
is smaller in size and more intuitive to tune that
those of state-of-the-art methods, and trades execu-
tion time for accuracy

e The extensive and thorough evaluation of state-of-
the-art scan-matching methods and of the proposed
method on the task of scan—to—-map-scan matching,
over five public domain benchmark datasets and mea-
surement noise levels from common-use commercially
available panoramic sensors

The proposed method assumes that (i) a panoramic
range scan, (ii) the map of the environment in which the
robot operates, and (iii) a pose estimate residing in the
vicinity of the robot’s true pose are available. After com-
puting a virtual range scan from the measurement sen-
sor’s pose estimate, the method updates it by reducing
first the error of the orientation estimate and then that of
the position estimate. The process is iterated until suffi-
cient convergence conditions are met. The estimation of
the 3D transformation between the robot’s true and esti-
mated pose is facilitated by the exclusive use of the first

term of the Discrete Fourier Transform of the difference in
ranges between the input real scan and computed virtual
scans, where the range scan termed “real” is a measure-
ment of a physical range finder and those termed “virtual”
are generated by raycasting the map of the robot’s envi-
ronment.

In summary, (a) the orientation errors of the proposed
method are independent of the initial angular displace-
ment, and (b) it allows matching to preserve robustness
in high levels of measurement noise and map distortions.
Specifically, the approach proposed is shown to be more
robust to measurement noise and map distortions than
real-time state-of-the-art methods in the sense of propor-
tion of cases where the pose estimate error is reduced after
its application, and more accurate in terms of pose error
magnitudes.

The remainder of this paper is structured as follows:
Section 2 formulates the problem and the objective of its
solution. Section 3 defines necessary notions. Section 4
provides a bibliographical exposition of the current state-
of-the-art solutions to the problem of performing scan—to—
map-scan matching in order to improve the pose estimate
of a robot capable of motion in the 2D plane equipped with
a 2D range sensor. Section 5 illustrates the method of solv-
ing the stated problem that this paper proposes. Section
6 presents the experimental setup and the performance of
the proposed method for robots using available panoramic
sensors, in realistic conditions. Section 7 gives key char-
acterisations and discusses the limitations of the proposed
method, and section 9 provides the aims of future work.
Section 8 provides a number of applications where scan—
to—map-scan matching is utilisable and useful. Finally,
section 10 summarizes the work presented and concludes
the paper.

2. Problem Formulation

Problem P. Let a mobile robot capable of motion in the
x — y plane be equipped with a coplanarly mounted 2D
panoramic range scan sensor emitting N rays. Let also
the following be available or standing:

e The map M of the environment the robot operates
in

e A 2D range scan Sg, captured from its range sensor’s—
unknown and sought-for—pose p(l,6), l = (z,y)

e An estimate of the range scan sensor’s pose
in the map’s frame of reference, where | = (
in a neighbourhood of 1

Then the objective is to reduce the 2-norm of the sen-
sor’s pose error e(p,p) £ p — p from its initial value

le@,B)ll2 = ((z = 2)* + (y —§)* + (0 = 6)*)'* (1)
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Figure 1: In principle, a typical localisation condition: The robot’s
actual pose is p but its estimate p’ is displaced in terms of position
and orientation. The rate of changes in the portion of the environ-
ment circumscribed in red is greater than that of those in the portion
enclosed in green

by improving the sensor’s pose estimate to p'(&', ¢/, é’) )
that

le(@, p)ll2 < lle(p, P)ll2 (%)

Assuming that the sensor’s pose with respect to the robot’s
frame of reference is known, the correction of the sensor’s
pose estimate is equal to the correction of the robot’s pose
estimate with respect to the map’s frame of reference. An
example of a premise of Problem P is depicted in fig. 1.
Pose estimate p is supplied externally from a localisation
system in the case of pose tracking, or as a pose hypothesis
in the case of global localisation.

3. Definitions

Definition I. Definition of a range scan captured from a
conventional 2D LIDAR sensor. A conventional 2D LI-
DAR sensor provides a finite number of ranges, i.e. dis-
tances to objects within its range, on a horizontal cross-
section of its environment, at regular angular and temporal
intervals, over a defined angular range [26]. We define a
range scan S, consisting of Ny rays over an angular range
A, to be an ordered map S : © — Rxq, where © = {6,, €
[—3,43) 10, = -3 + Axosn=0,1,...,N,—1}. Angles
0, are expressed relative to the sensor’s heading, in the
sensor’s frame of reference.

Figure 2 depicts the geometry of a typical conventional
2D LIDAR sensor, where d,, = S[—% + ;\V—"] is the range
returned by ray n. '

Definition II. Panoramic 2D range scan. The angular
range of a 2D LIDAR sensor is symmetrically distributed

Figure 2: The (local) frame of reference of a typical conventional
range sensor. The sensor is located at O(0,0) and its heading
is that of the = axis

on either side of its z-axis. Each ray is equiangularly
spaced from its neighbouring rays (with the exception of
the first and last rays if A < 27). When X\ = 27, the range
scan returned by the sensor is termed panoramic.

Definition ITII. Scan-matching using a 2D LIDAR sen-
sor (adapted for use in two dimensions from [17]). Let two
range scans as defined by Definition I, S and Sy, be cap-
tured from a LIDAR sensor operating in the same environ-
ment at both capturing times. Let py (zv,yy, 6v) be the
pose from which the sensor captured Sy, expressed in some
coordinate system (usually a past pose estimate of the sen-
sor). The objective of scan-matching in two dimensions
is to find the roto-translation ¢ = (¢,6), t = (Ax, Ay)
that minimises the distance of the endpoints of Sy roto-
translated by q to their projection on Sg. Denoting the
endpoints of Sy by {p!, }, in formula:

mqinzle{/@q—l—[{SR,pi/Gﬁq}H2 (2)

The symbol “@” denotes the roto-translation operator pi, &
(t,0) = R(0)p:, + t, where R(f) is the 2D rotation ma-
trix for argument angle 6, and [[{Sr, p{, ® q} denotes the
Euclidean projector on Sg.

Remark I. Scan-matching is employed in robotics as a
means to odometry, primarily in non-wheeled robots where
no encoders can be utilised, or as a useful ameliorator of
the ever-drifting encoder-ed odometry: scans captured at
consecutive time instances, inputted to a scan-matching
algorithm, convey an estimate as to the pose of the scan
sensor at the second capture time relative to that captured
first. Scan-matching is being successfully employed in the
tasks of simultaneous localisation and mapping [27]-[29],
local map construction [30]-[32], and in people-tracking
systems [33].

Definition IV. Definition of a map-scan. A map-scan
is a virtual scan that encapsulates the same pieces of in-



formation as a scan derived from a physical sensor. Only
their underlying operating principle is different due to the
fact the map-scan refers to distances to obstacles within
the map of the robot’s environment rather than within
the environment itself—hence its virtuality. A map-scan
is captured from a virtual sensor and derived by means of
locating intersections of rays emanating from the estimate
of the sensor’s pose and boundaries demarcating obstacles
in the map.

Definition V. Scan—to—-map-scan matching in two dimen-
stons. Scan—to—map-scan matching is defined in the same
way as scan-to-scan matching (definition IIT) but with Sy
now derived not from the physical environment of the
robot but from its map.

