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Abstract—In this paper we present a prototype method for
guiding a user to a target by introducing RFID-lanes. The user is
equipped with a portable RFID reader, which measures the phase
of RFID tags arranged at known positions on the floor, forming
lanes. By calculating the Rate Of Change (ROC) of the phase
measurements of each tag along discrete time-steps, motion of the
user can be accurately tracked, while proper direction-guidance
is updated. The proposed method, calculates the user’s direction
of motion, by sorting the measured phase-ROCs from the nearby
tags while keeping track of the user’s position by feeding the
phase-ROCs in a particle filter. Simulations and experimental
results show precise localization and guidance while maintaining
real-time computations.

Index Terms—RFID, guidance, tracking, blind, RFID-lanes,
particle filter, phase, portable reader

I. INTRODUCTION

In this paper, we present a novel RFID-based system for
both navigation and tracking in indoor and outdoor envi-
ronments. As shown in Fig. 1 the user is equipped with a
prototype portable reader, built using Commercial Off The
Shelf (COTS) components, that can measure the phase from
nearby UHF-RFID tags. The reader queries the RFID tags
placed at lane patterns to obtain phase measurements.

Navigation within the lane is accomplished by estimat-
ing the user’s direction of motion and giving corresponding
auditory and visible cues (e.g., turn left/right, keep moving
forward, etc.). As the user/reader moves, the rate of change
(ROC) of phase measurements collected by each RFID tag,
participating in the lane, changes. The tag with the highest
rate of decrease denotes the ”estimated” current direction of
the user. In addition, the user’s position is estimated, using
particle filters, thus improving the accuracy of the direction es-
timation and notifying the user when the objective is attained.
The filters are updated, based on phase-ROC measurements
received from the tags, forming the RFID-lanes.

Prior art on target navigation and localization comprises
techniques using different means and data. Some represen-
tative techniques are:
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Fig. 1. Illustration of the navigation and tracking principles in an indoor
environment (a museum). RFID tags are placed on the floor, forming lanes.

• RSSI : The power of the received signal from reference
RFID tags is exploited in [1]. However, multipath and
shadowing have a significant impact on RSSI, resulting
in poor localization accuracy.

• Phase of Arrival (POA): POA has been used in many
ways in literature achieving high localization accuracy.
In [2], [3] phase measurements from multiple antennas
mounted on a robot are used to locate tags exploiting
Synthetic Aperture Radar (SAR) techniques. Authors
in [4] present an orientation-aware phase model that
estimates the 3D position and orientation of a tag starting
from a known initial position of the tag.

• Multi-frequency: Authors in [5], [6] use a variety of
frequency channels to pinpoint the target and address the
issue of multipath. Nevertheless, these techniques were
developed for US standards and could not be used in
Europe due to the very narrow bandwidth (865-868MHz).

• Non-RFID methods: Vision [9] or sound [8] based sys-
tems, smartphone sensing and an Augmented Reality
(AR) application [7] and other RF technologies like WiFi
or Bluetooth [10] are only a handfull of the techniques
discussed in bibliography.

• Fusion methods: The authors of [11], [12] integrate RFID
readings with data from other sensors to predict a target’s
direction and position. [11] uses RFID phase data and an



inertial measurement unit (IMU) to estimate the distance
and angle of a desired RFID tag, whereas [12] uses
odometry data paired with POA to determine the pose
of a robot in regard to a target tag.

In this work, we estimate only the phase-ROC, in order to
guide a moving person to a preset target while his location
is monitored in real-time by phase readings obtained from
stationary RFID tags placed at lane formations. The algorithm
retains high localization accuracy for all trials, including
multipath rich environments by utilizing particle filters and
estimating the location of the moving human in subsequent
time instants. A handheld reader locates itself in the monitored
area and provides auditory and visible directions to lead the
user to the preset target.

