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Abstract—In this paper we investigate the problem of localizing
passive RFID tags by ground robots and drones. We focus on
autonomous robots, capable of entering a previously unknown
environment, creating a 3D map of it, navigating safely in it,
localizing themselves while moving, then localizing all RFID
tagged objects and pinpointing their locations in the 3D map
with cm accuracy. To the best of our knowledge, this is the
first paper that presents the complex joint problem, including
challenges from the field of robotics - i) sensors utilization, ii)
local and global path planners, iii) navigation, iv) simultaneous
localization of the robot and mapping - and from the field of
RFIDs - vi) localization of the tags. We restrict our analysis
to solutions, involving commercial UHF EPC Gen2 RFID tags,
commercial off-the-self RFID readers and 3D real-time-only
methods for tag-localization. We briefly present a new method,
suitable for real-time 3D inventorying, and compare it with our
two recent methods. Comparison is carried out on a new set of
experiments, conducted in a multipath-rich indoor environment,
where the actual problem is treated; i.e. our prototype robot
constructs a 3D map, navigates in the environment, continuously
estimates its poses as well as the locations of the surrounding
tags. Localization results are given in a few seconds for 100
tags, parsing approximately 100000 measured samples from 4
antennas, collected within 4 minutes and achieving a mean
3D error of 25cm, which includes the error propagating from
robotics and the uncertainty related to the ”ground truth” of the
tags’ placement.

Index Terms—RFID, robotics, localization, inventorying

I. INTRODUCTION

In the context of our project ”RELIEF” [1], we focus on the
problem of continuous inventorying in large warehouses and
retail-stores. All target products are tagged with passive UHF
EPC Gen2 RFID tags. A fixed reader-antenna network, contin-
uously monitoring the entire area, would require a prohibitive
installation cost. Instead, we have designed and constructed
two prototype RFID-equipped robots (see Fig. 1) and a drone
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(Fig. 2), capable to carry out the task. The goals of the robots
are to be able to construct a map of the ”a priori” unknown
environment, to navigate autonomously and safely inside it, to
interpret their own pose (position and direction) and to identify
and rapidly locate all RFID tagged items with cm accuracy and
project their locations in the previously created 3D map. In
simple words, one would ”Plug and Play” a robot in the area
and expect a 3D map of the space along with the products.
Typical applications may include querying a database for a
specific product and get a 3D result pinpointing its location
on the map, real-time notifications on the locations of sensitive
products, e.g. expired products inside a supermarket, real-time
localization of books inside a library etc.

Our robots are not the first ones in the market to address
the inventorying problem. Existing commercial robots are
”Tory” [2], ”AdvanRobot” [3], ”StockBot” [4] and more.
All aforementioned robots are also designed to autonomously
navigate in unknown environments and probably to localize
the surrounding tags. Localization of the tags is an inherent
property of the antenna-reader system; i.e. when a tag is
successfully interrogated, it belongs to the read-region of the
specific antenna, but this property will give a poor accuracy of
meters. So the real benchmark becomes how well each robot
addresses its complex mission. Our target is to localize all
products with a mean 3D error of less than 10cm (comparable
to the dimensions of the tag) and accomplish that task in real-
time, without the use of custom wide-band technology.

The typical available physical quantities for localization of
UHF EPC Gen2 RFID tags are i) the backscattered power,
usually referred as RSSI and ii) the phase of the backscattered
signal of each tag. In contrast to RSSI, which can be directly
mapped into distance, a single phase sample is useless for
localization, due to the 2π ambiguity of phase measurements.
However, the robot allows for a dense collection of successive
RSSI and phase measurements from different locations, thus
forming a ”Synthetic Aperture” or ”Virtual Antenna Array”. In
this perspective, the phase information represents a better met-
ric (over RSSI) for localization of the tag, given its tolerance978-1-7281-5576-0/20/$31.00 ©2020 IEEE



Fig. 1: Photo of ”Frida” from a recent international exhibition.

on the tag’s antenna polarization, detuning or partial blockage,
while experiencing smaller variations due to multipath.