Remark II. The benefit of matching (a) a map-scan de-
rived from a virtual sensor from its estimated pose to (b) a
scan derived from a physical sensor from its actual pose is
that the correction of the sensor’s pose estimate provides
the correction of the robot’s pose estimate: Assume that
a pose hypothesis exists in the general vicinity of the true
pose of a mobile robot equipped with a 2D range-scan sen-
sor; assuming that the range sensor is fixed at the same
pose relative to the robot in both real and virtual envi-
ronments, the roto-translation of the virtual scan’s end-
points that minimises their distance to their projection on
the physical scan equals the roto-translation that, when
applied to the robot’s estimated pose, will minimise its
displacement with respect to its real pose. Therefore ex-
tracting the relative roto-translation of the virtual scan
with respect to the real scan can be used as a correction
of the estimate of the robot’s pose within the map. The
significance of this correction lies in the fact that it may
be used to reduce a robot’s pose estimate error during
pose-tracking, or to facilitate global localisation.

Remark ITI. In contrast to the problem of scan-matching,
scan—to—map-scan matching is an inherently coupled prob-
lem: since the geometry of the endpoints of the real scan’s
rays can be matched, without loss of generality, only from
the true pose of the robot, the robot’s orientation can be
extracted if and only if its location estimate coincides with
its real location, and its location can only be extracted if
and only if its orientation estimate equals its real orienta-
tion. However, both are, in principle, unequal. This cou-
pling is why an iterative method is required, as we shall
see in section 5.3.

Remark IV. In contrast to scan-matching, where Sy is
an immutable measurement laden with inevitable occlu-
sions, in scan—to—map-scan matching Sy is generated from
the map, which captures the robot’s working environment
in its entirety, thus transferring this property to the virtual
scan. This subtle difference makes it in principle possible
for the virtual scan Sy to match the immutable measure-
ment Sg

e exactly, i.e. to recover the robot’s true pose with
arbitrary accuracy (in the ideal case of perfect mea-

surements and complete map-to-environment coinci-
dence)

e without the need to establish correspondences be-
tween the two scans (as this function has been in-
vented for, and primarily facilitates, the matching of
sets that are in principle overlapping in some areas
but not in others, i.e. for the task of scan-matching)

Remark V. The importance of dispensing with the es-
tablishing of correspondences—aside from the fact that,
strictly, they are not necessary in the scan—to—map-scan
matching task—is in the fact that by the same act the
externally-configurable parameters which govern this func-
tion are also dispensed with. Matching methods that rely
on the establishing of correspondences require the setting
of these parameters, some of whose tuning has been proved
to be non-intuitive, effort-consuming, and not globally-
fitting to any environment or even to different poses in the
same environment [24].

4. State of the art approaches

This section serves as a recounting of approaches that
aim to improve a robot’s pose estimate during pose-tracking
or perform global localisation that rest on the principle of
scan—to—map-scan matching.

In general, scan—to—map-scan methods pertaining to
2D LIDAR range scan sensors compute the 3D transfor-
mation that aligns the input sensed scan (def. I) to a map-
scan (def. IV) best, in the sense of minimising an error or
alignment metric (e.g. eq. (2)). In coarse classification
this is achieved by (a) correlating features extracted from
both input scans [11, 34, 46], (b) resting on scan-matching
techniques [17, 23, 25, 48-50] due to the indistinguishabil-
ity of a virtual scan with respect to a real scan from the
point of view of a scan-matching method (def. V; rem. II)
[14, 39, 41, 42, 45], and (c) by other means, e.g. spectral
techniques [37], Gauss-Newton optimisation [40], Fourier
analysis [24], or simply by randomly sampling the available
pose space [35].

The entirety of real-time scan—to-map-scan matching
methods mentioned above perform matching by establish-
ing correspondences between input scans (whether they be
between raw measurements, features, or other scan char-
acteristics), and require the manual setting of parameters
that govern it, while these do not hold universal or pre-
dictive validity (for an example pertaining to ICP-based
methods see [24]). Establishing correspondences for fa-
cilitating matching, in particular, is a technique suitable
for low-noise scans, which, in theory at least, becomes
cumbersome and ineffective as input noise increases. The
method proposed in this article addresses the above issues
and exhibits the merits found in section 1. The rest of this
section delves deeper into each aforementioned method
and describes its methodology.



In [34] a matching algorithm that deals in range scan
features is introduced. The algorithm operates by detect-
ing rotation- and translation-invariant features that are
only computable in real-time (such as extreme values in
the polar representation of a range scan) in both real and
virtual scans. Subsequently, correspondences are estab-
lished between them. The roto-translation between the
two is then computed as the optimal transformation for
mapping the latter’s features to the former’s.

In [35] an elementary stochastic search algorithm that
corrects the robot’s translational and rotational errors due
to odometric drift is employed. This auxiliary localisation
behaviour is activated whenever an error measure is found
to be above a preset threshold. This measure is based
on the relative deviation in detected ranges between rays
from a real scan and a map-scan. To avoid having to
correct for the motion of the robot while scan-matching,
the robot is assumed to be standing still for the whole
duration of its pose correction. Therefore whenever the
error measure is found to be above its preset threshold the
algorithm halts the robot’s motion and picks a random
pose in the neighbourhood of its estimated pose. It then
takes a virtual range scan from that pose and computes
the new error. If the error is lower than the one found for
the previous estimated pose, a new iteration starts, this
time centered around the newly found pose. If not, the
algorithm keeps guessing poses until it finds one whose
error is lower than the previous one. The final pose is
then taken as the true pose of the robot, allowing for a
correction of the odometry. Experiments performed with
this method showed that it was able to correct a radial
pose error of 0.3 m to 0.07 m, and an angular pose error
of 0.393 rad to 0.01 rad.

The authors of [11] use scan-matching in order to im-
prove the solution to the global localisation problem. As-
suming that the robot’s environment is structured and
without any sort of symmetries, the method identifies the
robot’s global orientation by employing the HSM scan-
matcher [36]. HSM is used to obtain the robot’s heading
by matching the lines in the map of the environment with
the lines from the 2D range scan taken at the robot’s initial
pose. Having found the robot’s orientation, they estimate
the robot’s location by calculating the likelihood that each
location on the map’s grid produced the input laser scan.
This likelihood is extracted by using the beam endpoint
model [6]. The robot’s position is the location from which
the virtual scan that scored the maximum probability was
captured.

Likewise, in the context of global localisation, the method

in [37] first generates the generalised Voronoi diagram of
the 2D grid map. Its nodes are taken to be initial hypothe-
ses of where the robot is posed. From there virtual scans
over an angular range of 27 are computed using raycast-
ing the grid map. Correspondences between each virtual
scan and the scan captured from the physical sensor are
then established by using a spectral technique [38]. The
latter finds pairwise geometric relationships between its

two input scans. These correspondences are then used to
generate 2D geometric histograms that encode a sense of
similarity between the true scan and all virtual scans. The
nodes from which the latter were captured are then ranked
according to this similarity measure and a threshold based
on the correlation coefficient of all combinations of scans is
used to extract a subset of candidate poses. This process
is used to quickly sift between all candidate poses. The
final pose is that which achieves the maximum number of
correspondence pairs.

In [39] the occupancy grid map is first converted to a
signed fitness map which encodes the distance the closest
obstacle for a given sensor location. Through the fitness
map the measurements of the 2D range sensor are related
to the environment’s map without extracting features from
either. The global localisation problem is then formulated
as an optimisation problem, where particle swarm optimi-
sation is used to explore the pose space to search for the
most likely solution. This is done by maximising the fit-
ness function. In order to further improve the search pre-
cision, scan—to—map-scan matching is performed via ICP:
from the poses of particles which hold the top fitness val-
ues virtual scans are captured and matched against the
latest scan measurement. The output pose is that which
resulted from scan—to—map-scan matching and whose up-
dated fitness value is the maximum among all similarly
treated particles.

