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Abstract—This work presents a phase-based device-free local-
ization (DFL) scheme for tracking the movement of a human
target by employing a network of anchor RFID tags inside
the search space. The proposed method measures the phase
disturbances of the backscattered field induced by a target
roaming in the propagation environment and detects whether an
antenna-to-tag link is obscured or not. This binary information is
fused by a geometrical model that realises the target as a cylinder,
thanks to which the position of the target can be identified even
by a single reader-antenna. A particle filter algorithm (PF) keeps
track of the target’s movement over time, smoothing otherwise
abrupt maneuvers. Experimental results with a single antenna
report a median absolute localization error in the order of 20cm
which decreases to 15cm when more antennas are employed. The
real-time capability of the method is also verified.

Index Terms—RFID, device-free localization, human tracking

I. INTRODUCTION

Localization and tracking is a key feature for numerous
applications. As such, it has received great attention and has
been treated in depth in prior art. Device-free localization
(DFL) methods have the advantage of not requiring any
operational device on the target, but suffer from the inability
to identify the target. On the other hand, in contrast to device-
based methods, they are not constrained by the demand for
continuous operation of the target’s device. DFL methods
employ a network of RF sensors around the monitored space.
The presence or movement of a human target inside the
propagation environment is expected to induce disturbances of
the measured radio patterns. The target can be thus localized
on account of such observed changes.

In the majority of DFL methods, disturbances of the re-
ceived signal strength (RSS) measured from distributed RF
sensors are used to localize the target. Some representative
techniques are:

• Propagation model-based [1] - [3]: These techniques
refer to the modeling of radio signal phenomena such
as scattering, diffraction, fading, etc, with a mathematical
model, capable of mapping online measurements to target
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locations. For this purpose, data from extensive experi-
ments should be collected in order to define an accurate
model. However, this can be a quite challenging task,
while the model is environment-dependent and can not
be used globally.

• Fingerprinting [4], [5]: Instead of using a mathematical
model, fingerprinting-based methods necessitate the con-
struction of a reference radio map by collecting data with
a target placed at several predetermined positions. The
target is localized by matching the collected measure-
ments to the reference radio map. Gathering reference
measurements is a time-consuming process and should be
repeated in case of repositioning a sensor or an object.

• Training-based [6] - [9]: Similarly, training-based meth-
ods introduce the prerequisite of having training set of
measurements for all target positions. Such set is used to
feed and train a neural network. The latter incorporates
new measurements to output the target’s position.

• Radio Tomographic Imaging (RTI) [10] - [12]: Inspired
by the medical tomography, the search space is sur-
rounded by transmitters and receivers to construct an
image that releases the location of the target in it. RTI
methods use a linear model to compute the attenuation
field over the space. Although promising, multiple anten-
nas are required to surround the space of interest which
is not always applicable.

• Other: [13], [14] localize a human target by utilizing
information about the angle of arrival and interference
effect, respectively.

In this paper, a low-cost DFL module is presented, which
employs a set of passive RFID tags to track a moving human
target. A single or more closely spaced antennas are employed
at one side of the monitored area to measure the backscattered
signal of each RFID tag. The fluctuations of phase measure-
ments are utilized to identify whether an antenna-to-tag link
is interfered by a human occurrence. Phase measurements are
stored in a two-state model indicating whether the link is
obstructed or not. This binary-state information is then fused
by a geometrical model, according to which the target holds a
cylindrical volume. Electromagnetically modeling the human
body as a conducting cylinder was shown experimentally in
[15]. This model is fused with a target transition model by a
bayesian particle filter algorithm to update the positions of the978-1-6654-1046-5/22/$31.00 ©2022 IEEE
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Fig. 1. Sketch of a tracking scenario inside a museum. Device-free visitors
move spontaneously around the exhibits which are RFID-tagged.

target with respect to time. Eventually, a Savitzky–Golay filter
[16] is deployed for further smoothing the estimated trajectory.