As a consequence, the most accurate localization algorithms
are based on phase measurements collected along a Synthetic
Aperture, a technique known from radar systems, which is now
applied in RFID localization technology [5] - [9]. However,
in all cases calculations are carried out on a grid. As a result,
all algorithms fail to accomplish real-time results for realistic
tag populations and 3D spaces, due to the size of the grid.
Two different approaches were presented in [10], [11]; yet
[11] requires functionality of the tag’s antenna over large
bandwidth and it cannot be applied in real-time for large
populations, while [10] represents an interesting alternative to
the problem, though it should be extended in 3D. Recently,
we have introduced ”Phase ReLock”, [12] - [14], a method
which transforms the original optimization problem into a new
equivalent form, which can be solved rapidly by standard
iterative optimization techniques (instead of searching on a
grid).

The aforementioned localization methods require knowl-
edge of the exact trace of the robot. However, this is not always
possible. For instance, a lightweight drone, suitable for indoor
warehouse monitoring may not be able to carry the sensing-
equipment for localization of its own pose (a lightweight 360o

lidar weighs more than 500g). Under such circumstances, a
reasonable alternative is to explore fingerprinting methods,
where localization of the unknown tags is carried out by
evaluating the resemblance of their measured characteristics
(RSSI and phase) with measurements of reference tags, placed
at known locations, collected from the same equipment at the
same time. Starting from ”Landmarc” [15], we have developed

Fig. 2: Photo of the RFID equipped drone.

a fingerprinting method exploiting the RSSI [16] and the
phase [17] measurements, while we have proposed real-time
performance evaluation by further exploiting the reference
tags.

In addition we focus on problems related to robotics; map
construction, global/local planners [30], sensors’ performance,
localization of robot and navigation.

In this paper, in contrast to prior art, where the poses of
the robot are taken for granted, we present an overview of the
problem, starting from robotics and the related uncertainties,
which affect the accuracy of the tag’s positioning. Secondly,
we briefly introduce a prototype real-time tag-localization
method, where the phase-unwrapped sequence of samples
becomes the input to an over-determined linear system, which
is rapidly solved to extract the location of each tag. The new
method performs even faster than ”Phase ReLock”, [12] - [14],
with comparable accuracy, achieving localization of 100 tags
in just 6s- the estimation time is orders of magnitude smaller
than the duration of the measurements by the moving robot,
which lasted for minutes. Thirdly, we compare the perfor-
mance of the proposed methods in a new set of experiments
involving tags arranged in different 3D configurations. In
these experiments, the map is created during each experiment,
the robot navigates autonomously, the poses/locations of the
robot are estimated (and not considered known) and the
locations of the tags in the surrounding area are updated
dynamically. Mean 3D error, including the robotics SLAM
error, in the order of 25cm is achieved, which is comparable to
the dimensions of the tags (10cm) and the uncertainty related
to the ground-truth of the tags’ actual locations.

II. ROBOT - REQUIREMENTS AND CONSTRAINTS

The phrase “RFID-tag localization” implies that, within the
environment where tags are situated, there exists a frame of
reference in which their location can be inferred. In practice,
the inference made requires the use of the sensor’s pose
relative to the same frame of reference. In situations where
the sensor is mounted at a fixed pose on a mobile robot, as
is customary in most mobile robotics applications, inferring
the sensor’s pose is mediated by inferring the robot’s pose,
which, in GPS-denied environments such as indoors, can
usually only be estimated, in contrast to being measured. In



mobile robotics, the estimation of a robot’s pose using only
equipment mounted on the robot is called Robot localization
and, together with mapping, i.e. “Simultaneous localization
and Mapping” (SLAM), they comprise its two fundamental
tasks. Accurate robot localization is of paramount importance
for the tag-localization problem, since most methods assume
the reader-antennas’ locations as known. A robot-localization
error propagates into the tag-localization estimation.

A. Robot Localization

The task of robot localization assumes the existence of a
map of the robot’s surroundings, and it is comprised of two
discrete problems. The first constitutes the estimation of the
robot’s initial resting pose in the map and is termed “the
Global localization problem”. The second is the estimation of
the robot’s pose through time, given the robot’s initial resting
pose and is called “the Pose-Tracking problem”. In the case of
terrestrial robots, and depending on the robot’s sensors, a 2D
map is sufficient to estimate the pose p(x, y, θ) of the robot
in the 2D plane. In the case of drones, a 3D map is necessary,
where the full p(x, y, z, roll, pitch, yaw) pose is required.

