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Abstract—In this paper we design and implement a mobile
handheld human operated device used to guide the user towards
the desired RFID target, and at the same time provide estimations
of the distance and the angle from the user to the target. The main
components of the device are a UHF RFID reader operating with
one antenna, and an IMU used to measure rotation angles. The
user is instructed by the device to perform one of three different
actions: SCAN, TURN and MOVE. During these actions phase of
arrival and rotation angle data are collected by the RFID reader
and the IMU respectively. A particle filter algorithm leverages
the collected data to estimate the distance and angle of the user,
with respect to the user’s current pose. Experimental results show
a mean angle estimation error of ∼ 4o, and distance estimation
error less than 0.5m when the user approaches the target.

Index Terms—RFID, handheld, phase, localization.

I. INTRODUCTION

The penetration of Radio Frequency Identification (RFID)
technology in health care, logistics, and security market has
been rapid in the last decade. New RFID applications begin
to emerge in various fields, aiming to provide services like
assisted living, or enhanced and personalised user related
experiences.

In this paper, we propose and construct a handheld UHF
RFID reader, capable to guide the user towards a specific tag.
The proposed device uses RFID technology to estimate the
location of the target RFID tag relative to the user’s pose.
The prototype is developed in the context of project ”Cul-
tureID”, where we install UHF RFID technology inside the
Archaeological Museum of Thessaloniki, Greece. An RFID
tag is assigned to every exhibit. The proposed reader will
be used as a ”tool” in the context of games, developed for
younger visitors inside the museum, guiding the visitors to
the proper exhibit, to discover a hint related to a riddle,
according to the game’s script. However, the proposed device
can be widely adopted for locating misplaced items in retail;
a process currently being carried out by increasing/decreasing
the sound of a beeper from a handheld reader, depending on
the measured backscattered power.

Prior art consists of works in which data are collected
by a mobile measuring system, or others sources that can
communicate with it. Leveraging the collected data allows to
calculate the position of the desired target relatively to the
mobile agent.

Regarding RFID technology, various features of the received
signal are used to locate the target, which in this case is a
stationary RFID tag. Data is collected by RFID readers and
antennas. In [1] - [3], the received signal power, or Received
Signal Strength Indicator (RSSI) is used. RSSI measurements,
however, are extremely ambiguous due to fading. Thus, Phase
Of Arrival (POA) methods are considered more reliable. A
drawback of POA measurements is the 2π ambiguity: the
measured POA is wrapped between two values. In most cases
it is in [0, 2π). To overcome this obstacle, unwrapping must
be applied which, however, requires high tag read rate. In
[4] - [5], wrapped POA measurements are used along with the
position of the measuring agent. In [6] - [8], 3D localization
is achieved by using unwrapped POA measurement. A robot
performing Simultaneous Localization And Mapping (SLAM)
carries multiple antennas. A Synthetic Aperture Radar (SAR)
algorithm is used to calculate the optimal position of the target.
In [9], communicating with the target RFID tag in multiple
frequency channels is shown to compensate for multipath
effects, and locate the target; a method that cannot be applied
in areas, with reduced bandwidth for UHF RFID systems,
like Europe. In [10], a method to calculate the distance
and bearing of the target relative to a mobile robot’s pose
is described. An Extended Kalman Filter (EKF) is used to
fuse POA and robot odometry measurements. A handheld
measuring system is presented in [11]. An Inertial Measuring
Unit (IMU) is used to calculate the user’s position as POA
measurements are collected. In [12], a custom Multiple-Input
Multiple-Output (MIMO) antenna built is mounted on a robot
to collect POA and locate the target using a Particle Filter (PF)
algorithm. In [13], PFs are used, but in this case along with
Commercial Off The Shelf (COTS) RFID equipment. In [14],
POA measurements and a Particle Swarm Optimization (PSO)
algorithm are used to estimate the target’s position. In [15] -
[16], a RFID technology equipped robot is the mobile agent,
collecting and leveraging both RSSI and POA measurements
to achieve localization.

In [17], various indoor positioning technologies are pre-
sented, e.g. infrared radiation, vision-based systems, inertial
navigation systems, ultrasound localization, Bluetooth and Wi-
Fi. In [18], Wi-Fi and IMU sensor data are usde to calculate the
position of the user in a camera-created 3D map. In [19] - [21],
navigation instructions are provided to the user via Augmented



Reality (AR) technology.
In this paper we propose the design and functionality of a

mobile handheld human-operated RFID reader used to locate
a target RFID tag, improving our work presented in [22]. POA
data collected by an RFID reader and rotation data measured
by an IMU are fused to calculate the position of the target
relatively to the user’s current pose. A PF algorithm is used
to improve the estimation as more iterations are completed.

In section II, the proposed method is presented. In sec-
tion III, we describe the conducted experiments, and show
the corresponding localization results. Finally, in section IV,
conclusions and future work are discussed.

