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Abstract—In this work, we propose a prototype method for
the localization of RFID tags, by deploying RFID equipment on
a robotic platform. The constructed robot is capable to perform
Simultaneous Localization (of its own position) and Mapping
of the environment and then locate the RFID tags around its
path. The proposed method is based on properly treating the
measured phase of the backscattered signal by each tag at the
reader’s antenna, located on top of the robot. More specifically,
the measured phase samples are reconstructed, such that the 2π
discontinuities are eliminated. This allows for the formation of an
optimization problem, which can be solved rapidly by standard
methods. The proposed method is experimentally compared
against the most accurate reported method in prior-art and the
same accuracy is preserved. However, the problem is solved more
than one order of magnitude faster, allowing for the applicability
of the method in real-time inventorying and localization.

Index Terms—RFID, Localization, Robotics, SLAM, Optimiza-
tion.

I. INTRODUCTION

This work aims at automatic inventorying and accurate,
real-time localization, by deploying a moving robot (see Fig.
1). The robot carries RFID equipment (reader, antenna) and
a combination of sensors (lidar, depth cameras) to perform
Simultaneous Localization (of the robot) and Mapping (of
the area); also known as SLAM, [1]. Passive RFID tags are
attached to each object of interest. Representative applications
could include warehouse-management or large retail stores.
Each tag backscatters its unique ID, which is associated
with the attached object. We wish to identify and locate the
position of the tag. The proposed solution exploits mobility to
reduce the overall cost of an equivalent inventorying solution,
consisting of readers and antennas at fixed locations.

An additional advantage of the proposed system, is its
potential to reduce inaccuracies, due to multipath fading [2].
In contrast to a fixed installation of antennas and readers,
a moving robot provides many measurements at successive,
closely-spaced locations, thus allowing to stochastically treat
fading effects due to multipath [3]. This wealth of measure-
ments collected by a single moving antenna is often called as
“virtual antenna array” in related prior art.

To the best of our knowledge, this is the first time that the
actual problem is realistically treated; both the locations of the
robot (i.e. the reader-antennas) and the tags are unknown and
must be evaluated. Prior-art treats those problems separately;
RFID-tag localization algorithms consider the location of the
reader-antenna as known [4], while SLAM algorithms aim

only at localizing the robot. In this work, we focus on the
localization method of the RFID-tags, while the path of the
robot is estimated and updated by a SLAM algorithm.

Localization techniques exploit the measured phase and
back-scattered power of each tag at the reader-antenna pair
located on the robot. Depending on the treatment of this
information, we have direction-finding techniques, [5], [6],
“fingerprinting” methods, [7], [8], “holographic” methods, [9]-
[11], conditional probability based methods [12]-[16] and
other techniques [17]. Some may involve custom RFID-
readers, [8], [17], usually Software Defined Radio transceivers,
or out-of-band emissions [17]. Among the techniques that
promise best accuracy with commodity RFID hardware (off
the shelf components) are those based on exploiting the phase
of the backscattered electromagnetic (EM) field and mainly
the holographic method, or its differential variations, [9]-[11].
The holographic method demands for an exhaustive search of
all possible tag locations to identify the one that maximizes a
given cost function. However, despite of its high accuracy, the
estimation time is often prohibitive for installations, involving
large tag populations.

In this work we propose a totally new approach on solving
the localization problem, based on a set of measured phases.
We change the optimization problem to an appropriate form
that can be solved by standard optimization methods. To
achieve that, we ”correct” the measured phase-samples for
each tag to take continuous values, instead of being con-
strained in 2π intervals. Then, a solution of the optimization
problem is rapidly found, while the estimation accuracy is
similar to the best state-of-the-art methods.