Let us now consider the problem of pose tracking. The
simplest way of estimating the robot’s pose through time is
integrating the motor’s control commands into the kinematic or
dynamic model of the robot, enhanced by (non-exteroceptive)
sensors (e.g. counting the number of wheels’ revolutions). Due
to the model’s inescapable mismatch to reality, wheel slippage
in terrestrial robots, input noise, saturation, and other sources
of error, the uncertainty of the robot’s pose grows without limit
over time, eventually rendering pose estimation meaningless
[19]. Consequently, the pose of the RFID sensor becomes
unattainable, and therefore RFID-tag localization impossible.
The only solution to improving the accuracy is to integrate
sensors of the environment onto the robot (exteroceptive). The
simplest sensor could be a conventional RGB camera. Through
it, one can detect features in the robot’s environment and match
them to features of the environment’s map.

More recently, the RGB camera was enhanced with the
addition of depth information, [18]. Images captured through
RGBD cameras convey and encode in each pixel the colour
and depth content of the environment within the sensor’s
field of view. Notwithstanding both sensors’ advantage of
conveying rich information, both suffer from causes particular
either to environment conditions or their systemic idiosyncrasy
[20]- [22]. These pitfalls, along with the large volume of
data to be processed, results in low-frequency pose updates
and rather large uncertainty in pose estimation [23], [24],
consequently propagating to rather crude RFID sensor pose
estimates. In general, the above have led the current state-of-
the-art to utilise RGBD sensors in a subsidiary capacity as
regards localization, having a range-finder sensor act as the
primary source of information from the environment.

A range-finder sensor measures its distance to objects in
the environment at equiangular intervals over a range of up
to 2π rad. Its encoding of the sense of depth (unlike RGB
camera sensors), large range (greater than RGBD cameras),

real-time operational frequency, millimetre accuracy, minimal
bandwidth needed, and virtually no need for preprocessing has
made it the de facto sensor used for mobile robot localization.
Even range-finders are susceptible to errors, since they usually
operate with infrared light beams, thus the distances measured
are far from correct when the environment contains transparent
or highly reflective surfaces (glass, mirrors, and screens,
among others).

Typically, the most accurate results are obtained when
encoder measurements are fused with measurements from the
range-finder(s) by using a Kalman [25] or Particle filter [19],
[26]- [27]. These filters are utilised in robot localization due to
their ability to track the pose of a robot while accommodating
pose and sensor measurement uncertainty, and hence their
robustness to various sources of error. In our work we use
particle filters, a technique resting on the probabilistic Monte
Carlo Localisation (MCL) approach [28]. The nature of MCL
allows them to represent the uncertainty in the robot’s pose by
maintaining a set of hypotheses (called particles) not bound to
a unimodal probability density function. Among others, this
representation allows a particle filter to globally localise a
robot and keep track of pose ambiguities until being able to
resolve them, by virtue of being able to represent arbitrarily
complex probability densities.

Particle filters recursively estimate the posterior of a robot’s
pose as follows:

p(xt|z1:t,u0,t−1,M) ∝ (1)

p(zt|xt)
∫
x′

p(xt|x′,ut−1) · p(x′|z1:t−1,u0:t−2,M)dx′

Here, the pose of the robot at time t is denoted by xt;
u0:t−1 is the sequence of motion commands executed by the
robot, and z0:t is the sequence of observations made by the
robot, obtained by 2D range scanners, cameras, sonars or other
sensors; M is the map representing the environment in which
the robot moves. The motion model p(xt|xt−1,ut−1) denotes
the probability that, at time t, the robot ends up in pose xt
given that it executes the motion command ut−1 while posed
at xt−1 at time t − 1. The observation model p(zt|xt,M)
denotes the likelihood of making the observation zt while
posed at xt. Figure 3 shows the progressive convergence of
hypotheses during pose tracking when a particle filter using
measurements of a range-finder is used to perform localization.

Coming back to the problem of global localization, it is
now evident that it cannot be performed without the use of
sensors that encode information about the robot’s environment.
We are currently investigating ways of solution to the global
localization problem that exploit RFID technology.

