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Abstract—In this work, we present a method for 3D localization
of RFID tags by a reader-equipped robot with a single antenna.
The robot carries a set of sensors, which enable it to create
a map of the environment and locate itself in it (Simultaneous
Localization and Mapping - SLAM). Then we exploit the collected
phase measurements to localize large tag populations in real-time.
We show that by forcing the robot to move along non-straight
trajectories, thus creating non-linear synthetic apertures, the
circular ambiguity of the possible tag’s locations is eliminated and
3D localization is accomplished. A reliability metric is introduced,
suitable for real-time assessment of the localization error. We
investigate how the curvature of the robot’s trajectory affects
the accuracy under varying multipath conditions. It is found that
increasing the trajectory’s slope and number of turns improves
the accuracy of the method. We introduce a phase model that
accounts for the effects of multipath and derive the closed form
expression of the resultant’s phase probability density function.
Finally, the proposed method is extended when multiple antennas
are available. Experimental results in a ”multipath-rich” indoor
environment demonstrate a mean 3D error of 35cm, achieved in
a few seconds.

Index Terms—RFID, 3D Localization, Non Linear Optimiza-
tion, Phase Unwrapping, Trajectory Evaluation, Robotics, SLAM.

I. INTRODUCTION

In the context of our project ”RELIEF” [1], we focus on
the problem of continuous inventorying in large warehouses
and retail-stores. All target products are tagged with passive
UHF EPC Gen2 RFID tags. A fixed reader-antenna network,
continuously monitoring the entire area, would require a
prohibitive installation cost. Instead, we have designed and
constructed prototype RFID-equipped robots (see Fig. 1),
capable of carrying out the task. The goals of the robots
are to be able to construct a map of the ”a priori” unknown
environment, to navigate autonomously and safely inside it, to
interpret their own pose (position and direction) and to identify
and rapidly locate all RFID tagged items at cm accuracy and
project their locations in the previously created 3D map. In
simple words, one would ”Plug and Play” a robot in the area
and expect a 3D map of the space along with the products.
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Fig. 1: Photo of ”Frida” from a recent international exhibition.

Typical applications may include querying a database for a
specific product and get a 3D result pinpointing its location
on the map, real-time notifications on the locations of sensitive
products, e.g. expired products inside a supermarket, real-time
localization of books inside a library etc.

The typical available physical quantities for localization of
UHF EPC Gen2 RFID tags are i) the backscattered power,
usually referred as RSSI and ii) the phase of the backscattered
signal of each tag. In contrast to RSSI, which can be directly
mapped into distance, a single phase sample is useless for
localization, due to the 2π ambiguity of phase measurements.
However, the robot allows for a dense collection of successive
RSSI and phase measurements from different locations, thus
forming a ”Synthetic Aperture” or ”Virtual Antenna Array”. In
this perspective, the phase information represents a better met-
ric (over RSSI) for localization of the tag, given its tolerance
on the tag’s antenna polarization, detuning or partial blockage,
while experiencing smaller variations due to multipath.

Although localization of RFID tags tends to become a well-
studied domain, most of the research has been focused on
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the 2D problem, [2]- [8]. Localization in 3D has been proved
a quite challenging task. Most of the proposed 3D methods
demand the installation of multiple readers and antennas to
cover the space of interest [9]- [11]. For satisfactory accuracy,
the utilization of an increased number of antennas is required.
The cost of such fixed installations, though, is huge and not
applicable for large environments, such as warehouses or retail
stores.

An alternative solution is to move an antenna in order to
collect measurements along a Synthetic Aperture, a technique
known from radar systems [12], and now applied in RFID
technology. [13] and [14] exploit a single antenna that is
moved along two perpendicular directions, by a manual motion
controller. The drawbacks here arise from the fact that each tag
requires the adjustment of the antenna at a specific position,
so it can move along a desired direction, at the expense of
time and effort.

Replacement of motion controllers by RFID-equipped
robots, provides a sense of automation. A moving robot is
capable of covering any space, no matter how large it is.
By adjusting its moving strategy, it can collect an infinitely
large number of measurements at many closely-spaced antenna
locations. [15] - [22] adopt the Maximum-Likelihood (ML)
approach and seek the best values over a grid of possible tag
locations. Their computational cost is proportional to the grid’s
dimensions and especially for the case of 3D problems the
estimation-time is uncontrollably increased. As a result, all
algorithms fail to accomplish real-time results for realistic tag
populations and 3D spaces, due to the size of the grid. Most
importantly though, localization in three dimensions is only
proposed by exploiting multiple antennas at different heights,
generating a multi-antenna synthetic aperture.

A different approach is to explore fingerprinting methods,
where localization of the unknown tags is carried out by
evaluating the resemblance of their measured characteristics
(RSSI and phase) with measurements of reference tags, placed
at known locations, collected from the same equipment at
the same time. Starting from ”Landmarc” [23], [24] and [25]
exploit RSSI and phase measurements obtained by a RFID-
equipped robot, while they propose real-time performance
evaluation by further exploiting the reference tags. ”Finger-
printing” methods require a long preliminary preparation of the
environment due to the need of knowing the absolute position
of all reference tags, while their accuracy strictly depends on
the density of the reference grid.

Two different approaches were presented in [26], [27]; yet
[27] requires functionality of the tag’s antenna over large
bandwidth and it cannot be applied in real-time for large
populations, while [26] represents an interesting alternative to
the problem, though it should be extended in 3D.

In contrast to typical SAR-based methods, this work solves
the 3D localization problem by a single antenna. Instead
of placing multiple antennas at different heights, we deter-
mine a specific motion-strategy of the robot and thus of the
produced ”Synthetic Aperture”. More specifically, it is proven
analytically and verified experimentally that when the robot
moves along non-straight trajectories, thus creating curved or
generally non-linear synthetic apertures, the circular ambiguity

of the possible tag’s locations is eliminated. The proposed
motion strategy can be applied to any other SAR method. In
this work, we apply ”Phase ReLock”, [28], a method which
transforms the original ML problem into a new equivalent
form, which can be solved rapidly by standard iterative
optimization techniques (instead of searching on a grid). To
achieve that, we perform ”phase unwrapping” on the measured
backscattered phase samples, ”correcting” the phases for each
tag to take continuous values, instead of being constrained in
2π intervals.

The basic idea was briefly presented in [29]. In this work,
we investigate how the motion strategy affects the expected 3D
localization accuracy. Firstly, we introduce a ”reliability” met-
ric, which evaluates the accuracy of each estimation. Secondly,
we investigate how one can set the motion strategy during
inventorying, in order to improve the localization accuracy,
given real-time knowledge of the reliability-metric. Thirdly,
it is shown that by increasing the ”curvature” of the path
and the amount of turns, the 3D-localization accuracy (and
the reliability metric) is improved. Fourthly, we introduce a
new phase-model, which accounts for multipath and measure-
ments’ errors. We derive the closed form probability and
cumulative density function of the resultant expected phase
under multipath conditions as a function of the ratio ρ of
the magnitudes of the ”multipath” to the ”direct” component.
Then, we demonstrate how one can set the motion strategy
for increasing ”multipath” (larger ρ), in order to maintain a
desired reliability. Fifthly, we extend the proposed method,
when measurements from multiple antennas are available.

Finally, we present a new set of experimental results,
collected by four antennas placed on top of our robot. The
robot creates a 3D map of the environment, localizes itself
in it and then localizes all surrounding tags. Therefore, the
robot’s localization/mapping error propagates into the tags’
localization error. 3D localization by each antenna is derived
separately. When tags are identified by more than a single
antenna, combination of the estimations greatly improves the
performance. However, 3D estimation can still be delivered
even when measurements by a single antenna are available.
3D accuracy in the order of 35cm is accomplished.

The localization method is presented in Section II. The
reliability metric, the phase model and the analysis of the
relation between the trace of the robot and the localization
accuracy are introduced in Section III. Measurements are
presented in Section IV, while the extension for multiple
antennas is given in Section V. Finally, section IV concludes
our findings.

