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Correspondenceless Scan-to-Map-scan Matching of 2D Panoramic Range Scans
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e a real-time method is proposed that reduces the pose estimate error for robots capable of m
. The solution that the method provides addresses the recent introduction of low-cost panoram
LIDAR range sensors whose field of view is 360◦), whose use in robot localisation induces eleva
ue to their significantly increased measurement noise compared to prior, costlier sensors. The
–to–map-scan matching and, in contrast to prior art, its novelty lies in that matching is performed
orrespondences between the two input scans; rather, the matching problem is solved in closed form b
the periodicity of the input signals. The correspondence-free nature of the solution allows for di
ulation of correspondences between the input range scans, which (a) becomes non-trivial and mo
creasing input noise, and (b) involves the setting of parameters whose output effects are sensitiv
orrect configuration, and which does not hold universal or predictive validity. The efficacy of the p

ustrated through extensive experiments on public domain data and over various measurement no
the aforementioned class of sensors. Through these experiments we show that the proposed method
e errors compared to state of the art methods, and (b) more robust pose error reduction rates com
re capable of real-time execution. The source code of its implementation is available for download

robot localisation, panoramic 2D LIDAR, scan–to–map-scan matching

tion

bot localisation on one plane is a well-studied
ics and several diverse approaches have been
the past. Probabilistic methods, e.g. the
[1] or Monte Carlo Localisation (MCL) meth-
ve been applied to the task of pose tracking
ven their success with respect to tracking ef-
same time, probabilistic methods are robust

e, discrepancies between the robot’s environ-
corresponding map, motion model mismatch
o the true kinematics of the robot, and pose
5]-[7]. These methods have also been em-
obal localisation, where a system is tasked
ng the robot’s pose under global pose uncer-
].
e, the pose estimate of localisation methods
error which is often measured in centimeters
eters [11][12]. These errors are due to range
ments being distorted by noise, or the map
nment not matching the latter adequately.
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Other reasons include the map being expressed a
resolution grid, noisy or faulty and ever-drifting
try (if at all available), and the nature of the
tion model. In certain conditions such as indust
[13][14], the magnitude of the estimate’s error is
to lie within constrained specifications. Therefo
dalone or prosthetic methods have been employed
in tandem with well-established sturdy probabi
otherwise) localisation methods, with many of the
aging measurements from onboard pre-existing L
tection And Ranging (LIDAR) sensors.

LIDAR sensors have become popular in robo
sation due to their high measurement precision,
date frequency, and almost no need for preprocess
use of panoramic LIDAR sensors was for a long t
strained to higher price ranges, low measureme
and in the context of industry. In recent years,
cheaper but less accurate LIDAR sensors have
available. The former fact facilitates their adop
usage in research, but the latter poses a challenge
the robustness and accuracy of localisation metho

A class of prosthetic localisation methods impr
robot’s pose estimate by extracting the relative tra
and orientation between (a) the range scan captu
the robot’s actual pose and (b) a virtual range scan
by ray-casting the map of the robot’s environm
the robot’s pose estimate. Due to its operating p

tted to Elsevier October
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s, points, points and lines, distributions, or
istributions. However, methods resting on
res presuppose structured environments and
of features in a sufficiently undisturbed state.
different environments exhibit different fea-
erefore the use of feature-finding methods
red in an ad-hoc manner. The majority of

can-matching methods based on the Iterative
(ICP) method [15]-[17], research on which

r several decades [18]-[23]. However, ICP-
ds are subject to the perplexities delimited
lying process of establishing correspondences
two input scans, which are exacerbated in
measurement noise. Furthermore, their use
nce is hindered by the needed tuning of the
arameters governing their response [24]. In

methodology of approaches that solve the
-scan matching task rests on establishing cor-
between the input scans.

ticle we propose a method that solves scan–
matching in real time and in closed form that
argets panoramic 2D LIDAR sensors. The
ibutions of this article are the following:

best of the authors’ knowledge, the first real-
thod addressing the full 3D-matching of real-
al 2D panoramic range scans that operates
establishing correspondences of any kind be-

nput scans

roduction of a method that aims at reducing
ntation error to lower than the sensor’s angle
nt compared to relevant prior work

rameter set needed by the proposed method
ler in size and more intuitive to tune that
f state-of-the-art methods, and trades execu-
e for accuracy

tensive and thorough evaluation of state-of-
scan-matching methods and of the proposed
on the task of scan–to–map-scan matching,

e public domain benchmark datasets and mea-
nt noise levels from common-use commercially
le panoramic sensors

osed method assumes that (i) a panoramic
ii) the map of the environment in which the
es, and (iii) a pose estimate residing in the
e robot’s true pose are available. After com-
ual range scan from the measurement sen-
timate, the method updates it by reducing
of the orientation estimate and then that of

estimate. The process is iterated until suffi-
ence conditions are met. The estimation of
formation between the robot’s true and esti-
s facilitated by the exclusive use of the first

scans, where the range scan termed “real” is a m
ment of a physical range finder and those termed “
are generated by raycasting the map of the robo
ronment.

In summary, (a) the orientation errors of the p
method are independent of the initial angular
ment, and (b) it allows matching to preserve ro
in high levels of measurement noise and map dis
Specifically, the approach proposed is shown to
robust to measurement noise and map distortio
real-time state-of-the-art methods in the sense of
tion of cases where the pose estimate error is redu
its application, and more accurate in terms of p
magnitudes.

The remainder of this paper is structured as
Section 2 formulates the problem and the object
solution. Section 3 defines necessary notions. S
provides a bibliographical exposition of the curre
of-the-art solutions to the problem of performing
map-scan matching in order to improve the pose
of a robot capable of motion in the 2D plane equip
a 2D range sensor. Section 5 illustrates the method
ing the stated problem that this paper proposes.
6 presents the experimental setup and the perform
the proposed method for robots using available pa
sensors, in realistic conditions. Section 7 gives k
acterisations and discusses the limitations of the p
method, and section 9 provides the aims of futu
Section 8 provides a number of applications whe
to–map-scan matching is utilisable and useful.
section 10 summarizes the work presented and c
the paper.