B. Simultaneous Localization and Mapping

One crucial phrase of the previous description about local-
ization was “assumes the existence of a map of the robot’s
surroundings”. Unfortunately, this assumption is almost never
valid, since no blueprints of the environment exist a priori, thus
a SLAM (Simultaneous Localization and Mapping) should
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Fig. 3: Visualization of robot pose estimation during pose
tracking with the use of a particle filter (particles, shown in
red) utilising measurements off a range finder.

be deployed beforehand. SLAM algorithms keep track of the
robot’s pose in the map they concurrently construct, a problem
usually described as “chicken or egg”, since a correct map is
needed to perform localization and an accurate pose is needed
for a sound map.

SLAM is usually probabilistically solved using a Bayes
filter in the form of either Kalman or particle filters, by
utilizing distance or image sensors, and produce either metric
or feature-based maps. In order to perform localization in a
SLAM-generated map, the map has to be metric, i.e. each
cell in 2D, or voxel in 3D, has to represent a specific area
or volume in the real world. When two-dimensional metric
maps are concerned, they are represented as Occupancy Grid
Maps - OGMs [19], meaning that a map is an assemble of cells
comprising a grid, each of which represents an area in the real
world and contains a probability of this area to be occupied
by an obstacle. Similarly, in the 3D case, the usual spatial
representation is an Octomap [29], which contains voxels (3D
cells), again containing occupancy probabilities.

Sensors’ noise gravely affects the quality of the final map.
If the distance sensors provide erroneous data, or if the robot
moves abruptly and affects the chosen SLAM algorithm’s
functionality, the result is a disfigured map. State-of-the art
SLAM algorithms cannot represent the environment correctly,
thus any discrepancies between the generated map and the real
environment introduce extra noise in the localization process.
Another source of uncertainty is the nature of the grid-based
representation itself. Each grid consists of cells, which have
predefined dimensions (also known as map resolution). This
usually ranges from 5cm to 50cm, depending on the total area
we want to be mapped. Therefore, a e.g. 10cm × 10cm cell
may contain both free space and the edge of an obstacle,
nevertheless it is represented by a single number in the OGM,

Fig. 4: 2D (Left) and 3D (Right) map created by ”Frida”
during an experiment.

fact that leads to even poorer performance in localization.
Currently 2D SLAM algorithms greatly outperform 3D ones,
since the dimensionality increase adds a great burden in CPU
and memory requirements. Thus, when drones are concerned
which must use 3D maps for their localization, larger errors
are expected, due to the low resolution of the map they use
to localize themselves. This error is propagated in the RFID
localization, as explained earlier. Fig. 4 (left) shows the 2D
map, using a range-finder sensor, created during an experiment
in the lab, while Fig. 4 (right) shows the 3D map of the same
environment built with the use of 3 RGBD cameras.

C. Navigation

In principle, robot navigation is carried out in either of two
ways: by teleoperation or by the robot itself (autonomous).
Autonomous robot navigation implies the existence of an end:
that can be the robot reaching a target pose in the map,
or the covering of some portion of the map (possibly its
entirety), all while satisfying input, state, collision avoidance,
or other set constraints. In the context of robotics, covering
can be defined in terms of either the robot’s footprint or
the field of view of some sensor it employs. Two operators
are required for autonomous robot navigation: i) a ”global
planner”; it constructs a connected path from one point of the
map to another (from the robot’s starting location to its target
location), and ii) a ”local planner”; it directs the robot’s motors
into following that path as closely as possible without violating
any set constraints. The two operators work in tandem, waiting
for a user-supplied target in the case where the robot is tasked
to reach a specific pose, or a robot-supplied target, in the case
where higher-level tasks, such as coverage of a portion of the
map, are demanded. In [30] we have performed a comparative
study of performance between global and local planners and
their combinations. In the course and context of our project we
have singled-out the NF1 navigation function approach [31] as
a viable global planner, and, for a local planner, the flexible
Timed-Elastic-Band approach [32], [33].

