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Abstract

A deformation-theory version of strain-gradient plasticity is employed to assess the

influence of microstructural scale on the yield strength of composites and polycrystals. The

framework is that recently employed by Fleck and Willis (J. Mech. Phys. Solids 52 (2004)

1855–1888), but it is enhanced by the introduction of an interfacial ‘‘energy’’ that penalises the

build-up of plastic strain at interfaces. The most notable features of the new interfacial

potential are: (a) internal surfaces are treated as surfaces of discontinuity and (b) the scale-

dependent enhancement of the overall yield strength is no longer limited by the ‘‘Taylor’’ or

‘‘Voigt’’ upper bound. The variational structure associated with the theory is developed in

generality and its implications are demonstrated through consideration of simple one-

dimensional examples. Results are presented for a single-phase medium containing interfaces

distributed either periodically or randomly.
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1. Introduction

The first theory of plasticity which incorporated effects of gradients of plastic
strain was that introduced by Aifantis (1984, 1987), who recognised that gradient
terms could resolve small-scale deformation features such as the width and spacing
of shear bands. Subsequent contributions on problems of this type include those of
Zbib and Aifantis (1988) and Leroy and Molinari (1993). More recently, theories of
strain-gradient plasticity have gained prominence through increasing interest in scale
effects in small specimens and devices. Several theories have been proposed,
including those of Fleck and Hutchinson (1993), Fleck et al. (1994) and Fleck and
Hutchinson (2001) and the so-called ‘‘mechanism-based strain-gradient theory’’ of
Gao et al. (1999). These theories are intended to make allowance, at least
qualitatively, for the influence on hardening of the long-range stresses produced
by ‘‘geometrically necessary’’ as opposed to ‘‘forest’’ dislocations. Rather precise
theory has also been developed in the context of single-crystal plasticity (Gurtin,
2000, 2002). All such theories have associated with them a characteristic (internal)
length, and the influence of the gradient term becomes apparent as soon as some
dimension of the specimen is reduced to a small multiple of this characteristic length.
The basic question of how to choose between the competing theories remains
incompletely resolved. Qualitatively, any will show the right trend, but differences of
detail, obtained by fixing parameters relative to one experimental setup and then
predicting outcomes for different experiments, can provide evidence in favour of one
theory relative to another, but will not definitively identify one theory as ‘‘correct’’.
Another approach is to compare predictions made by use of a strain-gradient theory
with corresponding predictions obtained from a simulation which employs discrete
dislocations. A drawback here is that the discrete dislocation simulation inevitably
employs an idealised version of the underlying physics. Examples of work of this
type include Cleveringa et al. (1997), Shu et al. (2001), Bittencourt et al. (2003).
Strain-gradient theory has one additional feature which has so far not yielded to

precise physical interpretation. This is that introduction of a gradient term requires
the introduction of an additional boundary condition and a corresponding
additional jump condition across any surface of discontinuity. The mathematical
structure shows what quantity needs to be specified but provision of the actual value
can only follow from a clear recognition of the physics that the strain-gradient
theory is supposed to represent. Exactly what boundary or interface conditions can
be imposed depends on the precise strain-gradient theory that is adopted. For
instance, a single-crystal model such as that of Gurtin (2002), in which the plastic
distortion is defined in terms of slips on slip planes, contains sufficient detail to allow
the tracking of the motion of the (geometrically necessary) dislocations. Implications
for boundaries and interfaces, associated with this model, have recently been
developed by Gurtin and Needleman (2005). Retention of this degree of detail is,
however, likely to be difficult in the context of applications.
Previous studies (Smyshlyaev and Fleck, 1995, 1996; Fleck and Willis, 2004) have

employed strain-gradient plasticity to predict the influence of scale on the yield
strength of a composite. In these works, methods for calculating the effective
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response of nonlinear composites (Talbot and Willis, 1985; Ponte Castañeda, 1991;
Ponte Castañeda and Suquet, 1998) were adapted and extended to find the effective
macroscopic response of a composite whose constituents conformed to deformation-
theory versions of strain-gradient plasticity. The earlier work of Smyshlyaev and
Fleck (1995, 1996) was based on strain-gradient theory of the type proposed by
Fleck and Hutchinson (1993), while that of Fleck and Willis (2004) used a modified
version of the ‘‘reformulated’’ theory of Fleck and Hutchinson (2001). In all of this
work, the effective yield strength was predicted to increase as the scale of the
microstructure decreased, but it could not increase above the level given by the
elementary ‘‘Taylor’’ or ‘‘Voigt’’ upper bound. The reason for this was that a
mathematical assumption, ‘‘natural’’ for the structure of the equations, of continuity
of plastic strain and higher-order traction across interfaces, was made. This
conclusion can be altered, however, by injection of some additional physics,
corresponding to the fact that an interface usually presents an obstruction to the
motion of a dislocation, and hence to plastic flow. This mechanism can be accounted
for by augmenting the variational principle of Fleck and Willis (2004) with an
interfacial ‘‘energy’’ term which penalises the build-up (accumulation) of
plastic strain on internal surfaces and hence depends on the plastic strain there. It
should be noted that the assumption of continuity of plastic strain across interfaces
is retained.
The introduction of such an energy penalty is fully compatible with the structure

of this strain-gradient theory. It would have no effect in the absence of the strain-
gradient term in the constitutive relation. In the context of strain-gradient theory,
however, it induces a relation between the jump in higher-order traction (hence also
plastic strain gradient) and the interfacial plastic strain. This has a qualitative
relationship with the admission of dislocation pileups near boundaries leading to the
classical Hall–Petch mechanism for grain-refinement strengthening; dislocation
pileups correspond to local gradients in plastic strain.
Some elementary illustrations of the effects of admitting jump conditions across

interfaces have been developed by Aifantis and Willis (2005). They formulated a
system of ordinary differential equations, applied to one-dimensional (1-D)
problems, and solved them in simple cases in which the differential equations were
linear. In the present study the associated variational structure, slightly generalising
that employed by Fleck and Willis (2004), is developed and exploited.
The flexibility of strain-gradient theories in allowing the introduction of jump

conditions across interfaces has been independently recognised by Gudmundson
(2004). His remarks on this aspect are, however, more ‘‘generic’’ than ‘‘specific’’ and
admit the possibility of jumps in both plastic strain and higher-order traction,
through a generalised interfacial ‘‘penalty’’ that is a function of the plastic strains
ðep;1; ep;2Þ on either side of the interface. This, however, is so general that it has the
potential to uncouple completely the solutions for the stresses and strains in each
constituent phase, and hence some care in the choice of the functions of ep;1 and
ep;2 will be required. The present work, in contrast, offers explicit models and
develops their implications for the influence of scale on the effective response of a
composite.
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2. Gradient plasticity with an interfacial penalty