2. Problem Formulation

Problem P. Let a mobile robot capable of motio
x − y plane be equipped with a coplanarly mou
panoramic range scan sensor emitting Ns rays.
the following be available or standing:

• The map M of the environment the robot
in

• A 2D range scan SR, captured from its range
unknown and sought-for—pose p(l, θ), l = (

• An estimate of the range scan sensor’s pos

in the map’s frame of reference, where l̂ =
in a neighbourhood of l

Then the objective is to reduce the 2-norm of
sor’s pose error e(p, p̂) , p− p̂ from its initial va

‖e(p, p̂)‖2 = ((x− x̂)2 + (y − ŷ)2 + (θ − θ̂)2)1
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pp̂

inciple, a typical localisation condition: The robot’s
but its estimate p̂′ is displaced in terms of position

. The rate of changes in the portion of the environ-
ibed in red is greater than that of those in the portion
n

the sensor’s pose estimate to p̂′(x̂′, ŷ′, θ̂′) so

‖e(p, p̂′)‖2 < ‖e(p, p̂)‖2 (∗)

t the sensor’s pose with respect to the robot’s
rence is known, the correction of the sensor’s

is equal to the correction of the robot’s pose
respect to the map’s frame of reference. An
premise of Problem P is depicted in fig. 1.

e p̂ is supplied externally from a localisation
case of pose tracking, or as a pose hypothesis
global localisation.

ns

. Definition of a range scan captured from a
2D LIDAR sensor. A conventional 2D LI-
provides a finite number of ranges, i.e. dis-
jects within its range, on a horizontal cross-
environment, at regular angular and temporal
r a defined angular range [26]. We define a
, consisting of Ns rays over an angular range
rdered map S : Θ → R≥0, where Θ = {θn ∈

= −λ2 + λ n
Ns

, n = 0, 1, . . . , Ns−1}. Angles
ssed relative to the sensor’s heading, in the
e of reference.

epicts the geometry of a typical conventional
ensor, where dn = S[−λ2 + λn

Ns
] is the range

ay n.

I. Panoramic 2D range scan. The angular
LIDAR sensor is symmetrically distributed

O
x

ray 0

ray Ns−1

2π−λ
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dn −
λ

2
+
λn
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Figure 2: The (local) frame of reference of a typical con
range sensor. The sensor is located at O(0, 0) and it
is that of the x axis

on either side of its x-axis. Each ray is equia
spaced from its neighbouring rays (with the exce
the first and last rays if λ < 2π). When λ = 2π, t
scan returned by the sensor is termed panoramic

Definition III. Scan-matching using a 2D LID
sor (adapted for use in two dimensions from [17]).
range scans as defined by Definition I, SR and SV
tured from a LIDAR sensor operating in the same
ment at both capturing times. Let pV (xV , yV , θV
pose from which the sensor captured SV , expressed
coordinate system (usually a past pose estimate of
sor). The objective of scan-matching in two dim
is to find the roto-translation q = (t, θ), t = (
that minimises the distance of the endpoints of
translated by q to their projection on SR. Deno
endpoints of SV by {piV }, in formula:

min
q

∑

i

∥∥∥piV ⊕ q −
∏
{SR,piV ⊕ q}

∥∥∥
2

The symbol “⊕” denotes the roto-translation oper
(t, θ) , R(θ)piV + t, where R(θ) is the 2D rota
trix for argument angle θ, and

∏{SR,piV ⊕q} den
Euclidean projector on SR.

Remark I. Scan-matching is employed in robo
means to odometry, primarily in non-wheeled robo
no encoders can be utilised, or as a useful amelio
the ever-drifting encoder-ed odometry: scans cap
consecutive time instances, inputted to a scan-m
algorithm, convey an estimate as to the pose of
sensor at the second capture time relative to that
first. Scan-matching is being successfully employe
tasks of simultaneous localisation and mapping
local map construction [30]-[32], and in people-
systems [33].

Definition IV. Definition of a map-scan. A m
is a virtual scan that encapsulates the same piec
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-scan refers to distances to obstacles within
he robot’s environment rather than within
ent itself—hence its virtuality. A map-scan
om a virtual sensor and derived by means of
sections of rays emanating from the estimate
s pose and boundaries demarcating obstacles

. Scan–to–map-scan matching in two dimen-
o–map-scan matching is defined in the same
o-scan matching (definition III) but with SV
not from the physical environment of the
m its map.

The benefit of matching (a) a map-scan de-
irtual sensor from its estimated pose to (b) a

from a physical sensor from its actual pose is
ection of the sensor’s pose estimate provides
n of the robot’s pose estimate: Assume that
hesis exists in the general vicinity of the true
ile robot equipped with a 2D range-scan sen-
that the range sensor is fixed at the same

to the robot in both real and virtual envi-
e roto-translation of the virtual scan’s end-
inimises their distance to their projection on
scan equals the roto-translation that, when
e robot’s estimated pose, will minimise its
with respect to its real pose. Therefore ex-
relative roto-translation of the virtual scan
to the real scan can be used as a correction
te of the robot’s pose within the map. The
f this correction lies in the fact that it may
educe a robot’s pose estimate error during
, or to facilitate global localisation.

. In contrast to the problem of scan-matching,
-scan matching is an inherently coupled prob-
e geometry of the endpoints of the real scan’s
atched, without loss of generality, only from
of the robot, the robot’s orientation can be

nd only if its location estimate coincides with
ion, and its location can only be extracted if
s orientation estimate equals its real orienta-
r, both are, in principle, unequal. This cou-
an iterative method is required, as we shall
5.3.

. In contrast to scan-matching, where SV is
e measurement laden with inevitable occlu-
–to–map-scan matching SV is generated from
ch captures the robot’s working environment
, thus transferring this property to the virtual
btle difference makes it in principle possible
l scan SV to match the immutable measure-

, i.e. to recover the robot’s true pose with
y accuracy (in the ideal case of perfect mea-

• without the need to establish corresponde
tween the two scans (as this function has
vented for, and primarily facilitates, the ma
sets that are in principle overlapping in som
but not in others, i.e. for the task of scan-m

Remark V. The importance of dispensing with
tablishing of correspondences—aside from the fa
strictly, they are not necessary in the scan–to–m
matching task—is in the fact that by the same
externally-configurable parameters which govern t
tion are also dispensed with. Matching methods
on the establishing of correspondences require th
of these parameters, some of whose tuning has bee
to be non-intuitive, effort-consuming, and not
fitting to any environment or even to different pos
same environment [24].

4. State of the art approaches

This section serves as a recounting of approac
aim to improve a robot’s pose estimate during pose
or perform global localisation that rest on the pri
scan–to–map-scan matching.

In general, scan–to–map-scan methods perta
2D LIDAR range scan sensors compute the 3D
mation that aligns the input sensed scan (def. I) t
scan (def. IV) best, in the sense of minimising an
alignment metric (e.g. eq. (2)). In coarse class
this is achieved by (a) correlating features extrac
both input scans [11, 34, 46], (b) resting on scan-m
techniques [17, 23, 25, 48–50] due to the indisting
ity of a virtual scan with respect to a real scan
point of view of a scan-matching method (def. V;
[14, 39, 41, 42, 45], and (c) by other means, e.g.
techniques [37], Gauss-Newton optimisation [40]
analysis [24], or simply by randomly sampling the
pose space [35].