During navigation, when the map is expressed in two di-
mensions, navigation may still fail. One of the reasons may be
inconsistencies between the obstacles depicted in the SLAM-
generated map and the real ones, since environments are
typically packed with movable or moving objects. Therefore,



Fig. 5: Sketch of a localization scenario. Four antennas
mounted on each side of a moving robot form a multi-antenna
synthetic aperture

the global path the robot calculated to follow may be totally in-
valid, thus fast modifications may be performed so as to reach
the goal in safety. Furthermore, usually motion-commands’
translation to robot velocities is never accurate, due to mechan-
ical inconsistencies in the robot’s motion system, slippages or
frictions of the wheels or even due to environmental culprits.
Finally, in the 2D case, there is the lack of information around
the vertical dimension. Consider for instance the case where a
table resides in the environment, and navigation is performed
only through the use of a LIDAR sensor: the map of the
environment may only contain information about the legs of
the table, which means that the navigation module may instruct
the robot to pass through the table rather than around it,
causing it to crash. This danger is more pronounced when the
robot is an aerial one and the environment features different
obstacles at different heights. Similarly, poor pose estimation
may result in crashes because the navigation’s local planner
relies upon accurate pose estimates.

III. LOCALIZATION OF RFID TAGS

A. Robot-Location-Aware Methods

The robot moves along a straight path and carries four an-
tennas per side (8 antennas in total), each of which is forming
a synthetic aperture at a different height, as demonstrated in
Fig. 5 In order to solve the problem of localizing a tag in
the 3D space, each antenna and its measurements are initially
treated independently. For each antenna, we assume the tag to
be located at the same height as the antenna. This relaxes
the problem in two dimensions. We will actually find the
radius of a circle, perpendicular to the line of motion, where
the tag may-be located. When multiple circles introduced by
additional antennas are combined, the equivalent 3D locus is
reduced to a single point. The tag’s location is finally released
on the intersection of those circles and determined in a least-
squared sense.

1) Phase ReLock: For the 2D problem, consider an an-
tenna taking phase measurements θi along a straight synthetic
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Fig. 6: Geometry of the two-dimensional problem

aperture consisted of N positions (xi, yi), as depicted in Fig.
6. The theoretical phase model can be expressed as

φi =

(
4π

λ
di(xtag, ytag) + ctag

)
mod 2π, i ∈ [0, N−1] (2)

where di is the distance between the tag and the ith antenna
location and ctag corresponds to the additional phase offset
introduced by the tag’s and the reader’s electronics. This term
is considered constant for each RFID antenna-tag pair, but yet
unknown.

In general, our target is to find the values of the unknown
parameters of model (2) so that the expected values φi best
match the measured θi. This is a common problem of data
fitting and is solved by minimizing the following least squared-
based objective function:

F (xtag, ytag, ctag) =

N−1∑
i=0

[φi − θi]2 (3)

(3) is a non linear model with unknown coefficients
(xtag, ytag, ctag). In most cases a closed-form solution is
not feasible and iterative algorithms are deployed [34]- [35].
Such algorithms iteratively converge to a minimum of the
corresponding objective function.

It was demonstrated in [12] and [13], that (3) does not
converge to the optimum solution; instead the algorithm is
trapped to a local minimum, due to the nature of the objective
function, demonstrated in Fig. 7 - left. In order to avoid the
solution of a time consuming grid-based search, we perform
phase unwrapping. The new objective function has a single
minimum as shown in Fig. 7 - right. Rapid convergence to the
best solution is now feasible, provided that the initial point of
the algorithm belongs to the subspace the antenna is facing to.

By computing the perpendicular distance d0 from
(xtag, ytag) to the antenna’s path-line, one defines the 3D locus
of possible tag locations. Then, for the 3D solution, all points
that are located at distance d0 from (x0, y0, z0), and lay on
the plane that crosses (x0, y0, z0) and is perpendicular to the
antenna’s path, are equally likely to be the tag’s true location
(z0 corresponds to the antenna’s known height). Hence, the
locus is a circle with center (x0, y0, z0), radius d0 and normal
vector that is parallel to the antenna’s trace (see Fig. 8 left).
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Fig. 7: Objective function (3) for original data (left) and after
phase unwrapping (right). Red and blue colors denote high
and low amplitudes of (3), respectively.