2.1. Deformation theory version of classical plasticity

The mathematical structure that is employed throughout this work is first placed
in context by displaying the corresponding formulation for the deformation theory
version of ‘‘classical’’ plasticity, with no allowance for strain-gradients. Throughout
the whole of Section 2, the presentation is kept as simple as possible by assuming
that displacements are prescribed on the boundary qO of the body, which occupies
the domain O:
In the deformation theory framework of classical plasticity an energy-like

functional for the domain O under consideration can be defined as

Cðeij ; e
p
ijÞ �

Z
O

Uðeij ; e
p
ijÞdx, (2.1)

where

Uðeij ; e
p
ijÞ �

1
2
ðeij � epijÞLijklðekl � epklÞ þ V ðepijÞ. (2.2)

The quantities eij ; e
p
ij denote the total strain and plastic strain, respectively; Lijkl is the

elastic stiffness tensor and the first term of the right-hand side of Eq. (2.2) is the
elastic strain energy. The second term, V ðepijÞ; is a ‘‘dissipation function’’, dual to the
‘‘plastic potential’’. In the present context of deformation theory, the distinction
between dissipated and recoverable energy is blurred. In the sequel, it is convenient
to refer to V simply as a ‘‘potential’’. The displacement is taken to be continuous
across interfaces. The problem posed is to find the fields ðeij ; e

p
ijÞ that minimise

Eq. (2.1), where the total strain tensor eij is related to the displacement vector ui by
the usual relationship

eij ¼
1
2
ðui;j þ uj;iÞ. (2.3)

For convenience, the following variables conjugate to the elastic and plastic strain
are introduced

sij ¼
qU

qeij

¼ Lijklðekl � epklÞ,

sij ¼
qU

qepij
¼ �Lijklðekl � epklÞ þ

qV

qepij
¼ �sij þ

qV

qepij
. ð2:4Þ

The quantity sij is the usual Cauchy stress tensor and sij may be viewed as a type of
back stress. Setting the first variation of Eq. (2.1) equal to zero, dC ¼ 0; gives the
principle of virtual work:Z

O
fsijdeij þ sijde

p
ijgdx ¼ 0 )

Z
O
f�sij;jdui þ sijde

p
ijgdx ¼ 0 (2.5)
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which must hold true for all admissible variations dui; de
p
ij : As a result, the following

field equations are obtained:

sij;j ¼ 0;

sij ¼ 0 ) sij ¼
qV
qep

ij

9=
; in O (2.6)

which are to be solved together with the given boundary condition

ui ¼ u0i on qO. (2.7)

The second equation of Eq. (2.6) shows that the potential V provides a stress–plastic
strain relation, from which plastic strain can be eliminated to yield, in conjunction with
Eq. (2.4)1; the conventional stress–total strain relation of deformation theory. The use of
plastic strain as an intermediate (or internal) variable will, however, be essential for the
developments to follow. It is perhaps worth noting that no requirement of continuity is
made for the plastic strain. Imposition of such a requirement would compromise the
existence of a plastic strain field which would minimise C: It would be necessary instead
to seek the infimum, which would be approached by use of sequences of continuous
plastic strain fields whose limit would be the possibly discontinuous plastic strain
obtained from the solution of Eqs. (2.6) and (2.7).
2.2. Variational formulation for the strain-gradient theory

The gradient formulation to be presented is a direct generalisation of that
employed by Fleck and Willis (2004) which, as in the previous section, takes as its
primary independent kinematic variables the total displacement ui and the plastic
strain epij : In admitting the influence of gradients of plastic strain in the constitutive
equation the effects of ‘‘geometrically necessary’’ dislocations are qualitatively
accounted for but there is no relation which matches the precise correspondence
aij ¼ �jklb

p
il;k between the (geometrically necessary) dislocation density tensor aij and

the plastic distortion tensor bpij : The development of more general theory, allowing
for plastic distortion or some other ‘‘internal variables’’, is desirable but it seems
appropriate first to consider the influence of the new interfacial feature in relation to
a model whose implications have already been investigated.
The gradient deformation theory under consideration is defined by reference to a

functional C given by

Cðeij ; e
p
ijÞ �

Z
O

Uðeij ; e
p
ij ; e

p
ij;kÞdx þ

Z
G
fðepijÞdG, (2.8)

where O is the domain occupied by the composite material. Its external surface is
denoted qO; while internal interfaces between different constituents are denoted
collectively by G: The total strain eij is related to the displacement ui by Eq. (2.3), and
it is assumed that both the displacement and plastic strain are continuous
throughout the whole domain under consideration (including across G). The



ARTICLE IN PRESS

K.E. Aifantis, J.R. Willis / J. Mech. Phys. Solids 53 (2005) 1047–10701052
potential Uðeij ; e
p
ij ; e

p
ij;kÞ is defined as in Fleck and Willis (2004), i.e.