In contrast to prior art, this method exploits the phase of the
backscattered signal, since RSS is more sensitive to multipath
and properties of the propagation environment. It was found
that disturbances in the phase patterns capture more efficiently
the signal’s interference by the target movement. Furthermore,
this work realises the target as a cylinder. Instead of a point
mass, a target that holds a cylindrical volume inside the space
facilitates the development of more effective geometrical-
based models. Under such perspective, single-antenna schemes
can be employed; when more tags are obscured, the cylindrical
target should reside closer to the antenna, as indicated in
Fig. 3. On the contrary, localization methods utilizing a point
mass model, require inefficient and expensive deployment of
multiple antennas around the search space.

Being independent of any training or fingerprinting data
sets, the method does not require excessive offline preparation.
The only prerequisite is the recording of the radio profiles in
a target-free environment, a process that can be easily imple-
mented at no expense of time or effort; e.g. such measurements
can be collected periodically overnight.

This work is part of a larger project which aims to track
visitors inside the Archaeological Museum of Thessaloniki,
see Fig.1. The objectives are among others the extraction
of visiting patterns and collection of various statistical data
regarding the visitors’ behavior. The latter do not necessarily
carry any RFID-enabled device, while the exhibits inside
the museum areas are RFID-tagged and interrogated by the
antennas mounted in one side of the room.

II. SOLUTION APPROACH

A. Geometrical Configuration

Consider the geometry of Fig. 2, where M antennas are
monitoring a group of N tags. Let pant,j = (xant,j , yant,j)
and ptag,i = (xtag,i, ytag,i) denote the known coordinates
of the jth antenna and the ith tag, respectively. The LOS
link between them is denoted as lij and it can be geomet-
rically intercepted as a line (lij) : aijx + bijy + cij = 0,
where aij = ytag,i − yant,j , bij = −xtag,i + xant,j and
cij = −ytag,ixant,j + yant,jxtag,i.

Fig. 2. A circular target divides the reading zone of the antenna to the lit
and shadow sub-zones. A Line-of-Sight (LOS) link is preserved for the tags
of the lit zone.

Fig. 3. The distance between the target and the antenna determines the size
of the shadow zone and thus, the number of the obscured links. A rough
estimation can be intuitively obtained even by a single antenna.

The presence of a human inside the monitored area is
expected to influence the propagation environment by inter-
fering with some of the links. Instead of a point mass, the
target holds a circular volume of radius Rtarg and center
ptarg = (xtarg, ytarg), as depicted in Fig. 2. The reading zone
of each antenna is divided into two sub-zones, the lit and the
shadow, the boundaries of which are nominally determined
by the tangent lines from the antenna-point to the circular
target surface. The size of the shadowed region and hence, the
number of expected obscured links, depends on the distance
between the antenna and the target; the closer the target lays to
the antenna, the wider the shadow zone becomes. This effect
is depicted in Fig. 3, which indicates that target localization
is feasible in two dimensions even by a single antenna.

Let d
(
lij ,ptarg

)
denote the perpendicular distance between

the target’s centroid and the link-line lij :

d
(
lij ,ptarg

)
=

|aijxtarg + bijytarg + cij |√
a2ij + b2ij

(1)

According to the above geometrical relationship, links with
distance (1) shorter than the target’s radius are nominally
obscured by the target, whereas those with greater distance
are not. The expected obstruction-state of the link can be then
defined such that a value of 1 indicates blocking and a value
of 0 not. The state depends on the target location and thus, its
binary form is given by:

eij(ptarg) =

{
1, if d

(
lij ,ptarg

)
≤ Rtarg

0, otherwise
(2)

Eventually, the expected states of all links are stacked into an
N × M matrix E(ptarg). Assuming a grid of hypothetical
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Fig. 4. A typical phase profile
measured in a target-free environ-
ment. Phase is Gaussian distributed
and therefore exhibits small ran-
dom variations with standard devi-
ation less than 0.1rads.
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Fig. 5. A phase profile disturbed
by a target crossing the antenna-to-
tag line of sight. Apart from small
random noise, the profile exhibits
time-dependent fluctuations due to
the target movement.

target locations over the search-space, the expectation link
state matrix for each of them can be computed and stored
during an offline phase.

