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Deformation-induced material instabilities may be of elastic (buckling, martensitic trans-
formations) or plastic (necking/shear banding, dislocation patterning) type. In plasticity,
the emergence of material instabilities is mainly associated with the properties of the
underlying microstructure such as the motion, interaction and production/annihilation
of dislocations: the carriers of plastic deformation. In any case, a common mathematical
basis for describing the emergence and evolution of pattern-forming material instabilities
in a large class of physical problems may be sought on non-monotonous equations of state,
in conjunction with the introduction of suitable time and space derivatives in the state
variables. This was an approach elaborated upon by Aifantis and co-workers in the early
eighties for plastic instabilities. In about the same time, a similar and perhaps broader
approach, based on a non-convex energy functional for various physical systems and the
introduction of higher-order field variables to stabilize the behavior in the non-convex
regime, was independently proposed by Berdichevsky and co-workers. This paper, written
on the occasion of his 65th birthday, provides an updated discussion of dislocation pattern-
ing, shear banding and strain instabilities during epitaxial film growth.

� 2012 Published by Elsevier Ltd.
1. Introduction

The term ‘‘Material Instabilities’’ was introduced as the title of a Special Issue of Res Mechanica (Aifantis, Walgraef, & Zbib,
1988) edited by the authors and H.M. Zbib (then a doctoral student of ECA). The special issue featured articles by Coleman,
Vardoulakis, Ghoniem, Neuhauser, Estrin/Kubin, Zbib/Aifantis and Walgraef/Aifantis; partly in response to a proposal ad-
vanced a few years earlier by Aifantis (1984) who introduced higher order gradients of internal variables in non-convex
(non-monotonous) constitutive equations for capturing the occurrence and evolution of deformation-induced material
instabilities (dislocation patterns, shear bands, traveling strain fronts). Even though, in general, a rich physical problem
has its specific features that need to be discovered and analyzed for its own merits (e.g. turbulence does not fit in the present
framework in an obvious way), the proposed procedure may be viewed as a first step towards a qualitative (and some times
quantitative) understanding of the pattern-forming instabilities involved. Dislocation dynamics is exactly such a subject (in a
certain sense, it may be viewed as the ‘‘turbulence’’ of solid mechanics, even though the resulting dislocation structures are
metastable as being characterized by much larger, as compared to fluids, relaxation times) and there is more to it than fitting
into some a priori general recipe. For example, recent work has shown that a proper extension of the classical theory of con-
tinuously distributed dislocations leads to degenerate parabolic systems of equations which show richer equilibria than
Cahn–Hilliard type of equations. The associated dynamical behavior seems to be describable by hyperbolic systems of
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conservation laws without the drawback of ambiguous shocks; and thus, with little doubt, capable of producing
microstructures. Moreover, the theory of continuously distributed dislocations is kinematically rigorous (unlike what is
proposed here where kinematics is not explicitly considered) and has a history that predates the authors’ reaction–trans-
port–diffusion (RTD) approach. More comments on recent efforts to render such an elegant previously existing framework
into a workable theory for dislocation patterning are provided in the last section of this article.

Until the publication of the above mentioned article (Aifantis, 1984), there was no convincing theory to address such type
of plastic instability problems associated with material softening (negative slope regime in the stress–strain curve, or non-
convexity in corresponding equations of state). Even after the publication of Aifantis (1984), several authors insisted-often
with unsuccessful attempts-upon regularizing the ‘‘homogeneous unstable’’ material behavior in the softening regime
through viscous terms or other artificial means, until it became obvious that higher order gradients are necessary to address
spatio–temporal instabilities in dislocation dynamics and plasticity theory, as was the case for other far-from-thermody-
namic-equilibrium driven systems.

In the case of dislocation patterning, in particular, an initial reaction–transport–diffusion (RTD) model, commonly known
today as the Walgraef–Aifantis (W–A) model (Pontes, Walgraef, & Aifantis, 2006; Walgraef & Aifantis, 1985a, 1985b) was the
main motivation for the voluminous subsequent work on discrete dislocation dynamics (DDD) simulations (Ghoniem, Busso,
Kioussis, & Huang, 2003; Kubin et al., 1993; Rhee, Zbib, Hirth, Huang, & de la Rubia, 1998), as well as more recent work on
density-based statistical dislocation considerations (El-Azab, 2000; Groma, 1997; Zaiser, Miguel, & Groma, 2001). In the case
of shear banding and traveling strain fronts, Aifantis’ initial gradient plasticity model (Aifantis, 1984, 1987) has served as
basis for incorporating higher order gradients to soil plasticity and damage theories, for eliminating mesh-size dependence
in finite element computations, as well as for interpreting size effects observed in micro/nano composite materials and re-
corded during micro/nano indentation (Aifantis & Willis, 2005; Fleck, Muller, Ashby, & Hutchinson, 1994; Gurtin & Anand,
2009; Vardoulakis & Aifantis, 1989).

In parallel with (and independently from) the aforementioned research activity, Berdichevskii and Truskinovskii (1985)
presented a similar generic discussion on various types of instabilities occurring in physical systems with localized energy
(elementary particles, vapor bubbles in a liquid, dimples in shells, dislocations in crystals, etc). The approach was again based
on assuming that the free energy of the system is the sum of two terms: one being a non-convex functional of the field vari-
ables and the other being a quadratic functional of their gradients. Even earlier than that, Berdichevskii and Sedov (1967)
have presented a dynamic theory of continuously distributed dislocations where the internal energy and the dissipation po-
tential depended on both plastic strain gradients and plastic rotation gradients, which appeared only in special combinations
in the form of the dislocation density tensor.