Uðeij ; e
p
ij ; e

p
ij;kÞ ¼

1
2
ðeij � epijÞLijklðekl � epklÞ þ V ðepij ; e

p
ij;kÞ. (2.9)

It should be noted that the elastic moduli Lijkl and the gradient potential V ðepij ; e
p
ij;kÞ

vary with position x, depending on the material constituent present at x. The new
feature of the present formulation is the introduction of the potential fðepijÞ; defined
over the interfaces G: If the composite is subjected to given displacements ui ¼ u0i at
its surface qO; the fields within the composite are taken to be those that minimise the
functional Cðeij ; e

p
ijÞ over total strain fields eij that satisfy Eq. (2.3) for some

continuous displacement ui that takes values u0i on qO; and over continuous plastic
strain fields epij : No other restrictions of a ‘‘physical’’ nature are imposed, but a more
careful mathematical specification requires at least that the integrals in Eq. (2.8)
should exist. The problem then posed is to find the fields eij (or ui), e

p
ij that yield the

infimum value

X ¼ inf
eij ;e

p
ij

Cðeij ; e
p
ijÞ. (2.10)

The Euler–Lagrange equations associated with the infimum problem (2.10) are best
expressed by introducing the conjugate variables

sij ¼
qU

qeij

¼ Lijklðekl � epklÞ,

sij ¼
qU

qepij
¼ �Lijklðekl � epklÞ þ

qV

qepij
,

tijk ¼
qU

qepij;k
¼

qV

qepij;k
. ð2:11Þ

It should be noted that the two first conjugate variable relations are the same as
those used in the classical case, but use of the gradient of epij as an additional
independent variable resulted in the definition (2.11)3 of the higher-order stress tijk:
The requirement that the functional C is minimised implies the principle of virtual
work, that the first variation of Eq. (2.8) has to be zero for all allowed variations deij

and depij; henceZ
O
ðsijdeij þ sijde

p
ij þ tijkde

p
ij;kÞdx þ

Z
G
f0
ðepijÞde

p
ij dG ¼ 0. (2.12)

Integration by parts and allowing for admissible discontinuities across interfaces
gives Z

O
f�sij;jdui þ ðsij � tijk;kÞde

p
ijgdx þ

Z
qO

fsijnjdui þ tijknkde
p
ijgdS

þ

Z
G
f�½sijnj �dui þ ðf0

ðepijÞ � ½tijknk�Þde
p
ijgdG ¼ 0 ð2:13Þ
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for all allowed variations dui and depij : This implies the field equations

:
sij;j ¼ 0;

sij � tijk;k ¼ 0

)
in OnG, (2.14)

the ‘‘natural’’ boundary condition

tijknk ¼ 0 on qO (2.15)

and the interface conditions

½sijnj� ¼ 0;

½tijknk� ¼ f0
ðepijÞ

)
across G. (2.16)

Here and in the sequel, f0
ðepijÞ is written for qf=qepij : It can be seen that a

jump condition is induced by the interfacial energy term, which is solely due
to the admission of the gradient of epij in the total energy functional. In Eqs. (2.13)
and (2.16) and equations to follow, ½f � denotes the jump f 1 � f 2 across a point
of G; where the normal ni points in the direction from ‘‘side 2’’ to ‘‘side 1’’.
There is no condition for sijnj on the external boundary qO because displace-
ment is prescribed there; with similar reasoning it can be seen that if epij
were prescribed on qO; the boundary condition (2.15) would not be present.
Imposing other boundary conditions on qO would require the addition of
surface integrals (over qO) to the basic infimum problem (2.10) (see Fleck and
Willis, 2004; Aifantis and Willis, 2005). Finally, it should be noted that setting
f ¼ 0 results in the original Fleck–Willis formulation; the second condition
in Eq. (2.16) reduces then to the requirement of continuity of higher-order
tractions.
3. Effective response

If the medium under consideration has very fine microstructure relative to the
(macroscopic) length scale of the domain O; and if the boundary data ui ¼ u0i vary
smoothly relative to the scale of O; problem (2.10) can be replaced asymptotically by
the homogenised problem

X ¼ inf
eij ;e

p
ij

Z
O

Ueff ðeij ; e
p
ijÞdx, (3.1)

where U eff is a ‘‘local average’’ defined over a ‘‘representative volume element’’ D:

U eff ðeij ; e
p
ijÞ � inf

eij ;e
p
ij

1

jDj

Z
D

Uðeij ; e
p
ij ; e

p
ij;kÞdx þ

Z
GD

fðepijÞdG
� �� 	

, (3.2)
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where GD represents the interfaces within D, jDj denotes the volume of D and the
infimum is taken over fields which satisfy the relations

eij ¼
1
2ðui;j þ uj;iÞ for some displacement ui,

heiji �
1

jDj

Z
D

eij dx ¼ eij,

hepiji �
1

jDj

Z
D

epij dx ¼ epij . ð3:3Þ

The infimum for problem (3.2) is attained when an equation like (2.13) is satisfied,
except that now ui is not prescribed on qD and the allowed total and plastic strains
have to be compatible with (3.3)2;3: Such considerations result in the following field
equations:

sij;j ¼ 0;

sij � tijk;k ¼ s�ij

)
in DnGD, (3.4)

ðsij � sijÞnj ¼ 0;

tijknk ¼ 0

)
on qD, (3.5)

½sijnj� ¼ 0;

½tijknk� ¼ f0
ðepijÞ

)
across GD. (3.6)

Here, sij ; s�ij are constants, unknown a priori, that play the role of Lagrange
multipliers corresponding to the constraints (3.3)2 and (3.3)3; respectively. It follows
from the first of each of the pairs of Eqs. (3.4)–(3.6) that sij is the mean value of sij

over D. An elementary calculation, based on considering the variation of U eff ðeij ; e
p
ijÞ

with respect to small changes in eij and epij ; delivers the ‘‘effective constitutive
relations’’

sij ¼
qU eff

qeij

; s�ij ¼
qU eff

qepij
. (3.7)

The second of these relations is new, in view of the presence of the surface potential
fðepijÞ: As in Section 2.1, the infimum with respect to epij for (3.1) is achieved by taking
s�ij ¼ 0:
4. Bounds

Henceforth, following Fleck and Willis (2004), the simplifying assumption is made
that the tensor of elastic moduli L is the same for every constituent, and hence also
describes the elastic response of the composite. In this case, it is natural to express
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the ‘‘effective’’ potential U eff in the form

U eff ðeij ; e
p
ijÞ ¼

1
2
ðeij � epijÞLijklðekl � epklÞ þ V eff ðepijÞ (4.1)

which provides the kind of classical deformation-theory effective response for the
composite that was discussed in Section 2.1. Relation (4.1) defines the potential
V eff ðepijÞ; hence it is necessary to prove that V eff is independent of eij :
First, performing a minimisation over eij ; with epij fixed, requires the following
calculation:

inf
eij

1

jDj

Z
D

1

2
ðeij � epijÞLijklðekl � epklÞdx ¼ inf

e1
ij

1

jDj

Z
D

1

2
ðeij þ e1ij � epijÞLijkl

�ðekl þ e1kl � epklÞdx, ð4:2Þ

where e1ij is any strain field with mean value zero over D. Expansion of this
expression, exploiting the fact that e1ij has mean value zero, now gives

1

2
ðeij � epijÞLijklðekl � epklÞ þ inf

e1
ij

1

jDj

Z
D

1

2
ðe1ij þ epij � epijÞLijklðe1kl þ epkl � epklÞdx.

