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Abstract—A scheme for automated planning of passive RFID
network is proposed. The scheme comprises two parts. The first
part creates a fast site-specific probabilistic propagation model
for successful identification from the reader of any possible tag
antenna. The materials of surrounding walls as well the tag
antenna’s radiation pattern, the geometry and the polarization of
both reader and tag are taken into account. In the second part, a
hybrid form of particle swarm optimization (PSO) algorithm is
applied. The proposed approach selects a subset of tag antenna
configurations to be installed so that a given cost function is
satisfied. By clustering problematic areas during each iteration
and moving the swarms towards them, we imitate the acts of
a human-planner. The combinatorial performance of all active
readers is evaluated at each tag location; this reveals that good
identification performance is recorded at overlapping regions,
where no single reader- tag antenna operates adequately. The
proposed clustering approach greatly improves the convergence-
time of the standard PSO and greatly reduces equipment, cutting
down the cost of the network accordingly. Comparison with
standard PSO reveals that the overall equipment can be reduced
by a factor of two, satisfying the same quality constraints.

Index Terms—RFID, Network-planning, Optimization.

I. INTRODUCTION

Complex RFID networks are expected to control large
facilities, e.g. warehouse or an airport. Due to the small range
of RFID systems involving passive tags, such networks are
expected to include hundreds of RFID antennas. The problem
of planning an RFID network (deployment problem) involves
the selection of appropriate antenna locations so that a given
cost function, e.g. number of antennas, is minimized under
specific quality constraints, e.g. identification percentage in
the target volume, [1]-[11]. It has been shown in [10] that
this problem is NP-complete. As a consequence, solutions are
sought by employing evolutionary algorithms.

Prior art in the field was focused on deploying Wireless
Sensor Networks (WSNs). The particularity of the RFID-
deployment problem, with respect to WSNs, results from
the fact that typically RFID tags are battery-less. In [12],
we proposed a site-specific probabilistic model, where the
probability of successful identification of a passive RFID tag
is estimated by the appropriate Rician cumulative distribution
function (cdf) in small running time, considering:

• the reader-antennas’ radiation pattern,
• the polarization of the field,
• the polarization of the tag’s antenna.

The accuracy of the model was verified against theoreti-
cal estimations from ray-tracing models [12], computational-
electromagnetics models [14] and measurements [12]-[14].
The probabilistic propagation model has been successfully
deployed in the standard Particle Swarm Optimization (PSO)
method, presented in [3], demonstrating a two-times reduction
of the necessary RFID readers to be installed, with respect to
binary propagation models; i.e. such models define a closed
area/volume around the reader antenna, where successful
identification is guaranteed by the corresponding antenna, but
cannot handle overlapping coverage zones between adjacent
antennas.

However, the solution of the standard PSO in [3] is far
from being optimal; i.e. the solution that minimizes equipment
(cost), while satisfying given coverage constraints. Further-
more, convergence of the PSO (even to a non-optimal solution)
is very slow; the random nature of PSO demands many
iterations for modest improvements.

In this paper, we propose a hybrid PSO algorithm. The
proposed method borrows properties from ”Artificial Potential
Field” (APF) algorithms, [7]-[8]. In APF, areas of prefer-
ential coverage will exert a ”virtual attractive force” while
obstacles and areas of non-preferential coverage will exert
a repulsive force on the nodes. Additional forces may be
considered, e.g. repulsive force between nodes. The total force
on each node is the vector-sum of the above, eventually (after
iterations) moving each node towards its final position. In
the proposed method, an additional velocity vector is added
to the standard PSO. After each iteration, the vector drags
(similarly to the ”virtual attractive force” of ”APF”) the swarm
towards locations with identification-probability below the
desired threshold, imitating the actions that would have been
taken by a human planner. To accomplish that, clustering
of problematic locations is carried out and the appropriate
velocity vector is calculated for each antenna, based on its
distance from the nearest cluster.

Results demonstrate i) a two-times improvement vs. stan-



dard PSO with respect to the number of antennas of the final
solution that are needed, so as to meet the quality constraints
and ii) significant acceleration in the convergence speed of
the algorithm. The propagation model is presented in Section
II. Notation of the problem and the proposed hybrid method is
presented in Section III. Results are given in Section IV and
conclusions are presented in Section V.