The aim of this work is to examine its possible use in guid-
ing blinds along ”RFID-lanes”. However, the method could
also be applied for vehicle/robot-guidance. The fundamental
concept is that the method would keep the RFID-reader inside
the lane.

The contribution of the proposed method can be summa-
rized as follows:

• The estimated phase-ROC measurements from RFID tags
positioned in lane-formation are used as spatial indicators.

• Phase measurements are unwrapped in separate time
windows and the phase-ROC can be calculated even with
partial phase sequences.

• The proposed handheld reader carried by the user makes
use of COTS hardware components.

• All information gathered from the interrogated tags is
processed locally to produce real-time localization and
guidance.

• The concept of RFID lanes is introduced enabling the
application of the method in both indoor and outdoor
environments.

• The proposed approach might be used in a number of
settings, but is envisioned as a supporting system for
blind.

II. PROPOSED METHOD

Consider a human or machine carrying an RFID-reader,
that should be guided to a certain target. RFID tags are laid
out in lanes on the floor throughout the area of interest; the
reader should be kept in the center of such lanes. The reader
collects phase and RSSI data, associated with each RFID tag
and outputs audio and visual feedback (or controls the motor)
to guide one to the destination.

A. Measured Data
All RFID tags are fixed at known locations as shown in Fig.

2. The antenna’s position at time-step j is given by Aant,j =
[xant,j , yant,j , zant,j ] and the fixed position of the ith tag is
Ai

tag = [xi
tag, y

i
tag, z

i
tag]. The corresponding distance between

the antenna and the ith tag at time j is:

||Aant,j −Ai
tag||2 =√

(xant,j − xi
tag)

2 + (yant,j − yitag)
2 + (zant,j − zitag)

2.

The measured phase is denoted as:

ϕi
j = (ϕi

prop,j + ϕi
o + ϕi

noise,j + ϕi
mult,j)mod(2π), (1)

where ϕi
prop,j = 2π

λ 2dij , corresponds to the phase due to the
round trip distance 2dij between the ith tag and the reader
at time j, ϕi

o is the phase offset of the ith tag, ϕi
noise,j is

the measurement noise and can be simulated by N (0, σ2
phase)

ϕi
mult,j = tan−1( Asinθ

1+Acosθ ) is introduced to account for
multipath. A = ANLoS

ALoS
with ALoS being the direct Line-Of-

Sight (LOS) vector of magnitude and ANLoS the as Non-Line-
Of-Sight (NLOS).

Fig. 2. A portable reader interrogates RFID tags at time instant tj .

Initially, let’s assume a multipath-free environment. For a
selected period of time dt sequential phase measurements
are collected from all tags. To calculate the phase-ROC for
each tag the phase measurements have to be unwrapped and
filtered. After unwrapping and filtering (using a second degree
Savitzky–Golay filter), ϕi

j = ϕi
prop,j+ϕi

o. Let dϕi
j = ϕi

j−ϕi
j−1

denote the difference of phases measured from the same tag i
at time instances tj−1, tj . Subtracting ϕi

j from ϕi
j−1 removes

the ϕi
o term and dividing by dtj = tj − tj−1 results in

the phase-ROC of tag i in time window [tj−1, tj ] which is
expressed as:

ϕ̇i
j =

dϕi
j

dtj
=

ϕi
j − ϕi

j−1

dtj
=

4π(dij − dij−1)/λ

dtj
(2)

All rates are kept in a vector, where each column represents
one of the surrounding tags and each row represents a time
frame. The phase-ROC matrix D is denoted as follows:

D =


ϕ̇1
1 ϕ̇2

1 ... ϕ̇N
1

ϕ̇1
2 ... ... ...
... ... ... ...

ϕ̇1
M ... ... ϕ̇N

M

 , (3)

where N is the number of tags and M is the number of
time-steps t1, t2, ..., tM which form the time set at which the
estimations will take place.