(4.3)

Thus,

V eff ðepijÞ ¼ inf
e1

ij
;ep

ij

1

jDj

Z
D

1

2
ðe1ij þ epij � epijÞLijklðe1kl þ epkl � epklÞ þ V ðepij ; e

p
ij;kÞ


 �
dx

��

þ

Z
GD

fðepijÞdG
�	

. ð4:4Þ

The infimum over e1ij makes a contribution to V eff ; which depends on epij but
not on eij : A more explicit form for this term is given in Fleck and Willis (2004,
Eq. (3.6)).
4.1. Elementary upper and lower bounds

Definition (3.2) of U eff permits the immediate derivation of an upper bound by
substituting into the right side any admissible fields eij ; e

p
ij : Choosing these to be eij ; e

p
ij ;

respectively, delivers the upper bound

U eff ðeij ; e
p
ijÞp

1

jDj

Z
D

Uðeij ; e
p
ij ; 0Þdx þ

Z
GD

fðepijÞdG
� 	

(4.5)

which is analogous to the Voigt upper bound of classical elasticity. In the case that
the elastic constant tensor L is constant over D, this bound, together with definition
(4.4), gives the corresponding bound for V eff ;

V eff ðepijÞpVV ðe
p
ijÞ �

1

jDj

Z
D

V ðepij ; 0Þdx þ

Z
GD

fðepijÞdG
� 	

. (4.6)
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In the absence of the interface potential f; this bound is insensitive to the scale of the
microstructure and so sets a scale-independent upper limit for the effective plastic
response, as found by Smyshlyaev and Fleck (1995, 1996) and Fleck and Willis
(2004). The presence of the interfacial potential removes this restriction; the bound
increases linearly with the ratio of surface area to volume.
An elementary lower bound, of Reuss type, can also be derived, by making use of

the Fenchel inequality

U�ðsij ; sij ; tijkÞXsijeij þ sije
p
ij þ tijke

p
ij;k � Uðeij ; e

p
ij ; e

p
ij;kÞ (4.7)

in conjunction with definition (3.2). In the case of constant L, and taking sij ¼ sij ;
sij ¼ sij ; constants, and tijk ¼ 0; this gives

U eff ðeij ; e
p
ijÞX inf

ep
ij

sijeij þ sije
p
ij �

1

2
sijðL

�1Þijklskl

�

�
1

jDj

Z
D

V�ðsij þ sij ; 0Þdx �

Z
GD

fðepÞdG
� �	

ð4:8Þ

for any sij and sij ; where V� is the convex dual of V. Assuming that fðepijÞXfð0Þ ¼ 0;
it follows, by minimising the surface integral (over which the mean-value constraint
has no influence) and optimising over sij ; sij ; that

V eff ðepijÞXVRðe
p
ijÞ, (4.9)

where

VRðe
p
ijÞ � sup

sij

sije
p
ij �

1

jDj

Z
D

V�ðsij ; 0Þdx

� 	
. (4.10)

This lower bound is scale-independent. It was derived by Fleck and Willis (2004)
under the assumption that f ¼ 0:
4.2. Refined upper bound

It may be possible to find the effective potential exactly, or else find good
approximations, if the response of the composite is linear, so that V and f
are quadratic functions of their arguments. Such a composite has no direct
physical relevance but it permits the development of a bound for a nonlinear
composite by comparing its response with that of the linear composite. With
this motivation, a ‘‘comparison linear composite’’, is introduced, with quadratic
potentials V c and fc but the same microgeometry and elastic modulus tensor
as the actual composite. Assuming constant L, its effective potential Ueff

c can be
expressed like (4.1) with V eff replaced by V eff

c : Starting from definition (3.2), it
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follows that

U eff ðeij ; e
p
ijÞ ¼ inf

eij ;e
p
ij

1

jDj

Z
D

1

2
ðeij � epijÞLijklðekl � epklÞ þ V cðe

p
ij ; e

p
ij;kÞ


 �
dx

��

þ

Z
D

½V ðepij ; e
p
ij;kÞ � V cðe

p
ij ; e

p
ij;kÞ�dx

þ

Z
GD

fcðe
p
ijÞdGþ

Z
GD

ðfðepijÞ � fcðe
p
ijÞdG

�	

pU eff
c ðeij ; e

p
ijÞ þ

1

jDj

Z
D

maxðV � V cÞdx

�

þ

Z
GD

maxðf� fcÞdG
�
, ð4:11Þ

assuming that V and f grow no faster than quadratically when their arguments are
large, so that the maxima introduced here are finite. It follows, in the case of
constant L, that

V eff ðepijÞpV eff
c ðepijÞ þ

1

jDj

Z
D

maxðV � V cÞdx þ

Z
GD

maxðf� fcÞdG
� �

. (4.12)

Optimising this inequality, for any chosen epij ; with respect to the parameters in the
comparison potentials generates a bound of the type first introduced by Ponte
Castañeda (1991). No correspondingly elementary reasoning has lead to a refined
lower bound for a composite with potentials with the type of growth postulated here
(see Talbot and Willis, 1994a,b).
5. One-dimensional problems