II. PROPAGATION MODEL

A detailed description of the propagation model can be
found in [12] and [3]. The probability of successful identifica-
tion equals the probability that the instantaneous power at the
tag IC is greater than its wake-up threshold. In the presence
of a strong LOS path, fading is well described by a Rician
probability density function:
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where ν2 is the power of the LOS path, 2σ2 is the average
power of the other contributions x is the signal’s amplitude
and I0(z) is the modified Bessel function of the first kind and
zero order. The cumulative distribution function (cdf) is given
by:
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where Q1(a, b) is the Marcum Q-function. A tag is considered
successfully identified if the voltage at the tag’s IC is greater
than its ”wake-up” threshold γ. The identification-probability
at a reception point is:

P (X ≥ γ) = 1− F
X
(γ|ν, σ). (3)

Therefore, by defining ν and σ at each reception point, one
calculates the desired probability for a single reader-antenna
configuration. ν2 is the power of the LOS path, while 2σ2

is the mean power of all other contributions. The latter
is approximated by a closed form expression, analytically
described in [12].

III. RFID NETWORK PLANNING

Consider an area, where a large number of reader antennas
needs to be installed, in order to provide identification per-
formance with specific quality-constraints, e.g. all points of
interest should be identified with at least 95% probability. We
consider N reception points that define the points of interest
of the problem (where passive tags will be located). Let A
be the set of all M possible reader-antenna configurations.
Each configuration is defined by the antenna-location, the
radiation pattern (including polarization of the transmitted
field), orientation and power. The final solution should include
a subset of M , so that the desired identification-constraints for
all N reception points are satisfied.

A. Notation

Let T be the set of demand identification locations and A be
the set of available antenna configurations (locations, power
and orientations). We define:

• B a subset of A, B ⊆ A, that contains the active antennas
of the network,

• |B| the number of active antennas in B, that is the
cardinality of B,

• pij the probability of successful identification at demand-
location (tag) i ∈ T , by any antenna-configuration j ∈ A
.

• pB(i) the probability of successful identification at
demand-location i ∈ T by all active antennas of the
network, defined in B,

• di the minimum acceptable probability of successful
identification at demand-location i ∈ T .

• qB(i) a binary variable at demand-location i ∈ T that
equals one if the probability of successful identification
of the tag is smaller than the requested threshold, given
the set of active reader antennas B:

qB(i) =

{
1, pB(i) ≤ di
0, otherwise. (4)

• γi is the considered wake-up threshold at the tag’s IC
located in i ∈ T .

• UB is the percentage of successfully identified demand
locations of the network.

We assume that the interference problem caused by the in-
teroperability of multiple readers in the same area using the
same physical resources is handled by appropriate scheduling
of transmissions in the time domain. Interfering readers should
transmit in different time-slots. Furthermore, we consider a tag
successfully identified, if it is identified by any of the active
reader-antennas of the network. Therefore, probability pi is
given by

pB(i) = 1−
∏
j∈B

(1− pij). (5)

The percentage of successfully identified tags of the network
for the active antennas of set B is given by [15] (ch. 4), [12]

UB =
1

N

∑
i∈T

pB(i). (6)

B. Optimization Problem

We want to minimize the number of readers, subject to
the constraint that each demand location is identified with
probability greater than the minimum defined for this location.
Namely:

min |B|, subject to (7)

∑
i∈T

qB(i) = 0 (8)



C. Particle Swarm Optimization

We consider K particles. Each particle represents a set of
reader-antenna locations, denoted as Bj , j = 1, . . . ,K, Bj ⊆
A, that aims to satisfy the objective function (7)-(8). All sets
have the same cardinality: |Bi| = |Bj |, i 6= j. Within each
iteration of the PSO, each particle ”flies” in the problem space
with a velocity vector, influenced by the specific particle’s best
previous experience (self-cognitive) and by the overall best
experience of the entire group of particles (social-influence)
[4]. As the set of active reader antennas of each particle may
change after each iteration k, each set of active antennas is
represented by Bj(k). After each iteration, we calculate the
quality factor for each particle:

QBj(k) =
∑
i∈T

qBj(k)(i), (9)

where qBj(k)(i) is defined in (4). If (9) becomes zero for any of
the sets Bj(k), therefore satisfying the optimization constraint
of (8), the number of active reader antennas is reduced by one
and the PSO starts again. If the PSO does not find a solution,
such that QBj(k) = 0, after a given number of iterations, the
algorithm stops and the most recent solution that nulled QBj(k)

is given. This represents the best found solution that satisfied
(7)-(8).