II. 3D LOCALIZATION BY A SINGLE-ANTENNA

Consider a robot carrying an EPC Gen2 UHF RFID reader,
connected to one (or more) antenna(s), interrogating passive
RFID tags in the surrounding environment. The motion of
the robot leads the antenna to a formation of an antenna array
A = [A1, · · · , AN ] consisted of N locations Ai = (xi, yi, zi),
as shown in Fig. 2; zi is a constant for denoting the specific
antenna’s height. The distances between a static tag and the



IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION 3

𝐴1  

𝐴2  
𝐴i  

𝐴i 1  

𝐴N  

dN  di 1  di  d2  d1  

𝑥𝑡𝑎𝑔 , 𝑦𝑡𝑎𝑔 , 𝑧𝑡𝑎𝑔  

𝜃1  

𝜃2  

𝜃i  

𝜃i 1  

𝜃N  

Fig. 2: Geometry of a single-antenna synthetic aperture pro-
duced by a moving robot.

antenna locations are d = [d1, · · · , dN ], where di is the
Euclidean distance

di =
√

(xi − xtag)2 + (yi − ytag)2 + (zi − ztag)2. (1)

Atag = (xtag, ytag, ztag) corresponds to the unknown coordi-
nates of the tag.

The set of the phase observations of the backscattered signal
is θ = [θ1, · · · , θN ], where θi is the measured phase recorded
at Ai. The measured phase takes values in 2π intervals,
which correspond to λ/2 changes of the antenna-to-tag spatial
distance; λ stands for the wavelength of the carrier frequency.

Similarly, φwrap = [φ1, · · · , φN ] is the set of expected
phase values produced by the theoretical model

φwrap =

(
2π

λ
2d+ c

)
mod 2π, (2)

The RF signal traverses a spatial distance of 2d due to the
forward and backward communication link. Beyond the term
corresponding to the wave propagation, both the tag’s and
the reader’s electronics introduce an additional phase offset,
denoted as c. This term is considered constant for the same
RFID system (antenna-tag), but yet unknown. Furthermore,
the modulo operation has been added to indicate the mapping
of the phase measurements in 2π intervals every λ/2 distance-
changes.

A. Formulation of the Optimization Problem

In general, our target is to find the unknown parameters of
the theoretical model (2) so that the expected values φwrap

have best match to the measured ones θ. This is a common
problem of data fitting; i.e. the construction of a model
(in sense of estimating the values of the model’s unknown
coefficients) so that it fits best to a series of experimental
data. A proper objective function, also called as cost function,
expresses the deviation between the two sets. A standard
cost function is the one based on the least squared approach.
According to it, the best fit is the one that minimizes the sum
of squared differences between the two sets.

In our case the least squared-based objective function is
given by

F (xtag, ytag, ztag, c) =

N∑
i−1

[φi − θi]2 (3)

If (2) is substituted in (3), the result is a non linear
model with four unknown coefficients: the tag’s coordinates
(xtag, ytag, ztag) and the offset term c.

In most non linear models, a closed-form solution is
not feasible as in linear cases, and iterative algorithms
are deployed; e.g. Steepest Descend, Newton’s Direction,
Levenberg-Marquardt algorithm, Trust Region method [33]-
[37]. Such algorithms require some initial estimation of the
unknown parameters to start from. Then, in each iteration
those values are refined to improve the fit and decrease the
amplitude of the objective function, i.e. F in (3). When some
pre-specified convergence criteria are met and a minimum of
(3) is reached, the iterative procedure ends. The performance
of the optimization though, strictly depends on the curvature
of the involved cost function. The existence of multiple local
minima (and maxima) can be proved destructive for any
deployed algorithm, resulting in the convergence to one of
the local minima, instead of the global one, depending on the
initial values of the parameters.

The curvature of the objective function at its current form
(3), leads to the construction of a non convex optimization
problem. Consider the antenna’s trajectory of Fig. 3 (a).
The cross represents the tag’s location and the dashed line
joins the tag with the antenna array and is perpendicular
to the latter. Fig. 3 (b) represents cost function (3) shown
in 2D slices, one at each plane. As it is indicated by the
abrupt color changes, the function suffers from multiple local
minima (intense blue) and maxima (intense red) and hence,
no optimization algorithm can ensure that it will identify the
global minimum over a local one. In fact, this depends only
on the initial values of the parameters.

A certain, but inefficient, solution would be an exhaustive
search over the parameter-space. In this case, a grid of possible
values for each of the unknown parameters would be required
to find those that minimize (3). To ensure sufficient local-
ization accuracy, the grid has to be dense and large enough.
However, the number of calculations needed is proportional
to the size of the grid. The bigger the number of possible
values, the higher the algorithm’s complexity and execution’s
time, making the grid-based approaches unqualified for real
time applications.

In order to avoid a calculation’s grid, we modify the initial
optimization problem to ensure convexity and convergence
to the global minimum. This is achieved by unwrapping
the measured phase curve and adapting the theoretical phase
model accordingly:

φunwrap =

(
2π

λ
2d+ c

)
(4)

The modified objective function is

F (x, y, z, c) =
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(a) The location of a tag (cross) and a straight antenna array
(solid line). A is the point of the array where the tag-to-antenna
is minimum. The dashed line joining A and the tag’s location
is perpendicular to the antenna array.

(b) Objective function (3). The abrupt changes of color indi-
cate the existence of local minima and maxima, an effect that
prevents from applying any optimization algorithm.

(c) Modified objective function (5). Phase Unwrapping ”cor-
rected” its shape and eliminated local extrema, allowing for
convex optimization.

Fig. 3: Cost functions generated by a straight synthetic aper-
ture. The functions are depicted by 3 slices on X-Y, Y-Z
and X-Z plane. A straight path generates a circular locus of
possible tag locations, leading to ambiguity regarding the 3D
tag’s location.

N∑
i=1

(
4π

λ

√
(xi − x)2 + (yi − y)2 + (zi − z)2 + c− θUi

)2

(5)

where θUi denotes the unwrapped phase measurements. The
result of this processing is illustrated in Fig. 3 (c). The
repetitive shape of (3) has now been ”corrected” and the local
extrema have been eliminated. The optimum parameters of our
model are now the solution of the minimization problem

(xopt, yopt, zopt, copt) = arg min
x,y,z,c

F (x, y, z, c) (6)

B. Utilization of Non Straight Synthetic Apertures

Before proceeding to the solution of the optimization prob-
lem though, another major issue has to be resolved. It was
demonstrated in [29] that a straight single-antenna aperture is
incapable of solving the 3D localization problem. The solution,
derived by any Maximum-Likelihood method, is satisfied by
all points along a specific circle. The circle is perpendicular
to the straight axis of the synthetic aperture and centered at
the point of the trace, where the tag-to-antenna distance is
minimum. All points on that circle, due to their common
geometrical relationship with the synthetic aperture, would
produce identical set of phases φ = [φ1, · · · , φN ] and an
identical amplitude of the corresponding objective function.

This effect of the rotational symmetry around the antenna’s
path is represented by the y-z slices of Fig. 3 (b) and (c), for
functions (3) and (5), respectively. The slices are through the
perpendicular (dashed) line of Fig. 3 (a), joining the tag’s true
location and the straight antenna array. The points resulted in
same amplitudes of the cost function and denoted by same
colouring, form circles around the antenna’s path. Even if a
ML method accomplishes to find the ”best” solution, this will
correspond to more than one tag locations, a circular-formed
locus in particular. So practically, when straight synthetic
apertures are utilized, the output of any applied localization
algorithm, is the radius of a circle, perpendicular to the line
of motion, where the tag may be located.

It is proven theoretically in the Appendix, that an additional
straight synthetic aperture along a different direction, reduces
the locus of possible tag locations to only two points. These
possible solutions would be symmetrical in relation to the
antenna’s height; i.e. the z = zi plane. Consider the non
straight trajectory of Fig. 4 (a), which is a combination of two
straight paths depicted by red and black color, respectively.
Fig.4 (b) and (c) verify our claim for both cost functions (3)
and (5). Both slices are again through the two perpendicular
(dashed) lines joining the tag’s true location with the two sub-
paths and intersect on the tag’s location. One can notice that
the rotational symmetry has been eliminated and circles of
same coloring are no longer formed. The lowest value now
corresponds to only two symmetrical points, released at the
intersection of the shown 2D slices and marked as black and
red crosses.