B. Target-free Environment

In an offline phase, each antenna records the phase of each
tag’s signal for a long-time in the environment devoid of
target. Phase has support in [0, 2π], therefore phase unwrap-
ping is deployed to eliminate 2π jumps and drops that may
mislead the algorithm. In an empty propagation environment,
the unwrapped phase profiles do not exhibit any significant
variation over time. Fig. 4 shows a characteristic phase curve.
Phase obeys a typical Gaussian distribution with a standard
deviation of less than 0.1 radians. Being time-independent,
such profiles can be sufficiently represented by statistical
values. Contextually, for the unwrapped phase profile of the
ith tag measured by the jth antenna, the average value Φ

0

ij

and read rate ρ0ij are computed and stored for further usage.

C. Target Occurrence

As the human target moves inside the propagation environ-
ment, the shadow zone of each antenna changes and different
antenna-to-tag LOS links are obscured. However, even if a
tag falls in the shadow zone, the power of the diffraction field
is likely to be adequate to activate it. Fig. 5 plots a typical
measured phase-profile when a target moves in the vicinity of
the tag. In contrast to the phase of Fig. 4 obtained in a target-
free environment, this profile exhibits disturbances depending
on the target’s movement over time.

Let t denote the time and estimation index. Since the tags
are not replying to the reader simultaneously, the estimation is
based on measurements collected within a short-time window
that corresponds to index t. The window has a length of δ
and should be long enough to acquire measurements from
all antenna-tag pairs. However, at the same time, it should
not be too long. Otherwise, a rapid target movement will not
be detected. The measurements within a short-time window
exhibit no significant variation and they too, can be represented
by the average unwrapped phase Φ

t

ij and read rate ρtij . The
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Fig. 6. Representation of similarity function (4) computed for a grid of
possible target locations. High amplitudes are depicted by hotter colors. The
maximum values of (4) are recorded in the vicinity of the actual target location
depicted by a circle.

differences between them and the target-free average values
recorded in the offline phase are evaluated to determine the
measured binary state of each link. More specifically:

mt
ij =

{
1, if

(
∆Φ

t

ij ≥ γϕ

)
or

(
∆ρtij ≤ γρ

)
0, otherwise

(3)

where ∆Φ
t

ij = |Φt

ij − Φ
0

ij |, ∆ρtij = ρtij/ρ
0
ij and γϕ, γρ

are predefined thresholds. The read-rate evaluation essentially
identifies cases of full blocking where no measurements of a
tag are collected within the considered time window. Even-
tually, the N × M matrix M t stacks the states mt

ij of all
links.

The (dis)similarity between matrices M t and E(ptarg)
represents the probability of the assumed target location ptarg

to be the actual one at timestep t. This resemblance should
be quantified such that its magnitude is directly proportional
to the number of true positives - i.e. links with expected and
measured state same and equal to one, mt

ij = eij = 1 - and
inversely proportional to the amount of false positives and false
negatives - i.e. links with unequal states mt

ij ̸= eij .

g(M t,E
(
ptarg)

)
=

∑M
j=1

∑N
i=1 m

t
ijeij∑M

j=1

∑N
i=1 |mt

ij − eij |
(4)

The nominator corresponds to the algebraic representation
of an AND logical operation outputting 1 when both of its
inputs are equal to 1. The denominator represents an XOR
operation which outputs 1 only for unequal inputs. Fig. 6
illustrates the magnitude of (4) based on actual measurements
for a grid of possible target locations. High amplitudes are
depicted by hot colors, while white and black color correspond
to zero and maximum cost-values, respectively.

D. Tracking of a Moving Target

Tracking a moving target refers to the estimation of its
dynamic state with respect to time. Let the state vector at time
instant t consist of the target’s location and velocity along each
axis of motion, namely Xt = [xt, yt, ut

x, u
t
y]

T . The tracking
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Fig. 7. Predict step:
The temporal evolution of the particle states is
performed according to the transition model (6)
and the previous state.
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Fig. 8. Update step: The particle weights
are chromatically represented. Hotter colors cor-
respond to highly-weighted particles, whereas
white represents zero weights.