By contrast, in order to solve Problem P in the context
of localisation of autonomous forklifts, the method intro-
duced in [14] solves scan—to—map-scan matching in two
steps: Given a vehicle’s pose estimate obtained through
the use of MCL with KLD sampling [4], the orientation
between the real and virtual scans is first estimated via
scan-matching the two using an ICP variant. Specifically,
scan-matching is performed through the all-encompassing,
highly accurate, efficient, and outperformer of the state-of-
the-art scan-matchers: PLICP [17].} The authors’ findings
indicate that the improvement of the location estimate
through scan-matching with PLICP is unstable. There-
fore they conclude that utilising PLICP in industrial ware-
house settings, where milli-meter accuracy is required, in
order to extract the relative translation between the two
scans is precarious and unsuitable. Given that the fork-
lift’s orientation estimate error has decreased to as much
as 0.13°, the position estimate error is corrected by iter-
atively performing scan—-to—map-scan matching through a
process that approximates the displacement error at each
iteration by a function of the first element of the Discrete
Fourier transform of the difference in ranges between the
real scan and that iteration’s map-scan.

A similar pipeline is presented in [40]. Instead of using
PLICP off the shelf, the authors develop a scan-matching

Hn principle, if the assumptions of Problem P are fulfilled, any
of the available 2D scan matchers may be used to aim at attaining
objective (x). A comprehensive review of scan-matching methods
may be found in [45].



algorithm that aligns real scans with map-scans taken from
MCL’s pose estimate using the Gauss-Newton method.
This alignment is performed layer-by-layer in increasing
map resolution. Experiments conducted with a real robot
in unstructured environments show that the scan—to-map-
scan matcher achieves an average location accuracy of 0.017
m and an average orientation accuracy of 0.5°. In [41] and
[42] PLICP is additionally used as odometry whenever an
odometry error measure is found to be larger than a set
threshold. However, in contrast to [40], scan—to—map-scan
matching is performed by chaining PLICP in tandem with
GPM [43] in order to mitigate the effects of large angular
errors on PLICP.

The method introduced in [44] jointly considers odome-
try, scan-matching and scan—to—map-scan matching of 2D
LIDAR scans with cadastral maps for localisation of au-
tonomous vehicles in outdoor scenarios. These are used as
constraints in the solution of a graph optimisation prob-
lem that computes the most likely vehicle pose given mea-
surements from the 2D range sensor. With regard to the
cadastral plans, non-building objects are filtered-out from
the real laser observation using a split and merge approach,
which is combined with weighted line fitting. The input
range scan and the one derived from the map are then
aligned via Generalised ICP, and the resulting pose trans-
form is then added to the graph if and only if ICP has
converged. At the same time, a method for detecting the
ambiguity regarding the longitudinal position of the vehi-
cle arising in corridor-like environments is introduced.

In [45] scan—to—map-scan matching is employed in tan-
dem with a particle filter. From the pose estimate of the
latter, a map-scan is computed and then matched against
the range scan captured from the physical sensor using
PLICP. Feeding back the resulting pose estimate to the
population of the particle filter in the form of a multitude
of particles is shown to exhibit lower pose errors compared
to [40], where the resulting pose estimate is fed back in the
form of only one particle. Furthermore it is shown that
this method of feedback exhibits increased robustness com-
pared to [14], where the particle filter is initialised anew
around the resulting estimate.

In [46] the proposed global localisation method is di-
vided into two phases: an offline and an online phase.
During the offline phase, the input map is partitioned
into a 2D grid according to a set resolution. A rotation-
invariant location signature is then generated for the vir-
tual panoramic 2D range scan that is captured from each
traversable cell location within the map. All resulting sig-
natures are then inserted into an ANN search tree. In
the online phase, for each incoming laser scan, a signature
of the input scan is generated in the same way as during
the offline phase. Then the signature is used for retriev-
ing the neighbouring candidate locations from the search
tree: the output location is that whose virtual scan’s sig-
nature is the closest neighbour of the signature of the in-
put measurement scan. In order to obtain the orientation
of the robot’s pose, a virtual scan is generated from the

determined location and registered to the measurement
panoramic 2D range scan after pre-processing and pre-
aligning steps. The angular registration is performed in
1-degree steps and the robot’s orientation is the one that
which records the minimum relative entropy between the
virtual and real scan.

In [24] the solution to the global localisation problem is
given entirely online. At first a dense cloud of hypotheses
is generated within the unoccupied interior of the robot’s
map. Subsequently each hypothesis is inputted to a ro-
tation subsystem, which at first captures a virtual scan
from the hypothesis’ pose, projects it to two dimensions,
discretises it, and matches it to the similarly-treated real
scan via the application of Fourier-Mellin Invariant match-
ing [47]. The latter provides the orientation difference be-
tween the two scans and, most importantly, a measure of
their similarity. After rotating the pose hypothesis the
translation component displaces it in order to match the
location of the sensor’s real location. At the end all sim-
ilarity measures are ranked and the pose hypothesis with
the greatest similarity degree is outputted as the system’s
pose estimate.

In recent months a number of new scan-matching meth-
ods, offering improvements on established methods or in-
troducing new innovations, have been introduced. In [48]
NDT is used to model the sensor’s environment in order to
address its uncertainties and constraints. The pose trans-
formation between successive poses—the solution to the
optimisation problem of eq. 2—is given by a modified
stochastic particle swarm optimisation approach that in-
corporates inertia weights in its formulation. These weights
encode the momentum expressed by forces attracting the
particle in keeping its current velocity, forces that bias its
motion towards its personal optimum, and forces that di-
rect it towards the swarm’s optimum pose thus far.

In contrast to NDT however, which establishes corre-
spondences by considering the distance of point positions
to voxel distributions, VGICP [23] aggregates the distri-
bution of each point in the voxel and establishes corre-
spondences between these distributions and target distri-
butions, thus making VGICP a voxel-based distribution-
to-multi-distribution approach. This approach yields valid
voxel distributions even when there are few points in a
voxel, resulting in an algorithm that is robust to changes
in voxel resolution. VGICP extends GICP [49] in order to
avoid costly nearest neighbour search, while reducing its
execution time.

In [50] a certifiable scan-matching algorithm is intro-
duced. The registration solution is first made insensitive
to large number or spurious correspondences by reformu-
lating the problem in manner that uses a truncated least
squares cost. Rotation, translation, and scale between the
two input scans is decoupled with the use of a general
graph-theoretic framework, which allows for the pruning of
outliers by finding the graph’s maximum clique. Scale and
translation are shown to be solvable in polynomial time
via an adaptive voting scheme, while rotation is solved by



being relaxed to a semidefinite program.

5. The Proposed Method

This section offers a dissection of the proposed method.
In order to solve Problem P, a map-scan Sy is computed
initially and each time the pose estimate p is updated.

The problem is iteratively decomposed into two dis-
junctive sub-problems. The first is estimating the relative
angle between Sg and Sy under the assumption that both
are captured from the same location. The second is esti-
mating the relative displacement of Sy with respect to Sg
under the assumption that both are captured from poses
of the same orientation. Solving the first sub-problem is
followed by the solution to the second sub-problem. This
process is iterated until termination conditions are met.

The orientation and location correction submethods
are presented in subsections 5.1 and 5.2. Subsection 5.3
presents the method of how these two are woven together
into the system that solves Problem P that is proposed in
this study.

5.1. Orientation Correction

Let the assumptions of Problem P be standing. Let ad-
ditionally [ =1, that is, only the sensor’s orientation needs
to be estimated. Then let virtual scan Sy be computed
via ray-casting M from p. An estimate of the rotation of
Sy with respect to Sg may be found in the following way.