We have constructed a prototype robot, demonstrated in Fig.
1. It is able to navigate autonomously in unknown environ-
ments, produce a map of them and track any object of interest
therein. Experimental measurements verify the performance
of the proposed method against the holographic approach.
For a 2D search space, experimental results presented herein
demonstrate a 23-times improvement in the estimation time
of the proposed method with respect to the holographic.
Assuming a 3D search space, the corresponding improvement
would increase dramatically, since the holographic search-
space would be multiplied to the size of the 3rd dimension,
whereas in the proposed method, the estimation-time would
not increase proportionally.

In section II we present an overview of the holographic
method and a detailed description of our proposed localization



Fig. 1. The custom robot.

method. The experimental results are presented in section III
and section IV concludes our findings.

II. DESCRIPTION OF THE PROBLEM

The robot moves along a 10m-long path, e.g. inside a
corridor, collecting measurements at l estimated locations with
coordinates (xi, yi), i = 1, . . . , l, as illustrated in Fig. 2.
Consider that a tag t located at (xt, yt) is identified at n ≤ l
antenna-locations. Let θit denote the phase measurement of the
specific tag t at the ith antenna pose. The measured phase at
the reader is proportional to the round-trip length of the reader-
to-tag-to-reader link, plus a constant phase shift, introduced by
the deployed hardware, [4].

A typical curve which represents the phase measured by a
moving antenna is demonstrated in Fig. 3. The x-axis of the
curve represents the x-coordinate of the robot’s path. The x-
coordinate of the robot changes from 90cm to 435cm, since
the specific tag was within reading-range of the antenna only
during this part of the robot’s trace. Phase ranges in [0, 2π) in-
tervals. Within each interval, the phase reduces as the antenna-
to-tag distance reduces, and then increases as the antenna-
to-tag-distance increases. When the curve changes slope, the
antenna-to-tag distance is minimized; the tag should be located
at a line perpendicular to the robot’s trace, which crosses the
(xi, yi) coordinates that correspond to the minimum of the
phase curve.

Since the phase is measured in 2π intervals, the expected
(theoretical) measurement at a reader’s antenna with coordi-
nates (xi, yi), for a tag placed at (xt, yt) shall be

φit(xt, yt, ct) =

(
2π

λ
2dit + ct

)
mod 2π

=

(
4π

λ

√
(xt − xi)2 + (yt − yi)2 + ct

)
mod 2π, i ∈ [1, n]

(1)

Fig. 2. Path of the robot.

Fig. 3. Measured phase samples for a given tag.

assuming the problem is two-dimensional; i.e. the tag is at the
same height as the reader’s antenna. ct represents the constant
phase shift introduced by the hardware to each measured
sample of the tag t. We are searching for the possible tag
coordinates that fit best to the measured samples.

A. Holographic Method

The holographic method presented in [9], creates a cost
function and performs an exhaustive search on all possible
tag locations in the space of interest to find the one that
best matches the observations/measurements. Let a grid of
m possible locations of the unknown tag. For any possible
location (xk, yk) of the grid the following cost function-term
is calculated:

Pk =

∣∣∣∣∣
n∑
i=1

ej(θit−φik)

∣∣∣∣∣ , k = 1, . . . ,m (2)

In (2), θit corresponds to the measured phase-sample of
”target” tag t from the robot’s coordinates (xi, yi) and φik
is the theoretical/expected phase value that would have been
measured if the tag was located at position (xk, yk), from the
same robot’s coordinates (xi, yi). At a location near the actual
tag position, these vectors are expected to add constructively,
whereas at distant locations they will add randomly resulting in
a much lower sum. According to this method, the coordinates
of the tag are estimated by maximizing (2).

The method is expected to ensure high accuracy, but can
be time-consuming. The number of calculations involved is
proportional to the size and density of the search space and
for large problems and especially three-dimensional problems
the estimation-time can be greatly increased.



Fig. 4. Non convex objective function F (xt, yt, ct,0) for a constant ct,0.