As is often the case in sciences and the arts, some original ideas and early discoveries remain unexplored; either because
they are ahead of their time, or because they have not been presented in a manner or form appropriate for immediate use by
employing the tools available then. This was also somewhat true for the aforementioned two approaches: Berdichevskii’s
approach-deeply rooted in fundamental physics and sophisticated mathematics-has evolved into a generalized variational
framework for the mechanics and thermodynamics of microstructures (Berdichevsky, 2008; Berdichevsky, 2009). Aifantis’
approach-strongly based on striking similarities and close analogies noted between deformation processes in solids and pat-
tern forming instabilities in other well studied physical systems-was quickly adopted and further developed by the multi-
disciplinary engineering mechanics and material physics communities, which found applications to many deformation
problems across the scale spectrum. It is thus a timely and useful task to re-examine now both approaches, bringing together
their advantages and dispensing with their disadvantages. It is a pleasure and an honor to dedicate this article to Victor
Berdichevsky: the scientist whom we all still have a lot to learn from and the human being whose endurance, rigor and fair-
ness will remain as a landmark for the generations to come, and for those who are cursed and blessed at the same time to
carry out a great tradition away from their homeland.

The paper is delivered in three major sections. In Section 2, the problem of dislocation patterning is discussed by revis-
iting the original RTD/W–A model with a closer examination on the role of gradient terms in the dynamics, as well as with an
elaboration on double slip, and the incorporation of stochastic effects. Section 3 considers generic issues for the problem of
dynamic shear banding by incorporating inertia and rate effects in the original stationary model analyzed by the second
author and his co-workers for gradient-dependent plastic materials in the softening regime. Section 4 considers instabilities
in thin material layers induced by simultaneous action of diffusion and deformation during heteroepitaxial film growth. The
paper ends with a number of conclusions listed in Section 5.

2. Dislocation patterning

2.1. The role of gradient terms in dislocation dynamics

(i) Governing Evolution Equations: By considering a representative single slip system and distinguishing between immobile
or slow mobility forest dislocations with density qs, and mobile or fast moving dislocations with total density qm ¼ qþm þ q�m
and excess density km ¼ qþm � q�m, the appropriate mean field evolution equation for the dislocation system at hand may be
written in the form
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@tqs ¼ �rjs þ C þ tsqs
ffiffiffiffiffi
qs
p � tsdcq2

s � bqs þ GðqsÞqm;

@tqm ¼ �bBrx½�rintðrÞ þ rext�km þ bqs � GðqsÞqm;

@tkm ¼ �bBrx½�rintðrÞ þ rext�qm � GðqsÞkm;

ð1Þ
where js represents the (weak) effective dislocation transport in the forest resulting from thermal mobility and climb, and it
will be considered (as in the original W–A model) as diffusive (js = �Dsrqs). The quantity C represents a constant source term
to be taken equal to zero in the sequel, while the quantity tsqs

ffiffiffiffiffiqs
p

(which could contain a proportionality constant) denotes
multiplication of static dislocations within the forest: the density of dislocation sources qs operates with frequency ts

ffiffiffiffiffiqs
p

,
where ts designates the dislocation velocity in the forest. Annihilation of static dislocations is represented by the term
tsdcq2

s with dc denoting a characteristic length for dipole collapse which, in principle, may be evaluated from microscopic
analysis (Essmann & Mughrabi, 1979). The coefficient b measures the rate of dislocation freeing from the forest and is asso-
ciated with the destabilization of dislocation dipoles or clusters under stress. Numerical dislocation dynamics simulations
show that in bcc crystals, for example, there is a critical value of externally applied stresses above which dislocation dipoles
become unstable (Huang et al., 1999), and this value is a decreasing function of the distance between dipoles. If the forest is
considered as an ensemble of dipoles with a mean characteristic width, the threshold stress rf for destabilization or freeing,
could be extracted from such simulations. More extended numerical analysis could include higher order dislocation clusters
and provide the dependence of the threshold stress on the forest dislocation density. The freeing rate should thus be zero
below the freeing threshold, and an increasing function of the applied stress above it. Finally, the term G(qs)qm represents
the pinning rate of mobile dislocations by the forest. The quantity G(qs) may be represented in the form GðqsÞ ¼

P
nP1

gnqn
s i.e.

the total pinning rate of mobile dislocation by clusters of static ones. The effect of correlation functions, which have been
neglected in Eq. (1), will be discussed in Section 2.3.

The quantity b is the magnitude of the Burgers vector, and the quantity B – denoting dislocation mobility – enters in the
expression for the gliding velocity tg :tg = bB[rint(x) + rext] where rint(x) denotes the local internal stress rext and the exter-
nally applied one. It then follows (Zaiser et al., 2001) that the average internal stress �rint in three dimensions is given by the
expression
�rintðr; tÞ ¼
Z

kmðr; tÞrindðr� r1Þdr1 � nlb
ffiffiffiffiffi
qs
p ð2Þ
where r2 �rintðr; tÞ ¼ ½lb=ð1� mÞ�½@3kmðr; tÞ=@x@
2
y � with l being the shear modulus and m the Poisson’s ratio, and the second

term in Eq. (2) representing the contribution of pre-existing forest dislocations to the mean internal stress. In this connec-
tion, it is noted that the current of mobile dislocation density �rx q�mtg

� �
entering in the respective balance laws

@tq�m �rx q�mtg
� �

¼ ĉ qs;q�m
� �

reflected in the governing differential system given by Eq. (1), was written in terms of the total
stress r driving these dislocations. [The source term ĉ qs;q�m

� �
models, in general, dislocation production/annihilation and the

gliding velocity tg is assumed to depend linearly on r]. In contrast, the current of immobile dislocations was assumed to be
diffusive due to the random motion of these dislocations within the forest (Pontes et al., 2006; Walgraef & Aifantis, 1985a,
1985b).