The entirety of real-time scan–to–map-scan m
methods mentioned above perform matching by e
ing correspondences between input scans (whether
between raw measurements, features, or other sc
acteristics), and require the manual setting of pa
that govern it, while these do not hold universa
dictive validity (for an example pertaining to IC
methods see [24]). Establishing correspondence
cilitating matching, in particular, is a technique
for low-noise scans, which, in theory at least,
cumbersome and ineffective as input noise increa
method proposed in this article addresses the abo
and exhibits the merits found in section 1. The re
section delves deeper into each aforementioned
and describes its methodology.
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and translation-invariant features that are
able in real-time (such as extreme values in
resentation of a range scan) in both real and
. Subsequently, correspondences are estab-
n them. The roto-translation between the
omputed as the optimal transformation for
latter’s features to the former’s.
elementary stochastic search algorithm that

obot’s translational and rotational errors due
drift is employed. This auxiliary localisation

activated whenever an error measure is found
a preset threshold. This measure is based
e deviation in detected ranges between rays

scan and a map-scan. To avoid having to
e motion of the robot while scan-matching,
assumed to be standing still for the whole
ts pose correction. Therefore whenever the
is found to be above its preset threshold the

lts the robot’s motion and picks a random
eighbourhood of its estimated pose. It then
al range scan from that pose and computes
. If the error is lower than the one found for
estimated pose, a new iteration starts, this

around the newly found pose. If not, the
eps guessing poses until it finds one whose
r than the previous one. The final pose is
s the true pose of the robot, allowing for a
the odometry. Experiments performed with
showed that it was able to correct a radial
0.3 m to 0.07 m, and an angular pose error

to 0.01 rad.
ors of [11] use scan-matching in order to im-
ution to the global localisation problem. As-
the robot’s environment is structured and

sort of symmetries, the method identifies the
l orientation by employing the HSM scan-
HSM is used to obtain the robot’s heading

the lines in the map of the environment with
the 2D range scan taken at the robot’s initial
found the robot’s orientation, they estimate

cation by calculating the likelihood that each
he map’s grid produced the input laser scan.
d is extracted by using the beam endpoint
e robot’s position is the location from which
an that scored the maximum probability was

in the context of global localisation, the method
enerates the generalised Voronoi diagram of
ap. Its nodes are taken to be initial hypothe-

the robot is posed. From there virtual scans
lar range of 2π are computed using raycast-
map. Correspondences between each virtual
scan captured from the physical sensor are

hed by using a spectral technique [38]. The
airwise geometric relationships between its

similarity between the true scan and all virtual sca
nodes from which the latter were captured are the
according to this similarity measure and a thresho
on the correlation coefficient of all combinations o
used to extract a subset of candidate poses. This
is used to quickly sift between all candidate pos
final pose is that which achieves the maximum nu
correspondence pairs.

In [39] the occupancy grid map is first conver
signed fitness map which encodes the distance th
obstacle for a given sensor location. Through th
map the measurements of the 2D range sensor ar
to the environment’s map without extracting featu
either. The global localisation problem is then for
as an optimisation problem, where particle swarm
sation is used to explore the pose space to search
most likely solution. This is done by maximising
ness function. In order to further improve the sea
cision, scan–to–map-scan matching is performed
from the poses of particles which hold the top fit
ues virtual scans are captured and matched aga
latest scan measurement. The output pose is th
resulted from scan–to–map-scan matching and w
dated fitness value is the maximum among all
treated particles.

By contrast, in order to solve Problem P in the
of localisation of autonomous forklifts, the metho
duced in [14] solves scan–to–map-scan matching
steps: Given a vehicle’s pose estimate obtained
the use of MCL with KLD sampling [4], the ori
between the real and virtual scans is first estim
scan-matching the two using an ICP variant. Spe
scan-matching is performed through the all-encom
highly accurate, efficient, and outperformer of the
the-art scan-matchers: PLICP [17].1 The authors’
indicate that the improvement of the location
through scan-matching with PLICP is unstable.
fore they conclude that utilising PLICP in industr
house settings, where milli-meter accuracy is req
order to extract the relative translation between
scans is precarious and unsuitable. Given that t
lift’s orientation estimate error has decreased to
as 0.13◦, the position estimate error is corrected
atively performing scan–to–map-scan matching th
process that approximates the displacement error
iteration by a function of the first element of the
Fourier transform of the difference in ranges betw
real scan and that iteration’s map-scan.

A similar pipeline is presented in [40]. Instead
PLICP off the shelf, the authors develop a scan-m

1In principle, if the assumptions of Problem P are ful
of the available 2D scan matchers may be used to aim at
objective (∗). A comprehensive review of scan-matching
may be found in [45].
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nt is performed layer-by-layer in increasing
n. Experiments conducted with a real robot
ed environments show that the scan–to–map-
achieves an average location accuracy of 0.017
rage orientation accuracy of 0.5◦. In [41] and
s additionally used as odometry whenever an
or measure is found to be larger than a set
wever, in contrast to [40], scan–to–map-scan
erformed by chaining PLICP in tandem with
order to mitigate the effects of large angular
ICP.
od introduced in [44] jointly considers odome-
ching and scan–to–map-scan matching of 2D
with cadastral maps for localisation of au-

icles in outdoor scenarios. These are used as
the solution of a graph optimisation prob-

putes the most likely vehicle pose given mea-
m the 2D range sensor. With regard to the

ns, non-building objects are filtered-out from
observation using a split and merge approach,
bined with weighted line fitting. The input
nd the one derived from the map are then
eneralised ICP, and the resulting pose trans-
added to the graph if and only if ICP has
t the same time, a method for detecting the

garding the longitudinal position of the vehi-
corridor-like environments is introduced.
n–to–map-scan matching is employed in tan-
article filter. From the pose estimate of the
-scan is computed and then matched against
an captured from the physical sensor using
ing back the resulting pose estimate to the
the particle filter in the form of a multitude
shown to exhibit lower pose errors compared
the resulting pose estimate is fed back in the
one particle. Furthermore it is shown that
f feedback exhibits increased robustness com-
, where the particle filter is initialised anew
sulting estimate.
e proposed global localisation method is di-
o phases: an offline and an online phase.
ffline phase, the input map is partitioned
d according to a set resolution. A rotation-
tion signature is then generated for the vir-
ic 2D range scan that is captured from each
ll location within the map. All resulting sig-
hen inserted into an ANN search tree. In
ase, for each incoming laser scan, a signature
scan is generated in the same way as during
ase. Then the signature is used for retriev-
bouring candidate locations from the search
put location is that whose virtual scan’s sig-
closest neighbour of the signature of the in-
ent scan. In order to obtain the orientation

s pose, a virtual scan is generated from the

aligning steps. The angular registration is perfo
1-degree steps and the robot’s orientation is the
which records the minimum relative entropy betw
virtual and real scan.

In [24] the solution to the global localisation pr
given entirely online. At first a dense cloud of hy
is generated within the unoccupied interior of th
map. Subsequently each hypothesis is inputted
tation subsystem, which at first captures a virt
from the hypothesis’ pose, projects it to two dim
discretises it, and matches it to the similarly-trea
scan via the application of Fourier-Mellin Invarian
ing [47]. The latter provides the orientation differ
tween the two scans and, most importantly, a me
their similarity. After rotating the pose hypoth
translation component displaces it in order to m
location of the sensor’s real location. At the end
ilarity measures are ranked and the pose hypoth
the greatest similarity degree is outputted as the
pose estimate.