Let a panoramic range scan S be captured from pose
(z,y,0) in some coordinate frame (Definition I). The co-
ordinates of the end-point of the scan’s n-th ray n =

0,1,..., Ny —1 within that frame of reference are (x,,, yn):
2 2

Ty, —x = dyp, cos(0 + ;:L —m) = —dy, cos(f + ;\ZL) (3)
2 2

Yn — Y = dpsin(f + ;\Zl —7) = —dpsin(6 + ;\Zl) 4)

Here we make the observation that —(z, — z) and (y, —
y) are, respectively, the real and imaginary parts of the
complex quantity

o4 2mm 2 2
dye 10t ) = dy, cos(0 + ;\Zl) — i - dysin(f + %)
CLY —( — ) i (g =) (5)
and, therefore, that
_j2mn i .
dpe” " Ns :60(7(mn—x)+l'(yn*y>) (6)

The end product of summing (6) over N; rays is equal
to the first term of the Discrete Fourier Transform of the

signal {d,}, n=0,1,..., N, — 1, Fi:
N.—1 ,
F= Y d,.c %
n=0
© "~
= (0 —x) +i- (yn — v))
n=0
N.—1
=e? N [(w—i-y)+(—aati-yn)
n=0
=eNy(x —i-y)—e?A (7)

Ny—1
where A 2 Y (2, —i-yn).

Denoting:lwgth the letter R quantities which correspond
to the real scan Sr, which has been captured from the
sensor pose p(z,y,0), and with V' those which correspond
to the virtual scan Sy, which has been captured from pose

p(z,y,0):

N,—1 ,
Ry= > df-e'
n=0
@ Nee(x —i-y) —e?Ap (8)

Ng—1
22
Vi= Y dy-e '
n=0

@ Nseié(x —i-y)— Ay 9)

Ny,—1 Ns—1
Let now Ag—Ay = > (15—%‘{)—1" > (yf_y:z/) =
n=0 n=0

N(6; —i-0y), where

1 Nt
b, £ E o (395' - xr‘;) (10)
1 ezt
oy 5 D i — ) (11)
S n=0
Then
Ay = Ap — Ny(6; — 1+ dy) (12)

The first term of the Discrete Fourier Transform of the
signal that consists of the difference of the two signals (8)



and (9) is Xq:

X =R -V
No—1 ,
Yy
n=0
(8(8) Ny(z —i-y)(e? — eié) — AR +ePAy
(12)

=" Ny(z —i- y)(ew — eié)
+ e (Ar — No(d, —i-6,))
= No(w =i y)(” — ) — Ap(e’? — )
— N.e(6, —i-5,)

= (¢ — )Ny(z —i-y) — Ag] — Nye? (5, —i - 5,)

B
o0

_ (1 _ efi(ﬂfé))Rl _ Nseié(éx

— eigAR

D (e — )L _ N5, —i - 5,)
— - 5y)

Therefore, since X; = Ry — Vi:

Vi =—e 0O R, — N5, —i-6,)
Vi N
R, R

efi(afé) _

(6o —i- ‘51;)
ei(é—le)

—i(6—0) _ Vi oi(£Vi—ZRy) _
| Ry |

Ns(sx — - N951
|R]_‘ ( J)

where the polar representation of complex A is A = |A|e!“4.

Due to the fact that the sensor’s orientation 6 is un-
known, so are the endpoints {(z%,y%)}, and therefore
quantities d5,d,. In order to gain an initial intuition as
to the magnitudes of the latter we make the observation
that, by definition, N,d, and N 6, quantify the difference
of the approximation of line integrals over the closed paths
provided by the two scans’ endpoints over the two princi-
pal axes x and y. This approximation is due to the finite-
ness of Ns. Therefore, under the assumptions that (a) the
map of the environment is its perfect representation and
(b) the physical range scan is unaffected by disturbance,
as Ny = 00, Ngbg, Nsd, — 0, which in turn means that
Vi = |Ry| and 0 — 0 — ZRy — L V4.

Updating the orientation estimate by

0 =0+ /R, — 2LV} (13)
results in a residual orientation error ¢:
N0, tan(0 — ZR;) — N,
¢ = tan an( y ; (14)

|R1| + Nsdw ar NS(Sy tan(@ — ZRl)

whose magnitude is inversely proportional to the number
of rays of the physical range sensor Ny in the case where
both Sg and Sy are undisturbed by noise.

The finiteness of the physical sensor’s emitted rays,
coupled with the arbitrariness of the rate of changes in

the environment (fig. 1), may result in portions of the
map being undersampled. What is more is that the num-
ber of emitted rays by the physical sensor is immutable.
In order to mitigate the effects of these constraints on the
orientation error, let 2¥ virtual scans of size N5 be gener-
ated at /2" angular increments starting from é, v € N>,
where v = 27 /Ny is the physical sensor’s angle increment.
Let then the orientation correction process (eq. (13)) be
carried out once between the real scan and the virtual
scan S captured from orientation 0, = 6+ k- v/2",
k=0,...,2v — 1, for a total of 2” times, resulting in 2"
orientation estimates é;c The angular alignment between
the virtual scan captured from pose (z,y, é,;) and the real
scan is captured by the Cumulative Absolute Error per
Ray (CAER) metric

N;—1
CAERy 2 Z

n=0

Sr[n] = Svn]

(15)

(z,y,67,)

which is proportional to the degree of misalignment be-
tween range scan Sg and map scan Sy captured from pose
(x7y7é§€), and therefore between (z,y,60) and (z,v, é;c) A
profile of the CAER metric is shown in figure 3, for the
general case of location and orientation incoincidence be-
tween the sensor’s pose and its estimate.

Let now kp,;n denote the index of the k-th virtual scan
S‘k,"““ scoring the minimum CAERy:

CAERk = min{CAERk}

min

k=0,...,2" —1. Let also ék denote the angle ék =
/Ry — Vlk’“‘“, where Vlk’“‘“ is the first term of the DFT of
St (eq. (9)). Then, updating the sensor’s orientation
estimate by 0 =0+ ékmin + Kmin - y/2¥ results in an orien-
tation error whose maximum is equal to that of updating
it with (13) for v = 0.

5.2. Location Correction

Let now the real and estimated poses be equal in terms
of orientation but unequal in terms of position. If the
map represents the environment perfectly and the physi-
cal range sensor reports faultless measurements then the
estimate of the sensor’s position can be driven arbitrarily
close to its real position. In real conditions, when the rays
of either or both real and virtual range sensors are cor-
rupted by bounded additive noise, the position estimate
can be made to be bounded in a neighbourhood of the
sensor’s real position. Theorems I and II formalise these
statements [51].