(ii) Stability Analysis and Bifurcations: Two typical approximations may be considered in studying the evolution of dislo-
cation densities during plastic deformation. The first one corresponds to materials with low forest density at the beginning of
the deformation process. In this case, the dislocation current which gives rise to the gradient terms in Eq. (1) also contains a
contribution resulting from the interaction between gliding dislocations and loops (Gregor & Kratochvil, 1998). As shown
there, these terms account for a sweeping mechanism which may be responsible for the early stages of dislocation pattern-
ing. The second one, which is considered here, corresponds to materials with a well-developed forest. In this case, advection
terms dominate in the gradient terms, as considered in Eq. (1). The consequence of this approximation is to neglect transient
patterns which develop during the early stages of the evolution, such as the development of the vein structure, before the
formation of PSBs during fatigue. Although we think that these transients should not affect the asymptotic states of the sys-
tem, it would nevertheless be desirable to incorporate them in the dynamics of Eq. (1), in order to obtain a complete descrip-
tion of pattern evolution. It is now easy to check that Eq. (1) admits the following non-trivial uniform steady state:
ffiffiffiffiffiffi

q0
s

q
¼ 1=dc; q0

m ¼ ðb=cÞq0
s ; k0

m ¼ 0; ð3Þ
where c ¼ G q0
s

� �
is the mean effective pinning rate.

The linear stability analysis of this steady state is performed, as usual, by studying the evolution of small nonuniform den-
sity perturbations defined as q̂s ¼ qs � q0

s ; q̂m ¼ qm � q0
m; k̂m ¼ km � k0

m The corresponding linear evolution equations in
Fourier space are:
@tq̂sðq; tÞ ¼ � 1
s � bg þ q2Ds
� �

q̂sðq; tÞ þ cq̂mðq; tÞ;
@tq̂mðq; tÞ ¼ �iqxbBt0k̂mðq; tÞ � cq̂mðq; tÞ � bgq̂sðq; tÞ;

@t k̂mðq; tÞ ¼ � cþ q2
x q2

y

q4 K
h i

k̂mðq; tÞ � iqxbBt0q̂mðq; tÞ þ iqxbBt00q̂sðq; tÞ;
ð4Þ
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where q is the wavevector of the Fourier modes q2 ¼ q2
x þ q2

y , ts/2dc = 1/s, t0 ¼ rext � nlb
ffiffiffiffiffiffi
q0

s

p� �
,t00 ¼ ðb=2cÞ

nlb
ffiffiffiffiffiffi
q0

s

p
,g ¼

P
nP1
ðn� 1Þgnq0n

s

 !
=
P

nP1
gnq0n

s and K ¼ lb2Bq0
m

� �
=½2pð1� mÞ�. Thanks to the finite relaxation rate in

Eq. (4)3, k̂mðq; tÞ may be adiabatically eliminated, yielding (for the linear term)
k̂mðq; tÞ ¼ �i
qxbBt0

cþ q2
x q2

y=q4
� �

K
q̂mðq; tÞ þ i

qxt00
cþ q2

x q2
y=q4

� �
K

q̂sðq; tÞ; ð5Þ
and, then, the deduced linear dynamical system becomes:
@tq̂sðq; tÞ ¼ � 1
s � bg þ q2Ds
� �

q̂sðq; tÞ þ cq̂mðq; tÞ;
@tq̂mðq; tÞ ¼ � cþ q2

x DmðqÞ
� �

q̂mðq; tÞ � bg � q2
x KmðqÞ

� �
q̂sðq; tÞ:

ð6Þ
In a previous analysis (Walgraef, 2002), the glide velocity has been considered as constant. However, we see here that the
gradient terms in the mobile dislocation evolution equations do not only generate an effective self-diffusion term with coef-

ficient Dm ¼ ðbBt0Þ2= cþ Kðq2
x q2

yÞ=q4
h i

, as in Walgraef (2002), but also an effective forest induced cross-diffusion term with

coefficient Km ¼ ðbBÞ2t0t00= cþKðq2
x q2

yÞ=q4
h i

.

The eigenvalues of the associated linear evolution matrix are the solutions of the characteristic equation
x2 þx
1
s
� bg þ cþ Dmq2

x þ q2Ds

	 

þ 1

s
þ q2Ds

	 

cþ Dmq2

x

� �
� bgDmq2

x � cKmq2
x ¼ 0: ð7Þ
When at least one of these eigenvalues has a positive real part, the uniform steady state is unstable. This occurs, in particular,
when
bg þ c
Km

Dm
> 1þ c

Dmq2
x

	 

1
s
þ Dsq2

	 

; ð8Þ
and the instability threshold corresponds to the minimum of the above defined marginal stability curve.
It follows then, in view also of Eq. (2), that the magnitude of the critical wavevector (qc ¼ qc

bix;bix denotes the unit vector in
the slip direction) and the corresponding critical value of the bifurcation parameter bc is given by the relations
qc ¼
c

DmDss

	 
1=4

; bc ¼
1
s

1þ

ffiffiffiffiffiffiffiffiffiffiffi
scDs

Dm

s !2

g þ ri=2ðrext � riÞ
� �� ��1

; ð9Þ
where ri ¼ nlb
ffiffiffiffiffiffi
q0

s

p
. This threshold is lower than the one obtained in earlier studies (Walgraef, 2002; Walgraef & Aifantis,

1985a), where the gliding velocity was considered as constant, which rules out cross-diffusion terms in the linear evolution
matrix (Km = 0), yielding Eq. (9) 2 with the ri-dependent term identically equal to zero. If the dominant process for instability
corresponds to the pinning of mobile dislocations by static dipoles or junctions (n = 2), then Eq. (9) holds with g � 1.

(iii) Nonlinear Analysis: Close to the pattern forming instability, the dynamics of Eq. (1) may be generically reduced to
amplitude equations for the dislocation structure, as discussed in Walgraef and Aifantis (1985a). These equations describe
the dynamics of the formation of dislocation walls perpendicular to the primary slip direction and are of the Ginzburg–Lan-
dau type. They show that dislocation patterning is very natural in systems where a dynamical equilibrium arises between
the freeing of dislocations from the forest and the immobilization of mobile dislocations by the forest or other obstacles.
When considering that the gradient terms result in effective diffusion only, the wall structure appears through a supercritical
bifurcation which is saturated by scalar cubic nonlinearities. However, even close to instability, the gradient terms of the
kinetic equation for the gliding dislocation density may be expanded in series of the perturbations of the uniform steady
state, which generates different types of gradient dependent nonlinearities.