II. PROPOSED METHOD

The main components of the proposed handheld measuring
device are two:

• An RFID reader connected to one antenna, communicat-
ing with the desired RFID tag target.

• A 9 Degrees of Freedom (9DoF) IMU, measuring angle
around a given axis; in our case the axis perpendicular
to the ground.

Fig. 1. Photograph of a prototype of the proposed device. The device is held
so that the antenna is pointing in front of the user, and performs a ”scanning”
movement, as explained in section II. The target estimation appears as a red
dot on the device’s display, where the distance and the direction to it are
indicated.

Fig. 1 shows an implementation of the proposed device.
Operating the device requires the consecutive executions of

the following types of ”commands”:
• SCAN command: The user is required to ”scan” the area

in front using the device. Using the part of the arm from
the elbow to the hand, the user moves the device on a

plane parallel to the ground. During this motion POA and
angle measurements are collected.

• TURN command: The user is required to rotate around
the current pose, measuring the rotation using the IMU.

• MOVE command: The user is required to step forward
holding the device straight ahead, collecting POA mea-
surements. The displacement of the user is estimated
based on these measurements.

Leveraging a PF algorithm, consecutive executions of the
three commands are used to improve the estimation of the
distance and direction of the target RFID tag, as explained in
section II-B.

A. Measured Data

Data are collected by an RFID reader and a 9DoF IMU.
The RFID reader measures POA which is wrapped in [0, π).
The high read rate allows us to perform phase unwrapping.
Real measurements also include noise, which is modeled as a
normally distributed variable. The measured phase is:

φmeas = (φ+ φnoise) mod (π) (1)

φ = φp + φo (2)

φp =
4π

λ
d (3)

φnoise ∼ N(0, sphase), (4)

where φ is the phase of the received signal, φp is the phase
accumulated due to the electromagnetic wave propagation, φo
is a phase offset including phases of the cables and the related
hardware, φnoise is the phase measurement noise, λ is the
wavelength of the electromagnetic field, and d is the distance
from the antenna to the tag.

The IMU measures the angle around the axis perpendicular
to the ground. The measurements are in [0, 2π), and unwrap-
ping is required. Additionally, they include noise originating
from the IMU as well as the user. Let the angle measured by
the IMU be:

θmeas = (θ + θnoise) mod (2π) (5)

θnoise ∼ N(0, sangle), (6)

where θ is the real angle, and θnoise is the measurement’s
noise.

B. Particle Filter Algorithm

In this section we present the implemented PF algorithm.
As explained in section II, the algorithm requires consecutive
execution of SCAN, TURN, and MOVE commands.



1) SCAN Command: Initially, M particles are randomly
generated. Particle plm is the m-th of M particles during the
l-th iteration. They represent a possible user pose relative to
the target Tar = [0, 0]. plm is defined by the following values:

• Kl
m = [xlm, y

l
m] are the user’s coordinates on the xy-

plane.
• V̄l

m is a complex number representing the direction on
the xy-plain the user is facing to.

• alm is the device rotation radius of the user, that is
the length of the moving part of the user’s arm as the
scanning motion explained in section II is executed.

• wl
m is the weight assigned to the particle. All particle

weights are initially equal to 1.
After the initialization, the iterative process begins. A SCAN

command is executed. This results to measurement set Measl

consisting of phase and rotation angle measurements:

Measl =
[
φln, rot

l
n

]
, n = 1, . . . , N (7)

φln and rotln are the N pairs of phase and rotation angle
measurements indicated by n during the l-th iteration. Using
the rotation angle measurements, the positions Ql

m,n of the
device during the scan that correspond to each particle plm
can be calculated. An illustration of Ql

m,n points of different
particles plm is shown in Fig. 2.
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Fig. 2. Ql
m,n points of different particles plm, m = 1, 2, 3. The black line

segments starting from the particle centers Kl
m indicate the direction of Vl

m,
and its length is equal to alm. Their endpoints represent the assumed initial
position of the device. The measured rotation angles rotln, n = 1, . . . , 5
are used to calculate points Ql

m,n for each particle: the the device is rotate
around the particle’s center according to the measurements. Tar is assumed
position of the target.

A new normalized weight hlm for each particle pm is
calculated:

hlm =
wl

m/gcost(m, l)
M∑
q=1

wl
q/gcost(q, l)

(8)

gcost(m, l) =

N∑
i=1

N∑
j=i+1

(
∆φli,j −∆|TarQm|li,j

)2
(9)

∆φli,j = φli − φlj (10)

∆|TarQm|li,j =
4π

λ

(
||Tar −Ql

m,i||2
)

−4π

λ

(
||Tar −Ql

m,j ||2
) (11)

The theoretical phase difference is calculated in (11). Equa-
tion (10) is the measured phase difference. gcost evaluates the
similarity of theoretical phase difference and measured phase
difference assuming that the user’s position, facing direction,
and rotation radius were those of particle plm: Kl

m, V̄l
m, a

l
m.