1) The Optimization Loop: Let L be the number of active
reader-antennas of the problem |Bj(k)| = L and Xj(k) =[
Xj1(k) · · · XjL(k)

]
the vector with the positions of

the L active antennas of the jth particle, during the kth
iteration. The position vector X(k), contains the coordinates of
each reader-antenna for each particle during the corresponding
iteration:

X(k) =

 X11(k) · · · X1L(k)
...

...
...

XK1(k) · · · XKL(k)

 =

 X1(k)
...

XK(k)

 .
(10)

The position vector X(k) changes after each iteration accord-
ing to a velovity vector V (k):

X(k + 1) = X(k) + V (k), k ≥ 0,where (11)

V (k) =

 V11(k) · · · V1L(k)
...

...
...

VK1(k) · · · VKL(k)

 (12)

and Vji(k) is the velocity of the ith reader antenna of the
jth particle during the kth iteration. During each iteration
and for each particle, we calculate QBj(k), given in (9).
The particle that minimized QBj(k) for the specific particle’s
history (after k iterations) is stored in the array Mj(k) =[
Mj1(k) · · · MjL(k)

]
, j = 1, ...,K. The particle that

minimized QBj(k) among all particles after k iterations is
stored in the array G(k) =

[
G1(k) · · · GL(k)

]
. The

velocity of each element of the velocity vector (12) can now
be defined as:

Vji(k) = ωVji(k − 1) + c1rand
1
ji(k)(Mji(k)−Xji(k))

+ c2rand
2
ji(k)(Gj(k)−Xji(k)), (13)

where ω is called inertia weight, c1, c2 are acceleration coeffi-
cients and rand1,2ji are random numbers uniformly distributed
in [0, 1]. After calculating the velocity of each element, the
position vector for iteration k+1 can be updated according to
(11). Successful completion of the algorithm strongly depends
on the velocity update. The first part (inertia) is used to avoid
particle changing velocity abruptly, the second part forces
the particle to ”fly” towards the best ”self-cognitive” known
position, while the third part towards the best overall position,
found so far.

D. Proposed Hybrid PSO

We propose a new method that imitates the actions taken by
a human when planning a network. A planner would typically
test the performance of a given antenna configuration, identify
the problematic locations and move the available antennas
towards these locations. Antennas close to the problematic lo-
cations would be moved at greater distance-steps with respect
to antennas away from the problematic locations, so that the
final configuration would cover all volume of interest.

1) Clustering: In order to apply this concept, during each
iteration of the PSO and for each particle j, we identify the
coordinate-vector yn of all locations n that do not satisfy the
quality criterion set in (4). We define a set Fj(k) with all
demand identification locations for which qBj(k)(n) = 1:

Fj(k) = {yn : n ∈ T, qBj(k)(n) = 1}. (14)

Then, we partition the set Fj(k) into mj disjoint sets (clusters)
Cj(k) = {Cj1(k), Cj2(k), · · · , Cjmj

(k)}, so as to minimize
the within-cluster sum of squares WCSS:

argmin
Cj(k)

m∑
l=1

∑
yn∈Fj(k)

|yn − µjl(k)|2, (15)

where µjl(k) is centroid of points in Cjl(k), defined as the
mean of the coordinates of points in the set. In order to locate
the mj centroids, we apply the ”k-means” method [16].

2) Introducing the Virtual Force Velocity Vector: As soon
as the centroids for each particle j during the current iteration
k are determined, for each antenna of the particle, we calcu-
late the vector with the minimum distance from the nearest
centroid:

Dji(k) = µjlmin(k)−Xji(k),where

lmin = argmin
l

{√
|µjl(k)−Xji(k)|2, l = 1, . . . ,mj

}
(16)

Then we define a new velocity vector, similar to the virtual
force of the APF method, for each antenna V cluster

ji (k):

V cluster
ji (k) =

Dji(k)abe
−b|Dji(k)|

|Dji(k)|
. (17)
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Fig. 1. Introduction of the proposed velocity vector, based on clustering of
poorly identified locations.

The velocity in (17) decreases exponentially with the distance
from the nearest centroid. Constants a, b should be set
according to the step-distance of the available antenna-grid
defined in set A and simply scale the exponential function.
Recommended settings are: a = 20∗dgrid and b = 0.2∗dgrid,
where dgrid is the distance-step between candidate antennas
of the considered grid. Finally, the velocity vector of the PSO,
defined in (13) now becomes:

V ′ji(k) =
w1

w
ωVji(k−1)+

w2

w
c1rand

1
ji(k)(Mji(k)−Xji(k))

+
w3

w
c2rand

2
ji(k)(Gj(k)−Xji(k)) +

w4

w
V cluster
ji (k),

(18)

where w =
∑

i wi. The weights wi size the importance of each
term. Good performance was found for w1 = 1, w2 = 0.5,
w3 = 0.5, w4 = 1.