On returning now to Eq. (1), we note that after adiabatic elimination of the excess dislocation density km, this may be
written as
@tqs ¼ DsDqs þ C þ tsqs
ffiffiffiffiffiqs
p � tsdcq2

s � bqs þ GðqsÞqm;

@tqm ¼ rx½tg
1

GðqsÞ
rxtgqmðr; tÞ� þ bqs � GðqsÞqm; tg ¼ bB½�rintðrÞ þ rext�: ð10Þ
which for n = 2 (or g = 1) gives
@tq̂sðq; tÞ ¼ � 1
s � bþ q2Ds
� �

q̂sðq; tÞ þ cq̂mðq; tÞ þ NLsðq; tÞ;
@tq̂mðq; tÞ ¼ � cþ q2

x DmðqÞ
� �

q̂mðq; tÞ � b� q2
x KmðqÞ

� �
q̂sðq; tÞ þ NLmðq; tÞ;

ð11Þ
where NLs(q, t) and NLm(q, t) contain the terms already considered in the original W–A model (Walgraef & Aifantis, 1985b;
Walgraef, 2002; Walgraef & Aifantis, 1985a) plus additional contributions generated by the gradient terms which in real
space, read
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NLmðGÞ ¼ 3
t0g
tg
� G0

G


 � t2
g

GðqsÞ
ðrxqsÞðrxqmÞ þ

ðt0gÞ
2

t2
g
�

t0gG0

tgG
þ

t00g
tg

" #
t2

g

GðqsÞ
ðrxqsÞ

2qm: ð12Þ
Close to instability, the following order parameter-like equation for unstable modes is obtained
s0@tq ¼ e� d0 q2
c þr2

x

� �2
þ d?r2

y


 �
qþ t0q2 þ t1ðrxqÞ2 � u0q3 � u1ðrxqÞ2q; ð13Þ
where s0 ¼ c= q2
c Dmbc

� �
, e = (b � bc)/bc, d0 ¼ Ds=q2

c bc , d? ¼ Ds cþ q2
c Dm

� �
= q2

c Dmbc

� �
. The kinetic nonlinear coefficients of this

equation may be computed, in principle, from the dynamics of Eq. (10). For the present purposes – which is to describe
the qualitative (although generic) behavior of dislocation patterning phenomena – it is sufficient to know that, since
d\ > 0, wavevectors parallel to the x-axis are selected. Then, one may look, as usual, for solutions of the type [(A,A⁄) and
(B,B⁄) are functions of (x,y)]
q ¼ A expðiqcxÞ þ A� expð�iqcxÞ þ B expð2iqcxÞ þ B� expð�2iqcxÞ þ � � � ; ð14Þ
which leads to the following evolution equation for the amplitude A (x,y)
s0@tA ¼ eþ 4d0q2
cr2

x þ d?r2
y

h i
A� ujAj2A; ð15Þ
where u ¼ 3u0 þ u1q2
c þ 38t0 t0 þ u1q2

c

� �
� 4t2

1q4
c

� �
= 9d0q4

c

� �
. According to the values of the material parameters and the

importance of the gradient contributions, u may thus be positive of negative. For u > 0, which is the case for space-indepen-
dent diffusion coefficient of mobile dislocations, the bifurcation is supercritical, and the equilibrium pattern amplitude
grows as the square root of the deviations of the bifurcation parameter from its critical value. For u < 0, the bifurcation is
subcritical, and one should consider higher order nonlinearities to obtain the equilibrium amplitudes. Note that it has been
shown that a subcritical Turing bifurcation to stripe patterns is possible in two variable reaction–diffusion models with
space-dependent diffusion coefficients (Benson, Maini, & Sherratt, 1997). On the other hand, for increasing e, the quadratic
term of Eq. (13) become relevant, and the pattern amplitude acquires a highly nonlinear profile. This effect needs, however,
to be analyzed numerically.

(iv) Nucleation and Propagation: It has been experimentally documented (Tabata, Fujita, Hiraoka, & Onishi, 1983) that wall
structures, such as persistent slip bands (PSBs), nucleate from material inhomogeneities (veins, grain boundaries, surface de-
fects, local residual strain concentrators, etc.), rather than being induced by thermal fluctuations. In the framework of the
amplitude equations formalism of Eq. (15), this corresponds to the front propagation of the patterned state into the unpat-
terned one from a localized inhomogeneity in the dislocation density. The propagation of such front is governed by its lead-
ing edge, and its propagation velocity is well-known (Dee & van Sarloos, 1988). In the present case it is anisotropic, as a result
of the anisotropy of the diffusion coefficients of the amplitude equation, with the following properties
tx ¼ 4qc

ffiffiffiffiffiffiffi
d0e

p
; ty ¼ 2

ffiffiffiffiffiffiffiffi
d?e

p
;

ty

tx
¼ 1

2

ffiffiffiffiffiffiffiffiffiffi
d?

d0q2
c

s
: ð16Þ
Since ty/tx < 1, the dislocation wall pattern described by Eq. (15) propagates faster in the slip direction than perpendicularly
to it. This is schematically shown in Fig. 1. Pattern nucleation through front propagation is also much faster than through
fluctuations. This is consistent, for example, with the experimental observation that PSBs nucleate predominantly from
residual surface stresses.
Fig. 1. Schematic representation of the propagation of dislocation wall patterns in a uniform crystal.
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2.2. Double slip effects

In this subsection, the original W–A model is extended to consider dislocation mobility along two coexisting slip systems
(say, in the directions x and y, orthogonal to each other). In this case the governing differential system consists of coupled
rate equations for the stationary or forest (slow moving) and mobile dislocation densities qs and (qmx,qmy). Moreover, as be-
fore, each mobile dislocation density population is divided into two subfamilies representing the dislocations gliding in the
direction of the Burgers vector ðqþmÞ and in the opposite one ðq�mÞ, with qm ¼ qþm þ q�m. The resulting dynamical system may
then be written as (with the various coefficients denoting mobility/reaction constants)
@tqs ¼ DsDqs þ tsqs
ffiffiffiffiffi
qs
p � tsdcq2

s � ðbx þ byÞqs þ cq2
s ðqmx þ qmyÞ;