Finally, in (8) the weight value of the particle is divided by
the value of the cost function gcost(m, l), and is normalized
so that the sum of the normalized weight hlm is 1. Low gcost
function values correspond to lower error estimations. So, low
gcost(m, l) values correspond to higher hlm values.

Having assigned normalized weights to all particles, the one
with the highest normalized weight is used to estimate the
target’s position:

bl = arg max
m

(
hlm
)

(12)

Dl
est = ||Kl

bl − Tar||2 (13)

Al
est = ∠

(
¯Kl

blTar

)
− ∠

(
V̄l

bl

)
(14)

Equation (13) is the distance of the bl-th particle’s center to
the assumed target position, and (14) is the angle difference
between the vector from the particle’s center to the assumed
target (which is the direction of the target, if the user was
standing on the particle’s position) and the particle’s direction
V̄l

bl .
If Dl

est is lower than a threshold Dthresh, the iterative
process is finished.

2) TURN Command: The user is asked to rotate around
the current position towards the estimated target. As the user
rotates, new rotation angle measurements are collected. By
comparing the unwrapped initial and final angle measure-
ments, the turn angle turnl can be calculated. Every particle’s
V̄l

m value is updated according to turnl.
3) MOVE Command: The user is asked to move straight

ahead, towards the facing direction. The unwrapped phase
difference ∆φlstep between the final and initial position is
measured and used to calculate the move distance of each
particle. We update the particle center values accordingly.



4) Resampling: The aim of resampling is to replace the
current particles with new ones. Since the particle with the
highest weight is used to estimate the target, we want the
new particles to be similar to high-weight particles. hlm values
are used to create a probability distribution to pick particles
for the next iteration. The practice called jittering is applied:
Multiple copies of the same particle can be chosen for the
next iteration. Jittering increases the diversity of the chosen
particles, as shown in Fig. 3.

Then, the iterative process is repeated.

2 0 2 4 6 8 10 12

0

2

4

6

8

10

Before resampling
After jittering
Before jittering

Fig. 3. Illustration of the resampling process. The dots represent the position
Kl

m of the particles, the lines the direction V̄l
m, and the length of each line the

corresponding rotation radius alm. The old blue particles are being resampled.
The particles resampled at least once are marked red. The green ones are the
new particle set, after jittering.

III. EXPERIMENTAL RESULTS

Three experiments are presented. In all of them the user
moves in a straight line. However, the original distance and
orientation relative to the target is different. This allows us to
evaluate both the distance and angle estimation accuracy. An
illustration of the user’s movement during each experiment is
shown in Fig. 4. The distance and angle estimation expected
absolute errors are shown in Table I. The following parameter
values were used: M = 1000, N = 20. The mean angle
estimation error is ∼ 4o, which is more than satisfactory
considering the average human user’s perception of rotation
angle.

As for the distance estimation, in Experiments 1 and 2,
it is unsuccessful. In these cases the angle between the
target’s direction and the user’s facing direction increases
as more steps are completed. This results to the trajectory
of the antenna during the scanning motion to resemble a
linear trajectory on a line parallel to the direction the target.
This, however, maximizes the POA measurement ambiguity.
Successful SAR methods rely on measurements collected on
the complete opposite, that is trajectories perpendicular to the
direction of the target.

In Experiment 3, the user moves towards the target, and
more favorable measurement conditions are met. Now, after
just two iterations of the algorithm, the distance is accurately
estimated, and continues to do so in the following steps. The
maximum error value is 0.45m. Considering the accuracy of
the target’s a) angle estimation, and b) distance estimation
when the user moves towards it, we conclude that if the user
follows the device’s instructions as to in which direction to
move, the distance estimation will also be accurate.
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Fig. 4. Top view illustration of experiment user poses. The red marker is the
position of the target. Each of the remaining colors represent one experiment:
the dots show the position of the user, and the line segments the direction the
user is facing to in the corresponding position. The numbers next to each pose
indicate the chronological order of the poses in the corresponding experiment.
Axis dimensions are in meters (m).

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel method for
RFID tag localization using a handheld RFID reader. We
also designed and implemented a prototype of the proposed
handheld device. The user performs actions indicated by the
device measuring POA and rotation angle. A PF algorithm
fuses consecutive iteration measurements, and improves the
target estimation. Experimental results showed high angle
estimation accuracy of ∼ 4o. When the user was moving
towards the target, as the device’s instructions suggested, the
distance estimation error was below 0.5m after just a couple
of algorithm iterations.

Future work will be focused on improving the ease of use
of the device, providing a fluid user friendly experience. The
operation of the device’s components can also be revamped
to recognize and compensate for human related operation
mistakes. Finally, more experiments must be conducted to
evaluate the localization performance.
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