0 50 100 150 200 250 300
x(cm)

200

250

300

350

400

450

500

y(
cm

)

tags
antennas
resampled particles

Fig. 9. Resampling step: The size of each particle
represents the times it has been drawn. The larger
the depiction of a particle, the more copies have
been generated from it.

process can be discriminated in two main operations: i)
prediction and ii) update. Prediction is related to the temporal
evolution of the target state depending on previous states,
while update stage refers to the modification of the predicted
state in the light of new measurements.

Particle filters (PF) solve the estimation problem by em-
ploying a set of weighted particles, each of which represents
a potential state accompanied by its likelihood to be the actual
one:

{Xt
n, w

t
n}

Np

n=1 (5)

where wt
n is the importance weight of the nth particle and

Np the particle population. The implemented PF algorithm
consists of the following steps:

1) Initialization: Initially, a swarm of Np particles is ran-
domly generated within the search space boundaries, while all
weights are set to 1/Np.

2) Prediction: Prediction corresponds to the temporal evo-
lution of each particle’s state based on the previous state and
a transition model. Assuming a short duration ∆t between the
successive time instants t−1 and t, the maneuvers of a human
target in ∆t are expected to be random and can be efficiently
intercepted by a white noise acceleration model. According to
the latter, the acceleration of the target at

n = [atxn
, atyn

]T along
each motion axis is an independent Gaussian process with
standard deviation σa for each of its components. In matrix
form, the state of each particle is predicted according to:

Xt
n = FXt−1

n +Bat
n, n ∈ [1, Np] (6)

where F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

, B =


∆t2/2 0

0 ∆t2/2
∆t 0
0 ∆t

.

The predicted states of the particles are presented in Fig. 7.
3) Update: The update step attempts to modify the

weights by incorporating measurements. The similarity func-
tion g

(
M t,E

(
Xt

n

))
given by (4), quantifies the likelihood

of the nth particle to be the true one. Therefore, each weight
is updated according to

wt
n = wt−1

n g
(
M t,E

(
Xt

n

))
, n ∈ [1, Np] (7)

At last, the updated weights are normalised such that:

wt
n =

wt
n∑Np

1 wt
n

, n ∈ [1, Np] (8)

The updated weights of the particles are depicted in Fig. 8.
4) Estimation: The weighted mean of the particles’ states

represents the estimation of the target’s location at time instant
t:

X
t
=

Np∑
n=1

wt
nX

t
n (9)

5) Resampling: A danger concealed in particle filters is
the particle degeneracy, namely the case where all particle
weights with the exception of one eventually tend to zero. In
order to tackle this issue, a resampling step is included. Np

particles are selected from the existed set of particles, while
their probability to be drawn is proportional to their weights.
As a consequence, the improbable small-weighted particles
are discarded and replaced with copies of highly-weighted
particles. Fig. 9 shows this procedure, where the size of each
particle represents the amount of times it has been copied.

After the resampling phase the algorithm returns to the step
of prediction and the procedure is repeated at each time step
t, until the target exits the monitored area.

6) Smoothing: Eventually, a polynomial-based filter [16] is
applied to smoothen the estimated trajectory.

III. EXPERIMENTAL EVALUATION

The experiments were conducted inside a multipath-rich
laboratory area. 25 passive UHF RFID tags were placed at 1m
height forming a Γ-like shape across the room, with an inter-
tag spacing of 25cm. In the opposite side of the space, four
patch antennas connected to the same reader were employed at
a similar height with an inter-antenna spacing of only 20cm,
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Fig. 10. The target paths for three of the experiments where the target moved across Γ-like and arbitrary paths. Green color depicts the trajectory derived
by the camera-based system, blue color represents the path estimated by the PF algorithm and red color corresponds to the eventual trajectory after the
deployment of the smoothing filter.

Fig. 11. Photo of the experimental set-up, where 4 antennas were employed
opposite to 25 passive tags. The human target moves across the enclosed space
carrying an ArUco marker such that the ground truth of its trace is measured.

as shown in Fig. 11. During the experiments, a single human
target is travelling at various speeds and trajectories through
the enclosed space, which corresponds to a search volume of
3.5m× 2.5m.