An example of the proposed optimization method is pre-
sented in Fig. 1. The locations, where the identification quality
threshold is not satisfied, form three clusters (shown in white).
The centroids of the clusters ”attract” the surrounding antennas
so that the nearest ones are assigned a larger velocity.

IV. APPLICATION AND RESULTS

We consider a 50m×30m building. We assume two types
of available reader antennas: i) a 7dBic circularly polarized
antenna and ii) a dipole antenna. The circular antenna is
employed only at the surfaces of the surrounding walls of the
building, while the dipole antenna is considered at locations
not attached to the wall. At each tag-location, we assume
polarization diversity: a tag is successfully identified if the
power at any of the three polarization axes x, y, z is greater
than the wake-up threshold. The corresponding threshold is
set to -15dBm and the appropriate field is substituted in (3).
The candidate antenna set A comprises approximately 1500
reader-antenna configurations, evenly spaced at 1m intervals.
The set of tags T to be identified comprises approximately
6000 locations evenly spaced at 0.5m intervals along the same
height of 1.5m. For each antenna we calculate the probability
of successful identification of all tags in T . The implemented
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Fig. 2. Variation of quality factor Q during iterations.
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Fig. 3. Identification probability of all active antennas of the network
(standard PSO).

model [12], needed only 2s per antenna-configuration to
evaluate the probabilities for all locations.

The minimum acceptable probability for all locations is set
to 0.9. We have considered K = 10 particles. We begin the
process assuming a large number of antennas (300). When the
quality factor Q equals zero (meaning all tags are identified
with 90% probability), the number of antennas is reduced by
1. During the initialization phase, the antennas of each particle
are arranged nearly uniformly in the area.

A. Application of the Proposed Hybrid Optimization Method

We have applied the proposed Hybrid PSO, where the
additional velocity vector moves the antennas of each par-
ticle towards clusters of problematic locations as defined in
subsection III-D. Convergence of the algorithm was greatly
improved. A characteristic result is presented in Fig. 2. The
evolution of the quality factor Q, defined in (9), for 112
antennas is comparatively shown by applying the standard
PSO and the proposed Hybrid PSO. In the 1st case, the
algorithm fails to improve the solution for several iterations.
In the 2nd case, a better solution is found almost during each
iteration. As a result, the proposed algorithm finds a solution
after only 7 iterations, while the standard PSO needed 83
iterations.

The final solution of the standard PSO and the proposed
algorithm are demonstrated in Figs. 3, 4, respectively. The
first includes 112 antennas, while the proposed method finds
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Fig. 4. Identification probability of all active antennas of the network
(Proposed Hybrid PSO).

a solution with only 55 reader-antennas; a two-times improve-
ment over the standard PSO. By altering the weights wi in
(18), we can change the importance of each velocity vector
during the optimization process. We have tested the case,
where w1 = w2 = w3 = 0 and w4 = 1; i.e. after each
iteration, the antennas will move towards problematic locations
(PSO is not applied). Worse solutions were found, because the
”swarm” was trapped at local minima.

The result in Fig. 4 is indicative of the capabilities of the
proposed algorithm. The algorithm can be applied for complex
facilities, for non-uniform tag-locations, in 3D space, instead
of a given slice along the horizon, for any reader-antenna,
including beam-steering antennas and for different probability-
threshold for each location.

V. CONCLUSION

In this paper, we put forward a hybrid Particle Swarm
Optimization algorithm that includes an additional velocity
vector for automated deployment of RFID networks. Taking
advantage of the proposed probabilistic site-specific propaga-
tion model, the proposed algorithm evaluates the combinatorial
performance of all active reader antennas; a property that
is particularly important in regions, where no single reader-
antenna performs well. The introduction of the proposed
”virtual force” concept, where the centroids of clusters of
poorly identified areas ”attract” the surrounding antennas
during each iteration of the standard PSO, greatly acceler-
ated the optimization process. Furthermore, the final solution
was two-times better than the standard PSO, thus reducing
the installation cost accordingly. Thanks to the site-specific
propagation model, the proposed optimization method can be
applied for complex buildings.
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