Theorem 1. Let the assumptions of Problem P hold. Ad-
ditionally, let 6=0. Let a map-scan Sy be captured from
P within map M and be denoted by Sy|s. Assume that
both Sg and Sy range scans are disturbance-free, that is,
the distances to obstacles the rays of the real scan capture
correspond to the true distance of the sensor to said ob-
stacles, and that the map of the environment captures the
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Figure 3: A profile of the CAER metric (eq. (15)) from 10°
pairs of unperturbed sample scans, depending on the distance
(Az? 4+ Ay?)'/? and relative orientation A of the poses from
where a real and a virtual scan were captured. Pose estimates
closer to the true pose in terms of orientation (a) exhibit lower
CAER values than those further away from it and (b) produce
lower position errors once inputted to the Position Correction
system

latter perfectly. Then, treating the estimate of the location

of the sensor as a state variable l[k] = [2[k], §[k]]T and
updating it according to the difference equation
Uk +1] = [[k] 4+ u[k] (16)

where 1[0] = 1 = [,9]7, i.e. the supplied initial location
estimate, u being the two-dimensional vector hereafter re-
ferred to as the control vector:

Xl,r (SR, SV‘ﬁ[k‘])
ulk] = —
X1,i(Sr. Svp)

1 [cosd
N,

sind ]

—cosf

] (17)

sin 6

where X1,(-) and X1,(-) are, respectively, the real and
imaginary parts of the complex quantity X :
X1(Sr, Svlpiny) =X1.-(Sr, Svlpm)

+i-X1,i(Sr, Sv |pik])

27n

= 3" (Saln] - Svlnllppy) - e R (18)
n=0

where Sg[n] and Sv[n]|p) are, respectively, the ranges of
the n-th ray of the real Sr and virtual Sy |pp) scans, and
plk] = (1[k],0)—then l[k] converges to I uniformly asymp-
totically as k — oo.

In practice, the control system (16,17) is let to iterate
either until the norm of the control vector u[k] reaches
a sufficiently small magnitude ||u[k]||2 < &, where €, is
sufficiently small—e.g. €, < 1073—or for I > 0 iterations
(a sufficiently large, externally-supplied maximum itera-
tions threshold—e.g. I > 20). Therefore, if we denote by
Ekstop € (0, I] the last index of iteration, and by I = i[kstop]
= |le(®, 1|2 < ||le(t,1]0])||2, and therefore objective (%) is
guaranteed.

Remark VI. Without loss of generality, subsequent to
the application of Theorem I, the location error is propor-
tional to the orientation error.

Theorem II. Let the assumptions of theorem I hold. As-
sume additionally that the ranges of both real and virtual
range scans Sg and Sy are affected by additive, bounded
disturbances. Then i[k:] is uniformly bounded for k > kg
and uniformly ultimately bounded in a neighbourhood of l.
Its size depends on the suprema of the disturbance corrupt-
ing the range measurements of the two scans.

Compared to the case where no disturbances are present,
a solution satisfying objective (*) is not strictly guaran-
teed for every starting location i[O] Let us again denote
by kstop € (0, 1] the last index of iteration, by =1 [Estop)
the final estimate of the sensor’s location, and by B the
ultimate bound of the pose error. If |e(l,1[0])]2 > B,
Theorem II guarantees the satisfaction of objective (%) if
kstop > ko. If, on the other hand, |le(l,1[0])|]2 < B, it is
not certain that |le(l,)||2 < |le(t,1[0])||2; what is certain
in this case, though, is that ||e(l,I[k])||2 # B for all k > 0.

5.3. Joint Correction of Orientation and Location

The previous two sections describe two methods of how
it is possible to (a) reduce the error of the orientation es-
timate when the position estimate coincides with the sen-
sor’s position, and (b) reduce the error of the position esti-
mate when the orientation estimate equals the sensor’s ori-
entation. In the general case, however, no equality stands.
What is more is that the problem is coupled: the optimal
orientation error cannot be attained in one step when the
position error is not zero, and the optimal position error
cannot be attained in one step when the orientation error
is not zero. Therefore the first goal of a method reduc-
ing both would be to first reduce the orientation error and
then reduce the location error. The second would be to it-
erate this process until some termination condition is met.
The method proposed by this article is described in the
following.

Given an input pose estimate p(Z, g, é), the real scan
Sgr, and the map M, the pose correction method pro-
posed (fig. 4) reduces the error of the pose estimate by
iteratively invoking the One-step Pose Correction process
(fig. 5) until a set of termination conditions is met. De-
noting the former by X1SMSM, X1SMSM starts off with
an initial degree of sampling the map v = vyj,. The input
pose estimate is processed by the One-step Pose Correc-
tion process, and its output p’ is examined with regard
to Recovery and Convergence conditions. If the result-
ing pose estimate falls outside of the map M then a new
pose estimate is generated from the initially supplied pose
estimate, and the process is reset. If no significant pose
estimate correction is observed ||p’ — pll2 < &sp, then the
degree of map sampling v is increased. Its increase serves
as a means of reducing the orientation and hence the posi-
tion estimate error further. Otherwise, the One-step Pose
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Figure 4: The flow diagram of X1SMSM. Execution commences
with an initial angular sampling degree vmin, the scan captured
by the physical range sensor Sg, and the map of the environ-
ment M. The initial pose estimate is provided by a tracking
filter during pose tracking or in the form of a hypothesis during
global localisation. The inner method One-step Pose Correc-
tion (fig. 5) is called iteratively, updating the pose estimate
until a maximum of angular sampling degree is reached

One-step Pose Correctio

Orientation Correction

Poc = OC(p,v)

Rehearsal

o |=—T1=1
Position Correction|

Prpc = RPC(Poc)

C = CAER(Pgpc)

pe € Poc |{CAER(RPC(pc)) = min{C}

Position Correction |<— I = f(v) :

Figure 5: The block diagram of the core pose alignment method of
X1SMSM, termed One-step Pose Correction

Correction process is reiterated until no significant correc-
tion is observed. The process is iterated until a maximum
degree of map sampling is reached v = vy, at which
point X1SMSM terminates if a terminal condition is met.
This terminal condition facilitates the avoidance of local
maxima. In the case where this condition is not met, a new
pose is generated from the initially supplied pose estimate,
and the process is reset.

Given an input pose estimate p(Z, 7, é), the real scan
Sg, the map M, and a sampling degree v, the One-step
Pose Correction system first calculates 2” pose estimates
Poo = {(&,4,01)}, k=0,...,2"—1 (section 5.1). Its op-
eration is denoted in fig. 5 by the operator OC(-). The
location error of each pose estimate in set Poc is then at-
tempted to be reduced by rehearsing the subsequent Po-
sition Correction operation for one iteration. This opera-
tion produces pose estimate set Prpe. Subsequently, the
CAER metric of each pose in 153 pc is calculated.

The pose estimate p € PRPC that records the mini-
mum CAER among all pose estimates in Prpcisin princi-
ple the pose from which the computed virtual scan records
the least deviation from the real scan among all poses in
Prpc. By capturing the CAER for each displaced pose
estimate in PRPC it is possible to establish a less erro-
neous pose error rank between orientation estimates in
POC than if position correction was not rehearsed, and
simultaneously retain only one pose estimate for the sub-
sequent step of Position Correction proper. 2 The pose
estimate in PRPC that records the lowest CAER value is

2 Alternatively, correcting the position of 2” pose estimates and



then inputted to the Position Correction subsystem, for a
limited number of iterations I. The output of the One-
step Pose Correction system is set to its resulting output,
denoted by p’. In practice, the pose set Poe is supple-
mented with the pose that produces the minimum CAER
over time. This addition introduces a form of memory
to the system, which assists it in avoiding divergence and
which, therefore, benefits speed of execution.

6. Experiments

This section serves to test the efficacy and performance
of the proposed method, termed X1SMSM, against those
of state-of-the-art methods utilisable in the scan—to—map-
scan matching task.

6.1. Ezxperimental Procedure

The experimental procedure was conducted using five
established and publicly available benchmark datasets pro-
vided courtesy of the Department of Computer Science,
University of Freiburg.® Each dataset comprises a collec-
tion of range scanner measurements and the pose r(z,y, )
from which these measurements were made. The signifier
and size of each dataset used for the experimental proce-
dure is shown in table 1.