1) Selecting initial parameter values: Any optimization
algorithm can be deployed to (5) and converge to the proper
solution, given that the initial point of the recursive procedure,
(x0, y0, z0, c0), is chosen properly. First of all, x0 and y0
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should belong to the half-plane that the antenna illuminates.
This is trivial, since the antennas used in most RFID appli-
cations are directional patch antennas, which radiate only in
one side. Thus, they scan a specific region, depending on the
side of the robot the antenna is attached to and the robot’s
trajectory. Secondly, the value c0 does not affect the algo-
rithm’s convergence and can take any value. On the contrary,
as for the initial value of the unknown parameter z0, the issue
of two solutions existing, as described earlier, requires that z0
should belong to the correct half-space. This implies necessity
of prior information about the spatial configuration of the tags;
i.e. whether the tag is placed higher or lower than the antenna’s
height. However, we often lack such knowledge,

This ambiguity is applied to any SAR-based method and
cannot be solved by means of data-processing. In order to
eliminate this ambiguity, we should eliminate the symmetry
of the antenna’s radiation pattern along the z-axis. A possible
way to achieve this is to place the antenna at a small height
and tilt it upwards (or place it at larger height and tilt it
downwards) to ensure that it illuminates a sub-space that is
either above or below its height. Typical reader antennas have
less than 90o half-power beamwidth (typically around 70o);
thus by tilting the antenna at 45o from the horizon, one can
illuminate only one quarter of the entire space, eliminating the
height ambiguity. This method would not completely prevent
the antenna to read tags placed in the undesirable space, but
the collected measurements would be few and could easily be
discarded. In the experiments, we considered the half-space
known.

III. PERFORMANCE ASSESSMENT

A. Introduction of Reliability Metric

There are cases, when poor localization accuracy is ex-
pected. This may result from i) an inadequate collection
of measurements, ii) measurements that suffer from strong
multipath and/or noise, iii) failure of the phase unwrapping
process and in the context of this paper, iv) unsuitability of
the antenna’s trajectory. We aim to define a metric, capable
of evaluating the trustworthiness of the estimation. In order to
derive the proposed reliability metric, we will exploit the
local curvature of the cost-function (5) near the estimated
solution (near the global minimum).

A standard measure of precision in statistics and optimiza-
tion is the coefficient’s variance around its best-fit value. More
specifically, it represents how much the estimated value can
change away from the optimum and still result in a fit, almost
as good as before. High variance means that an equivalently
good fit can be achieved by any point in a large area around the
optimum point, and hence the latter can not be well identified.

For better intuition, let’s examine the following example.
Consider the relaxed two-variable problem of (5), where x
and y are now the only unknown parameters and z and c
are considered known. The optimization problem is solved
for two data sets, each of which leads to same solution
(xopt, yopt), through cost functions F1 and F2, respectively.
F1 is generated by a set of measurements, collected from a tag
during one of our experiments, and F2 after the same set is

(a) Tag’s location (cross) and a non straight antenna array
(solid line), consisted by two straight ones. A and B are the
two points of each straight sub-path, where the tag-to-antenna
distance is minimum.

(b) Objective function (5), shown in y − z slices. The abrupt
changes of color indicate the existence of local minima and
maxima.

(c) Objective function (5), shown in y − z slices, after phase
unwrapping. Phase Unwrapping leads to a convex optimization
problem.

Fig. 4: A non straight synthetic aperture, generated by a non
straight robot’s path, eliminates the rotational symmetry in y-z
plane and reduces the locus of possible tag locations to two
symmetrical points (black and red crosses).
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Fig. 5: The curvature of two objective functions, around their
global minimum. F2 is approximately flat in comparison with
F1, leading to less reliable estimations.

downsampled by a factor of 5. Fig. 5 represents the amplitudes
of the two cost functions and compares their curvature around
their common solution.

Consider now a displacement from the optimum values,
(xopt + ∆x, yopt + ∆y). This would increase the amplitude
of both cost functions by ∆F1 and ∆F2 respectively. Since
F1 is much steeper than F2, ∆F1 would be significantly
greater than ∆F2. Thus, for the same displacement from the
optimum values ∆x,∆y, the corresponding fit of F2 barely
changes (i.e. high variance), whilst the fit of F1 is much
worse (i.e. low variance). Notice, that the worse quality of the
downsampled set (smaller number of samples) was captured
in the curvature of F2 (nearly flat), leading to higher variance
and poor confidence.

The reliability of an estimation strictly depends on the
curvature of the objective function; the steeper the curve
towards the global minimum, the lower the variance of the
solution and thus, the more confident one can be about the
estimation. Extending the above observation to the multi-
variable function (5), by examining the local curvature with
respect to all dimensions, we can evaluate the confidence of
each estimated parameter.

The variance of each parameter (x, y, z, c) is given by:

varx = C(1, 1)

vary = C(2, 2) (7)
varz = C(3, 3)

varc = C(4, 4)

where C(i, i) is the ith diagonal element of the covariance
matrix C:

C = σ2H
−1 (8)

In (8), σ2 is the variance of the residuals, defined as the
average of the squared differences from the mean and H−1 is

the inverse of the 4× 4 Hessian matrix of F in (5), computed
for the best-fit values (xopt, yopt, zopt, copt):

H =



∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂z

∂2F
∂x∂c

∂2F
∂y∂x

∂2F
∂y2

∂2F
∂y∂z

∂2F
∂y∂c

∂2F
∂z∂x

∂2F
∂z∂y

∂2F
∂z2

∂2F
∂z∂c

∂2F
∂c∂x

∂2F
∂c∂y

∂2F
∂c∂z

∂2F
∂c2


(9)

The curvature of (5) along each direction is related to its
respective second partial derivative. However, the direct com-
putation of all second partial derivatives in (9) can increase the
algorithm’s complexity and cost. For values near the solution,
H can be approximated with

H = JTJ (10)

where J is the N ×4 Jacobian matrix of phase model (4) and
is given by

J =



∂φ1

∂x
∂φ1

∂y
∂φ1

∂z
∂φ1

∂c

∂φ2

∂x
∂φ2

∂y
∂φ2

∂z
∂φ2

∂c

· · · · · · · · · · · ·

∂φN

∂x
∂φN

∂y
∂φN

∂z
∂φN

∂c


(11)

In (11), φi, i ∈ [1, N ] is the ith sample produced by the
theoretical model (4) for the estimated optimum parameters
(xopt, yopt, zopt, copt). This is a common approximation used
in non linear optimization problems [37], since it provides
the possibility to acquire the Hessian matrix only by the
computationally inexpensive first partial derivatives. Finally,
by exploiting each parameter’s variance from (7), we can
calculate the confidence interval CI(%) around each estimated
value; typically the 95% confidence interval is used. For
example CIx(95%) = 50cm means we are 95% confident that
the estimated value xopt lies within 50cm from the true one.
The broader the length of the confidence interval is, the more
certain we can be about the estimation. Hereinafter, CI(95%)
will be referred to as CI .

B. Robot’s Trajectory vs. Localization Accuracy

Next, we investigate how the shape of the antenna’s trajec-
tory affects the performance of Phase ReLock in 3D local-
ization. More specifically, we wish to correlate the length and
curvature of the robot’s path with the confidence of the estima-
tions (i.e. the confidence interval of (7)) and consequently with
the localization error. We wish to create a realistic simulation
model that takes into account inaccuracies, related to the actual
data. We consider trajectories with different curvatures along
typical indoor geometries. Ideally, for accurate localization,
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φmaxmult = ±30o.

the reader would measure only the phase of the Line Of Sight
contribution. However, the reader actually measures the phase
of the resultant vector, produced by the phase-sum of the direct
field with all other contributions (multipath). Furthermore, the
reader suffers from zero-mean Gaussian Noise.

The unwrapped phase was modeled as

φ = φLOS + φmult + φnoise (12)

φLOS corresponds to the Line-Of-Sight (LOS) path and is
given by (4). φnoise represents the noise on measurements and
assumed to be of Gaussian nature with a standard deviation
of 0.1 rad.

