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Abstract—This work is focused on unmanned inventorying
and localization, by deploying an RFID-equipped autonomous
robot. The robot is able to perform Simultaneous Localization
and Mapping (SLAM), thanks to its optical sensors. As the robot
moves inside the target area, it continuously interrogates all RFID
tags within range. Passive RFID tags, placed at known locations,
are used for the estimation of the locations of the target tags, by
properly manipulating the measured backscattered power. The
proposed method does not depend on the location of the reader,
but only on the locations of the reference tags. Hence, positioning-
errors related to SLAM are not accumulated. Mobility of the
robot ensures rich collection of measurements. We propose a
method for dynamic, real-time configuration of the parameters
of the fingerprinting algorithm and real-time evaluation of the
localization error of the unknown tags. This is achieved by
treating the reference tags as target tags. Thanks to this property,
we further exploit mobility of the robot, repeating inventorying
and localization in areas, where poor performance is initially
recorded. Measurements indicate a mean error of 18cm, with
standard deviation of 11cm, deploying a single antenna.

Index Terms—RFID, Positioning, Fingerprinting, Robot.

I. INTRODUCTION

In this paper we focus on inventorying and localization,
exploiting Radio Frequency IDentification (RFID) technology.
Inventorying is typically carried out by personnel, working
overtime, usually once a month. In most cases, barcode tech-
nology is used, which demands optical reading of labels, one
at a time. As a result, the process is slow and associated with
errors, due to the repetitive actions that need to be taken by a
human. Furthermore, the state of the stock is not continuously
updated. In contrast, RFID technology, ensures much better
read-rates (in the order of hundreds of tags per sec); still
personnel must be involved. We propose the deployment of an
RFID equipped robot, capable to autonomously move inside
a previously unknown place, demonstrated in Fig. L.

In addition to simple inventorying, i.e. reporting the exis-
tence of a product somewhere in the search space, we deploy a
localization algorithm, suitable for accurate and fast (real-time)
pinpointing of all RFID-tagged objects (products) inside the
search space. Key applications include, real-time inventorying
in warehouses, large retail stores, libraries, etc.

Fig. 1. RFID-equipped robot.

An alternative approach to the problem would have been to
deploy readers and antennas at fixed locations; thus covering
the entire space. However, such a solution is very expensive,
even for moderate-sized spaces, due to the small range of
passive (battery-less) RFID systems; thus requiring a large
number of equipment. In contrast, a single moving robot is
capable to cover any environment at the expense of greater
reading-time, depending on the size of the area and the speed
of the robot. Furthermore, the moving robot has an additional
advantage over any fixed solution: reduction of the errors of
any localization algorithm, due to multipath [1]. Any fixed
link inside a fixed geometry would always suffer from the
same fading pattern (complex diversity techniques should be
deployed) [2]. On the contrary a moving robot, presents a
wealth of measurements for any RFID-tag, which can diminish
fading effects, when manipulated properly.

State-of-the-art localization methods are based on measur-

ing at the reader i) the backscattered power or, ii) the phase of
the modulated backscattered signal from each tag. Depending



on how this information is handled, we can discriminate:

« Methods based on Bayes Theorem and Conditional prob-
ability, exploiting the measured backscattered power [3]-
(71,

o direction-finding methods, exploiting the phase of the
backscattered field [8], [9],

¢ “’holographic” methods, exploiting the phase of the
backscattered field [10]- [12],

« distance-estimation method, “emulating” an UWB system
[13],

« fingerprinting methods [14], [15].

All methods, except for fingerprinting, need to know the
actual location of the robot [16] (actually of the antennas
located on top of the robot). Very good accuracy is reported in
[12] (less than 10cm error), where holographic method is used.
However, the robot’s trace is considered known. Actually,
estimation of the robot’s trace is a typical problem in robotic’s
prior-art by itself; depending on the environment and whether
the robot needs to perform mapping as well (SLAM) [17],
errors above 10cm are expected, even if expensive sensors are
deployed (lidar, depth cameras, etc.) combined with state-of-
the-art techniques. This error will be accumulated in the tag’s
estimation error, leading to an expected actual error in the
order of 20cm.

Fingerprinting localization pinpoints the unknown tag’s po-
sition that “best” matches a set of measurements collected
from “reference” tags at known locations with the measure-
ments collected for the specific tag. Therefore, the path of the
reader is not needed. Only the locations of reference tags are
necessary. The speed and the accuracy of the method depends
on the number of reference tags, as well as the number of
collected samples. The moving robot allows for any desired
number of samples, by adjusting the speed of the robot. The
small cost of each passive RFID tag (0.02$), allows for any
density of installation of reference tags.

Among the most successful fingerprinting algorithms is
“Landmark”, initially deployed in [14]. However, its accuracy
depends on properly” setting a range of parameters, which in
turn depend on the environment.

In this paper, we propose a method to exploit the reference
tags, involved in fingerprinting localization, in order to:

o optimally set the parameters of the fingerprinting algo-
rithm dynamically, such that the best estimation is derived
for the specific environment,

« evaluate the performance of the localization method in
real-time, thus allowing to repeat the method in specific
areas, where poor performance is recorded.