B. Proposed Method

Our goal is to create an appropriate cost/objective function,
which can be optimized by standard optimization algorithms
that promise rapid execution. Treating the above as an opti-
mization problem, we are searching for the best selection of
parameters (x′t, y

′
t, c
′
t) that minimize the following function:

F (xt, yt, ct) =
∑n
i=1 [φit(xt, yt, ct)− θit]

2
=∑n

i=1[((
4π
λ

√
(xt − xi)2 + (yt − yi)2 + ct) mod 2π − θit)

mod2π]2

(3)
The pair (x′t, y

′
t) corresponding to the global minimum of (3)

is the solution of the proposed algorithm.
The objective function F (xt, yt, ct) is nonlinear and should

be minimized by applying a nonlinear optimization/fitting
method. Such methods involve mostly iterative algorithms
[18]. They start from an initial selection of the parameters
and adjust them by exploiting certain information; e.g. the
values of first or second derivatives, so that the objective
function value decreases. The procedure shall be repeated until
some specified convergence criteria are met. State-of-the-art
nonlinear optimization methods, presented in [18] and [19], are
based on steepest descend direction, Newton’s direction, Line
search, Trust Region, etc. In general, iterative algorithms con-
verge to a local minimum of the objective function. However,
optimization, by its definition, means finding the best solution
overall and therefore ideally, algorithms should converge to the
global minimum. This can be assured when convex objective
functions are involved [20]; i.e. functions with one and only
global minimum.

In our case, due to the repetitive form of both the curve of
the expected phase values and the curve of the measured phase
samples, the objective function (3) tends to have a repetitive-
shaped curve, too, as shown in Fig. 4. As a consequence, it
is not convex and has many local minima (and maxima). Any
fitting algorithm would be trapped around one of them, instead
of converging to the optimum solution.

C. Phase ReLock

We propose a post-processing of the phase measured sam-
ples so that the global minimum of the new objective function
can be rapidly found by common optimization techniques. The
aforementioned processing refers to the reconstruction of the

Fig. 5. Reconstruction of the measured phase samples.

phase curve in order to obtain a continuous form, eliminating
the discontinuities every 2π. The proposed method is called
Phase ReLock.

Initially, we detect the discontinuities of the curve and
distinguish every 2π interval in it. Let Θj be the set of the
phase samples corresponding to the jth out of m 2π intervals.
Each Θj represents a specific part of the phase-curve as shown
in Fig. 5 (top). Each of these parts should be shifted along the
phase-axis according to:

Θ′
j = Θj + kj · 2π, j = 1, ...,m, (4)

where kj ∈ Z and it’s calculated so that a continuous
curve is produced and any discontinuity between successive
measurements is eliminated (see Fig. 5 - bottom).

Now the theoretical function (1) changes to:

φ′it(xt, yt, ct) =

(
2π

λ
2dit + ct

)
=

(
4π

λ

√
(xt − xi)2 + (yt − yi)2 + ct

)
, i = 1, .., n (5)

and the new cost function is written as:

F ′(xt, yt, ct) =

n∑
i=1

[φ′it(xt, yt, ct)− θ′it]
2

=

n∑
i=1

[(
4π

λ

√
(xt − xi)2 + (yt − yi)2 + ct

)
− θ′it

]2
(6)

where θ′it is the processed measured phase sample correspond-
ing to the ”target” tag t from antenna’s coordinates (xi, yi).
One can notice that (5) and (6) are same as (1) and (3)
respectively; the only difference being that the operation of
modulus is now removed.

The new objective function F ′(xt, yt, ct) no longer suffers
from local minima (see Fig. 6). Therefore, an optimization
algorithm (e.g. [21]) can be applied to find the optimum pa-
rameters (x′t, y

′
t, c
′
t) that correspond to the global minimum of

(6). In this way, the unknown location of the tag t is estimated.
The resemblance between the reconstructed measured phase
curve and the curve produced by (5) for the best (x′t, y

′
t, c
′
t)

is shown in Fig. 7.