@tqþmx ¼ �rxðtgqþmxÞ þ
bx

2
qs � cq2

s q
þ
mx; @tq�mx ¼ rxðtgq�mxÞ þ

bx

2
qs � cq2

s q
�
mx;

@tqþmy ¼ �ryðtgqþmyÞ þ
by

2
qs � cq2

s q
þ
my; @tq�my ¼ ryðtgq�myÞ þ

by

2
qs � cq2

s q
�
my;

ð17Þ
where, as before, the quantity t denotes dislocation velocity and the subscripts ‘‘s’’ and ‘‘m’’ designate stationary forest
(immobile) and mobile dislocations respectively, while the subscript ‘‘g’’ denotes gliding. It is noted that in the expressions
for the dislocation current tgqm, the gliding velocity was not written in terms of the stresses as in Eq. (1), and that the pinning
rate term G(qs) was taken (for simplicity) to be given as in the original W–A model by the formula GðqsÞ ¼ cq2

s .
Under certain conditions for the adiabatic elimination of the fast variable km � qþm � q�m

� �
, the following system is ob-

tained for the slow variable qm � qþm þ q�m
� �
@tqs ¼ DsDqs þ tsqs
ffiffiffiffiffiqs
p � tsdcq2

s � ðbx þ byÞqs þ cq2
s ðqmx þ qmyÞ;

@tqmx ¼ Dmxr2
xqmx þ bxqs � cq2

s qmx; @tqmy ¼ Dmyr2
yqmy þ byqs � cq2

s qmy;
ð18Þ
which is a direct generalization of the original W–A model. It turns out that near bifurcation (as the external stress is in-
creased) the governing equation is of Ginzburg–Landau type of the form
s0@tq ¼ e� d0 q2
c þr2

� �2
� d?r2

xr2
y


 �
qþ tq2 � uq3; ð19Þ
where s0 ¼ cq02

s

� �
= q2

c Dmbc

� �
, e = (b � bc)/bc, d? ¼ cq02

s

� �
= q4

c cq02

s þ Dmq2
c

� �h i
, d0 ¼ Dm= q2

c cq02

s

� �
and the kinetic coefficients

t and u are explicitly determined from the respective slow-mode dynamics procedure (center manifold theorem). The
numerical analysis of Eq. (19) leads to the evolution of the dislocation patterns or ‘‘labyrinth structures’’, as has been
explicitly shown in Pontes et al. (2006), in agreement with corresponding experimental observation and transmission elec-
tron microscope (TEM) micrographs. The aforementioned simulation results and related experimental observations are de-
picted in Fig. 2.

2.3. Stochastic effects

The last topic of this section on dislocation patterning concerns the role of stochasticity in deriving more physically-based
and mechanism-sensitive evolution equations for the dislocation densities. To this end, we first denote the positions of dis-
locations in the (x–y) plane (the dislocation lines are assumed to be parallel to the z-axis) by ri(xi,yi); i = (1, . . . ,N), and the
velocity of the ith dislocation ti by ti = Bbi[sext(r) + sint(r)]1/m, where B is the dislocation mobility, bi its Burgers vector, m
is the velocity–stress exponent (assumed, for simplicity, equal to unity), sint is the internal stress and sext the external re-
solved shear stress. It is noted here that, for definiteness, we use the shear sress (s) notation here instead of the (r) notation.
Next, we define the function fN(t,r1, . . . ,rN)dr1, . . . ,rN, which gives the probability of finding N dislocations in the volume
d(r1,r2 . . . ,rN) in the neighborhood of (r1,r2 . . . ,rN) at time t. By considering dislocations of both positive and negative Burgers
vectors ±b as before, the corresponding dislocation density functions q± = Nf1(r, t) may be introduced by integrating the bal-
ance equation for the dislocation number densities over the (r2 . . . ,rN) subspace to obtain, for the sum q = q+ + q� and the
difference k = q+ � q�, the following dislocation conservation equations
@tqðr; tÞ ¼ �ðbirÞfBkðr; tÞ½sintðrÞ þ sext�g; @tkðr; tÞ ¼ �ðbirÞfBqðr; tÞ½sintðrÞ þ sext�g; ð20Þ
where the first equation may be viewed as expressing conservation of the total number of dislocations, while the second
equation is a differential statement for the conservation of the net Burgers vector. These local evolution equations may
be, in fact, also viewed as the corresponding Langevin equations for stochastic variables. It is also noted that these equations
do not contain dislocation reaction terms as the original W–A model does, but such source terms can and should, indeed, be
introduced as discussed in Walgraef and Aifantis (2009) and also briefly elaborated upon at the end of this section.

For considering the mean field version of the above equations, the total or overall mean internal stress �sint induced by the
dislocation ensemble should be used in Eq. (20). For a system of parallel edge dislocations, the appropriate expression for
�sintðrÞ ffi

PN
j¼1sind

j ðx� xj; y� yjÞ may be calculated in terms of the individual stress sind
j associated with the j dislocation of

Burgers vector bj; i.e.



Fig. 2. (a) Temporal evolution of q starting from a random initial condition. Primary slip directions are parallel to box diagonals. Walls develop locally
perpendicular to each slip direction, domains form and coarsen, finally reaching a steady state which consists of coexisting domains for each wall direction
and with most of the domain walls perpendicular to the two slip directions (from J. Pontes, D. Walgraef and E.C. Aifantis, Int. J. Plast. 22, 1486, 2006); (b)
Experimental ‘‘labyrinth’’ or ‘‘maze’’ dislocation wall patterns in Cu-single crystal under cyclic loading and oriented for double slip (from Y. Kaneko and S.
Hashimoto, JEOL News 38, 20, 2003).
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sind
j ðrÞ ¼ �

lbj

2pð1� mÞ
xðx2 � y2Þ
ðx2 þ y2Þ2

¼ � lbj

2pð1� mÞ
@3

@x@
2
y

ĝðrÞ; 2ĝðrÞ ¼ r2 ln r; ð21Þ
where l is the shear modulus and m represents the Poisson ratio. The final expression for the mean internal stress �sint is given
by
�sintðr; tÞ ¼
Z