B. Direction Estimation

To estimate the direction of the reader each time, the
minimum of the ROCs of all tags is calculated:

minD[j, :] = min([ϕ̇1
j , ..., ..., ϕ̇

N
j ]), (4)

Theoretically, the tag with the lowest rate of change is the one
that the user is moving toward. In practice, more processing is
necessary to update the direction-guidance (audio and visual
feedback, e.g. turn left/right, continue straight, etc.) of the user.

C. Location Estimation

In the remaining document, we consider the reader, being
held at a constant known height zant,j = zant. The phase-ROC
of tag i in a time frame is proportional to the rate of change
of the reader’s location, as shown in (2). We seek the solution
along the x − y plane. This rate of change corresponds to
the reader’s radial velocity as measured from each tag. Fig.
3 depicts a reader’s path from time instance tj−1 to time
instance tj . The reader is interrogating adjacent tags in order
to calculate phase-ROCs. This rate of change represents the
reader’s radial velocity as measured from tag i. Fig. 4 displays
the traveled path of the reader from time instance tj−1 to tj .
Using (2) the radial speed vectors’ magnitude ∥V⃗ i

t ∥ and angle
∠V⃗ i

t are given by:

∥V⃗ i
j ∥ =

(dij − dij−1)

dtj
=

λ

4π

dϕi
j

dtj
, (5)

∠V⃗ i
j = ∠(Aant,j−1 −Ai

tag), (6)

where Aant,j−1 and Ai
tag are the positions of the antenna and

tag i at time instant tj−1 correspondingly. The radial velocity
vector Vj represent an estimation of the reader’s velocity for
the specific time window. To calculate the speed vector an
optimization problem needs to be solved, formalised as [13]:

min{(|V i
j − V⃗ i

j |) | (V⃗ 1
j ,∠V⃗

1
j ), ..., (V⃗

N
j ,∠V⃗ N

j )}, (7)

where V⃗ i
j is the projection of speed vector Vj at the radial

direction of Aant,j−1 towards tag i.
Estimating a target’s dynamic state may be divided into two

steps: i) prediction and ii) update. The prediction stage ad-
dresses the temporal evolution of the target state based on past
states, whereas the update stage addresses the modification of
the predicted state based on newly obtained measurements.
With this structure in consideration, particle filters are used
to solve the tracking problem. Particle filters can address the
location estimation problem by utilizing a set of weighted
particles, each of which represents a probable state with a
certain probability. The set of particles is given by:{

Xn
j , w

n
j

}
, n ∈ [1, Np], (8)

where Xn
j =

{
xj , yj

}
is the state vector and wn

j is the
significance weight of n-th particle at time instant tj . The
corresponding algorithm can be decomposed in the following
5 steps:

1) Initialization: A swarm of Np particles, indicating po-
tential user’s positions, is produced uniformly throughout the
area of concern. Each particle is assigned a weight of 1/Np. To
reduce the amount of particles required while maintaining an
equal particle density, knowledge of the obstacles in the search
area or the characteristics of the antenna could be investigated.

2) Prediction: At the prediction step the states of all
particles are altered. The state of each particle changes based
on the velocity-vector of each particle given by (7). The
velocity-vector is calculated using only the three tags with
the minimum rate of change and the new state is revised by:

Xn
j = Xn

j−1 +V
n

j dtj (9)

3) Update Step: To update the weights the theoreti-
cal/expected phase-ROCs ϕ̇i

j,expected are calculated presuming
a transition from position Xn

j−1 to position Xn
j . The calculated

weights for each tag are summed up and the weight of each
particle is updated by:

wn
j =

[ N∑
i=1

|ϕ̇i
j,expected − ϕ̇i

j |
]−1

, (10)

The weight of the particle is maximized at the location that is
nearest to the reader’s real position. A probability distribution
is created by normalizing the weights:

wn
j =

wn
j∑Np

n=1

(11)