Problems involving one spatial dimension may be realised, for example, by
considering a bar under tension or compression, the properties of the bar varying
only along its length, or by considering a laminate subjected to simple shear. In
either case, there is just one relevant component of stress, displacement, total strain,
plastic strain, and higher-order stress. It is appropriate therefore to drop all suffixes,
and to let x denote the coordinate in which there is variation. The partial differential
equations of Section 2 reduce to ordinary differential equations, derivable from the
1-D realisation of the variational principle (2.10). Likewise, the variational
characterisation (3.2) of U eff becomes, explicitly,

U eff ðe; epÞ ¼ inf
e;ep

1

jDj

Z
D

1

2
Lðe� epÞ2 þ V ðep; ep;xÞ


 �
dx þ

X
x2GD

fðepÞ

" #( )
. (5.1)

The infimum with respect to e is realised when Lðe� epÞ ¼ s; constant.
Hence, e� ep ¼ L�1s and so, by averaging, e� ep ¼ ðLRÞ

�1s; where LR is the
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Reuss average

LR �
1

jDj

Z
D

L�1 dx


 ��1

. (5.2)

It follows then that

U eff ðe; epÞ ¼ 1
2
LRðe� epÞ2 þ V eff ðepÞ, (5.3)

where

V eff ðepÞ ¼ inf
ep

1

jDj

Z
D

V ðep; ep;xÞdx þ
X
x2GD

fðepÞ

" #( )
. (5.4)

Result (5.4) is simpler than formula (4.4), which applies to any number of
dimensions; it can be used even if the elastic constant L varies with x.
5.1. Periodic medium, linear response

As a first example, a single-phase medium with a linear response is considered;
thus, V is assumed to be a quadratic function of both ep; ep;x

V ðep; ep;xÞ ¼
1
2
b½ðepÞ2 þ l2ðep;xÞ

2
�, (5.5)

where b and l are constants.
If there were no interfaces, the solution of the infimum problem (5.4) would be

ep ¼ ep; constant, and there would be no strain-gradient effect. Here, however, it is
assumed that interfaces are distributed periodically with period 2L: The interfacial
energy term is taken to be a quadratic function of ep and hence the potential f is
given by

fðepÞ ¼ 1
2
aðepÞ2, (5.6)

where a is a material parameter. For this, as for any similar problem for a periodic
medium, it suffices to seek the infimum over plastic strain fields that are periodic with
period 2L: Various such examples were solved by Aifantis and Willis (2005). The
governing equations are obtainable either directly from Eq. (5.4) or by specialising to
one dimension the general equations (3.4)–(3.6). Explicitly, considering one period
ð�L;LÞ; with an interface situated at x ¼ 0; ep will be an even function of x and will
satisfy, on the half-period ð0;LÞ;

bðep � l2ep;xxÞ ¼ s; 0oxoL,

bl2ep;xð0Þ ¼ aepð0Þ=2; ep;xðLÞ ¼ 0. ð5:7Þ

Strictly, the right-hand side of Eq. (5.7)1 should be written sþ s�; and s� has to be
chosen to deliver the correct value for ep: However, ultimately, to achieve the
infimum in (3.1), ep has to be such that s� ¼ 0; and s is in any case constant and so
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equal to its mean value. The solution of system (5.7) is

epðxÞ ¼
s
b

1�
cosh½ðL � jxjÞ=l�

coshðL=lÞ þ ðbl=aÞ sinhðL=lÞ

� �
; �LpxpL. (5.8)

The simplest route to finding the effective potential V eff is to average relation (5.8).
This gives

s ¼ beffep, (5.9)

where

beff ¼ b
1þ ð2bl=aÞ tanhðL=lÞ

1þ ð2bl=a� l=LÞ tanhðL=lÞ

� 	
. (5.10)

At the solution (s� ¼ 0; as already assumed), the effective relations conform to the
pattern of (2.6)2 for non-strain-gradient material, and hence immediately

V eff ðepÞ ¼ 1
2
beff ðepÞ2. (5.11)

This same result can be obtained more laboriously by substituting Eq. (5.8) into Eq.
(5.4), with s ¼ beffep:

5.2. Periodic linear medium, nonlinear interfacial response

Next, the same linear hardening medium is considered but the periodically
distributed interfaces are taken to respond according to the nonlinear potential

fðepÞ ¼ gjepj. (5.12)

This form of f is not differentiable at ep ¼ 0: The appropriate generalisation of the
interface condition (3.6)2 is ½t� 2 qfðepÞ; that is,

½t� 2 ð�g; gÞ if ep ¼ 0,

¼ gep=jepj if epa0. ð5:13Þ

Physically, this says that the interfaces are impermeable to dislocations, and hence
plastic strain cannot accumulate there, so long as the jump in the hyperstress, ½t�; is
smaller in magnitude than a critical value g: The constant g is a material parameter
related to the tendency of dislocations to pile up at an interface until the applied
stress reaches a level sufficient to generate a force on the leading dislocation large
enough to drive it across (or else to activate a dislocation source on the interface). It
will be seen below that the critical value g of j½t�j is first attained when the magnitude
of the applied stress reaches a critical value sc: When the jump in t reaches the
critical value, the interface begins to deform plastically (i.e. the plastic strain there
differs from zero). It then continues to deform (as long as jsj4scÞ in a perfectly
plastic mode (in the sense that the condition j½t�j ¼ g always holds true) such that
plastic strain accumulates on both the grain boundary and the interior, through
dislocation motion. Therefore, sc can be viewed as the interfacial yield stress. For
definiteness in the equations to follow, s is taken to be positive. The governing
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equations for ep are

bðep � l2ep;xxÞ ¼ s; 0oxoL,

ep;xðLÞ ¼ 0 ð5:14Þ

(as previously), together with

epð0Þ ¼ 0 so long as bep;xð0Þog=2,

bl2ep;xð0Þ ¼ g=2 otherwise.