The static locations of the antennas and tags, as well as
the human’s trajectory, were measured by employing AruCo
markers; i.e. paper-printed markers composed by inner black
and white squares, the sequence of which determines a specific
ID. A camera-enabled laptop continuously monitors the area
and the acquired images are evaluated to detect and identify
markers. Then, the position and rotation of the identified
markers with respect to the camera is estimated. During the
experiments, the human carries an ArUco marker and the
above vision-based system tracks its locations. These are used
as ground truth and compared to locations estimated by the
proposed DFL method.

Experiments took place in two phases. During the offline
phase, measurements were taken in a target-free space and
the average phase value and read rate of each antenna-to-tag
pair were recorded. Furthermore, benefited from the facts that

the tags and antennas locations do not change and the expected
link state depends only on the hypothetical target location, the
expected state matrices for all possible positions within the
search-space, were computed in advance and stored. In such
manner, these calculations no longer need to be made in the
online phase and the computational cost of the algorithm is
relaxed.

The online phase refers to the evaluation of the proposed
method. During this step, a single human target moves spon-
taneously across the space. An estimation is derived every
∆t = 0.5s. The length of the measurement time-window is
set to δ = 0.5s, the standard deviation of the acceleration
σa = 0.5m/s2, the thresholds γϕ = 1rad and γρ = 0.25
and the particle population Np = 200. Regarding the latter,
increasing the number of particles not only did not improve
the achieved accuracy but also increased needlessly the com-
putational burden.

A. Experimental Results

Fig. 10 depicts the estimated trajectories for three of the
experiments by utilizing all available links composed by the
4 antennas and the 25 tags.

1) Effect of the target radius: Fig. 12 explores the achieved
accuracy for different radii of the target. Lowest localization
error is achieved when a target radius of 20cm or 25cm are
considered, reporting a median accuracy of 18cm.

2) Effect of the target speed: Fig. 13 examines the impact of
the target’s speed on the performance for a radius of 25cm. In
particular, an experiment of Γ-like path was repeated for three
different walking speeds labeled as slow, medium and fast.
The method preserves its robustness for all speeds, reporting
equivalent accuracy with a median error around 15cm, while
no error greater than 35cm was observed.

3) Effect of the number of antennas: Next, the performance
of the method is investigated with respect to the number of
employed antennas. Fig. 14 indicates the localization error
slightly decreases with the increase of the antennas. When a
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Fig. 12. Localization error for
varying the radius of the target.
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sented.
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Fig. 13. Localization error for
varying the experimental speed of
the target. The median, maximum,
minimum and interquartile range
are presented.
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Fig. 14. Localization error for
varying the number of employed
antennas.The median, maximum,
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are presented.
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Fig. 15. Average time required
to estimate the target’s trajectory,
compared to the average duration
of the experiment.

single antenna is utilized, a median error of 20cm is achieved,
which decreases to about 15cm when all four available anten-
nas are taking into account. The accomplished accuracy is
adequate for realistic applications making the method suitable
even for single-antenna schemes.

4) Estimation-time: The only time-consuming operation of
the method is the calculation of expected link states E(Xt

n)
for each employed particle. However, by including this process
in the offline stage and store the values in the memory, the
computational complexity is reduced. Fig. 15 verifies the real-
time capability of the method, which requires around 40ms
to make a single estimation.

IV. CONCLUSION

This work presents a device-free tracking scheme, that
tracks a single human target by exploiting a network of passive
RFID tags inside the monitored area. As the target moves
through the environment, it blocks some antenna-to-tag links
and influences their phase measurements. By comparing them
with measurements collected from a target-free environment
in a prior offline phase, the binary state of the link can be
determined; i.e. whether the link is affected or not. Information
about each link-state is then mapped to the target’s location by
employing a geometrical model, according to which the target
holds a cylindrical volume. Thanks to such assumption, target

localization can be achieved even when a single antenna is
available. A particle filter algorithm is developed to constantly
update the target’s location over time. Experimental results
report a median error of slightly less than 20cm, while the
computational cost of the algorithm is negligible.
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