II. FINGERPRINTING ALGORITHM

Passive RFID tags are placed at known locations around the
region, where the unknown tags are “tracked”. These will be
used as reference tags to evaluate the unknown locations of
target-tags around them. The estimation is based on evaluating
the similarity of measurements collected at an antenna grid
between reference tags with each unknown tag. Let n reader

antennas collecting measurements of m “reference” tags and
u “tracked” tags. Let X/ = (X7, X3J,,X/) be the signal-
strength measurements’ vector of tracked tag j by the n reader
antennas, where j € [1,u] and

Xj _ Ezj
¢ null

where Ef is the measured backscattered signal strength of
tag j at antenna 4. Similarly, let R = (R}, R}, , R.), be the
corresponding collection of RSSI measurements of reference
tag [, I € [1,m], from the same n antennas:

if tag j is identified by antenna % 0

else

E!  if tag [ is identified by ant j
Rﬁ _ . if tag [ is identified by antenna i )
null else

For each pair of tracked tag j and reference tag [, we define
the following indicator function:

LD :{ ; if (X7 # null) N (RL # null)

where i corresponds to the i" antenna location. The function
becomes 1 if from the specific antenna location ¢, both tags (j
and [) have been identified. Therefore, the non-zero elements
of the following vector I indicate the common measurements
of the pair of tags (j,/) for all antenna locations:

I(]al) = [Il(jal)712(.]7l)aaIVL(.]vl)] (4)

and the number of common measurements is:

Cf =3 L1 5)
=1

3)

else

For each tracked tag j and each reference tag [, we define the
following distance-"resemblance” metric:

n .
; X/ —RHY2 if (j,1) =1
00 else

For each tracked tag, we create a distance-resemblance vector:
D’ = (D}, D},...,D3,) @)
and the corresponding common measurements counter vector:
¢’ = (C],¢4,....Ch) @®)
When a tracked tag j is physically close to a reference tag,
it is expected to have many common measurements. The
corresponding element in vector C, defined in (8), will be
large. On the contrary, distant tags will have small or zero
values in (8). We define the mean of common measurements

for each tracked tag:
i =

mean

2is, O
)

a

€))

where a is the number of non-zero elements of C7. Then,
in order to discard reference tags with few common mea-
surements with the tracked tag, we define a threshold L’



to be proportional to the above mean of each tag j by an
optimization parameter g:

L’ = gc’gneavm

(10)

Then, we modify (6), in order to discard reference tags with
few common measurements with the specific tracked tag:

D} it C! >

Dl/j = 11)

oo else

Vector in (7) is updated accordingly:
DY = (DY,DY, ..., D) (12)

The smallest element in (12) represents the reference tag, for
which the measured power-values best fitted the corresponding
measured values of the tracked tag, while enough common
measurements are collected. Hence, we expect the actual
location of the tracked tag to be “closer” to that reference
tag. Furthermore, the “resemblance” vector can be used as a
distance indicator from each reference tag, thus “weighting”
the distance of the “target” tag from each reference tag.
Since the smallest elements in (12) are more significant, the
corresponding resemblance metric should be inverted. In fact,
one can select the k" smallest values in vector D7 , (quoted as
k-nearest neighbors and abbreviated as “k-nn”") and estimate
the coordinates of target tag j by the following two equations:

k
(@, y7) = wia',y) (13)
i=1
where the weights are calculated as follows:
1/(DY v
wp= P (14)

SF L 1/(DY )y

and v represents an optimization parameter.

Summarising, so far, with respect to prior art [14], we have
introduced the common measurements counter vector in (8).
Then, we defined a threshold to discard reference tags with few
common measurements with the tracked tag in (10). This is
essential for the proper application of the proposed algorithm,
since it was found that there were elements which seemed to
have great resemblance with the tracked tag, according to (6),
but were actually far away from the tag, having only a few
common measurements.

In the following sections, we focus on the three optimization
parameters that came up from the mathematical analysis of the
algorithm:

o the common measurements’ threshold optimization pa-
rameter g in (10),

o the number of neighbors k in (13).

« the exponent v in (14).

III. REAL-TIME PERFORMANCE ASSESSMENT

Our experiments were contacted inside a corridor-type labo-
ratory room in the Campus, as shown in Fig. 2. RFID tags are
attached to a 10m-long millimetre-paper on top of a bench.
The RFID-equipped robot moves autonomously next to the
bench. Initially, the robot creates a map of the room using
SLAM techniques. Then, it moves through the room collecting
measurements from the tags while continuously updating its
location on the map. The robot repeated this process several
times, passing along different trajectories inside the corridor,
as demonstrated in Fig. 3.

Fig. 2. The setup of the measurements
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x coord(m)

Fig. 3. Estimated trajectories of the robot for different experiments, based on
SLAM.