In order to explain the term φmult, which has been intro-
duced to account for multipath, consider the representation
shown in Fig. 6. Let ALOS cos(ωt + φLOS) denote the LOS
field and ρALOS cos(ωt + φLOS + δφ) the vector sum of
all other contributions, referred to as ”multipath”, where
ρ ≤ 1 (we assume that the direct contribution is stronger than
”multipath”) and δφ is the phase difference of ”multipath”

Fig. 8: The types of non straight trajectories that were in-
vestigated during the simulations. Single-turned (green) and
Double-turned (red). W and L denote the trajectory’s lengths
along each direction

with respect to the LOS contribution. As represented in Fig.
6, the vector-sum of the LOS plus ”multipath” will result in
a new vector:

ALOS cos(ωt+ φLOS) + ρALOS cos(ωt+ φLOS + δφ) (13)

with phase:

φLOS + φmult,where φmult = tan−1
(

ρ sin δφ

1 + ρ cos δφ

)
(14)

φmult represents the deviation of the measured phase. Let’s
consider fixed ratio ρ and δφ a random variable, uniformly
distributed in [0, 2π]; ρ = 0 accounts for absence of multipath
component, while ρ = 1 for equal strength of multipath with
LOS. According to this model, the resultant vector, could be
anywhere on the circle of Fig. 6 with equal probability. We
calculate the probability density function (pdf) of φmult. It can
be proven that the corresponding pdf is given by:

fφ(φmult|ρ) =
1

π
√
ρ2 + (ρ2 − 1) tan2 φmult

(15)

while the cumulative distribution function is given by:

Fφ(φmult|ρ) =
2

π
tan−1(

√
2 sinφmult√

−1 + 2ρ2 + cos 2φmult
) (16)

The maximum phase deviation (from the phase of the LOS
component) is (see Fig. 6 for a geometrical explanation):

φmaxmult = ± tan− 1(
ρ sin(cos1(−ρ))

1− ρ2
) (17)

and φmult ∈ (−φmaxmult, φ
max
mult) in (13). The corresponding plot

of the probability density function of φmult for ρ = 0.5
is shown in Fig. 7. Notice that the resultant phase is more
probable to take values at the regions near ±φmaxmult. The cor-
responding area is shaded in Fig. 6. A physical interpretation
is that those extreme angular regions, include a larger section
of the circle, where the resultant field moves with uniform
probability. In sharp contrast to the effects of a zero-mean
”Gaussian” stochastic error model, which would concentrate
the simulated error around the LOS component, the proposed
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Fig. 9: Simulation results for one turn.
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Fig. 10: Simulation results for two turns.

multipath-model is expected to affect significantly the simu-
lated phase values, dragging each sample away from its LOS
value.

C. Simulation Results

We simulated a realistic inventorying scenario, according
to which, the robot traverses a corridor-type area in two
types of trajectories: i) a single-turned, where initially the
robot is moving along a straight segment, makes a turn and
continues moving to a different direction, and ii) a double-
turned trajectory where the robot changes direction twice, by
making two turns. Fig. 8 depicts these two shapes, where W
denotes for the length of the motion along the y-direction and
L along the x. W can quantify the curvature of the examined
trajectory, while L remains constant for all simulations. The
bigger the value of W is, the more abrupt the occurred turns
become (i.e. the relative angle between the corresponding
straight sub-paths), leading to a more curved trajectory.

We aim to evaluate and compare the efficiency of the
two trajectory-types, under different aperture lengths W and
different multipath conditions; ratio ρ in particular. For this

purpose, 15 uniformly distributed tag locations were gener-
ated for localization and the results were averaged over 500
iterations. To ensure fairness in the comparison, given that
the total length of the trace increases with W , the number
of processed measurements for each tag was N = 200 in all
simulations. The results of Phase ReLock are plotted in Figs.
9 (single rotation) and 10 (two rotations).

Figs. 9 (a) and 10 (a) show the mean estimation error per
coordinate-axis and the total 3D error for increasing values
of W (up to 1m) and ρ = {0.1, 0.3, 0.5, 0.7, 0.9}. Figs. 9 (b)
and 10 (b) show the corresponding 95% confidence interval of
the estimations, calculated by (7). Notice how well the curve
of estimated CIs of Figs (b) match the curve’s shape of the
calculated mean errors of Figs (a). Since the robot moves along
the x axis, the corresponding error is small, even for small
values of W . On the contrary, the estimation of y and z coor-
dinate depends on the adequacy of the robot’s trajectory; the
error and the confidence interval of the estimations decrease
as the vertical length of the aperture increases. Hence, the
ability of eliminating the rotational symmetry that is formed
along the y − z plane (see Fig. 4 (c)) depends on the width
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of the trajectory. For a completely straight path, the locus of
possible tag locations is a pure circle around the antenna’s
path. When the shape of the path becomes non straight, the
locus is gradually reduced, so does the ambiguity. The more
curved the trajectory is (i.e. the bigger it’s length), the more
confident and proper estimations are made.

In Figs. 9 (c) and 10 (c) we investigate the trajectory’s
effect on the estimations’ confidence for different values of
multipath’s power. Particularly, we increase the ratio ρ and
we seek for the minimum value of length W , for which, a
desired level of confidence is achieved. As the strength of
the multipath contribution increases, the width of the robot’s
path should increase in order to achieve a specified reliability.
For example, if we request for a confidence interval lower
than 20cm (green/diamond marker) for all parameters in an
environment with ρ = 0.9, the robot’s path has to be either
a single-turned of length W = 60cm or a double turned of
length W = 30.

The two-turns trajectory seems to be more efficient when
compared against the single-turn. For every value of W , the
two-turns path results in better accuracy and confidence. This
prevalence is significant especially for small values of W .
For instance, when the robot is restricted to move within
W = 10cm, the estimation’s mean error and confidence for
a single-turned trajectory is 18cm and 80cm, respectively,
whilst the resulted values for the double-turned type are 8cm
and 35cm, respectively. This can be critical in cases when
the spatial boundaries do not allow for wide robot motions,
so equivalently, the robot has to make more turns inside the
available space. Furthermore, the double-turned delivers better
reliability under the same multipath conditions. In the case of
desiring confidence less than 10cm (i.e. CI(95%) < 10cm,
red/square marker) for each estimated parameter, the two-turns
trajectory with the proper length, can satisfy it for all tested
values of ρ, whilst for the one-turn type, CI < 10cm could
not be preserved when ρ was higher than 0.7.

IV. EXPERIMENTAL CAMPAIGN

The experiments were conducted inside a lab, in our cam-
pus. Our robot, ”Frida” (Fig. 1), moved inside the environment,
created a 3D map of it, localized itself and then localized
all surrounding tags, by applying the proposed method. The
successive poses (locations and directions) of the robot, and
hence of the antenna’s synthetic aperture, were not known, but
estimated. This is a necessary process, which is expected to
increase the localization error, since the error concerning the
location of the antenna propagates into the final localization
error of the tags.

A. Map Creation and Localization of the Robot’s Trajectory

”Frida” is capable of entering any (including unknown)
environment, creating a 3D map of it, and localizing itself
therein. To accomplish that, measurements from 2D Lidar sen-
sors, 3D Depth Cameras, and odometry sensors are combined
and seamlessly fused together by utilizing a Particle Filter
[38], a discrete class of Monte Carlo Localisation (MCL)
filters [39]. The nature of MCL approaches allows them to

(a) (b)

Fig. 11: Photos during the experiments. The banners have been
placed (a) side by side and (b) back-to-back

(a) (b)

Fig. 12: 2D (a) and 3D (b) map created by ”Frida” during an
experiment.

represent the uncertainty in the robot’s pose by maintaining a
set of hypotheses (called particles) not bound to a unimodal
probability density function as in Kalman filters [40]. Among
others, this representation allows MCL approaches to globally
localize a robot within a given map and keep track of pose
ambiguities until being able to resolve them by virtue of being
able to represent arbitrarily complex probability densities.