These conditions define two linear problems, both easily solved to yield

epðxÞ ¼

s
b

1�
cosh½ðL � jxjÞ=l�

coshðL=lÞ

� �
; so long as sosc;

s
b
�

g cosh½ðL � jxjÞ=l�

2bl sinhðL=lÞ
otherwise ðsXscÞ;

8>>><
>>>:

(5.16)

where the critical stress for interfacial yielding, sc; is given by

sc ¼
g
2l
cothðL=lÞ. (5.17)

The corresponding relation between mean stress and mean plastic strain is obtained
by averaging Eq. (5.16):

s ¼

bep

1� ðl=LÞ tanhðL=lÞ
if jepjoepc ;

bep þ
g
2L

otherwise;

8>><
>>: (5.18)

where

epc ¼
g
2lb

1� ðl=LÞ tanhðL=lÞ

tanhðL=lÞ

� 	
. (5.19)

The effective potential V eff follows by integration:

V eff ðepÞ ¼

bðepÞ2

2½1� ðl=LÞ tanhðL=lÞ�
if jepjoepc ;

bðepc Þ
2

2½1� ðl=LÞ tanhðL=lÞ�
þ
1

2
b½ðepÞ2 � ðepc Þ

2
� þ

g
2L

ðjepj � epc Þ if jepjXepc :

8>>><
>>>:

(5.20)

5.3. Use of comparison medium

An alternative approach for the problem of the preceding subsection is to employ
the ‘‘comparison’’ method outlined in Section 4.2. Take the actual medium to be the
one studied above, with interfacial potential f given by Eq. (5.12), and employ the
linear comparison medium with interfacial potential given by Eq. (5.6). The potential
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V is the same for both the actual and the comparison medium. The inequality (4.12)
reduces in this case to

V eff ðepÞp
1

2
beff ðepÞ2 þ

g2

4La
(5.21)

with beff given by Eq. (5.10). The best bound of this type, for any chosen ep; is
obtained by calculating the infimum with respect to a: The infimum is achieved either
at the unique finite stationary point or by letting a ! 1: As a ! 1; the right-hand
side of Eq. (5.21) has the asymptotic form

b
2½1� ðl=LÞ tanhðL=lÞ�

1�
ð2bl2=LaÞtanh2ðL=lÞ

1� ðl=LÞ tanhðL=lÞ

� 	
ðepÞ2 þ

g2

4La
. (5.22)

This expression decreases as a increases if jepjoepc ; in this case, the best bound is
obtained by letting a ! 1: If jepj4epc ; the best bound is achieved at the stationary
point. Completion of the calculation reproduces the exact result (5.20). The bound
coincides with the exact solution because there was only a need to ‘‘match’’ the
subgradient of the nonlinear potential f at a single point.
6. Nonlinear material with periodic interfaces

This section addresses a problem in which a single-phase nonlinear medium
contains a periodic array of interfaces, with period 2L: The potential V of the
medium is taken to be that employed by Fleck and Willis (2004):

V ðep; ep;xÞ ¼
s0e0
n þ 1

Ep

e0


 �nþ1

, (6.1)

where no1 and

Ep ¼ ½ðepÞ2 þ l2ðep;xÞ
2
�1=2. (6.2)

The interfacial potential is taken as that given by Eq. (5.12).
It is possible to compute the solution by solving the nonlinear ordinary differential

equation, together with the boundary conditions that emerge by specialising
equations (3.4)–(3.6). Explicitly, the differential equation is

1

ðEpÞ
3=2

s0l
2 Ep

e0


 �n

½nl2ðep;xÞ
2ep;xx þ epððn � 1Þðep;xÞ

2
þ ep;xe

p
;xxÞ�

� 	

�
s0ep;x

e0
ðEpÞ

n�1
¼ �s. ð6:3Þ

The boundary conditions are given by Eq. (5.13), with ½t� ¼ 2s0l
2
ðep;x=EpÞðEp=e0Þ

n;
evaluated at x ¼ 0: Fig. 1 gives plots of the effective stress–plastic strain response
obtained from the computed solution1 of the nonlinear differential equation (6.3),
1High accuracy was judged not to be necessary and the computation was performed with the aid of the

program Mathematica.



ARTICLE IN PRESS

0 0.5 1 1.5 2

∋ p  / eo

0

0.2

0.4

0.6

0.8

1

1.2

1.4

σ−

−

/  σ
o

lower bound

L / l=10

L / l=5

L / l=1

Fig. 1. Plots of normalised mean stress versus normalised mean plastic strain, for different values of L=l;
for material with hardening exponent n ¼ 0:1:
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Fig. 2. Plots of normalised mean stress versus normalised mean plastic strain, for different values of L=l;
for material with hardening exponent n ¼ 0:3:
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with n ¼ 0:1; for a range of values of L=l: The plots are normalised, showing s=s0
versus ep=e0; with g=ðs0lÞ ¼ 2:2:
Elementary upper and lower bounds for V eff ; VV and VR respectively, follow

from Section 4.1. In this case,

VRðepÞ �
s0e0
n þ 1

ep

e0


 �nþ1

pV eff ðepÞp
s0e0
n þ 1

ep

e0


 �nþ1

þ
gjepj
2L

� VV ðepÞ. (6.4)

The curve designated ‘‘lower bound’’ in Fig. 1 is obtained by differentiating VR: It
corresponds to the response of the material without interfaces and so provides the
limiting case L=l ! 1: Fig. 2 provides similar plots for a more strongly hardening
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material, with n ¼ 0:3: For this, and for all subsequent plots, the value g=ðs0lÞ ¼ 2:2
was maintained. Figs. 1 and 2 are not directly comparable, being for different
materials, but both show a trend of Hall–Petch type, with strength increasing as the
‘‘grain size’’ L decreases. For this simple single-medium case, the effect is entirely due
to the interfacial potential.
A ‘‘refined’’ upper bound can be obtained by implementing the method of

Section 4.2, taking the linear comparison medium to be that discussed in Section 5.1.
The inequality (4.12) gives

V eff ðepÞp
1

2
beff ðepÞ2 þ

s0e0
2

1� n

1þ n


 �
s0
be0


 �ð1þnÞ=ð1�nÞ

þ
g2

4La
. (6.5)