In recent months a number of new scan-matchi
ods, offering improvements on established metho
troducing new innovations, have been introduced
NDT is used to model the sensor’s environment in
address its uncertainties and constraints. The po
formation between successive poses—the solutio
optimisation problem of eq. 2—is given by a
stochastic particle swarm optimisation approach
corporates inertia weights in its formulation. Thes
encode the momentum expressed by forces attrac
particle in keeping its current velocity, forces tha
motion towards its personal optimum, and forces
rect it towards the swarm’s optimum pose thus fa

In contrast to NDT however, which establish
spondences by considering the distance of point p
to voxel distributions, VGICP [23] aggregates th
bution of each point in the voxel and establish
spondences between these distributions and targ
butions, thus making VGICP a voxel-based dist
to-multi-distribution approach. This approach yie
voxel distributions even when there are few poi
voxel, resulting in an algorithm that is robust to
in voxel resolution. VGICP extends GICP [49] in
avoid costly nearest neighbour search, while red
execution time.

In [50] a certifiable scan-matching algorithm
duced. The registration solution is first made in
to large number or spurious correspondences by
lating the problem in manner that uses a trunca
squares cost. Rotation, translation, and scale bet
two input scans is decoupled with the use of a
graph-theoretic framework, which allows for the pr
outliers by finding the graph’s maximum clique. S
translation are shown to be solvable in polynom
via an adaptive voting scheme, while rotation is s
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being relaxed to a semidefinite program.
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(12)
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posed Method

on offers a dissection of the proposed method.
olve Problem P, a map-scan SV is computed
each time the pose estimate p̂ is updated.
lem is iteratively decomposed into two dis-
problems. The first is estimating the relative
n SR and SV under the assumption that both
from the same location. The second is esti-
lative displacement of SV with respect to SR

sumption that both are captured from poses
orientation. Solving the first sub-problem is
he solution to the second sub-problem. This
rated until termination conditions are met.
tation and location correction submethods
in subsections 5.1 and 5.2. Subsection 5.3

method of how these two are woven together
m that solves Problem P that is proposed in

ion Correction

sumptions of Problem P be standing. Let ad-
l, that is, only the sensor’s orientation needs

ted. Then let virtual scan SV be computed
g M from p̂. An estimate of the rotation of
ect to SR may be found in the following way.
oramic range scan S be captured from pose
me coordinate frame (Definition I). The co-
the end-point of the scan’s n-th ray n =
1 within that frame of reference are (xn, yn):

n cos(θ +
2πn

Ns
− π) = −dn cos(θ +

2πn

Ns
) (3)

n sin(θ +
2πn

Ns
− π) = −dn sin(θ +

2πn

Ns
) (4)

e the observation that −(xn − x) and (yn −
ctively, the real and imaginary parts of the
tity

n
s
) = dn cos(θ +

2πn

Ns
)− i · dn sin(θ +

2πn

N
)

(3),(4)
= −(xn − x) + i · (yn − y) (5)

e, that

i 2πnNs = eiθ(−(xn − x) + i · (yn − y)) (6)

duct of summing (6) over Ns rays is equal
rm of the Discrete Fourier Transform of the

F1 =

Ns−1∑

n=0

dn · e−i
2πn
Ns

(6)
=

Ns−1∑

n=0

eiθ(−(xn − x) + i · (yn − y))

= eiθ
Ns−1∑

n=0

[(x− i · y) + (−xn + i · yn)]

= eiθNs(x− i · y)− eiθ∆

where ∆ ,
Ns−1∑
n=0

(xn − i · yn).

Denoting with the letter R quantities which co
to the real scan SR, which has been captured f
sensor pose p(x, y, θ), and with V those which co
to the virtual scan SV , which has been captured fr
p̂(x, y, θ̂):

R1 =

Ns−1∑

n=0

dRn · e−i
2πn
Ns

(7)
= Nse

iθ(x− i · y)− eiθ∆R

V1 =

Ns−1∑

n=0

dVn · e−i
2πn
Ns

(7)
= Nse

iθ̂(x− i · y)− eiθ̂∆V

Let now ∆R−∆V =
Ns−1∑
n=0

(xRn−xVn )−i·
Ns−1∑
n=0

(yRn

Ns(δx − i · δy), where

δx , 1

Ns

Ns−1∑

n=0

(xRn − xVn )

δy , 1

Ns

Ns−1∑

n=0

(yRn − yVn )

Then

∆V = ∆R −Ns(δx − i · δy)

The first term of the Discrete Fourier Transfor
signal that consists of the difference of the two si
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and (9) is X1:

X1 = R1 −

=

Ns−1∑

n=0

(

(8),(9)
= Ns

(12)
= Ns(x

+ eiθ̂(∆R

= Ns(x

−Nseiθ̂(
= (eiθ −
(8)
= (eiθ −

= (1− e

Therefore

−V1 = −
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R
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V1

dRn − dVn ) · e−i 2πnNs

(x− i · y)(eiθ − eiθ̂)− eiθ∆R + eiθ̂∆V

− i · y)(eiθ − eiθ̂)− eiθ∆R

−Ns(δx − i · δy))

− i · y)(eiθ − eiθ̂)−∆R(eiθ − eiθ̂)
δx − i · δy)

eiθ̂)[Ns(x− i · y)−∆R]−Nseiθ̂(δx − i · δy)

eiθ̂)
R1

eiθ
−Nseiθ̂(δx − i · δy)

−i(θ−θ̂))R1 −Nseiθ̂(δx − i · δy)

, since X1 = R1 − V1:

e−i(θ−θ̂)R1 −Nseiθ̂(δx − i · δy)

1

1
− Nse

iθ̂

R1
(δx − i · δy)

1|
1|
ei(∠V1−∠R1) − ei(θ̂−∠R1)

|R1|
(Nsδx − i ·Nsδy)

ar representation of complex A is A = |A|ei∠A.
e fact that the sensor’s orientation θ is un-

re the endpoints {(xRn , yRn )}, and therefore
, δy. In order to gain an initial intuition as
tudes of the latter we make the observation
ition, Nsδx and Nsδy quantify the difference
imation of line integrals over the closed paths
he two scans’ endpoints over the two princi-
d y. This approximation is due to the finite-
herefore, under the assumptions that (a) the
nvironment is its perfect representation and
cal range scan is unaffected by disturbance,
Nsδx, Nsδy → 0, which in turn means that

nd θ − θ̂ → ∠R1 − ∠V1.
the orientation estimate by

θ̂′ = θ̂ + ∠R1 − ∠V1 (13)

esidual orientation error φ:

1 Nsδx tan(θ − ∠R1)−Nsδy
|R1|+Nsδx +Nsδy tan(θ − ∠R1)

(14)

tude is inversely proportional to the number
physical range sensor Ns in the case where
SV are undisturbed by noise.
ness of the physical sensor’s emitted rays,
the arbitrariness of the rate of changes in

ber of emitted rays by the physical sensor is im
In order to mitigate the effects of these constraint
orientation error, let 2ν virtual scans of size Ns b
ated at γ/2ν angular increments starting from θ̂, ν
where γ = 2π/Ns is the physical sensor’s angle in
Let then the orientation correction process (eq.
carried out once between the real scan and the
scan SkV captured from orientation θ̂k = θ̂ + k
k = 0, . . . , 2ν − 1, for a total of 2ν times, resulti
orientation estimates θ̂′k. The angular alignment

the virtual scan captured from pose (x, y, θ̂′k) and
scan is captured by the Cumulative Absolute E
Ray (CAER) metric

CAERk ,
Ns−1∑

n=0

∣∣∣∣∣SR[n]− SV [n]
∣∣∣
(x,y,θ̂′k)

∣∣∣∣∣

which is proportional to the degree of misalignm
tween range scan SR and map scan SV captured fr
(x, y, θ̂′k), and therefore between (x, y, θ) and (x,
profile of the CAER metric is shown in figure 3
general case of location and orientation incoincid
tween the sensor’s pose and its estimate.

Let now kmin denote the index of the k-th virt
Skmin

V scoring the minimum CAERk:

CAERkmin = min{CAERk}

k = 0, . . . , 2ν − 1. Let also θ̂kmin denote the angle
∠R1−V kmin

1 , where V kmin
1 is the first term of the

Skmin

V (eq. (9)). Then, updating the sensor’s ori

estimate by θ̂′ = θ̂+ θ̂kmin +kmin ·γ/2ν results in a
tation error whose maximum is equal to that of u
it with (13) for ν = 0.

5.2. Location Correction

Let now the real and estimated poses be equal
of orientation but unequal in terms of position
map represents the environment perfectly and th
cal range sensor reports faultless measurements
estimate of the sensor’s position can be driven ar
close to its real position. In real conditions, when
of either or both real and virtual range sensors
rupted by bounded additive noise, the position
can be made to be bounded in a neighbourhoo
sensor’s real position. Theorems I and II formal
statements [51].

Theorem I. Let the assumptions of Problem P h
ditionally, let θ̂ = θ. Let a map-scan SV be captu
p̂ within map M and be denoted by SV |p̂. Assu
both SR and SV range scans are disturbance-free
the distances to obstacles the rays of the real scan
correspond to the true distance of the sensor to
stacles, and that the map of the environment cap
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rofile of the CAER metric (eq. (15)) from 106

turbed sample scans, depending on the distance
/2 and relative orientation ∆θ of the poses from
nd a virtual scan were captured. Pose estimates
rue pose in terms of orientation (a) exhibit lower
than those further away from it and (b) produce
errors once inputted to the Position Correction

y. Then, treating the estimate of the location
as a state variable l̂[k] = [x̂[k], ŷ[k]]> and

ccording to the difference equation

l̂[k + 1] = l̂[k] + u[k] (16)

l̂ = [x̂, ŷ]>, i.e. the supplied initial location
eing the two-dimensional vector hereafter re-
he control vector:

[
cos θ̂ sin θ̂

sin θ̂ − cos θ̂

] [
X1,r

(
SR,SV |p̂[k]

)

X1,i

(
SR,SV |p̂[k]

)
]

(17)

) and X1,i(·) are, respectively, the real and
rts of the complex quantity X1:

p̂[k]

)
=X1,r

(
SR,SV |p̂[k]

)

+i·X1,i

(
SR,SV |p̂[k]

)

=

Ns−1∑

n=0

(SR[n]− SV [n]|p̂[k]) · e−i
2πn
Ns (18)

and SV [n]|p̂[k] are, respectively, the ranges of
of the real SR and virtual SV |p̂[k] scans, and

)—then l̂[k] converges to l uniformly asymp-
→∞.

e, the control system (16,17) is let to iterate
he norm of the control vector u[k] reaches
small magnitude ‖u[k]‖2 < εu, where εu is
all—e.g. εu < 10−3—or for I > 0 iterations
large, externally-supplied maximum itera-

ld—e.g. I ≥ 20). Therefore, if we denote by

the last index of iteration, and by l̂′ = l̂[kstop]

< ‖e(l, l̂[0])‖2, and therefore objective (∗) is

tional to the orientation error.

Theorem II. Let the assumptions of theorem I h
sume additionally that the ranges of both real an
range scans SR and SV are affected by additive,
disturbances. Then l̂[k] is uniformly bounded for
and uniformly ultimately bounded in a neighbourh
Its size depends on the suprema of the disturbance
ing the range measurements of the two scans.

Compared to the case where no disturbances ar
a solution satisfying objective (∗) is not strictly

teed for every starting location l̂[0]. Let us agai

by kstop ∈ (0, I] the last index of iteration, by l̂′ =
the final estimate of the sensor’s location, and b
ultimate bound of the pose error. If ‖e(l, l̂[0])
Theorem II guarantees the satisfaction of object

kstop ≥ k0. If, on the other hand, ‖e(l, l̂[0])‖2 ≤
not certain that ‖e(l, l̂′)‖2 < ‖e(l, l̂[0])‖2; what i

in this case, though, is that ‖e(l, l̂[k])‖2 ≯ B for a

5.3. Joint Correction of Orientation and Location

The previous two sections describe two method
it is possible to (a) reduce the error of the orient
timate when the position estimate coincides with
sor’s position, and (b) reduce the error of the posi
mate when the orientation estimate equals the sen
entation. In the general case, however, no equality
What is more is that the problem is coupled: the
orientation error cannot be attained in one step w
position error is not zero, and the optimal posit
cannot be attained in one step when the orientat
is not zero. Therefore the first goal of a metho
ing both would be to first reduce the orientation e
then reduce the location error. The second would
erate this process until some termination conditio
The method proposed by this article is describe
following.