4) State Estimation: After updating the weights of all
particles, the state estimate is calculated as the weighted sum
of all particles’ states:

Xj =

Np∑
n=1

X⃗n
j w

n
j (12)

5) Particle Resampling: Particle degeneracy in standard
particle filters significantly reduces filter precision. The term
”particle degeneracy” refers to the fact that after a few rounds,
almost all of the particles have been given a weight close
to zero. Stratified resampling is used to prevent the issue of
degeneracy by discarding particles that have a very low weight
and substitutes them with new particles that have a higher
probability. Noise is added to spread duplicates of ”important”
particles, resulting in a collection of locations in which the
probability distribution is represented by the majority of the
particles.

The algorithm then repeats the process, going back to step
#2 recursively until the reader’s distance from the target is less
than a predefined length.

III. SIMULATIONS

In this section the method is evaluated in simulated envi-
ronments. Fig. 5 depicts a top view of the simulations’ set-up.
20 tags were placed at known locations at a distance of 40 cm
on the x-axis and 2 meters on the y-axis and 3 trajectories
were assessed. To more closely approximate a real-world
situation, phase noise and multipath were introduced to the



(a) Prediction (b) Update and state Estimation (c) Resampling

Fig. 3. Representation of the localization part of the algorithm in a simulated environment.
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Fig. 4. Reader’s speed approximation. The dotted line between time instance
tj−1 and tj denotes the trajectory followed by the reader.

phase measurements, and the radiation pattern of a standard
UHF-RFID panel antenna was included. The multipath-model
is presented in [15].

Fig. 5. Top view of the simulation setup and the simulated trajectories.

The localization part of the algorithm must be repeated
numerous times, because both the initialization and resampling
steps involve random processes. For each route, the algorithm
was repeated 100 times, and the error was computed for each
iteration as follows:

Error =

∑M
j=1 ||Xj est −Xj real||2

M
(13)

TABLE I
SIMULATION LOCALIZATION ERROR

Paths Mean Error(cm) Std (cm)

Trajectory 1 5.31 3.95

Trajectory 2 8.21 6.12

Trajectory 3 12.72 11.31

The mean absolute value of all errors and standard deviations
for all runs along with the distance travelled per trajectory are
presented in Table I.

A. Number of Particles

The quantity of particles affects how quickly and accurately
the algorithm performs. A research on the impact of total
number of particles for trajectory #1 was carried out, to
determine the best Np for the filter. The results are shown
in Fig. 6a. The mean estimation error was kept low (less than
15cm) for the different values of Np so the number of particles
is selected taking into consideration only the time per iteration.
Assuming maximum estimation time in the order of 250 ms
Np should be set to 100. Fig. 6b presents the performance of
the method with respect to increased multipath effects. The
algorithm was still able to maintain a mean error less than 50
centimeters even for the worst case; i.e. A = 1.

(a) NP versus time per iteration
(step).

(b) Mean error vs Multipath

Fig. 6. Multipath and number of particles analysis.



B. Number of tags per RFID tag-set

The algorithm was applied in two distinct situations for each
of the three routes in order to determine the number of tags
per RFID tag-set. One with 5 tags, and one with 3 tags per
group. For 100 trials per route, the mean error and standard
deviation are computed. Due to the proximity of the tags and
the impact of noise and multipath, a greater mean error was
observed for the case of three tags per group.

IV. EXPERIMENTS

The experiments were carried out in a corridor. Four check-
points, with 5 RFID tags each, form an RFID lane for the
experiments. The 20 tags (Alien ALN-9740 ”Squiggle” RFID
tags with ”Higgs–4” IC at -19 dBm sensitivity) are placed on
the floor, as shown in Fig. 7. Along each checkpoint, the 5
tags are spaced at 40 cm. The distance between successive
checkpoints is 2 meters.

Tag set #1

Tag set #2

Tag set #3

Tag set #4

200cm

40cm

Fig. 7. The setup of the experiments.