Optimising first with respect to a gives

V eff ðepÞpV eff
0 ðepÞ þ

s0e0
2

1� n

1þ n


 �
s0
be0


 �ð1þnÞ=ð1�nÞ

, (6.6)

where V eff
0 is the potential given by Eq. (5.20). The remaining optimisation, with

respect to b; has to be performed numerically—at least, when ep is large enough to
require use of expression (5.20)2:
Fig. 3 gives plots of V eff=ðs0e0Þ against ep=e0; as deduced from the solution of the

differential equation (here designated ‘‘exact’’), together with the elementary bounds
(6.4) and the ‘‘refined’’ bound obtained by optimising (6.6), all for the case L=l ¼ 5;
n ¼ 0:3: The ‘‘refined’’ bound is very close to the ‘‘exact’’ solution. The same trend is
shown in Fig. 4, which gives the corresponding approximations to the (normalised)
effective stress–plastic strain relation, s ¼ dV eff=dep:
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Fig. 3. Comparison of ‘‘exact solution’’ for V eff ðepÞ with bounds, when L=l ¼ 5; for material with

hardening exponent n ¼ 0:3:



ARTICLE IN PRESS

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lower bound

exact solution

refined bound

upper bound

∋ p  / eo

σ−

−

/  σ
o

Fig. 4. Comparison of normalised mean stress versus normalised mean plastic strain, calculated ‘‘exactly’’

or estimated from bounds, when L=l ¼ 5; for material with hardening exponent n ¼ 0:3:

K.E. Aifantis, J.R. Willis / J. Mech. Phys. Solids 53 (2005) 1047–10701064
7. Simple examples for a random medium

All of the examples discussed so far could be approached directly by solving the
governing differential equations. To that extent, the variational approach is not
essential. It comes into its own when random media are considered: the problems
cannot be solved exactly but the variational structure provides a framework for the
development of systematic approximations. This is illustrated here by considering
analogues of the problems addressed in the preceding sections. A single 1-D medium
is considered. It is rendered heterogeneous by the presence of interfaces, but now the
interfaces are taken to be distributed according to a Poisson process of intensity
l ¼ 1=ð2LÞ:
The ‘‘linear comparison medium’’ approach will be adopted. The first step,

therefore, is to obtain an expression for the effective potential of a medium with
properties as given in Section 5.1, except that the interfaces are randomly distributed.
The exact effective constant beff cannot be found but an expression which takes
account of the pairwise statistics of the interfaces through use of the ‘‘quasicrystal-
line approximation’’ of Lax (1952) is developed in the appendix. The result is

beff ¼ b 1þ
l=L

1þ ð2lb=aÞ

� 	
. (7.1)

Equality is indicated here for convenience but it is emphasised that Eq. (7.1)
represents an approximation which is, in fact, a lower bound; the proof will be given
in a more general context elsewhere.

7.1. Linear medium, nonlinear interfacial response

As in Sections 5.2 and 5.3, let the medium be linear, with constant b; but take the
interface potential to be (5.12). The ‘‘comparison’’ method follows the pattern
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described in Section 5.3. It requires the optimisation of inequality (5.22), now with
beff given by Eq. (7.1). As a ! 1; the right-hand side of Eq. (5.22) (with Eq. (7.1))
takes the asymptotic form

b 1þ
l

L
�
2bl2

La

� 	
ðepÞ2 þ

g2

4La
(7.2)

and the supremum is approached as a ! 1 if jepjoepc ; where

epc ¼
g
2lb

. (7.3)

Otherwise, the supremum is attained at the stationary point. Completion of the
details gives

V eff
0 ðepÞ ¼

1

2
b 1þ

l

L


 �
ðepÞ2 if jepjoepc ;

1

2
b 1þ

l

L


 �
ðepc Þ

2
þ
1

2
b ðepÞ2 � ðepc Þ

2
� �

þ
g
2L

jepj � epc
� �

if jepjXepc :

8>>><
>>>:

(7.4)

7.2. Nonlinear medium, nonlinear interfacial response
Now consider the analogue of the problem discussed in Section 6: the response of
the medium is defined by the Fleck–Willis potential (6.1) while the potential of the
interfaces remains (5.12). As in Section 6, the optimisation over the parameters a;b
can be done sequentially. First optimising with respect to a generates expression
(6.6), except that now V eff

0 is the potential given by Eq. (7.4).
Sample results are shown in Figs. 5 and 6. There is no ‘‘exact’’ solution but

the procedure based on the use of the linear ‘‘comparison’’ medium yields
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Fig. 5. Plots of normalised V eff versus normalised mean plastic strain, for material with randomly placed

interfaces with mean spacing L and hardening exponent n ¼ 0:3; for different values of L=l:
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approximations for the effective potential V eff ; and hence by differentiation to
corresponding approximations for the effective stress–plastic strain relation. Fig. 5
shows plots of V eff=ðs0e0Þ versus ep=e0 calculated by this procedure, for n ¼ 0:3 and
g=ðs0lÞ ¼ 2:2; for a range of values of L=l: The ‘‘lower bound’’ limit (L=l ! 1) is the
same as for the periodic case. Fig. 6 gives the corresponding plots for s=s0 versus
ep=e0: This figure is directly comparable to Fig. 2, the only difference being the
distribution of the interfaces. Fig. 2 corresponds to ‘‘perfectly ordered’’ interfaces,
with exactly uniform spacing 2L; while Fig. 6 corresponds to ‘‘perfectly disordered’’
interfaces, with mean spacing 2L: The ‘‘disorder’’ slightly reduces the sensitivity to
scale. However, the trends are the same and the numbers are similar. Thus, the scale
effects that are shown would appear to be robust.
8. Concluding remarks