In particular, particle filters recursively estimate the poste-
rior of a robot’s pose as follows:

p(xt|z1:t,u0,t−1,M) ∝ (18)

p(zt|xt)
∫
x′

p(xt|x′,ut−1) · p(x′|z1:t−1,u0:t−2,M)dx′

Here, the pose of the robot at time t is denoted by xt;
u0:t−1 is the sequence of motion commands executed by the
robot, and z0:t is the sequence of observations made by the
robot, typically obtained in contemporary robotic practices by
2D range scanners, cameras, sonars or other sensors; M is the
map representing the environment in which the robot moves.
The motion model p(xt|xt−1,ut−1) denotes the probability
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Fig. 13: Representation of the experimental set-up
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Fig. 14: Robot’s trajectories as estimated by the SLAM
algorithm, during the ”Side by Side” experiment. The slalom-
type (”S”) is depicted with black color and the single-turned
(”V”) with purple.

that, at time t, the robot ends up in state xt given that it
executes the motion command ut−1 while being in state xt−1
at time t − 1. Typically, in wheeled mobile robots, motion
commands are obtained via encoder sensors, and commonly
referred to as odometry. The observation model p(zt|xt,M) is
unique to the operating principle of each sensor and it denotes
the likelihood of a given sensor making the observation zt
while the robot is posed at xt. Since particle filters maintain a
set of different hypotheses as to the state of the robot, each is
weighed according to the likelihood that the robot measured zt
under a particle’s specific pose hypothesis xit, where i denotes
the index of particle i.

As the robot moved in the area, it constructed an accurate
2D map of the environment, demonstrated in Fig. 12 (a) and
a less accurate 3D map, demonstrated in Fig. 12 (b).

B. Measurements

The laboratory environment was full of scatterers such as
desks, chairs, racks, lab equipment, etc. 100 passive UHF
RFID tags were attached on top of two 2m × 0.5m roll-
up banners, as shown in Fig. 11. The tags were placed
with random orientations, in order to investigate the effect
of different polarizations on the accuracy of the estimations.

1m

2m

Tx1

Tx2

Tx3

Tx4

3dB beamwidth

Fig. 15: Each antenna illuminates a different angular region
depending on its height and its beamwidth.

Their relative position on each banner was known, since
they were attached on millimeter paper, forming an accurate
local coordinate systems. The advantage of deploying easy-
to-transfer banners is that we were able to move them to
different locations and orientations inside the area, in order
to investigate the performance of the robot, under different
propagation conditions, different tags’ densities per m3, etc.
Measurements were repeated for several configurations: two
banners placed side by side, two banners back to back and
a single banner placed both vertically and horizontally (see
Fig. 13 and Fig. 11). Furthermore, since the designed robot
is targeted to navigate inside corridor-type areas (e.g. ware-
houses, retail stores), we deployed trajectories similar to the
ones expected in real applications. Two types of non straight
paths were utilized, denoted as ”V” and ”S”, in the following
Tables. ”V” corresponds to a single turned trajectory (named
after its ”V” shape), while ”S” is a slalom-type trajectory with
more direction changes (see Fig. 14). The deployed speed was
2cm/s. Depending on the geometrical relation between the tag
and the antenna, the generated synthetic aperture for each tag,
differs in length, number of direction-changes and distance
from the banners/tags; the minimum and maximum recorded
robot-to-banner distance is 0.5m and 1.5m, respectively.

Moreover, the produced estimations of the tag locations
correspond to the map’s coordinate system. In order to evaluate
the accuracy of any RFID method, both the actual and esti-
mated tag locations have to correspond to the same system.
Therefore, we need to pinpoint the locations of the banners
inside the 3D map, such that the local coordinate system of
the banner’s millimeter paper is transformed to the coordinate
system of the map. This manual process is not necessary in the
actual inventorying application, since the results are directly
shown in the map created by the robot, but only for evaluation
of the accuracy of the different RFID methods. This procedure
is expected to add an error, which will be accumulated to the
final localization error.

The robot carries 2 UHF RFID readers and 4 70o half-power
beamwidth, circularly polarized UHF RFID antennas per side,
thus forming a total of 8 Synthetic Apertures while moving.
Depending on the height of each antenna and the robot-to-
banner distance, each antenna illuminates a different region
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TABLE I: Antenna 1 (z=0.63m)

Localization Error
Initial for CI<100cm

experiment path mean
(cm)

std
(cm) tags mean

(cm)
std
(cm) tags

Back2Back ”V” > 102 > 102 100 39.6 30.8 83
Side2Side ”S” > 103 > 104 100 51.7 56.5 79
Side2Side ”V” > 103 > 104 100 43.3 33 60
Single ”V” > 104 > 105 50 51.5 50.9 43
Horizontal ”S” 44.5 43.5 50 43.5 44.6 46
Horizontal ”V” 52.1 46.2 50 52.1 46.2 50

All experiments 46.5 44.3 361

TABLE II: Antenna 2 (z=1.07m)

Localization Error
Initial for CI<100cm

experiment path mean
(cm)

std
(cm) tags mean

(cm)
std
(cm) tags

Back2Back ”V” > 102 > 102 100 36.3 29.5 94
Side2Side ”S” > 104 > 104 100 37.9 35.2 90
Side2Side ”V” > 103 > 104 100 40.7 52.7 79
Single ”V” > 102 > 102 50 42.2 51.2 49
Horizontal ”S” 66.5 57.3 50 51.6 32.6 42
Horizontal ”V” 76.3 99 50 45 44.9 38

All experiments 40.8 41.1 392

TABLE III: Antenna 3 (z=1.53m)

Localization Error
Initial for CI<100cm

experiment path mean
(cm)

std
(cm) tags mean

(cm)
std
(cm) tags

Back2Back ”V” > 103 > 103 100 55.4 42 91
Side2Side ”S” > 103 > 104 100 46.5 35.8 82
Side2Side ”V” > 102 > 103 100 42 41.5 71
Single ”V” > 104 > 104 50 37.2 37 45

All experiments 48.8 39.8 289

TABLE IV: Antenna 4 (z=1.93m)

Localization Error
Initial for CI<100cm

experiment path mean
(cm)

std
(cm) tags mean

(cm)
std
(cm) tags

Back2Back ”V” > 103 > 104 100 63.4 54 73
Side2Side ”S” > 104 > 105 100 65.6 64.7 61
Side2Side ”V” > 103 > 104 100 43 37 53
Single ”V” > 104 > 104 50 39.7 26.7 34

All experiments 55.6 51.7 221

of the banner, collecting more measurements from tags placed
in the corresponding region and less from others. This effect
is shown in Fig. 15. Tags placed at the very bottom (/top) of
the banner will not be well identified by the upper (/lower)
antennas. Similarly, tags placed at the central area allow for a
sufficient set of measurements from all tags. In any case, the
localization problem was solved for all tags no matter what
the number of obtained measurements was.

C. Experimental Results

We deployed Phase ReLock for each antenna indepen-
dently, as described in Section II. Tables I-IV summarize the

localization results, for each experiment and each antenna. The
column corresponding to the initial localization error indicates
a huge mean error and standard deviation. Measurements of
tags that are placed much higher or lower than the antenna’s
height are expected to be inadequate for decent localization.
Furthermore, although the robot was forced to move in non
straight trajectories, it is more than possible for a tag to be in
the reading-range of the antenna only during a specific part of
its path, which either is straight or not ”wide enough” (refer
to Section III). Consequently, the estimations based on such
problematic data will lead to a huge increase of the localization
error.

As for the horizontally arranged banner, the maximum
height of any tag was only 0.5m; i.e. quite lower than the
two upper antennas of the robot. Therefore, the experiment
was repeated only for Antenna 1 and 2, since Antenna 3 and 4
would not have collected a sufficient number of measurements
from any of the tags (see Fig. 15). The fact that the space
of interest was not spread in height, in combination with the
lower tag-density of the setup (half of the tags’ population,
while those tags are spread along the direction of motion), led
to an adequate collection of measurements from both antennas.
Hence, the initial performance in this experiment is good and
the localization metrics are not disturbed by ”error-outliers”
as in other experiments.

D. Characterization of the method

Fig. 16 compares two tag estimations. It represents the
objective function (5) for two tags, that have been detected
by Antenna 1, during different parts (green) of the robot’s
whole trajectory (black). The amplitudes of (5) have been
normalized with respect to the maximum recorded value. The
2D slices are through the estimated tag’s location and extend
to an area of ±50cm around the estimated solution. The
synthetic aperture for tag A has sufficient length for both x
and y direction, allowing for an accurate localization. On the
contrary, measurements of tag B were collected only by a
short part of the robot’s path. As a result, the estimation of
tag B is worse, in terms of both accuracy and confidence. The
presence of hotter colors in (a) indicates that (5) increases
more abruptly than in (b), for values of X, Y, Z around the
solution. Notice also that the calculated confidence intervals
of the variance (7) for each parameter are much narrower for
Tag A, implying better reliability.