Fig. 6. Objective function F ′(xt, yt, ct,0) for a constant ct,0, after the
proposed reconstruction of the measured phase samples.

Fig. 7. Reconstructed phase-curve (blue) vs. Phase ReLock theoretical phase-
curve for optimum parameters (green).

III. EXPERIMENTAL RESULTS

A. Implementation

Measurements were performed, by deploying a custom
robot that we constructed. We used a Turtlebot2 [22] with
a Kobuki mobile base [23] for motion support, appropriately
equipped to perform both RFID localization and SLAM.
It carries a 7dBic “MT-242032/NRH” circularly polarized
antenna from “MTI Wireless Edge” [24], connected to the
Speedway Revolution R420 RFID reader [25], while the
sensors responsible for the SLAM operations are an RPLidar
A1 [26] and an Xtion Live Pro depth camera [27]. An Intel
i7 CPU is attached to a Mini-ITX motherboard and an SSD
drive for data storage.

The experiments took place in a long corridor-type labora-
tory room inside the Campus (see Fig. 8) and were carried out
in two phases. The first phase corresponds to the operation of
SLAM; the robot traverses the ”a priori” unknown space and
creates a map of the environment by exploiting sensor data
and utilizing state-of-the-art SLAM algorithms, (e.g. [28]). In
the second phase, the robot moves along a straight trajectory
and it evaluates its position in the previously produced map. In
the meantime, it continuously interrogates the RFID tags. The
latter are placed at a millimeter-paper, forming an accurate
grid on the laboratory bench (Fig. 8). The second phase was
repeated 10 times for different robot’s speeds and traces. As
soon as the experimental implementation was finished, we

Fig. 8. Representation of the measurements’s set-up.

TABLE I
EXPERIMENTAL RESULTS

Method mean error std mean est-time
Phase ReLock 17.46cm 13.68cm 45.64s
Holographic 16.84cm 16.12cm 17.5min

compared the holographic method against the proposed ”Phase
ReLock”.

B. Results

The holographic method was executed for a limited space
around the bench; a grid of 10m length and 2m width. The
locations of an average of 80 tags were estimated during
each of the 10 experiments; i.e 800 estimations in total. The
boxplots of the localization error for the two deployed methods
are shown in Fig. 9. The mean and the standard deviation of
the error and the mean estimation-time (for 80 tag evaluations)
of the algorithms are given in Table I.

As far as accuracy is concerned, Phase Relock and holo-
graphic method are equivalent. They have both accomplished
to locate the tags with a mean error of about 17cm, while
the standard deviation of Phase ReLock is better by 3cm.
More importantly, Phase ReLock has achieved a tremendous
improvement of the algorithm speed. Localization of the
tags is achieved 23 times faster than the holographic. This
reduction-ratio would be further increased as the search space
is increased, since the speed of the holographic depends on
the size of the grid, whereas the proposed Phase ReLock
doesn’t. Such realistic cases demanding larger grids are three-
dimensional problems.

IV. CONCLUSION

In this work, we have presented Phase ReLock; a prototype
localization method based on the reconstruction of the phase
measurements, such that standard optimization algorithms can
rapidly solve the re-formed problem. Experimental results
indicate comparable accuracy to the most accurate, according
to prior-art, holographic method. However, we have accom-
plished a huge reduction of the estimation-time.



Fig. 9. Localization errors for 800 estimations.
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State-of-art localization algorithms report accuracy below
10cm, [10], but include multipath-reduction techniques in-
volving multiple frequencies and multiple antennas, while
they consider the robot-antenna positions as known. Such
techniques would also improve Phase ReLock proportionally,
since we achieve the same accuracy as the core localization
algorithm (holographic), deployed therein [10]. In contrast to
prior-art, we have considered the actual problem, where the
robot must also locate itself in the map. As a result, the robot’s
self-localization error is ”accumulated” to the localization
error of the tags (since the reference positions of the reader
are not exact).
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