2) Min Distance Model: A new approach of rapidly
solving the localization problem is proposed here. Consider
the straight antenna array of Fig. 6. Let (x0, y0) denote
the antenna position that corresponds to the minimum tag-
to-antenna distance. Since the antenna is moving along a
straight path, the tag should be located on the line that
joins (xtag, ytag) and (x0, y0), and is perpendicular to the
antenna’s path-line. That position is identified as the location
at which the minimum value of the unwrapped phase-curve
was recorded. Considering (x0, y0) as a reference point, for
the rest N − 1 antenna’s positions, we define the differences
of the tag-to-antenna distances as

∆di =
λ

4π
∆θi, i ∈ [1, N − 1] (4)

where ∆di = di − d0, ∆θi = θi − θ0 and d0 is the distance
between the tag and the reference point; d0 is considered the
unknown parameter of the problem.

Due to the periodicity of the measured phase-curve, any
measurement could correspond to more than one spatial dis-
tances between the tag and the antenna. In fact, each value
θi corresponds to di + k λ2 . So the actual distance differences
∆di cannot be directly computed, unless phase unwrapping
is performed and unwrapped data are used. Furthermore,
according to Pythagorean Theorem applied on Fig. 6:

∆di =
√
d20 + L2

i − d0, i ∈ [1, N − 1] (5)

where Li is the distance between each antenna location from
the reference point (x0, y0). After simple operations and
substitutions, the result is an overdetermined linear system

2∆did0 = L2
i −∆d2i , i ∈ [1, N − 1] (6)

Denoting ai = 2∆di and bi = L2
i−∆d2i , the objective function

of the least square problem is

F (d0) =

N−1∑
i=1

[aid0 − bi]2 (7)

In contrast to non linear problems, linear ones can be expressed
by closed forms and solved by simple matrix operations.
The solution is derived by differentiating (7) with respect to

coefficient d0, and then setting the result equal to zero [36],
[37]. The 3D locus is finally defined similarly as in the non
linear case.

3) Loci Intersection: Solving the two dimensional problem
by each of the four antennas, results in the introduction of
four circles, as shown in Fig. 8 (left). The final locus is thus,
reduced to a unique point; i.e. the intersection point of the
circles. However in practice, all circles are not expected to
intersect at a single point, since they have been computed with
some error. Therefore, a weighted least square solution is given
to the intersection problem.

Without loss of generality, x-axis is defined to coincide with
the robot’s path. For better representation, the x− y and y −
z planes are reconstructed in Fig. 8 - (middle) and (right),
respectively. In general, the circles are not expected to lay
at the same plane (as shown in Fig. 8 - middle), but at least,
they have identical normal vectors, parallel to the robot’s path.
Therefore, the x coordinate of the tag is estimated by

xtag =

∑4
i=1 x̂i
4

(8)

while the y and z coordinates correspond to the least squared
solution of the following non-linear system

(ŷi − ytag)2 + (ẑi − ztag)2 = R2
i , i ∈ [1, 4] (9)

where (x̂i, ŷi, ẑi) is the center Ci of the ith circle and Ri its
radius (see Fig. 8-right).

B. Robot-Agnostic Methods

In [16], [17], we presented an improved version of the
classical ”Landmarc” [15] localization algorithm. Reference
tags are placed at known locations in the target area. As each
reader antenna, mounted on top of the robots or drone, collects
measurements of both target and reference tags, the algorithm
builds a metric, where the sum of the differences between the
measured samples of the target tags minus the corresponding
ones of the reference tags are evaluated:

Dj
l =

√√√√ N∑
i=1

(Xj
i −Rli)2/N (10)

In (10), for each robot-antenna location i, where both the
reference tag l and the target tag j have been measured, the
corresponding difference between their RSSI or unwrapped
phase values is added to the ”resemblance” metric Dj

l between
the specific two tags. The location of each tracked tag is
calculated according to the normalized weighted sum of the
coordinates of the k-nearest reference tags, after sorting (10)
with respect to j, [16], [17].