Fig. 17 addresses this issue, as well. It depicts the increase
of the cost function F , as the parameter values (x, y, z) change
away from the optimum ones, along each axis-direction; the
amplitudes have been again normalized. In all cases, the shapes
corresponding to tag A are much steeper in comparison with
the respective shapes of Tag B. This indicates smaller variance
for every estimated parameter and hence, greater confidence
for Tag A. It is worth noting that the curve of Fig. 17 (c)
of Tag A is not convex, but features two local minima. This
effect is expected, due to the symmetry with respect to the
antenna’s height, as discussed earlier. The vertical dashed line
represents the relative height of the antenna with respect to
the estimated zopt of Tag A.
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(a) Tag A:
CIx = 0.6cm,CIy = 1cm,CIz = 6cm
Estimated Position (999, 865, 79).
Actual Position (1002, 858, 70)

(b) Tag B:
CIx = 29cm,CIy = 23cm,CIz = 90cm
Estimated Position (1082, 871, 123).
Actual Position (1074, 845, 170)

Fig. 16: 3D representation of (5) for two different tags. The robot’s trajectory is depicted with black colour, while the
measurements processed (synthetic aperture) with green.
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Fig. 17: Curvature of function (5), along x,y and z parameter direction, for the tags of Fig. 16.

So when the robot’s trajectory is unsuitable, or only few
data are available, the ambiguity of the estimated solution
would be highly increase. This property will be mapped in the
curvature of (5) and consequently in the parameter’s variance
calculated by (7). Therefore, we exploit the confidence interval
(CI(95%)) of the variance to reject such poor estimations.
More specifically, by demanding this proposed metric to be
lower than a desired threshold, we account only for estima-
tions that are considered reliable enough. Equivalently, an
estimation is considered unreliable/poor when at least one
of its parameter has confidence interval greater than the
defined threshold. The last column of Tables I-IV, indicates
the dramatic improvement of the method’s accuracy, when

uncertain estimations with CI > 100cm, are rejected.
The mean error from all experiments and antennas was in

the order of 50cm. This value is quite small compared to the
actual search volume; due to the length of the robot’s motion
in each experiment (i.e. around 3m), the reading-range of the
reader (i.e. around 7m) and the height of the banner (i.e. 2m),
the size of the total search volume is around 42m3. The final
achieved accuracy is quite satisfactory, also considering that
the 3D problem was solved by a single antenna, the robot’s
trace was not known (but estimated), the considered actual
locations of the tags (ground truth) suffer from errors in the
order of cm, the environment is full of scatterers (multipath-
rich) and the solution was sought in 3D space and not along
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Fig. 18: Localization error for all experiments, when different
thresholds are used to reject unconfident estimation. The 25th,
50th, 75th and 99th percentiles of the error are presented.

TABLE V: Estimation-Time

Antenna
1 2 3 4

experiment path tags execution time (sec)

Back2Back ”V” 100 8.7 9 7.8 11
Side2Side ”S” 100 9. 9.2 10.2 10.1
Side2Side ”V” 100 11.3 10.3 11.2 11.3
Single ”V” 50 5.1 4.8 5.2 6.3
Horizontal ”S” 50 5 4.8
Horizontal ”V” 50 4.9 4.8

All Experiments 44 42.9 34.4 38.7

a given horizontal cut.
1) Applying different confidence thresholds: Fig. 18 ex-

amines the deployment of different values for the desired
confidence interval CI; each plot corresponds to each antenna
and the results are averaged over the total of experiments. In
particular, it presents the 25th 50th 75th and 99th percentile
of the localization error, when estimations, whose confidence
interval is wider than 200cm, 100cm, 50cm and 20cm, are
dismissed. As we set stricter constraints with respect to the
achieved confidence (i.e. as the threshold of CI decreases),
extreme values of error are removed, leading to a decrease of
the reported localization error, at the cost of course of reduced
number of localized tags.

E. Algorithm’s Execution Time

It’s worth noting that estimations per experiment were
drawn in a few seconds, processing approximately 20000 mea-
sured samples collected during 3 minutes of robot’s motion;
the estimation-time is much smaller than the collection-time.
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Fig. 19: Localization error of Antenna 1, for multiples of the
original robot speed, for each experiment. The 25th, 50th, 75th

and 99th percentiles of the error are presented.

Table V presents the estimation times for each antenna and
experiment. For example, by exploiting data from Antenna
1, Phase ReLock accomplished to localize 450 tags in less
than 45 seconds, dedicating about 100ms to each tag. The
execution-time is quite impressive, especially when compared
to the speed of state-of-the-art grid-based methods. Analytical
comparisons can be found in [28] and [29] for the two and
three dimensional problem, respectively. In [29] particularly,
where the core algorithm of the proposed method is same as
herein, the grid-based methods and Phase ReLock delivered
equivalent accuracy, however the latter performed 360 times
faster.

F. Performance vs Robot’s Speed

Next we investigate the influence of the robot’s speed over
the localization ability of Phase ReLock. The sampling rate of
the antenna and the density of the collected measurements
depend on the speed of the robot and the tag population
within range. Due to the random-medium-access nature of the
slotted Aloha protocol, the collision probability increases as
the number of the competing tags increases. Hence, the tag
density of the set-up is expected to play an important role for
the performance of the method, as the speed increases.

As described in Section IV-B, the easy-to-transfer banners
allow for testing multiple spatial configurations. Each set up
corresponds to a different tag density per space unit. As a
result the robot’s speed is expected to affect the performance
at each experiment differently. By downsamping the available
collected data, we can consider higher speeds; e.g. by taking
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Fig. 20: The possible tag locations (colored circles) by exploit-
ing all four antennas and the created clusters (circled dashed
lines). The tag (cross) is expected to be in the most populated
cluster.

1 of every 2 measured samples, an equivalent speed, twice as
high as the original one, can be assumed.

Fig. 19 validates the performance of Antenna 1 for in-
creasing speed values. We tested values that are multiples
(double, triple and so on) of the one experimentally deployed,
i.e. 2cm/s. So in Fig. 19, (×2) corresponds to a speed of
4cm/s, (×3) to a speed of 6cm/s and so on. In general, the
performance deteriorates as the speed increases but in different
rate for each experiment. The worst case scenario is the one
with two banners placed back to back (Fig. (a)), where the
maximum tag density is obtained. The accuracy is comparable
for the two lower speed multiples (i.e. (×2) and (×3)), but
then the error rapidly increases until there are no adequate data
left for the method to process. Therefore, the maximum speed
the robot for this setup, would be 16cm/s. On the contrary,
when only one banner is placed either vertically (Fig. (c))
or horizontally (Fig. (d)), the tag-density is much smaller.
Speed multiples that are lower than (×8), hardly affect the
method’s performance, while the available data are enough for
Phase ReLock to be successfully executed, for speeds up to
(×15) the original one; a potential maximum speed for these
experiments would be 30cm/s. Of course, in case of such
higher speeds, other issues will emerge, regarding the robot’s
stabilization, safe-navigation, etc.

V. EXTENSION TO MULTI-ANTENNA ROBOTS

We extend the proposed solution, assuming measurements
from additional synthetic apertures; i.e. the robot is equipped
with multiple antennas at different heights. Initially, each
antenna and its measurements are treated independently. As-
suming non-straight trajectories and no prior knowledge of
tag’s height, ”Phase ReLock” estimates a pair of possible
coordinates per antenna. These are symmetrical with respect
to the antenna’s height, as shown in Fig. 20 for a total of 4
antennas. Ideally, one point of each pair would coincide with
the actual tag’s location. However, since the locations have
been estimated with error, one can only expect that the points
that lay on the correct half-planes will be close to the real

TABLE VI: Multi-Antenna Combination

experiment path cost
(s)

mean
(cm)

std
(cm)

Back2Back ”V” 12.3 34.2 25.1
Side2Side ”S” 12.5 31 37
Side2Side ”V” 10.4 31.3 30.6
Single ”V” 7 34.1 30
Horizontal ”S” 4 45.2 27.7
Horizontal ”V” 4.2 50 31

All experiments 34.8 28.2

location, whilst the ones belonging to the wrong half-planes
will lay far away from it.