The reader consists of a ThingMagic Sargas 2-Port UHF-
RFID reader, a Laird Technologies PER86506 Antenna (Gain
6 dBic), a Raspberry pi 4 with a touch screen.

A. Guidance

As the user moves, three arrows are shown on the screen,
accompanied by a sound of different frequency, instructing the
user to move straight, left or right. The user interface is shown
in Fig. 7. Guidance, i.e. continue straight, left or right, is given
according to the measured ROC. Theoretically, the minimum
ROC should be measured for the tag along the direction of
the movement. However, as the tags forming a checkpoint are
closely spaced and the distance of the reader from the tags
could be large, the expected differences of the ROCs between
adjacent tags are small; thus vulnerable to multipath and noise.

This is verified by the experiments, conducted along the
corridor with only three tags, shown in Figs. 9 and 10.
During the 1st experiment, the user moved directly towards the
central tag. During the 2nd experiment, the user moved directly
towards the left tag. Every 0.5s, the ROC was calculated for all

three tags. Under ideal multipath-free, noiseless conditions, the
blue ROC segment should be minimum throughout experiment
1 and the red ROC segment should be minimum throughout
experiment 2. However, during experiment 1, all three colors
take turns in the minimum position, while during experiment
2, the correct red color dominates with some interruptions by
the blue ROC, which corresponds to the adjacent central tag.

If the user was forced to take instructions according to the
minimum recorded ROC, he would be instructed to change
directions almost during each iteration when moving towards
the central tag, weaving in an annoying ”zigzag” fashion. By
changing the rule to: ”Change direction only if there are three
consecutive minimum ROC measurements of the outer-most
RFID tags along each checkpoint”, a smooth guidance was
accomplished. Under this condition, the user would properly
never change his straight movement during experiment 1 and
would correctly be instructed to turn right a total of four
times during experiment 2, as shown with arrows in Fig.
10 - of course, after turning right during the first instruction
the measurements would have changed. This rule guaranteed
proper guidance in all experiments.

B. RFID Reader Tracking

In order to test the tracking-accuracy, we have conducted
several experiments, moving along straight segments, three of
which are shown in Fig. 8 with blue dotted lines. In all cases,
accurate tracking was accomplished; yet modification to the
theoretical particle filter algorithm, presented in Section II-C
was necessary. During iterations, where phase-ROC data were
unavailable to update the velocity vectors of the particles, the
velocities from the previous iteration are used. This allows the
particles to ”move” with the latest known velocity even when
data are unavailable.

V. DISCUSSION

This work presents an early-stage prototype RFID system
for guiding a user along a lane, constructed by passive
RFID tags at known positions. The method considers the
rate of change of phase measurements and outputs the proper
direction to keep one in the lane, while estimating one’s
pose in real-time. Given the small tag-population and the
high reader’s read-rate, sufficient phase-measurements for the
estimation of the phase-ROC are expected for any typical
human movement; e.g. consider 300 reads/s divided by 6 tags,
results in 50reads/tag/s. Assuming a human moving at 50cm/s,
this would result in 1 read per cm of displacement or 8 mea-
surements per phase-cycle. The method is immune to the ori-
entation of the reader-to-tag system, given that it accounts for
the translational movement of the user and estimates the rate
of change over several phase-cycles via phase-unwrapping.
Experimental data validate the performance regardless of the
user’s pace or distance traversed.

Further experimentation and scaling for larger indoor and
outdoor areas is to be considered next, including waterproofing
tags in plastic enclosures and and embedding in rigid mate-



(a) Trajectory 1 (b) Trajectory 2 (c) Trajectory 3

Fig. 8. Estimated trajectories vs travelled traces for all experiments.

Fig. 9. Measured rate of change for three tags (path 1).

Fig. 10. Measured rate of change for three tags (path 2).

rials, in order to apply the method for our vision of Lane-
keeping for the blind.
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