Dataset # instances
aces 7373
fr079 4933
intel 13630
mit_csail 1987
mit killian 17479

Table 1: The size of each dataset used during evaluation of the
performance of X1SMSM, FastGICP, CSM, NDT, NDT-PSO,
FastVGICP, and TEASER methods in the scan—to—map-scan
matching task

For purposes of comparison against scan-matching meth-
ods that may be utilised in scan—-to—map-scan matching,
the experimental procedure is extended to the Normal Dis-
tributions Transform (NDT) scan-matching method [25][53],
FastGICP [49][54] and PLICPoGPM [17][55]. The latter
shall be denoted hereafter by the acronym CSM. GPM
was used initially in order to overcome the angular re-
alignment problems [17] of PLICP. NDT, FastGICP, and
CSM belong to the established state-of-the-art methods of
scan-matching [23][56]-[60]. In addition, for comparison
against contemporary state-of-the-art algorithms, the ex-
perimental procedure is extended to FastVGICP [23][61],
NDT-PSO [48][62], and TEASER [50][63].

feeding them back to the One-step Pose Correction method would
incur exponential costs in time of execution.

3The datasets are available at http://ais.informatik.
uni-freiburg.de/slamevaluation/datasets.php; last accessed
25 Oct 2021

The experimental setup is the following. The rays of

each dataset instance DY, k € {0,1,...,4},d € {0,1,...,|Dx|}

are first projected to the x — y plane around r,‘j. The
datasets’ scans are not panoramic, therefore the remain-
ing space is filled with a semicircular arc that joins the
scan’s two extreme ends. Its radius is set to the mini-
mum range between the two extreme rays of D¢. Similar
fashions for closing-off the environment have been found
equivalent with respect to the performance of the tested
methods. The resulting point-set is regarded as the en-
vironment W in which the range sensor operates (e.g.
the environment of fig. 1). Then the map of the envi-
ronment M is set to be WZ. In order to induce distor-
tions in the map, each coordinate of all points in M,‘j is
perturbed by errors extracted from a normal distribution
Nar ~ (0,0%;). What is considered the sensor’s actual
pose p¢ is generated randomly within the polygon formed
by W,f. The range scan Sj‘%k that is considered to be
reported by the physical sensor is then computed by lo-
cating the intersection points between N, rays emanating
from p¢ and the polygon formed by W across an angular
field of view A = 27. The initial pose estimate of the sensor
ﬁz is then obtained by perturbing the components of p?
with quantities extracted from uniformly distributed error
distributions Uy, (—04y, 0y ), Ug(—00,00); 0y, 09 € Rxo.

In order to test the performance of the above methods
four levels of noise acting on the range measurements of the
real scan S§ are tested. The range measurements are per-
turbed by zero-mean normally-distributed noise with stan-
dard deviation o € {0.03,0.05,0.10,0.20} m. The values
of tested standard deviations were calculated from com-
mercially available panoramic LIDAR scanners by iden-
tifying the magnitude of their reported maximum range
errors and dividing it by a factor of three. The ratio-
nale is that 99.73% of errors are located within 3¢ around
the actual range between a ray and an obstacle, assum-
ing errors are distributed normally. These are reported
for price-appealing but disturbance-laden panoramic sen-
sors, e.g. the RPLIDAR A2MS, or the YDLIDAR G4, G6,
TG30, and X4 scanners [64]-[68]. In addition, two levels
of map distortion are tested: oar € {0.0,0.05} m. Maxi-
mal displacements S,Ty and g are set to Szy =0.20 m and
bp = /4 rad. The value of % was chosen as such from
reports on positional errors in real conditions [40]. The
value of 8y was chosen as such in order to include orienta-
tion errors at the initialisation stage of pose tracking and
errors induced due to diverging odometry readings. The
size of the input real scan was set to Ny = 360 rays. The
minimum and maximum oversampling rates of X1SMSM
were set t0 (fmin, fmax) = (2Vmin, 2Vmax) = (22,24) The
number of iterations of the translational component were
set to I =2 and g5, = 107° (section 5.3). X1SMSM’s ter-
mination condition was set to CAER(p') < (6 + 6v)'/2,
where or and &y are estimates of the standard deviation
of noise affecting the rays of Sp and Sy respectively.

For each experiment X1SMSM, CSM, NDT, FastGICP,
and FastVGICP ran for ' = 10 times across all instances of
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Figure 6: The relative proportion of cases where objective (%) was attained by each tested method as a function of sensor noise or

and map distortion ops levels over all conducted experiments

Dy, D = {aces, fr079,intel,mit_csail,mit killian},
k € {0,1,...,4}. Therefore each method was tested a
total of Ny = 10 x 2 x 4 x Y |Dg| &~ 3.6 - 10 times.
The execution times of NDT-PSO and TEASER in the
scan—to—map-scan matching problem were measured in the
order of seconds per pose input—approximately one order
of magnitude larger than the execution time of X1SMSM:
the evaluation of NDT-PSO and TEASER was performed
once for every instance of D.

Experiments with X1SMSM, FastGICP, FastVGICP,
CSM, and NDT were carried out on a single thread, on a
machine of a CPU frequency of 4.0 GHz. NDT-PSO and
TEASER are parallel implementations; their experiments
ran over four threads, with a machine of a CPU frequency
of 2.2 GHz.

The criterion on which the evaluation of all tests rests
is the 2-norm of the total pose error—eq. (1) for p — p/,
where p’ is the output of each algorithm tested. For ev-
ery pose estimate f)g’ outputted by each algorithm, d =
1,2,...,|Dgl, k € {0,1,...,4}, its offset from the actual
pose pz is recorded in the form of the 2-norm total er-
ror. The unit of measurement of the total pose error is
(m? 4 rad?)'/? and, where omitted in the figures of the
following subsections, it has been so for purposes of econ-
omy of space and readability.

0.2. Results

Figure 6 illustrates the percentage of cases where objec-
tive (%) was attained by all tested algorithms per standard
deviation of measurement noise and map corruption levels,
over all conducted experiments. The performance of all
algorithms was approximately invariant over any dataset:
therefore their results are aggregated over all datasets in
the figures of this section.

Figure 7 illustrates the distribution each tested method’s
pose errors across all conducted experiments per sensor
noise or and map distortion ops levels. Figure 8 illus-
trates the corresponding execution times.

Figure 9 shows a breakdown of X1SMSM’s mean exe-
cution time for each tested configuration.

Figure 10 provides a juxtaposition of the evolution of
mean position and orientation errors of the three methods
with the highest proportion of objective () attainment
cases for increasing real scan noise og per map distortion
level opr tested.

Figure 11 summarises the mean core execution time
(total time minus map-representation and implementation-
specific intersection-finding time), and the mean total num-

ber of virtual scans captured by X1SMSM for ops € {0.0,0.05}

m, over Ny tests, as a function of the standard deviation
of noise affecting the rays of the real scan op.

6.3. Discussion

The proposed method’s pose error reduction rate is
largely invariant across real scan noise levels for a given
level of map distortion. The method manages to improve
the pose estimate of at least 97.5% of all input pose es-
timates with regard to the tested configurations (fig. 6).
X1SMSM’s pose error reduction rate is on par with that of
TEASER but, in contrast, X1SMSM runs in real time, re-
quires fewer computing resources, and exhibits lower pose
errors. According to the results the performance of ICP-
based methods in terms of the proportion of cases where
the pose estimate error was reduced deteriorates as real
scan noise increases. FastVGICP is the most consistent
among ICP variants with regard to the proportion of cases
were pose errors were reduced. NDT-PSO manages to in-
crease the pose error reduction rate of NDT but at a cost
of significant increases in execution time and processing
resources required.