Given an input pose estimate p̂(x̂, ŷ, θ̂), the r
SR, and the map M , the pose correction meth
posed (fig. 4) reduces the error of the pose esti
iteratively invoking the One-step Pose Correction
(fig. 5) until a set of termination conditions is m
noting the former by X1SMSM, X1SMSM starts
an initial degree of sampling the map ν = νmin. T
pose estimate is processed by the One-step Pose
tion process, and its output p̂′ is examined wit
to Recovery and Convergence conditions. If th
ing pose estimate falls outside of the map M the
pose estimate is generated from the initially supp
estimate, and the process is reset. If no signific
estimate correction is observed ‖p̂′ − p̂‖2 < εδp,
degree of map sampling ν is increased. Its increa
as a means of reducing the orientation and hence
tion estimate error further. Otherwise, the One-s
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e-step Pose Correction

Start

Recovery
Conditions

Convergence
Conditions

Generate new
p̂′ around p̂;
ν = νmin

Y

N

ν ++

Y

ν, SR, M , p̂

Termination
Conditions

Terminate

N

p̂′

Y

ow diagram of X1SMSM. Execution commences
angular sampling degree νmin, the scan captured
l range sensor SR, and the map of the environ-

e initial pose estimate is provided by a tracking
ose tracking or in the form of a hypothesis during
tion. The inner method One-step Pose Correc-
s called iteratively, updating the pose estimate
um of angular sampling degree is reached

Orientation Correction

Rehearsal
Position Correction

C = CAER(P̂RPC)

I = 1

Position Correction

p̂′

P̂OC = OC(p̂, ν)

I =

P̂RPC = RPC(P̂OC)

p̂C ∈ P̂OC : CAER(RPC(p̂C)) = m

Figure 5: The block diagram of the core pose alignment
X1SMSM, termed One-step Pose Correction

Correction process is reiterated until no significan
tion is observed. The process is iterated until a m
degree of map sampling is reached ν = νmax, a
point X1SMSM terminates if a terminal conditio
This terminal condition facilitates the avoidance
maxima. In the case where this condition is not m
pose is generated from the initially supplied pose e
and the process is reset.

Given an input pose estimate p̂(x̂, ŷ, θ̂), the r
SR, the map M , and a sampling degree ν, the O
Pose Correction system first calculates 2ν pose e
P̂OC = {(x̂, ŷ, θ̂k)}, k = 0, . . . , 2ν−1 (section 5.1)
eration is denoted in fig. 5 by the operator OC

location error of each pose estimate in set P̂OC is
tempted to be reduced by rehearsing the subseq
sition Correction operation for one iteration. Th
tion produces pose estimate set P̂RPC . Subseque
CAER metric of each pose in P̂RPC is calculated

The pose estimate p̂ ∈ P̂RPC that records t
mum CAER among all pose estimates in P̂RPC is i
ple the pose from which the computed virtual scan
the least deviation from the real scan among all
P̂RPC . By capturing the CAER for each displa
estimate in P̂RPC it is possible to establish a l
neous pose error rank between orientation estim
P̂OC than if position correction was not rehear
simultaneously retain only one pose estimate for
sequent step of Position Correction proper. 2 T
estimate in P̂RPC that records the lowest CAER

2Alternatively, correcting the position of 2ν pose estim
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rrection system is set to its resulting output,
′. In practice, the pose set P̂OC is supple-
the pose that produces the minimum CAER
his addition introduces a form of memory
, which assists it in avoiding divergence and
ore, benefits speed of execution.

ents

on serves to test the efficacy and performance
ed method, termed X1SMSM, against those
e-art methods utilisable in the scan–to–map-
g task.

ental Procedure

rimental procedure was conducted using five
d publicly available benchmark datasets pro-

sy of the Department of Computer Science,
Freiburg.3 Each dataset comprises a collec-

scanner measurements and the pose r(x, y, θ)
hese measurements were made. The signifier
ch dataset used for the experimental proce-
in table 1.

Dataset # instances

aces 7373
fr079 4933
intel 13630
mit csail 1987
mit killian 17479

ize of each dataset used during evaluation of the
f X1SMSM, FastGICP, CSM, NDT, NDT-PSO,
nd TEASER methods in the scan–to–map-scan

ses of comparison against scan-matching meth-
be utilised in scan–to–map-scan matching,

ntal procedure is extended to the Normal Dis-
ansform (NDT) scan-matching method [25][53],
9][54] and PLICP◦GPM [17][55]. The latter
oted hereafter by the acronym CSM. GPM
tially in order to overcome the angular re-
oblems [17] of PLICP. NDT, FastGICP, and
to the established state-of-the-art methods of
g [23][56]-[60]. In addition, for comparison
mporary state-of-the-art algorithms, the ex-
rocedure is extended to FastVGICP [23][61],
8][62], and TEASER [50][63].

ack to the One-step Pose Correction method would
ial costs in time of execution.
sets are available at http://ais.informatik.

de/slamevaluation/datasets.php; last accessed

k

are first projected to the x − y plane around r
datasets’ scans are not panoramic, therefore the
ing space is filled with a semicircular arc that j
scan’s two extreme ends. Its radius is set to t
mum range between the two extreme rays of Dd

k.
fashions for closing-off the environment have bee
equivalent with respect to the performance of th
methods. The resulting point-set is regarded as
vironment W d

k in which the range sensor opera
the environment of fig. 1). Then the map of t
ronment Md

k is set to be W d
k . In order to induc

tions in the map, each coordinate of all points i
perturbed by errors extracted from a normal dist
NM ∼ (0, σ2

M ). What is considered the sensor
pose pdk is generated randomly within the polygon
by W d

k . The range scan SdR,k that is considere
reported by the physical sensor is then compute
cating the intersection points between Ns rays em
from pdk and the polygon formed by W d

k across an
field of view λ = 2π. The initial pose estimate of th
p̂dk is then obtained by perturbing the componen
with quantities extracted from uniformly distribu
distributions Uxy(−δxy, δxy), Uθ(−δθ, δθ); δxy, δθ

In order to test the performance of the above
four levels of noise acting on the range measuremen
real scan SdR are tested. The range measurements
turbed by zero-mean normally-distributed noise w
dard deviation σR ∈ {0.03, 0.05, 0.10, 0.20} m. Th
of tested standard deviations were calculated fro
mercially available panoramic LIDAR scanners
tifying the magnitude of their reported maximu
errors and dividing it by a factor of three. Th
nale is that 99.73% of errors are located within 3σ
the actual range between a ray and an obstacle
ing errors are distributed normally. These are
for price-appealing but disturbance-laden panora
sors, e.g. the RPLIDAR A2M8, or the YDLIDAR
TG30, and X4 scanners [64]-[68]. In addition, tw
of map distortion are tested: σM ∈ {0.0, 0.05} m
mal displacements δxy and δθ are set to δxy = 0.2
δθ = π/4 rad. The value of δxy was chosen as su
reports on positional errors in real conditions [4
value of δθ was chosen as such in order to include
tion errors at the initialisation stage of pose trac
errors induced due to diverging odometry readin
size of the input real scan was set to Ns = 360 ra
minimum and maximum oversampling rates of X
were set to (µmin, µmax) = (2νmin , 2νmax) = (22, 2
number of iterations of the translational compon
set to I = 2 and εδp = 10−5 (section 5.3). X1SMS
mination condition was set to CAER(p̂′) ≤ (σ̂R +
where σ̂R and σ̂V are estimates of the standard d
of noise affecting the rays of SR and SV respectiv

For each experiment X1SMSM, CSM, NDT, Fa
and FastVGICP ran for E = 10 times across all ins
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relative proportion of cases where objective (∗) was attained by each tested method as a function of sensor
rtion σM levels over all conducted experiments

ces, fr079, intel, mit csail, mit killian},
. , 4}. Therefore each method was tested a