One can deploy any clustering approach, or ideally, calculate
all combinations of solutions from the different antennas and
select the one that minimizes the sum of the inter-points
distances. We deploy the k-means algorithm to classify each
candidate point to a cluster. The points that are close to the
true tag’s location will also be close to each other and hence,
they will be grouped together. On the contrary, the ones that
lay at significant distance from the rest points will be grouped
alone, forming clusters of one point. The tag’s location is then
estimated as the center of the most populated cluster.

Applying the above to the example of Fig. 20, the generated
clusters are marked as dashed circles. The actual tag’s location
is expected in the central cluster of the figure, where 4
solutions from the 4 different antennas are in close vicinity.

We have applied k-means in the experimental results, when-
ever estimations by at least two antennas were available,
after discarding bad estimations with wide confidence interval,
CI > 100cm. As a consequence, there are not always
four available antenna-solutions for every tag, and k-means
is deployed only for the remaining, yet reliable ones. Table
VI recaps the final localization results per experiment. As
expected, by exploiting more than one antennas, the perfor-
mance is improved in the order of tens of cm, compared to
the respective results of Tables I-IV. The proposed method
accomplished localization with a mean 3D accuracy of 35cm.
As for the speed of the proposed solution, the computational
cost (in secs) introduced by the clustering algorithm, is not
important. The estimation-time remained significantly smaller
than the measurements’ time.

Finally, Fig. 21 distinguishes the estimations according to
the number of available antenna-solutions and compares the
performance when 2, 3 and 4 antennas were available. The
accuracy of the clustering algorithm increases proportionally
to the number of antennas exploited. For instance, when all
four antennas were available, a median error of about 20cm
is achieved, whilst when only two out of four antennas were
involved, the median error is double.

VI. CONCLUSION

In this paper, we have shown that by adjusting the motion
strategy of the robot, we can accomplish 3D localization of
RFID tags even by a single antenna. We have introduced a
metric for real-time assessment of the 3D localization-error,
based on calculating the Hessian matrix at the minimum of
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Fig. 21: Performance of clustering algorithm in relation to the
number of available single-antenna-based solutions. The 25th,
50th, 75th and 99th percentiles of the error are presented.

the cost function. We have used the prototype metric in the
experiments to discard estimations with low expected accuracy
and successfully improved the overall localization accuracy.

Furthermore, it was shown that the 3D localization accu-
racy by a single antenna can be significantly improved by
increasing the width and number of turns of the trajectory of
the robot. We have introduced a realistic phase model under
multipath conditions and derived the closed form probability
and cumulative density function of the resultant phase, treating
the ratio of the magnitude of multipath contributions to the
magnitude of the direct ray as an input variable to the model.

The proposed method has been extended to multiple-
antenna configurations; i.e. when measurements from more
than one antenna are available. Extensive measurements in an
indoor environment involving 6 setups and 450 tags demon-
strated a mean estimation error of 35cm, including errors
originating from the SLAM process of the robot as well
as the uncertainty of the actual locations of the tags in the
environment. The estimation-time of the method is orders of
magnitude faster than the measurements’ time.

The achieved 3D accuracy is adequate for most inventorying
applications in large warehouses or retail stores; except per-
haps for pick-and-place robots, where mm accuracy is desired.
However, further improvement of Phase ReLock is expected,
by jointly exploiting measurements from multiple antennas,
whenever available, and not independently as deployed herein.

APPENDIX

The following analysis proves theoretically that when two
non parallel straight paths are merged, the solution of the 3D
localization problem is reduced to two symmetrical points.

Let a tag placed at the unknown point K(xk, yk, zk) and an
antenna moving along a known line l1, as shown in Fig. 22
(a). The perpendicular straight-segment l3 that joins K and
l1 is unique and crosses l1 at the unique point A. Let R1

be the distance between K and A. R1 is considered known;
already estimated without source of error. For simplicity, x-
axis is defined to coincide with line l1. Consider the vectors
~v1 and ~v3 that are collinear to l1 and l3 respectively. Then:
• ~v1 = (∆x1, 0, 0), ∆x1 = x1,0 − x1 6= 0

• ~v3 = (xk − x1, yk, zk)

We have:
~v1⊥~v3 ⇒ ~v1 · ~v3 = 0

⇒ ∆x1(xk − x1) = 0⇒ xk = x1 (a)

|~v3| = R1 ⇒
√

(xk − x1)2 + y2k + z2k = R1 ⇒√
y2k + z2k = R1 (b)

Notice that (b) corresponds to a circle C1 around l1, with
center A and radius R1, as shown in Fig. 22 (b). This circle
is actually the locus of possible tag locations.

Let now a second antenna array along the known line l2,
which also lays on plane z = 0 (Fig. 22 (a)). Similarly,
there is a unique straight-segment, denoted as l4, that joins
K and l2 and is perpendicular to l2. Let B the unique point
of intersection and R2 the known distance between K and
B. Lines l2 and l4 are represented by the collinear to them
vectors, denoted as ~v2 and ~v4 respectively:
• ~v2 = (∆x2,∆y2, 0), ∆x2 = x2,0−x2, ∆y2 = y2,0−y2
• ~v4 = (xk − x2, yk − y2, zk)

We have:
~v2⊥~v4 ⇒ ~v2 · ~v4 = 0⇒

∆x2(xk − x2) + ∆y2(yk − y2) = 0⇒

yk = C, where C =
∆y2y2 −∆x2(x1 − x2)

∆y2
(c)

|~v4| = R2 ⇒
√

(xk − x2)2 + (yk − y2)2 + z2k = R2 (d)

Eq. (d) represents a second circle C2, with radius R2 and
center B. By substituting (a) and (c) in (d):√

(x1 − x2)2 + (C − y2)2 + z2k = R2 ⇒

zk = ±D, where D =
(
R2

2 − (C − y2)2 − (x1 − x2)2
)

Notice that xk and yk are unique, whilst zk can take two
values, which correspond to two symmetrical solutions, K1 or
K2. K1 and K2 are symmetrical in relation to z = 0 plane;
in general they are symmetrical to the z = zi plane, where zi
denotes for the antenna’s height. Fig. 22 (b) represents points
K1 and K2 as the intersection of circles C1 and C2.

REFERENCES

[1] RELIEF project, ”http://relief.web.auth.gr/”, last accessed on January 30
2020

[2] P. V. Nikitin, R. Martinez, S. Ramamurthy, H. Leland, G. Spiess,
and K. V. S. Rao, ”Phase Based Spatial Identification of UHF RFID
Tags,” 2010 IEEE International Conference on RFID, Orlando, Florida,
2010.

[3] J. Zhou, H. Zhang, and L. Mo, ”Two-dimension Localization of Passive
RFID Tags Using AOA Estimation,” 2011 IEEE Instrumentation and
Measurement Technology Conference (I2MTC), Binjiang, China, 2011.

[4] S. Azzouzi, M. Cremer, U. Dettmar, R. Kronberger, and T. Knie, ”New
Measurement Results for the Localization of UHF RFID Transponders
Using an Angle of Arrival (AoA) Approach,” 2011 IEEE International
Conference on RFID, Orlando (Fl), 2011.

[5] S. Subedi, E. Pauls, and Y. D. Zhang, ”Accurate Localization and
Tracking of a Passive RFID Reader based on RSSI Measurements,” IEEE
Journal of Radio Frequency Identification, vol. 1, no. 2, pp. 144-54, 2017.



IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION 16

(a) (b)

Fig. 22: (a) Geometry of the virtual antenna arrays. (b) Tag’s location as intersection of the two circular loci.

[6] J. Zhang, Y. Lyu, J. Patton, S.C. G. Periaswamy, and T. Roppel,
”BFVP: A Probabilistic UHF RFID Tag Localization Algorithm Using
Bayesian Filter and a Variable Power RFID Model,” IEEE Transactions
on Industrial Electronics, vol. 65, no. 10, pp. 8250-8259, 2018.

