
Localization, Tracking and Following a Moving
Target by an RFID Equipped Robot

George Mylonopoulos
School of ECE, AUTH
Thessaloniki, Greece
gmylonop@ece.auth.gr

Aristidis Raptopoulos Chatzistefanou
School of ECE, AUTH
Thessaloniki, Greece
raptopak@ece.auth.gr

Alexandros Filotheou
School of ECE, AUTH
Thessaloniki, Greece

alefilot@auth.gr

Anastasios Tzitzis
School of ECE, AUTH
Thessaloniki, Greece
atzitzis@ece.auth.gr

Stavroula Siachalou
School of ECE, AUTH
Thessaloniki, Greece
ssiachal@ece.auth.gr

Antonis G. Dimitriou
School of ECE, AUTH
Thessaloniki, Greece

antodimi@auth.gr

Abstract—In this paper, we present a prototype algorithm for
tracking and following a moving target through RFID technology
by a robot. The robot is equipped with two front facing antennas,
which collect phase measurements of the tag’s modulated signal.
We consider a direction-finding algorithm, based on particle
filter theory, which exploits the phase-measurements to assign
weights to the particles. The proposed track-and-follow robot
is successfully tested in a laboratory environment and will be
deployed inside a museum.

Index Terms—RFID, Tracking, Localization, Angle of Arrival

I. INTRODUCTION

In this paper, we propose a prototype algorithm that allows
a robot to track and follow autonomously a moving target,
through RFID technology. The robot is designed in the context
of project ”CultureID” [1], where an RFID-enabled social
robot will be installed inside the Archaeological Museum
of Thessaloniki. Among others, the robot will play ”games”
with younger visitors. In such context, the robot will be able
to follow a visitor, who holds an RFID-tag. In general, the
track-and-follow problem in robotics is of interest in large
warehouses, where mobile robots are required to co-operate
with personnel or other robots.

The robot is equipped with two front-facing antennas and a
monostatic RFID reader. The angle of arrival can be derived
from the measured phase [2]- [7], giving the target’s direction
relative to the robot’s pose. The robot is capable to create a 3D
map of the surrounding environment [8], [9] and localize itself
in the map at cm accuracy. It can safely navigate autonomously
inside the map and dynamically create optimal paths, adjusting
its decisions in real-time, depending on the changes of the
surrounding environment.

The problem of track-and-follow has been treated in prior-
art mainly by deploying solutions, based on vision [10]. RFID
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has been deployed for the specific problem, where both the
target and the robot move in [11]- [12]. In [11] the authors
exploit only the measured power from two antennas facing dif-
ferent orientations to estimate the direction of the target. More
recently, in [12] the authors propose an algorithm that can
track the location of the target based on phase measurements
collected along two antennas. The measurements are treated
separately per antenna and the unwrapped phase measured
per antenna is used as the input to the robot to successfully
maintain its distance from the target.

In our case, the problem is somehow different. We do not
expect the robot to be able to maintain a constant distance
from the target, i) due to the speed-constraint of the robot (the
robot will move at a maximum speed of 50cm/s) and ii) due to
blocking of the tag around corners in the exhibition area. As a
result the following robot is expected to suffer from frequent
interruptions of tag-readings. In the treated problem, we aim
to identify only the direction of the target, the robot-to-target
distance is expected to change frequently, as the visitor will
move much faster than the robot and the robot will eventually
reach the human and stop at 1m from the target, by deploying
its lidar sensor. Taking the above into considerations, we
propose a direction-tracking algorithm, exploiting the phase-
difference measurement between two antennas which is fed
into a particle filter algorithm. Furthermore, we take into
account the frequent ”loss” of the target to deploy another
”discovery” strategy in the initialization of a new particle
tracking stage.

II. PROPOSED METHOD

In case of a monostatic RFID reader, equipped with two an-
tennas, as shown in Fig. 1, the angle of arrival of the backscat-
tered RFID signal can be estimated using the measured phase
difference between two antennas and is approximated by [2]
[4]

θ = arcsin

(
∆φ× λ
4π × L

)
(1)
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where λ is the wavelength of the carrier frequency (fc =
866.5MHz → λ = 0.345m) and L is the distance between
the two antennas. Equation (1) is less accurate as the tag-to-
reader distance decreases. Due to phase-wrapping, the phase
measured by the nth antenna is