= 10 × 2 × 4 ×∑ |Dk| ≈ 3.6 · 106 times.
n times of NDT-PSO and TEASER in the
-scan matching problem were measured in the
ds per pose input—approximately one order
larger than the execution time of X1SMSM:

n of NDT-PSO and TEASER was performed
y instance of D.
nts with X1SMSM, FastGICP, FastVGICP,

T were carried out on a single thread, on a
CPU frequency of 4.0 GHz. NDT-PSO and
parallel implementations; their experiments
threads, with a machine of a CPU frequency

ion on which the evaluation of all tests rests
of the total pose error—eq. (1) for p̂ → p̂′,

he output of each algorithm tested. For ev-
mate p̂d′k outputted by each algorithm, d =
, k ∈ {0, 1, . . . , 4}, its offset from the actual
corded in the form of the 2-norm total er-

it of measurement of the total pose error is
/2 and, where omitted in the figures of the
sections, it has been so for purposes of econ-
and readability.

llustrates the percentage of cases where objec-
ttained by all tested algorithms per standard
easurement noise and map corruption levels,

ucted experiments. The performance of all
as approximately invariant over any dataset:
ir results are aggregated over all datasets in
this section.

llustrates the distribution each tested method’s
cross all conducted experiments per sensor
map distortion σM levels. Figure 8 illus-

responding execution times.

Figure 9 shows a breakdown of X1SMSM’s m
cution time for each tested configuration.

Figure 10 provides a juxtaposition of the evo
mean position and orientation errors of the three
with the highest proportion of objective (∗) att
cases for increasing real scan noise σR per map d
level σM tested.

Figure 11 summarises the mean core execut
(total time minus map-representation and impleme
specific intersection-finding time), and the mean to
ber of virtual scans captured by X1SMSM for σM
m, over Ntot tests, as a function of the standard d
of noise affecting the rays of the real scan σR.

6.3. Discussion

The proposed method’s pose error reduction
largely invariant across real scan noise levels for
level of map distortion. The method manages to
the pose estimate of at least 97.5% of all input
timates with regard to the tested configurations
X1SMSM’s pose error reduction rate is on par wit
TEASER but, in contrast, X1SMSM runs in real
quires fewer computing resources, and exhibits lo
errors. According to the results the performance
based methods in terms of the proportion of cas
the pose estimate error was reduced deteriorate
scan noise increases. FastVGICP is the most co
among ICP variants with regard to the proportion
were pose errors were reduced. NDT-PSO manag
crease the pose error reduction rate of NDT but
of significant increases in execution time and pr
resources required.

In terms of pose estimate errors (fig. 7) the b
of X1SMSM is more accurate than those of all test
ods across all configurations and datasets tested; o
pose errors are comparable to those of X1SMSM,
in low levels of measurement noise and when th
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execution time and total number of virtual scans
1SMSM per standard deviation of noise affecting
e physical sensor σR and standard deviation of

the maps’ coordinates σM over all conducted

lower than that of all tested methods. By cont
behaviour of CSM, GICP, VGICP is less robust
surement noise, and especially so at the upper
the spectrum of measurement noise exhibited b
able panoramic LIDAR sensors. It is presumed
widening gap in performance between these meth
X1SMSM, in terms of increasing measurement n
consequence of their modus operandi of establish
respondences between a point and a (line)point i
input scans [24]. This conjecture is supported by
that the more laden a scan is with noise, the more
it is for the algorithm to distinguish true correspo
from false. By contrast, X1SMSM does not deal
spondences and, ipso facto, does not require the
setting of parameters relating to establishing co
dences.

Focusing on the mean position and orientatio
of CSM, TEASER, and X1SMSM (fig. 10), and
ing to the evidence, the orientation and position
CSM increase at a greater rate than those of X1SM
a given level or map distortion, while starting off a
magnitudes. Interestingly, when the map is disto
position errors of TEASER are invariant to the
fecting the ranges of the real scan.

X1SMSM’s lowest processing speed was appro
225 ms per pose input. In comparison, CSM’
tion times ranged from 34 to 94 ms, NDT’s 85
FastGICP’s 25-59 ms, and FastVGICP’s were
mately constant at 7 ms. NDT-PSO’s executio
were approximately constant as well at 1.34 secon
TEASER had the greatest variability and execut
at 1.3-3.3 seconds. This is due to the fact that T
requires the measurement and virtual scan vecto
homologous, i.e. a reference and target point are
to be in the same position in both vectors.4 The ap
ity of NDT-PSO and TEASER is hindered both
execution times and the fact that their implem
requires multiple processor cores (> 4) in order t
real time—which may be unavailable in multi-su
systems with limited resources. In any case all e
times should be taken with a grain of salt, as they
cific to the map representation used, the number o
the input range scan, and the processing power a

Finally, the proposed method’s increasing i
with respect to decreasing measurement noise (
suggests that the termination criterion used du
experimental procedure is unevenly strict across m
ment noise levels.

4https://github.com/MIT-SPARK/TEASER-plusplus/is

issuecomment-622652266
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their respective poses in the local coordinate
sensor. In this example σR = 0.05 m and σM =

ow at this initial configuration there are portions
ment’s map visible only to the pose estimate, but
ding portions of the environment are not visible
tself

risation and Limitations

tion we give key characterisations of X1SMSM
aspects of its performance against represen-
e scan-matching methods.

erisation

demonstrates in principle a scenario where
-scan matching may be applicable for pose
r reduction. In the left-hand side figure the
ose is denoted with black, and its initial es-

magenta. The right-hand side figure shows
virtual scans captured from sensor’s respec-
the local coordinate system of each sensor.
strates the interim and final outputs of the

ocess carried out by X1SMSM.
row of figure 14 illustrates the dependence of
osition errors on the initial position displace-
d the initial orientation displacement (right)
eriments conducted (section 6) for σR = 0.03

0.0 m. The second row illustrates the de-
the output orientation errors with respect to
ial configurations. According to the evidence
osition error is dependent on the initial loca-

ent between the real pose and its estimate,
ent of the initial orientation displacement be-
with regard to the tested displacement config-
e output orientation error on the other hand
t of both initial location and orientation dis-

5 and 16 depict the mean orientation errors
tion correction subsystem of X1SMSM, along
CSM and NDT, for varying levels of maximal
tion displacements δθ, range sensor emitted

was tested 100 times over the 778 instances of the l
dataset.5 These results are captured in the case w
position of the sensor and its estimate are coinc
that the effect of the methods’ orientation correct
system is revealed.

The evidence shows that in complete coinciden
map to its referent environment the orientation
X1SMSM decrease with increasing number of ra
given level of sensor noise, regardless of the value
orientation displacement between the sensor’s tru
tation and its estimate. In contrast, the orientatio
of CSM and NDT (a) do not progressively decrease
tionally to the size of scan rays, and (b) are not i
to increasing initial orientation displacement. Pre
the orientation error of X1SMSM increases for in
sensor noise for a given number of rays emitted
the map is corrupted these correlations cease to
X1SMSM and, therefore, since (a) the accuracy of
tion correction subsystem depends on the orientat
and (b) the processing time is proportional to t
sensor’s size, from a computational-resources per
it is more efficient for an input real scan whos
greater than 360 rays to be downsampled to this s
to matching.