In terms of pose estimate errors (fig. 7) the behaviour
of X1SMSM is more accurate than those of all tested meth-
ods across all configurations and datasets tested; only CSM’s
pose errors are comparable to those of X1SMSM, and only
in low levels of measurement noise and when the map is
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Figure 8: Distribution of execution times of state of the art scan-matching methods and of X1SMSM in the scan—to—map-scan
matching task, for maximal uniform position displacements 8.y € Uzy(—0.20,+0.20) m and maximal uniform orientation displace-
ments dp € Up(—7/4,+7/4) rad for ops = 0.0 m (top) and oar = 0.05 m (bottom) over all conducted experiments, per sensor
noise level or tested. Dots encode the mean execution time for each method and configuration. Unit of measurement is seconds
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Figure 9: Breakdown of X1SMSM’s execution time per each tested configuration. Rotation times are signified in green and
translation times in blue. Light colours signify the time consumed in computing virtual scans and dark colours the core execution
time of each component. The third column illustrates the timing breakdown for one iteration over each component
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Figure 11: Core execution time and total number of virtual scans
captured by X1SMSM per standard deviation of noise affecting
the rays of the physical sensor or and standard deviation of
noise affecting the maps’ coordinates oas over all conducted
experiments

disturbed. Additionally, the rate of increase of the in-
terquartile range for X1SMSM'’s pose errors is consistently
lower than that of all tested methods. By contrast, the
behaviour of CSM, GICP, VGICP is less robust to mea-
surement noise, and especially so at the upper range of
the spectrum of measurement noise exhibited by avail-
able panoramic LIDAR sensors. It is presumed that the
widening gap in performance between these methods and
X1SMSM, in terms of increasing measurement noise, is a
consequence of their modus operandi of establishing cor-
respondences between a point and a (line)point in its two
input scans [24]. This conjecture is supported by the fact
that the more laden a scan is with noise, the more difficult
it is for the algorithm to distinguish true correspondences
from false. By contrast, X1SMSM does not deal in corre-
spondences and, ipso facto, does not require the manual
setting of parameters relating to establishing correspon-
dences.

Focusing on the mean position and orientation errors
of CSM, TEASER, and X1SMSM (fig. 10), and accord-
ing to the evidence, the orientation and position errors of
CSM increase at a greater rate than those of X1SMSM for
a given level or map distortion, while starting off at higher
magnitudes. Interestingly, when the map is distorted, the
position errors of TEASER are invariant to the noise af-
fecting the ranges of the real scan.

X1SMSM’s lowest processing speed was approximately
225 ms per pose input. In comparison, CSM’s execu-
tion times ranged from 34 to 94 ms, NDT’s 85-111 ms,
FastGICP’s 25-59 ms, and FastVGICP’s were approxi-
mately constant at 7 ms. NDT-PSO’s execution times
were approximately constant as well at 1.34 seconds, while
TEASER had the greatest variability and execution time
at 1.3-3.3 seconds. This is due to the fact that TEASER
requires the measurement and virtual scan vectors to be
homologous, i.e. a reference and target point are required
to be in the same position in both vectors. The applicabil-
ity of NDT-PSO and TEASER is hindered both by their
execution times and the fact that their implementation
requires multiple processor cores (> 4) in order to run in
real time—which may be unavailable in multi-subsystem
systems with limited resources. In any case all execution
times should be taken with a grain of salt, as they are spe-
cific to the map representation used, the number of rays of
the input range scan, and the processing power available.

Finally, the proposed method’s increasing iterations
with respect to decreasing measurement noise (fig. 11)
suggests that the termination criterion used during the
experimental procedure is unevenly strict across measure-
ment noise levels.

‘https://github.com/MIT-SPARK/TEASER-plusplus/issues/24#
issuecomment-622652266
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Figure 12: In principle a typical localisation scenario. Left:
the pose of the LIDAR sensor, denoted with black colour, and
its estimate with magenta. Right: the real and virtual scans
captured from their respective poses in the local coordinate
system of each sensor. In this example orp = 0.05 m and opr =
0.0 m. Note how at this initial configuration there are portions
of the environment’s map visible only to the pose estimate, but
the corresponding portions of the environment are not visible
to the sensor itself

7. Characterisation and Limitations

In this section we give key characterisations of X1SMSM
and compare aspects of its performance against represen-
tative real-time scan-matching methods.

7.1. Characterisation

Figure 12 demonstrates in principle a scenario where
scan—to—map-scan matching may be applicable for pose
estimate error reduction. In the left-hand side figure the
robot’s real pose is denoted with black, and its initial es-
timate with magenta. The right-hand side figure shows
the real and virtual scans captured from sensor’s respec-
tive poses in the local coordinate system of each sensor.
Figure 13 illustrates the interim and final outputs of the
alignment process carried out by X1SMSM.

The first row of figure 14 illustrates the dependence of
the output position errors on the initial position displace-
ment (left) and the initial orientation displacement (right)
across all experiments conducted (section 6) for o = 0.03
m and ops = 0.0 m. The second row illustrates the de-
pendence of the output orientation errors with respect to
the same initial configurations. According to the evidence
the output position error is dependent on the initial loca-
tion displacement between the real pose and its estimate,
but independent of the initial orientation displacement be-
tween them, with regard to the tested displacement config-
urations. The output orientation error on the other hand
is independent of both initial location and orientation dis-
placements.

Figures 15 and 16 depict the mean orientation errors
of the orientation correction subsystem of X1SMSM, along
with those of CSM and NDT, for varying levels of maximal
initial orientation displacements Jg, range sensor emitted

rays INs, and range sensor noise level o,., for two cases of
map-corruption levels opz, for one iteration. Each method
was tested 100 times over the 778 instances of the laserazos
dataset.® These results are captured in the case where the
position of the sensor and its estimate are coinciding so
that the effect of the methods’ orientation correction sub-
system is revealed.

The evidence shows that in complete coincidence of the
map to its referent environment the orientation errors of
X1SMSM decrease with increasing number of rays for a
given level of sensor noise, regardless of the value of initial
orientation displacement between the sensor’s true orien-
tation and its estimate. In contrast, the orientation errors
of CSM and NDT (a) do not progressively decrease propor-
tionally to the size of scan rays, and (b) are not invariant
to increasing initial orientation displacement. Predictably,
the orientation error of X1SMSM increases for increasing
sensor noise for a given number of rays emitted. When
the map is corrupted these correlations cease to exist for
X1SMSM and, therefore, since (a) the accuracy of the posi-
tion correction subsystem depends on the orientation error
and (b) the processing time is proportional to the range
sensor’s size, from a computational-resources perspective
it is more efficient for an input real scan whose size is
greater than 360 rays to be downsampled to this size prior
to matching.

7.2. Limitations

From the evidence of section 6 X1SMSM is capable
of addressing initial position errors ranging to 0.20 m per
component, with its orientation correction subsystem be-
ing independent of initial location errors (fig. 14). How-
ever, the orientation correction subsystem may fail to esti-
mate the sensor’s real orientation at large initial position
errors. In figure 17 the pose estimate is displaced by 1.0 m
in the x-wise direction; the first orientation correction iter-
ation misplaces the pose’s orientation, on whose accuracy
the location correction depends, which further misplaces
the estimate in terms of location. Although in this exam-
ple we have deactivated the recovery module, recovering
from the initial pose may finally yield an accurate pose
estimate but this would have happened at the expense of
execution time. This situation is unrealistic in pose track-
ing, but highlights a key limitation of X1SMSM.