dr1kðr1; tÞsindðr� r1Þ; r2�sintðr; tÞ ¼ ljbj
ð1� mÞ

@3

@x@
2
y

kðr; tÞ: ð22Þ
For constant external stress, Eqs. (20) admit the homogeneous stationary solution [q(r, t) = q0,k(r, t) = 0]. Linear stability
analysis for determining the linear evolution of small perturbations q̂ðr; tÞ ¼ qðr; tÞ � q0; k̂ðr; tÞ ¼ kðr; tÞ

h i
, in the mean field

approximation (i.e. neglecting the fluctuating part of the internal stress), leads to the following expressions in the Fourier
plane (for B constant and jbj = b)
@tq̂ðq; tÞ ¼ �iqxbBsextk̂ðq; tÞ; @t k̂ðr; tÞ ¼ �iqxbBsextq̂ðq; tÞ �
q2

x q2
y

q4 Kk̂ðq; tÞ; ð23Þ
where K ¼ ðlb2Bq0Þ=½2pð1� mÞ� and the eigenvalues of the corresponding evolution matrix satisfy the equation
x2 þx
q2

x q2
y

q4 Kþ q2
x ðbBsextÞ2 ¼ 0: ð24Þ
It can easily be seen that the real part of the eigenvalues (i.e. the roots of the above quadratic equation) are always negative
and, thus, the uniform solution is stable. As a result, elastic dislocation interaction is not sufficient to induce dislocation pat-
terning; however, uniform dislocation densities are only marginally stable for perturbations with wavevectors parallel or
perpendicular to the glide direction. It is noted, in particular, that x = 0 for spatial modulations perpendicular to the glide
direction (qx = 0) which, thus, do not decay (at least linearly). On the other hand, x = ± iqxbBsext for modulations parallel
to the glide direction (qy = 0) which, thus, propagate along it. This, which is reminiscent of an analogous argument provided
in Walgraef and Aifantis (1985b) (second reference listed there) for both monotonic and cyclic deformations, suggests that
the evolution of the dislocation densities is expected to be very sensitive to nonlinear couplings and fluctuations and, thus, a
stochastic analysis should be pursued.
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To proceed along these lines, the procedure of Walgraef and Aifantis (2009) is adopted by making use of Eq. (21) to derive
the corresponding stochastic counterpart of Eq. (20) in the form
@tqðr; tÞ ¼ �ðbiBrÞ½kðr; tÞsext þ
R

dr1hkðr; tÞkðr1; tÞisindðr� r1Þ�;
@tkðr; tÞ ¼ �ðbiBrÞ½qðr; tÞsext þ

R
dr1hqðr; tÞkðr1; tÞisindðr� r1Þ�;

ð25Þ
where hi denotes, as usual, the mean value. The mean value of pair densities may be written as
hqa(r, t)qb(r1, t)i = qa(r, t)qb(r1, t)[1 + dab(r,r1)]; a,b = + or �, where dab(r,r1) is the scaled pair correlation function of disloca-
tion of sign a and b (Zaiser et al., 2001). Then Eq. (25) read
@tqðr; tÞ ¼ �ðbiBrÞ½kðr; tÞsext þ
Z

dr1fkðr; tÞkðr1; tÞ½1þ dRðr; r1Þ� þ qðr; tÞqðr1; tÞdDðr; r1Þgsindðr� r1Þ�; @tkðr; tÞ

¼ �ðbiBrÞ½qðr; tÞsext þ
Z

dr1fqðr; tÞkðr1; tÞ½1þ dRðr; r1Þ� þ kðr; tÞqðr1; tÞdDðr; r1Þgsindðr� r1Þ�; ð26Þ
where 2dR(r,r1) = d++(r,r1) + d+� (r,r1) and 2dD(r,r1) = d++(r,r1) � d+�(r,r1), since d++ = d�� and d+� = d�+. The uniform state
q(r, t) = q0, k(r, t) = 0 is still a steady state solution of Eq. (26), and the corresponding linear evolution system of small per-
turbations reads
@tq̂ðr; tÞ ¼ �ðbiBrÞ½k̂ðr; tÞsext þ q0
R

dr1q̂ðr� r1; tÞdDðr1Þsindðr1Þ�;
@t k̂ðr; tÞ ¼ �ðbiBrÞ½q̂ðr; tÞsext þ q0

R
dr1k̂ðr� r1; tÞ½1þ dRðr1Þ�sindðr1Þ�:

ð27Þ
The correlation functions dR and dD depend on the scaled variable ~r ¼ r
ffiffiffiffiffiffi
q0

p
and they exhibit a 1=~r singularity at small sep-

arations, along with an exponential decay at large separations (Zaiser et al., 2001). By further assuming that the dislocation
densities are varying smoothly with respect to these correlation functions, the integrals in Eq. (27) may be evaluated through
an expansion of the dislocation densities around r. This yields the following expression for the eigenvalues x of the corre-
sponding linear evolution matrix
x ¼ K
2

q2
x Dþ � q4

x Eþ � q2
x q2

y Fþ �
q2

x q2
y

q4

 !" #
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
2

q2
x D� � q4

x E� � q2
x q2

yF� �
q2

x q2
y

q4

	 

 �2

� q2
x ðjbjBsextÞ2

s
; ð28Þ
where D± = DD ± DR 	 DD, E± = ED ± ER 	 ED and F± = FD ± FR 	 FD, since one may infer from Zaiser et al. (2001) that dD > > dR;
and the coefficients (D,E,F)D,R are given in terms of surface integrals involving products dD,R and third partial derivatives of

ĝðrÞ (Walgraef & Aifantis, 2009). More specifically, the appropriate expression for DD is DD ¼ ð1=q0Þ
RR

~x½dDð~rÞ @
3gð~rÞ
@~x@~y2 �d~xd~y, while

similar expressions hold for (ED,FD) with the multiplication factors before the integral and the coordinate before the bracket

replaced by ð1=6q02
; 1=2q02Þ and ð~x3; ~x~y2Þ respectively. It can easily be seen now that both q̂ and k̂ have positive growth

rates for finite wavevectors, and that q̂ has a maximum growth rate which corresponds to qy = 0 and
qx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DD=ð2EDÞ

p
/

ffiffiffiffiffiffi
q0

p
. Dislocation walls perpendicular to the glide direction are thus expected to grow first, as obtained

in previous numerical simulations. In the presence of an applied external stress, it can easily be established that


 Perturbations with qx = 0 are always marginally stable.