7.2. Limitations

From the evidence of section 6 X1SMSM is
of addressing initial position errors ranging to 0.2
component, with its orientation correction subsy
ing independent of initial location errors (fig. 14
ever, the orientation correction subsystem may fa
mate the sensor’s real orientation at large initial
errors. In figure 17 the pose estimate is displaced
in the x-wise direction; the first orientation correc
ation misplaces the pose’s orientation, on whose
the location correction depends, which further m
the estimate in terms of location. Although in th
ple we have deactivated the recovery module, re
from the initial pose may finally yield an accur
estimate but this would have happened at the ex
execution time. This situation is unrealistic in po
ing, but highlights a key limitation of X1SMSM.

The greatest challenge for the performance of
to–map-scan) matching method, aside from corru
put data, is missing data. Missing range inform
range scan sensors manifests due to their innate co
of inability to detect ranges to objects that lie
their maximum detectable range radius. The ab
usable data is a function of a range sensor’s m
range and the geometry of its surrounding environ
any given sensing instant. In principle, corresp
finding methods ought to fare better in the face o

5The dataset is available at https://censi.sci

research/2007-plicp/laserazosSM3.log.gz
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xemplary condition where X1SMSM fails to con-
tial position estimate is displaced far from the
osition. The orientation correction subsystem

accurate orientation estimate and ipso facto the
ition diverges from its target. The third column
lution of the pose error in blue colour and the
AER metric in red for the first eight iterations

tween separate segments in their input scans. In
guard against missing range data and facilitate m
in their presence, X1SMSM duplicates a sensor’s
constraint of an upper range threshold in its gene
a virtual scan so that the latter is assisted in resem
target real scan as much as achievable. We illust
limitations of the proposed method in the face of
range measurements, and the difference in perform
tween it and established state-of-the-art corresp
finding and correspondenceless methods in figure

At the top row of the figure four distinct envir
are depicted in white colour. The radius of co
circles around the sensor’s true position (depicted
equals the set maximum range for the sensor. The
their perimeter signifies the proportion of real sca
which are within that maximum range radius acco
the colourbar at the second row. The two latter
figures illustrate the mean pose error of CSM (re
(blue), and X1SMSM (green), over ten iteration
same maximum range level for two levels of sens
when the map of the environment is not corrup
noise.

At low sensor noise levels, ICP-based methods
dominate their counterparts due to their aforem
merits. However, this characteristic is reversed
surement noise increases. CSM’s, NDT’s and the p
method’s performance deteriorates at irregular r
according to the particular characteristics of the
surroundings. CSM records the highest pose er
the lowest robustness to maximum range reducti
all. Compared to NDT, X1SMSM exhibits great
racy at the lower and higher ends of the missin
scale. Qualitatively, X1SMSM records its lowes
mance when it completely loses its footing over lar
at two opposite directions: the figures of the third
summarise this limitation of X1SMSM.

8. Applications

Scan–to–map-scan matching in two dimension
employed in various contexts. The most usual ap
is in pose-tracking, where the output of the track
is fed to a scan–to–map-scan method in order
provide a pose estimate of lower error [45] (sectio
RFID localisation, for example, one seeks to ac
localise the placement of tags in 3D space by re
the accuracy of the pose of a robot’s antennas, wh
in space is provided by the LIDAR sensor equippe
robot. In this case position accuracy has more grav
orientation accuracy.

Scan–to–map-scan matching may also be used
matching, i.e. estimating the transformation betw
similar shapes or detecting those shapes from a c
that match a reference one. In the first, a sou
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h black colour. Pose hypotheses are dispersed in
d interior space of the map. Note how symmetries
ment make the CAER of p5 lower than that of
ctually closer to the real pose than p5. With
ypotheses the global localisation problem can be
ced time due to the use of the CAER metric

g a hypothesis over to the matching algorithm

be computed, preferably via the shapes’ cen-
latter is located at the same point relative to
stituting points. Then from the source pose
ce shape a virtual scan would be captured,
–to–map-scan matching terms would be con-
eal scan. Capturing virtual scans initially
rce pose of the second shape and matching
e real scan would then provide the rotation
on transformation between the two. Detect-
at record similarity to a reference one would
ame process, but with a limited number of
that the rejection of false samples be carried
y. The experimental procedure of section 6
direct test on these applications.
we have also used scan–to–map-scan match-
lution to the global localisation problem [24].
tion of the CAER metric (fig. 3) may be
erate the solution to the problem in the fol-
er: As standard a dense cloud of hypotheses
n the unoccupied space of the map. Then the
c is computed for each pose hypothesis. The
ith the lowest CAER values would then be
to X1SMSM for registration. The one whose
value is the minimum would then be consid-
ot’s pose. Figure 19 shows a sample global
cenario.

teps

ations of X1SMSM dictate the course of fu-
ith regard to missing range measurements

uacy of a sensor’s maximum range, work fo-
on devising mechanisms or methods whose

more consistent with the case where there are
ross a greater range of proportion of missing

in lower orientation estimate errors (eq. 14) and t
lower subsequent location estimate errors, and
X1SMSM’s ability in reducing its orientation erro
creasing range scan size when the map is not corr
the case where it is. This will benefit speed of e
and will also aim at additional pose error reducti

10. Conclusions

This article introduced a method for reducing
estimate error for robots equipped with LIDAR ra
sors whose field of view is 360◦ in a scan–to–m
matching manner. Contrary to state-of-the-art ap
the solution it provides to the problem of scan–
scan matching does not require the establishing
spondences between its two input scans, and is
form. These facts account for (a) the method’s ro
against the typical measurement noise levels exhi
low-cost panoramic 2D LIDAR sensors, whose m
ment noise is significantly elevated compared to p
sors, (b) its lower pose errors compared to prior
(c) its real-time execution. The proposed method
that a panoramic range scan, the map of the envi
in which the robot operates, and a pose estima
ing in the vicinity of the robot’s true pose are a
Therefore the proposed method’s placement wit
calisation system may be at the end of or at t
level as a pose tracking method, or at the heart
localisation.

After computing a virtual range scan from t
surement sensor’s pose estimate, the method upd
estimate by reducing first the orientation estim
ror and then that of the position estimate. The
is iterated until sufficient convergence conditions
The correction of the orientation and location est
performed by utilising the first coefficient of the
Transform of the difference between the two sca
proposed method exhibits higher accuracy, consis
greater pose error reduction rates compared to est
and contemporary state-of-the-art methods that
utilised in real time in the scan–to–map-scan ta
proposed method’s implementation is available fo
load at https://github.com/li9i/x1smsm-publ
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