Due to the continuous movement of the robot, only one
tag is measured at a given location. In order to apply the
fingerprinting localization algorithm, we group all measure-
ments collected within Scm robot-displacement; these are
considered as measurements collected by the same antenna-
location. During the different experiments, the robot moved
with Scm/s to 20cm/s, achieving a measured mean read-rate of
245 tags/s (the read-rate depends on the tags’ population, since
a slotted ALOHA protocol is deployed). Therefore, the mean
number of measured tags per considered antenna location
ranges from 61 to 245, depending on the robot’s speed. As the
number of tags within the read-range of the reader was much
smaller, each tag was measured multiple times per antenna



location. The mean of the measured back scattered power for
each tag is calculated.

The fingerprinting algorithm was applied in each experi-
ment, using a set of different values for each optimization
parameter, in order to find those that achieve the best location-
estimation of the tracked tags. It was found that for each
different path or speed of the robot, a different selection of the
three optimization parameters minimized the localization error.
This property is illustrated Figs. 4-5, where x-axis represents
the different experiments and y-axis the best value of one
of the three optimization parameters for the corresponding
experiment.
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Fig. 4. g-parameter variation among different experiments
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Fig. 5. k-parameter variation among different experiments

Considering the variability of the optimization parameters
shown above, there is no optimal selection that is suitable
for all cases. Depending on the propagation environment,
different selection should be made. It is found that even a
small deviation of a parameter from the best value, could lead

to 5-10 cm increment of the mean error of the correspond-
ing measurement. Therefore, a method to select the optimal
parameters during the measurements is necessary.

We propose the exploitation of the reference tags for this
purpose. Since the reference tags are placed on known posi-
tions, we propose to i) treat the reference tags as unknown tags,
ii) evaluate their positions, by changing the 3 optimization
parameters, iii) find the set of parameters that minimized the
estimation error of the reference tags and iv) apply the same
set of parameters (which is optimal for the reference tags) on
the tracking algorithm for the unknown tags. Potential success
of the method depends on the similarity of “fading” that is
expected to take place for the reference tags and the tracked
tags. Carefully notice that when a reference tag is being
tracked the population of the remaining reference tags that
participate in the estimation is reduced only by one. Hence, for
large density of reference tags and similar environment (which
is true by definition, since the reference tags are placed in the
vicinity of the tracked tags), good agreement of the optimal
parameters is expected.

In Fig. 6, we compare the mean localization error of the
reference tags vs. the tracked tags by increasing parameter
g. Excellent agreement is recorded for g € (0.7,1.4); i.e. a
large region around the optimal, while the minimum error is
recorded for the same value of g.

Another interesting property is revealed. The mean esti-
mation error is similar for the reference and tracked tags.
Therefore, by calculating the localization error of the reference
tags, we have an excellent estimator of the achieved accuracy
for the unknown tags. This idea is particularly important for
all applications, since the robot can be instructed to re-scan
an area, where poor localization-accuracy has been recorded.
The importance of this property is summarized in Table I,
where the accuracy of the fingerprinting method for the four
experiments, demonstrated in Fig. 3 is given. Even though
the robot followed each path with the same speed (Scm/s), a
great deviation of the mean error is detected when the distance
between the robot and the bench changes. Multipath has
changed (systematically) along each route, due to the different
geometrical relationship of the antenna of the robot with the
wall opposite to the experiments. However, thanks to the
proposed method, this deviation of the error is also recorded in
the reference tags. Hence, the results of a specific path ("Path
2” in the example) are known to be the most accurate and
the localization error is also well estimated. Hence the error
is reduced to only 18.53cm with a small standard deviation of
11.17cm. Therefore, in this case, the reference tags are used
as the means to select the best estimations among different
measurements (as diversity-technique indicator).

IV. CONCLUSION

In this work, we have presented a fingerprinting localiza-
tion method, based on comparing the measured backscat-
tered power of target tags with that of reference tags at
known locations. The key for the success of the method is
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Fig. 6. Localization of Tracked and Reference Tags vs g-parameter

TABLE I
EXPERIMENTAL RESULTS

Robot’s path  Robot’s speed ~ Mean Error Std
Path 1 5 cm/sec 69.89cm 163.55cm
Path 2 5 cm/sec 18.53cm 11.17cm
Path 3 5 cm/sec 24.03cm 18.57cm
Path 4 10 cm/sec 19.42cm 11.87cm
Path 5 10 cm/sec 29.21cm 20.40cm
Path 6 20 cm/sec 19.50cm 12.60cm
Path 7 20 cm/sec 30.32cm 17.42cm
Path 8 20 cm/sec 20.72cm 11.62cm

the proposed exploitation of the reference tags in order to
optimally set the parameters of the fingerprinting method.
Furthermore, by applying the method on the reference tags,
we evaluate the localization accuracy achieved for the tracked
tags. This allows for re-scanning areas where poor accuracy
was originally recorded, ultimately achieving a mean error
below 20cm. As the estimation-time is small, the proposed
method can be applied in real-time unmanned inventorying.
Further improvements are expected when multiple antennas
and multiple frequencies are deployed on the robot, exploiting
space and frequency diversity.
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