The greatest challenge for the performance of a scan(—
to-map-scan) matching method, aside from corrupted in-
put data, is missing data. Missing range information in
range scan sensors manifests due to their innate constraint
of inability to detect ranges to objects that lie beyond
their maximum detectable range radius. The absence of
usable data is a function of a range sensor’s maximum
range and the geometry of its surrounding environment at
any given sensing instant. In principle, correspondence-
finding methods ought to fare better in the face of missing

5The dataset is available at https://censi.science/pub/
research/2007-plicp/laserazosSM3.log.gz
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Figure 13: The inner outputs of the alignment process of X1SMSM. The first and fourth columns show the outputs of the
orientation and location subsystems at each iteration respectively. The second and fourth columns show the respective subsequent
configurations in the map’s frame of reference. The third and sixth columns show the corresponding pose estimate error with
blue colour and the value of the CAER metric with red. Notice how the virtual scan transforms at each iteration to increasingly
resemble the real scan as the pose error is progressively reduced
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Figure 17: An exemplary condition where X1SMSM fails to con-
verge: the initial position estimate is displaced far from the
sensor’s real position. The orientation correction subsystem
outputs an inaccurate orientation estimate and ipso facto the
estimate’s position diverges from its target. The third column
shows the evolution of the pose error in blue colour and the
value of the CAER metric in red for the first eight iterations

ranges than correspondenceless methods due to their abil-
ity to establish true and discard false correspondences be-
tween separate segments in their input scans. In order to
guard against missing range data and facilitate matching
in their presence, X1SMSM duplicates a sensor’s physical
constraint of an upper range threshold in its generation of
a virtual scan so that the latter is assisted in resembling its
target real scan as much as achievable. We illustrate the
limitations of the proposed method in the face of missing
range measurements, and the difference in performance be-
tween it and established state-of-the-art correspondence-
finding and correspondenceless methods in figure 18.

At the top row of the figure four distinct environments
are depicted in white colour. The radius of concentric
circles around the sensor’s true position (depicted in blue)
equals the set maximum range for the sensor. The colour of
their perimeter signifies the proportion of real scan ranges
which are within that maximum range radius according to
the colourbar at the second row. The two latter rows of
figures illustrate the mean pose error of CSM (red), NDT
(blue), and X1SMSM (green), over ten iterations at the
same maximum range level for two levels of sensor noise,
when the map of the environment is not corrupted with
noise.

At low sensor noise levels, ICP-based methods seem to
dominate their counterparts due to their aforementioned
merits. However, this characteristic is reversed as mea-
surement noise increases. CSM’s, NDT’s and the proposed
method’s performance deteriorates at irregular rates and
according to the particular characteristics of the sensor’s
surroundings. CSM records the highest pose errors and
the lowest robustness to maximum range reduction over-
all. Compared to NDT, X1SMSM exhibits greater accu-
racy at the lower and higher ends of the missing ranges
scale. Qualitatively, X1SMSM records its lowest perfor-
mance when it completely loses its footing over large areas
at two opposite directions: the figures of the third column
summarise this limitation of X1SMSM.

8. Applications

Scan—to—map-scan matching in two dimensions may be
employed in various contexts. The most usual application
is in pose-tracking, where the output of the tracking filter
is fed to a scan—to—map-scan method in order for it to
provide a pose estimate of lower error [45] (section 4). In
RFID localisation, for example, one seeks to accurately
localise the placement of tags in 3D space by relying on
the accuracy of the pose of a robot’s antennas, whose pose
in space is provided by the LIDAR sensor equipped to the
robot. In this case position accuracy has more gravity than
orientation accuracy.

Scan—to—map-scan matching may also be used in shape-
matching, i.e. estimating the transformation between two
similar shapes or detecting those shapes from a collection
that match a reference one. In the first, a source pose
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Figure 19: A typical global localisation scenario solvable with
the use of scan—to—map-scan matching. The robot’s true pose
is denoted with black colour. Pose hypotheses are dispersed in
the unoccupied interior space of the map. Note how symmetries
in the environment make the CAER of ps lower than that of
p7, which is actually closer to the real pose than ps. With
enough pose hypotheses the global localisation problem can be
solved in reduced time due to the use of the CAER metric
before handing a hypothesis over to the matching algorithm

would need to be computed, preferably via the shapes’ cen-
troid, as the latter is located at the same point relative to
all shape-constituting points. Then from the source pose
of the reference shape a virtual scan would be captured,
which in scan—to—map-scan matching terms would be con-
sidered the real scan. Capturing virtual scans initially
from the source pose of the second shape and matching
them with the real scan would then provide the rotation
and translation transformation between the two. Detect-
ing shapes that record similarity to a reference one would
involve the same process, but with a limited number of
recoveries so that the rejection of false samples be carried
out efficiently. The experimental procedure of section 6
constitutes a direct test on these applications.

Recently we have also used scan—to—map-scan match-
ing for the solution to the global localisation problem [24].
The introduction of the CAER metric (fig. 3) may be
used to accelerate the solution to the problem in the fol-
lowing manner: As standard a dense cloud of hypotheses
is generated in the unoccupied space of the map. Then the
CAER metric is computed for each pose hypothesis. The
hypotheses with the lowest CAER values would then be
handed over to X1SMSM for registration. The one whose
final CAER value is the minimum would then be consid-
ered the robot’s pose. Figure 19 shows a sample global
localisation scenario.

9. Future Steps

The limitations of X1SMSM dictate the course of fu-
ture work. With regard to missing range measurements
due to inadequacy of a sensor’s maximum range, work fo-
cus is needed on devising mechanisms or methods whose
pose error is more consistent with the case where there are
none, and across a greater range of proportion of missing

measurements. Furthermore, we conjecture that the esti-
mation of discrepancies 0,9y (egs. (10), (11)) will result
in lower orientation estimate errors (eq. 14) and therefore
lower subsequent location estimate errors, and translate
X1SMSM’s ability in reducing its orientation error for in-
creasing range scan size when the map is not corrupted to
the case where it is. This will benefit speed of execution
and will also aim at additional pose error reductions.

10. Conclusions

This article introduced a method for reducing the pose
estimate error for robots equipped with LIDAR range sen-
sors whose field of view is 360° in a scan—-to—map-scan
matching manner. Contrary to state-of-the-art approaches,
the solution it provides to the problem of scan—to-map-
scan matching does not require the establishing of corre-
spondences between its two input scans, and is in closed
form. These facts account for (a) the method’s robustness
against the typical measurement noise levels exhibited by
low-cost panoramic 2D LIDAR sensors, whose measure-
ment noise is significantly elevated compared to prior sen-
sors, (b) its lower pose errors compared to prior art, and
(c) its real-time execution. The proposed method assumes
that a panoramic range scan, the map of the environment
in which the robot operates, and a pose estimate resid-
ing in the vicinity of the robot’s true pose are available.
Therefore the proposed method’s placement within a lo-
calisation system may be at the end of or at the same
level as a pose tracking method, or at the heart of global
localisation.

After computing a virtual range scan from the mea-
surement sensor’s pose estimate, the method updates the
estimate by reducing first the orientation estimate’s er-
ror and then that of the position estimate. The process
is iterated until sufficient convergence conditions are met.
The correction of the orientation and location estimates is
performed by utilising the first coefficient of the Fourier
Transform of the difference between the two scans. The
proposed method exhibits higher accuracy, consistent and
greater pose error reduction rates compared to established
and contemporary state-of-the-art methods that may by
utilised in real time in the scan—-to—map-scan task. The
proposed method’s implementation is available for down-
load at https://github.com/1i9i/x1smsm-public.
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