 Perturbations with qy = 0 are unstable for 0 < q2

x < q2
M ¼ Dþ=Eþ, with a growth rate given by
x ¼ K
2

q2
x Dþ � q4

x Eþ
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

4
q2

x D� � q4
x E�

� �2 � q2
x ðjbjBsextÞ2

s
ffi K

2
q2

x Dþ � q4
x Eþ

� �
� iqxðjbjBsextÞ; ð29Þ
which is strictly valid for sext > ðK=bBÞqx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� � q2

x E�
p

. For each wave number between 0 and qM, there is thus a threshold for
the external stress above which the instability is of the wave type and below which it is of the spinodal decomposition type.
For sufficiently large external stress, when the bifurcation is of the wave type, walls perpendicular to the glide direction and
traveling in this direction are linearly selected; the maximum growth rate occurs (maxRe[x]) for q2

x ¼ q2
0 ¼ Dþ=ð2EþÞ and the

corresponding propagation velocity is t0 ffi ± qc bBsext.


 Perturbations with qy – 0 may be unstable.

The above results hold for the case that source terms are not included. The corresponding results for the more realistic
case where dislocation reactions are included, as in the W–A model, will be presented in a forthcoming article, along with
related details pertaining to the discussion of this section. Here it suffices to mention that in the case that dislocation mul-
tiplication/annihilation takes place, the source term a(q) � b[q2(r, t) � k2(r, t)] should be added in the r.h.s. of Eq. (26) 1,
where the stress-dependent nucleation function a(q) and annihilation coefficient b have the same physical meaning as
the corresponding quantities in Section 2.1, but without considering explicitly the density of forest dislocations qs. Then,
an additional constant a/2 (resulting from the linearization of the aforementioned source term around the uniform state
q0 – 0,k = 0) enters additively (with a minus sign) in each one of the brackets in the expression for the eigenvalues given
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by Eq. (28). The quantity a denotes, indeed, the linear relaxation rate of uniform perturbations and, thus, a�1 may be viewed
as an effective dislocation lifetime. On the basis of the modified counterpart of Eq. (28), it follows that perturbations with
qx = 0 remain only marginally stable, while other ones become stable for short individual dislocation lifetimes. Instability still
occurs, in the presence of applied stress, for long dislocation lifetime, such that a < D2

þ=4Eþ. The maximum linear growth rate
still corresponds to q2

x ¼ q2
0 ¼ Dþ=2Eþ; qy ¼ 0

� �
. However, the spectrum of unstable wave numbers is now given by qx = 0 and

the band ðDþ=2EþÞ½1� ð1� ð4EþaÞ=D2
þÞ

1=2� < q2
x < ðDþ=2EþÞ½1þ ð1� ð4EþaÞ=D2

þÞ
1=2�. This spectrum does not extend continu-

ously to qx = 0, as in the absence of source terms, although this point still corresponds to a marginal mode. This may induce
different nonlinear behavior between the two cases.

We conclude this discussion on dislocation patterning by listing the governing evolution equations resulting by incorpo-
rating into the original Walgraef–Aifantis model as expanded upon in Section 2.1, the basic elements of the framework ad-
vanced by Zaiser–Groma and co-workers (e.g. (Zaiser et al., 2001)) as elaborated upon in this Section 2.3. The corresponding
hybrid W–A/Z–G model reads
@tqðr; tÞ ¼ �ðbiBrÞfkðr; tÞsextg þ
Z
fkðr; tÞkðr1; tÞ½1þ dRðr; r1Þ� þ qðr; tÞqðr1; tÞdDðr; r1Þgsindðr� r1Þdr1 þ aþ bqsðr; tÞ

� cq2
s ðr; tÞqðr; tÞ;

@tkðr; tÞ ¼ �ðbiBrÞfqðr; tÞsextg þ
Z
fqðr; tÞkðr1; tÞ½1þ dRðr; r1Þ� þ kðr; tÞqðr1; tÞdDðr; r1Þgsindðr� r1Þdr1

� cq2
s ðr; tÞkðr; tÞ; ð26�Þ

@tqsðr; tÞ ¼ DsDqsðr; tÞ þ g½qsðr; tÞ� � bqsðr; tÞ þ cq2
s ðr; tÞqðr; tÞ;
where (q,k) denote as before the (sum, difference) of the gliding dislocation densities, and qs denotes the density of the forest
dislocations. A preliminary stability analysis of this system can be found in Walgraef and Aifantis (2009), but a more detailed
discussion is postponed for the future as it is beyond the scope of the present article. Nevertheless, some qualitative features
of this model are discussed in the last section of the paper.

3. Shear banding

In this section we briefly consider another problem of deformation instability; i.e. the localization of plastic strain in the
form of shear bands. As shear bands occur in a variety of materials (metals, polymers, rocks) and scales (macro, micro, nano)
this topic is still at the edge of an intense modeling activity. One line of investigation, initiated by Aifantis and collaborators
[see, for example, (Aifantis, 1984; Aifantis, 1987) and references therein], is based on the introduction of spatial plastic strain
gradients in the relevant softening type or non-convex constitutive equations. Similarly to phase field methods, these gra-
dients allow for smooth strain variations across material interfaces and localization zones, contrary to classical theories giv-
ing discontinuous profiles. In particular, strain gradients can conveniently model the heterogeneity of plastic flow, allow for
non-vanishing critical wavelengths characterizing the onset of instability of uniform deformations and enable explicit com-
putations of shear band profiles (Zbib & Aifantis, 1988). Up to now, however little attention has been given to the dynamics
of localization and the evolution of shear band profiles, especially when multiple shear bands occur. Multiple shear banding
is routinely observed in amorphous and nanocrystalline materials as shown, for example, in Fig. 3. Hence, the aim of this part
of the paper is to discuss this problem and to propose a framework to address it. A few conjectures are proposed, as well as
guidelines to analyze them. The analysis provided below is rather qualitative and restricted to one dimension only. A more
elaborate treatment should incorporate at least two families of shear bands evolving in two different directions, in analogy to
the double slip case discussed in the previous section for dislocation populations.