The distinctive feature of this work is the recognition that the assumption of
strain-gradient-sensitive constitutive behaviour carries with it the opportunity to
incorporate physical properties of interfaces through the introduction of an
interfacial potential. There is a natural coupling between the physics of the
constituent media and the physics of the interfaces: only interfacial conditions which
are compatible with mathematically consistent boundary or interfacial jump
conditions can be imposed. The examples that have been presented here have been
based on the Fleck and Willis (2004) structure for strain-gradient plasticity. In
employing plastic strain as internal variable it leads to a relatively simple and
convenient formulation for applications but it precludes the explicit consideration of
dislocations and their motion. A desirable future development would be to obtain a
corresponding formulation based on more detailed gradient-sensitive models. It is
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remarked, however, that many models will collapse down to the form of the present
one, in the context of the 1-D problems considered here.
The examples that were presented display a sensitivity to length scale only through

the presence of the interfacial potential: in its absence, the material would support
uniform fields and hence the constitutive gradient-dependence would have no
influence. Other problems, in which the material itself is heterogeneous, would
display scale-dependence, as demonstrated, for instance, in the work of Fleck and
Willis (2004). In such cases, the interfacial potential will lead to a more pronounced
scale-dependence, no longer limited by the ‘‘Taylor upper bound’’.
Calculation of the effective response of any medium with periodic microstructure

requires the solution of a problem for a periodic cell, and this can be done just as
easily with an interfacial potential as without. Problems for a random medium
cannot be solved exactly and it is for such problems that the variational formulation
plays an essential role. Introduction of an interfacial potential induces the need to
define surface–surface and surface–volume correlations that are consistent with the
usual two-point (volume–volume) probabilities. A more complete study of such
problems will be reported elsewhere.
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Appendix A. Approximation for a linear medium with randomly placed interfaces

The medium under consideration has potential (5.5) and interfacial potential (5.6),
as in Section 5.1. The difference is that now the interfaces are distributed randomly,
according to some stationary random process. One way to formulate the problem is
to note that the differential equation (5.7)1 (now applying for all x except interface
points), together with the jump conditions

bl2½ep;x� ¼ t across any interface (A.1)

can equivalently be stated

bðep � l2ep;xxÞ þ
X

x02GD

tðx0Þdðx � x0Þ ¼ s, (A.2)

where

tðx0Þ ¼ aepðx0Þ. (A.3)
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Introduce the Green’s function

Gðx � x0Þ ¼
expð�jx � x0j=lÞ

2l
. (A.4)

This satisfies the differential equation

l2
d2G

dx2
� G þ dðx � x0Þ ¼ 0. (A.5)

Hence, the solution2 of the differential equation (A.2) can be expressed in
the form

epðxÞ ¼
s
b
�
1

b

X
x02GD

Gðx � x0Þtðx0Þ. (A.6)

Evaluation of epðxÞ for any x 2 GD yields, together with relation (A.3), the system of
equations

epðxÞ ¼
s
b
�

a
b

X
x02GD

Gðx � x0Þepðx0Þ; x 2 GD. (A.7)

In the case of a periodic medium, epðxÞ takes the same value (epð0Þ say) at all
interface points. Then, system (A.7) reduces to a single equation for epð0Þ: The sum
over the periodically distributed interface points is easily calculated and the solution
given in Section 5.1 can be reproduced.
For a random medium, however, what is required is an expression for the

ensemble mean hepi which, for a statistically uniform medium, will coincide with
the spatial mean of epðxÞ; in the ‘‘homogenisation limit’’ that D=l ! 1; where D

is the dimension of the sample. It follows by ensemble averaging equation (A.6)
that

hepðxÞi ¼
s
b
�

a
b

Z 1

�1

Gðx � x0Þpðx0Þhepðx0Þix0 dx0, (A.8)

where hepðx0Þix0 is the ensemble mean of epðx0Þ; conditional on the presence of an
interface point at x0; and pðx0Þ is the probability density (assumed uniform, and so
independent of x0) for finding an interface point at x0: Now attempt to find an
equation for hepðx0Þix0 by conditionally averaging Eq. (A.6):

hepðxÞix ¼
s
b
�

a
b

Z 1

�1

Gðx � x0Þpðx0jxÞhepðx0Þix0 ;x dx0. (A.9)

Here, pðx0jxÞ is the probability density for finding an interface at x0; conditional on
the presence of an interface point at x, and hepðx0Þix0 ;x is the ensemble mean of epðx0Þ;
conditional on the presence of interfaces at x0 and x. Evidently, following this course
produces a hierarchy of equations for conditional means of ep: A simple expedient is
to close the hierarchy by making the ‘‘quasicrystalline approximation’’ (QCA)

hepðx0Þix0;x ¼ hepðx0Þix0 , (A.10)
2This solution disregards end conditions which are not significant for the ‘‘effective medium’’ problem.
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first introduced by Lax (1952), so-called because it becomes exact in the special case
of a periodic medium. For a statistically uniform medium, pðx0jxÞ is a function just of
ðx0 � xÞ and Eq. (A.9), together with the QCA (A.10), delivers a constant value for
the conditional mean hepðx0Þix0 :
It is possible to eliminate s between Eqs. (A.8) and (A.9) to yield together with the

QCA,

hepðxÞix ¼ ep �
a
b

Z 1

�1

Gðx � x0Þðpðx0j0Þ � lÞdx0hepðxÞix, (A.11)

having written pðx0Þ ¼ l; constant, equal to the number density of the interfaces,
hepðxÞi ¼ ep; and having exploited the translation invariance. The required solution
(subject to the QCA) is thus

hepðxÞix ¼
ep

1þ ða=2lbÞ
R1

�1
e�jx0j=lðpðx0j0Þ � lÞdx0

. (A.12)

It follows by performing the elementary integration in (A.8) (with pðx0Þ ¼ l and
epðx0Þ
� �

x0;x
¼ epðx0Þ

� �
x0 ; constant) that

ep ¼
s
b
�

a
b
lhepðxÞix. (A.13)

Together with Eq. (A.12), this gives the effective stress–plastic strain relation

s ¼ beffep, (A.14)

where

beff ¼ b 1þ
la=b

1þ ða=2lbÞ
R1

�1
e�jx0j=lðpðx0j0Þ � lÞdx0

( )
. (A.15)

Specialise now to the case of interfaces generated by a Poisson process of intensity
l: Since interface points are placed independently, it follows that

pðx0j0Þ ¼ dðx0Þ þ l (A.16)

(the delta function is present because it is given that there is an interface at 0). The
integral in formula (A.15) reduces to 1, and this results in Eq. (7.1), upon setting
l ¼ 1=ð2LÞ:
It can be shown, in fact, that formula (A.15) provides a lower bound for beff ; but

this will be demonstrated elsewhere, in the context of a more comprehensive study of
random media.
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