φexpn (dn) =

(
2π

λ
2dn + φ0

n

)
mod 2π, n ∈ [1, N ]. (2)

where dn is the distance between the nth antenna and the
tag and φ0

n is a phase-term related to the specific antenna; i.e.
accounting for the antenna-to-reader cable’s length, the phase-
shift of the specific reader-port etc. This term can be measured
and extracted from the calculations. Then (2) becomes:

φexpn (dn) =

(
2π

λ
2dn

)
mod 2π, n ∈ [1, N ]. (3)

Fig. 1. The geometry of SD-PDOA for two antennas

As the measured phase is wrapped in [0, 2π), the actual
phase difference between the measured phase from the 1st

antenna at t = i and the 2nd antenna at t = j is

∆φ12 = φi1 − φ
j
2 + 2kπ (4)

k = . . . ,−1, 0, 1, . . .

The number of possible k in (4) depends on the inter-antenna
distance L [2] Considering (1) ∆φ×λ

4π×L is bound within [−1, 1]

∆φ12 ∈
[
−4π × L

λ
,

4π × L
λ

]
(5)

Assuming L ≤ λ/4, the ambiguity is eliminated. So, it might
seem like a good strategy to place the antennas as close as
possible. However, the measured phases also suffer from zero-
mean Gaussian errors; in the available reader the standard
deviation of the phase-error equals 0.1 rad. As the distance
between the reader-antennas becomes smaller, the effect of
the measurement-error on the estimated-direction increases.
The magnitude of this effect grows at the limits of the target
area (close to ±π/2), due to the non-linearity of the arcsin
function of (1). This effect is demonstrated in Fig. 2 for
L = 0.13m. Furthermore, due to the physical dimensions of
the available antennas, the two antennas are typically placed
at λ/4 ≤ L ≤ λ/2. Under such conditions, we can identify
two angular regions. One ambiguous-free region, around the
direction of maximum radiation of the two antennas (around

θ = 0) and another region, where the ambiguity is reduced to
two possible values:

k =

{
{0,−1}, ∆φ12 ≥ 0
{0,+1}, ∆φ12 < 0

(6)

Fig. 2. The estimation error with and without noise

In our case, the two antennas are placed in front of the robot
with an inter-antenna distance L = 0.13m. By substituting the
specific L, the ambiguous estimation described in (6), exists
for abs (∆φ12) > 2π − 4π×L

λ ≈ 1.548 which represents an
estimated angle of arrival of ±19.08◦

Unwrapping the measured phase would eventually disam-
biguate the possible estimations, but the experimental data
are not necessarily dense-enough to do phase-unwrapping. For
example, consider the human-carrying-a-tag suddenly turning
and being lost from the robot; the measured data would be
discontinued and phase-unwrapping impossible.

A. Deployment of Particle Filters

We have deployed Particle-Filter theory, [13]- [17], in order
to keep track of the target, as explained below. The particles’
prime attribute is their azimuth relative to the robot, but more
dimensions could be added describing the target’s distance to
the reader, its velocity and its acceleration. However the added
complexity does not deem necessary, since each new attribute
should be accompanied by an appropriate measurement input
(i.e. if the RSSI measurement was only distance dependant
it could serve as a ranging detection input). Therefore each
particle is defined as a direction in [-π/2,π/2], θk, i.e.:

xik =
(
θik
)
, i = 1, ..., N (7)

and k refers to the discrete time-step of each new set of
estimations and θik is the target’s angle relative to the robot’s
pose. As described above, there is an ambiguity free zone
θtag ∈ (−19◦, 19◦), which is used to initialise the Target
Tracking Algorithm (TTA). An initial distribution of

πiθ(t0) = N (0, σstd) (8)

produces an approximate first indication of the target’s di-
rection, which is then updated with the future pair of esti-
mations. The lack of ambiguity in the central target angular
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zone ensures that the total set of particles clusters around
the single correct estimation. Given that the target’s speed
is reasonably limited and its angular displacement between
estimations does not exceed an upper threshold, there should
be no ambiguity regarding the target’s direction, since the
particles cluster around the estimation that is developed from
the initial distribution. After each new set of estimations that
serves as input to the PF, the weight of each particle

{
xik
}N
i=1

is given by

wik =
π −min(divergencej)

π
, j ∈ {1, 2} (9)

where divergencej refers to the particles’ angular distance
from the two measured possible estimations due to the phase
ambiguity, defined in (4) and (6). During time step k, the angle
of the target is given by the top 30% dominant particles by
their weighted sum:

θestk =

∑
top 30%

wikθ
i
k∑

top 30%

wik
(10)

New particles are created around the top 30% dominant
particles of the previous instance, so that the total number of
particles becomes N . The distribution of the new particles is
given by

πiθ(tk) = N
(
µθik−1

, σstd

)
(11)

where µθik−1
is the azimuth of each parent particle. The

standard deviation is constant for this instance, but it could
become a variable depending on the particle’s velocity if
additional dimensions are added to the particles. It is apparent
that the quality of the PF’s output is heavily dependant on
the previous outputs, since a single bias towards the alter-
native target direction would lock the TTA on this bearing
indefinitely. Therefore, it is important to create a reliability
indicator. That indicator depicts the divergence of the particles{
xik
}N
i=1

from the pair of estimations for each step. If each
particle update falls beneath a certain divergence threshold, it
is considered a reliable set of transitions that lead to the final
output. Moreover, the data density is expected to drop when
the target lies close to the edges of the desired operational
angular domain. It is expected that there will be readings
outside the desired domain, which can be identified by the
expected density drop. If the transition is not reliable, the
last reliable output is considered to be true, and the robot
is expected to find the target within the ambiguity free zone
for the TTA to be initialised again.

In order for such a feature to work a Target Finding
Algorithm (TFA) is implemented, where the robot rotates
towards the last reliable estimation, until the target lies within
the ambiguity free zone. This is achieved with a different
initial distribution of the particles

πiθ(t0) = N
(
X
π

2
, σstd

)
(12)

X ∈ {−1, 1}

Pr {X = −1} = Pr {X = 1} = 1
2

which implies that since the target is outside the operating
angular domain, it will first appear on the side. The TFA can
be used for the initialisation of the system, making the robot
face the target.

The importance of continuous reliable PF outputs signif-
icantly limits the robot’s ability to navigate freely in space
since the antennas are turning with the robot as it is moving.
Thus, the robot’s need to perform obstacle avoiding maneuvers
can potentially drive the target outside the operating angular
domain; especially for tight spaces where sharp turns are
necessary. This problem has been solved via the robot’s access
to the environment’s morphology. We have constrained the
path-planning algorithm of the robot on a specific network
of nodes, which enable the robot of reaching the target
everywhere within the map, producing a smooth and natural-
like movement. The Node Navigation Algorithm (NNA) takes
the reliable TTA estimations while travelling between nodes
and makes a new target when it is within a small range from
its current goal. The constructed map with the set of nodes
is shown in Fig. 3. The latter setting, makes the proposed
algorithm robust for application in crowded uncontrolled en-
vironments, like the museum.

Fig. 3. 2D representation of the environment constructed from the robot, with
the necessary nodes to navigate

III. EXPERIMENTS

Numerous experiments were conducted inside a computer-
lab; the map is shown in Fig. 3. Initially, the robot was still and
the target was moved arbitrarily in front of the robot, within
the read-zone. The proposed particle-filter tracker performed
remarkably well, in contrast to a brute-force algorithm which
considered only the latest measurement. Characteristic results
are shown in Figs. 4-5.

During the next experimental phase, the target tag moved
freely throughout the lab and the robot, was tasked to follow
the tag, applying the proper combination of the TTA and the
TFA. In all cases the robot successfully followed the tag,
applying the TTA, when the tag was within measurement-
range of the robot and then re-discovered the target, applying
the TFA, when the target was lost after turning around corners.
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This process was successfully tested repeatedly more than 20
times.

Fig. 4. The robot stationary (i) and during the experiment (ii) with the particles
(iii) and the output (iv) during the experiment

Fig. 5. Experiment No.2: PF output

IV. CONCLUSIONS

After combining well known techniques found in prior-art,
a well-structured design is presented that fulfills the desired
criteria. The SD-PDOA technique may be subject to ambiguity
due to the physical size of the antennas, but Particle-Filtering
and proper processing of the extracted estimations may lead
to an effective and reliable algorithm that tracks the target’s
movement relative to the robot. The robot’s SLAM abilities

allow for an effective track and follow system to be imple-
mented. Further development is possible, both with hardware
extensions (i.e. antennas rotating independently to the robot) or
additional algorithms (i.e. target’s path reconstruction through
Particle-Filtering) that would enable the robot to keep the
target within the desired region more effectively and enhance
the particles characteristics (i.e. speed and acceleration).
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