[7] P. Yang, and W. Wu, ”Efficient Particle Filter Localization Algorithm in
Dense Passive RFID Tag Environment,” IEEE Transactions on Industrial
Electronics, vol. 61, no. 10, pp. 5641-5651, 2014.

[8] J. Wang, and D. Katabi, ”Dude, Where’s my Card?: RFID Positioning
that Works with Multipath and Non-line of Sight,” Proceedings of the
ACM SIGCOMM 2013 conference on SIGCOMM, pp. 51-62, Hong kong,
China, 2013.

[9] A. Almaaitah, K. Ali, H. S. Hassanein, and M. Ibnkahla, “3D passive
tag localization schemes for indoor RFID applications,” 2010 IEEE
International Conference on Communications, pp. 1—5, 2010.

[10] F. Tlili, N. Hamdi, and A. Belghith, “Accurate 3D localization scheme
based on active RFID tags for indoor environment,” IEEE RFID-TA,
2012, pp. 378—382.

[11] T. Liu, L. Yang, Q. Lin, Y. Guo, and Y. Liu, “Anchor-free backscatter
positioning for RFID tags with high accuracy,” IEEE INFOCOM, 2014,
pp. 379—387.

[12] O. Frey, C. Magnard, M. Ruegg, and E. Meier, “Focusing of airborne
synthetic aperture radar data from highly nonlinear flight tracks,” IEEE
Trans. Geosci. Remote Sens., vol. 47, no. 6, pp. 1844–1858, Jun. 2009.

[13] Y. Zhang, L. Xie, Y. Bu, Y. Wang, J. Wu, and S. Lu, “3-Dimensional
Localization via RFID Tag Array,” 2017 IEEE 14th International Confer-
ence on Mobile Ad Hoc and Sensor Systems, 2017

[14] L. Qiu, Z. Huang, N. Wirstrom, and T. Voigt, “3DinSAR: Object
3D Localization for Indoor RFID Applications,” IEEE International
Conference on RFID (RFID), 2016.

[15] R. Miesen, F. Kirsch, and M. Vossiek, ”UHF RFID localization based
on synthetic apertures,” IEEE Transactions on Automation Science and
Engineering, vol. 10, no. 3, pp. 807-815, 2013.

[16] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, ”Tagoram: real-
time tracking of mobile rfid tags to high precision using cots devices,”
In Proceedings of the 20th annual international conference on Mobile
computing and networking, pp. 237-248, 2014.

[17] L. Shangguan and K. Jamieson, ”The design and implementation of
a mobile rfid tag sorting robot,” In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services,
pp. 31-42, 2016.

[18] A. Buffi, A. Motroni, P. Nepa, B. Tellini, and R. Cioni, ”A SAR-based
measurement method for passive-tag positioning with a flying UHF-RFID
Reader”, IEEE Transactions on Instrumentation and Measurement, vol.
68, no. 3, MARCH 2019

[19] A. Tzitzis, S. Megalou, S. Siachalou, T. Yioultsis, A. Kehagias, E.
Tsardoulias, A. Filotheou, A. Symeonidis, L. Petrou and A. G. Dimitriou,
”Phase ReLock - Localization of RFID Tags by a Moving Robot,” 13th
European conference on Antennas and Propagation, Krakow, Poland,
2019.

[20] A. Motroni, P. Nepa, P. Tripicchio, M. Unetti, ”A Multi-Antenna SAR-
based method for UHF RFID Tag Localization via UGV”, 2018 IEEE
International Conference on RFID Technology & Application (RFID-TA),
Macau, China, 2018.

[21] F. Martinelli, ”A Robot Localization System Combining RSSI and
Phase Shift in UHF-RFID Signals,” IEEE Transactions on Control
Systems Technology, vol. 23, no. 5, pp. 1782-1796, 2015.

[22] E. DiGiampaolo, F. Martinelli, ”A Robotic System for Localization of
Passive UHF-RFID Tagged Objects on Shelves,” IEEE Sensors Journal,
vol. 18, no. 20, pp. 8558–8568, 2018.

[23] L. M. Ni and Y. Liu, ”LANDMARC: indoor location sensing using
active RFID,” Wireless Networks, 10(6), pp. 701–10, 2004.

[24] S. Megalou, A. Tzitzis, S. Siachalou, T. Yioultsis, J. Sahalos, E.
Tsardoulias, A. Filotheou, A. Symeonidis, L. Petrou, A. Bletsas, A.
G. Dimitriou, ”Fingerprinting Localization of RFID tags with Real-
Time Performance-Assessment, using a Moving Robot,” 13th European
Conference on Antennas and Propagation, Krakow, Poland, March 2019.

[25] S. Siachalou, S. Megalou, A. Tzitzis, E. Tsardoulias, A. Bletsas, J. Saha-
los, T. Yioultsis, A. G. Dimitriou, ”Robotic Inventorying and Localization
of RFID Tags, Exploiting Phase-Fingerprinting,” 2019 IEEE International
Conference on RFID-Technology and Applications, RFID-TA 2019, Pisa,
Italy, September 2019.

[26] J. Wang and D. Katabi, ”Dude, where’s my card?: RFID positioning that
works with multipath and non-line of sight,” Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM, Hong kong, China, pp. 51-
62, 2013.

[27] Y. Ma, N. Selby, F. Adib, ”Minding the billions: ultra-wideband localiza-
tion for deployed RFID tags,” MobiCom 2017, 23rd Annual Conference
on Mobile Computing and Networking, Utah, USA, 2017.

[28] A. Tzitzis, S. Megalou, S. Siachalou, E. Tsardoulias, A. Kehagias, T.
Yioultsis, A. G. Dimitriou, ”Localization of RFID Tags by a Moving
Robot, via Phase Unwrapping and Non-Linear Optimization,” IEEE
Journal of Radio Frequency Identification, vol 3, no. 4, pp. 216-226,
Dec. 2019.

[29] A. Tzitzis, S. Megalou, S. Siachalou, E. Tsardoulias, T. Yioultsis, A.
G. Dimitriou, ”3D Localization of RFID Tags with a Single Antenna by
a Moving Robot and Phase ReLock,” 2019 IEEE International Confer-
ence on RFID-Technology and Applications, RFID-TA 2019, Pisa, Italy,
September 2019.

[30] Binmore, Ken; Davies, Joan (2007). ”Calculus Concepts and Methods”,
Cambridge University Press. p. 190. ISBN 978-0-521-77541-0. OCLC
717598615, 2007.

[31] D.R. Cox, D.V. Hinkley, ”Theoretical Statistics”, Chapman & Hall, p49,
p209, 1974.

[32] M. A. Branch, T. F. Coleman, and Y. Li, ”A Subspace, Interior,
and Conjugate Gradient Method for Large-Scale Bound-Constrained
Minimization Problems,” SIAM Journal on Scientific Computing, vol. 21,
no. 1, pp. 1–23, 1999.

[33] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, ”Approximate Solution
of the Trust Region Problem by Minimization over Two-Dimensional
Subspaces,” Mathematical Programming, vol. 40, pp. 247–263, 1988.

[34] J. J. More and D. C. Sorensen, ”Computing a Trust Region
Step,” SIAM Journal on Scientific and Statistical Computing, vol. 3, pp.
553–572, 1983.

[35] D. Marquardt, ”An Algorithm for Least-Squares Estimation of Nonlin-
ear Parameters,” SIAM J. Appl. Math., vol. 11, pp. 431–441, 1963.

[36] K. Levenberg, ”A Method for the Solution of Certain Problems in Least
Squares,” Quart. Appl. Math., vol. 2, pp. 164–168, 1944.

[37] V. Buljak, ”Optimization Algorithms” in Inverse Analyses with Model
Reduction, 1st Ed., 2012.

[38] Sebastian Thrun, Wolfram Burgard, and Dieter Fox, “Probabilistic
Robotics” (Intelligent Robotics and Autonomous Agents), The MIT Press,
2005

[39] F. Dellaert, D. Fox, W. Burgard and S. Thrun, “Monte Carlo localization
for mobile robots,” Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA,
1999, pp. 1322-1328 Volume 2, doi: 10.1109/ROBOT.1999.772544

[40] P. Maybeck, “Stochastic Models, Estimation and Control”, Volume 1,
Academic Press, New York, 1979