In addition to the standard ”Landmarc”, we treat the refer-
ence tags also as unknowns and also estimate their locations.
Exploitation of the reference tags in such manner gave two
advantages: i) a set of parameters, related to the execution
of the algorithm is fine-tuned during the experiment, so that
the localization error of the reference tags (which can be
calculated, since the locations are known), is minimized ii) the
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mean achieved localization-accuracy can be evaluated, which
is a very valuable information for commercial applications,
since the robot can be instructed to pass again through areas,
were poor accuracy has been recorded. Furthermore, pairs
of target-reference tags with few common (from the same
antenna location) samples are discarded from the estimations.
The fingerprinting algorithms are used on the drone, where
accurate estimation of its location in the map is not possible.
The drone is destined mainly for flying above the target
area (inventorying horizontal storage, like buildings’ materials,
woods, etc.).

IV. MEASUREMENTS

The measurements were conducted inside a laboratory
environment, as shown in Fig. 9. 100 passive UHF RFID
tags were attached on top of two roll-up banners and 100
tags on top of a long desk. Their relative position on each
banner was known, since the tags were attached on millimeter
paper. The banners were then moved in different positions and
orientations inside the area, in order to investigate the effect
of different propagation conditions, different tags’ densities
per m3, etc. As the robot moved in the area, it constructed
an accurate 2D map of the environment, demonstrated in Fig.
4 (left) and a less accurate 3D map, demonstrated in Fig. 4
(right).

In order to evaluate the accuracy of the proposed methods,
we need to pinpoint the locations of the banners inside the 2D
map, such that the local coordinate system of the banner is
transformed to the coordinate system of the robot. This manual
process is not necessary in the actual inventorying application,
since the results are directly shown in the map created by the
robot, but only for evaluation of the accuracy of the different
methods. This manual process is expected to add an error in
the order of 5cm. The results are summarized in Table I.

”Phase ReLock” outperformed the other two methods,
achieving mean error around 25cm in all experiments, while
processing approximately 100000 measured samples from 100
tags in just 12s. The achieved accuracy is impressive, consid-
ering that the robot’s trace was not known (but estimated), the
considered actual locations of the tags (ground truth) might
suffer from errors in the order of cm, the environment is

Fig. 9: Representation of the measurements set-up. The ban-
ners have been placed side by side (Left) and back-to-back
(Right)

full of scatterers (multipath-rich), the solution was sought
in 3D space and not along a given horizontal cut. The
fingerprinting method achieved an acceptable accuracy. 44
out of 100 tags were used as reference, having a density
of 22 reference tags/m3, which is a rather big number for
commercial applications. The new ”Linear” approach was
the fastest, but less accurate than ”Phase ReLock”, due its
constraint of ”identifying” a single point on the trace of the
robot, for which the distance to the tag was minimized.

V. CONCLUSIONS

In this paper, we have presented our latest findings on the
complex problem of autonomous inventorying and localization
of RFID tags by a moving robot. To the best of our knowledge,
this is the first paper that deals jointly with the necessary sub-
problem of map-construction, localization of the robot, navi-
gation and localization of the tags. We have presented three
algorithms, which can be applied for real-time tag localization
and compared their performance in realistic configurations. 3D
experimental results demonstrated 25cm mean accuracy for
dense tag populations in a multipath-rich environment. Though
further improvement can be accomplished, the achieved 3D
accuracy is sufficient for most inventorying applications in
large warehouses or retail stores, except perhaps for pick-and-
place robots, where mm accuracy is desired.



TABLE I: Experimental Results

Experiment Phase ReLock Min-Distance Model Fingerprinting Phase Fingerprinting RSSI
mean
error
(cm)

std
(cm)

cost
(sec)

mean
error
(cm)

std
(cm)

cost
(sec)

mean
error
(cm)

std
(cm)

cost
(sec)

mean
error
(cm)

std
(cm)

cost
(sec)

Back to Back (100 tags) 26.2 33.9 12.6 29.7 29.7 6 42 23.5 42 42 23.4 42
Side by Side (100 tags) 23.4 25.2 13.8 32.2 29.8 7.4 43.3 29 32 42.5 27.8 32
Single Banner (50 tags) 25.3 24.6 6.9 36.4 37 3.1 19.4 13.1 43 20.8 12.3 43

Single B-Horizontal (50 tags) 27.5 29 4.9 34.5 33.8 2.8 38 26.6 62 37.3 24.5 62
All experiments 25.3 32.4 38 37.8
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