3.1. Governing equations in one-dimension

Let us consider the governing one-dimensional differential equations for the simple shearing of a viscoplastic material
within the strain gradient theory, i.e.
@t� ¼ @xt; q@tt ¼ @xs; s ¼ jð�; _�Þ � c@2
x�; ð30Þ
where s, � denote stress and strain (� = @x u; u is the displacement), while q, t denote material density and velocity (t = @tu),
and x is the spatial coordinate orthogonal to the shear stress (0 < x < L). The last statement in Eq. (30) is a strain gradient-
dependent constitutive equation where is a nonlinear function of and, which may exhibit material softening in both quan-
tities; i.e. the graph j ¼ jð�; _�Þmay contain branches where @j/@� or @j=@ _�may be negative. Higher-order spatial effects are
taken into account through the gradient dependence upon the coefficient c, which may be written as c = ll2, where l is the
shear modulus and l is an internal material length. Neither thermal effects nor orientational aspects are considered here for
simplicity. For a material where the softening curve of the homogeneous part of the flow stress has the form of Zbib and
Aifantis (1988),



Fig. 3. Shear band patterns for ultrafine grain (ufg) and nanocrystalline (nc) bulk polycrystals under compression. (a) Fe-10%Cu bulk polycrystals with
average grain size d = (150,300,830 nm) (from Carsley, J. E., Fisher, A., Milligan W. W., & Aifantis, E. C., (1998). Mechanical behavior of a bulk nanostructured
iron alloy. Metallurgical and Materials Transactions A, 29A, 2261–2271); (b) Fe bulk polycrystals with an average grain size of �270 nm at plastic strain levels
0.3% and 7.8% respectively (from D. Jia, K.T. Ramesh and E. Ma, Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands
in iron, Acta Materialia 51, 3495–3509, 2003).
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shom ¼ sm � að�� �mÞ2; ð31Þ
with a denoting a constant and (sm, �m) denoting the maximum point of the homogeneous part of the stress–strain curve, Eq.
(30) yields the following fourth-order partial differential equation
q@2
x� ¼ @

2
x ½jð�; _�Þ � c@2

x�� ¼ s@2
x@t�� a@2

x ð�� �mÞ2 � c@4
x�; ð32Þ
where the strain rate sensitivity parameter s ¼ @j=@ _� is assumed here to be constant. The softening curve may have more
elaborate and physically-realistic forms, e.g. as in Zbib and Aifantis (1988).In any case it is noted that Eq. (32) has the struc-
ture of a generalized Cahn–Hilliard equation. One may thus expect that its solution could reproduce some aspects of spinodal
decomposition.

3.2. Linear stability & nonlinear analysis

(i) Linear Stability and First Stages of Localization. First we note that Eq. (32) is conservative and admits any physically real-
izable uniform strain distribution, �0, as a steady state solution. According to its stability, this solution may or may not evolve
towards a non uniform one, �s(x), but the quantity 1

L

R
�sðxÞdx ¼ �0 is conserved. In the hardening domain (� < �m), uniform

strains are stable, while in the softening domain (� > �m), uniform strains are unstable versus spatial modulations with wave-
vectors q, such that 0 6 q2

6 q2
M ¼ 2að�0 � �mÞ=c. Unstable modes with wavevectors q0, such that q2

0 ¼ að�0 � �mÞ=c, have the
maximum growth rate.

To proceed further, we next note that the range of unstable wavevectors depends crucially on the strain gradient coeffi-
cient c. Although one may always consider it as an adjustable parameter, it would be important for the predictability of the
theory to evaluate this parameter independently. As in spinodal decomposition, the system evolution starts by developing
spatial modulations corresponding to the maximum growth rate of the linear theory. However, nonlinear effects and mode
couplings become rapidly important, and deviations from this behavior increase. One of the main interesting questions is
then to determine the evolution of the strain profile �(x, t).

(ii) Nonlinear Analysis and Shear Band Evolution: In the case of Cahn–Hilliard dynamics, the initial periodic perturbations of
the unstable state become soon destabilized with respect to modes with larger wavelengths (San Miguel, Montagne, Amen-
gual, & Hernandez, 1996). The system then evolves through successive transitions to a state which cannot be described any
more as a spatially periodic state with a well defined wavelength, but as a set of coexisting localized domains, or ‘‘bubbles’’.
In the present case, these bubbles, which are soft domains, connect unstable high strain states and the stable low strain
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states. Their stability is thus a crucial issue. The final dynamics of the system is then governed by the evolution of these do-
mains, induced by their mutual interactions.

An elegant approach to this problem has been presented recently for the one-dimensional Cahn–Hilliard equation in
Calisto, Clerc, Rojas, and Tirapegui (2000). They show that, due to the conservative nature of the order parameter, the inter-
action between bubbles does not induce annihilation by recombination, as in systems with non conserved order parameters.
Instead, small bubbles shrink and disappear while larger bubbles grow in order to conserve the total surface allowed to cor-
responding phase. The asymptotic situation corresponds then to a limited domain of one phase, embedded in the other
phase, which occupies the remaining space. In the present case, this could be the ‘‘shear band’’ solution of Zbib and Aifantis
(1988), i.e.
�ðxÞ ¼ �m þ d½3 sech2ðnxÞ � 1�; ð33Þ
where d ¼
ffiffiffiffiffiffiffiffiffiffi
sm�s0

a

q
and n ¼

ffiffiffiffiffiffiffia
2c d

p
, with sm � a(� � �m)2 = s0. This solution corresponds to the fact that, if one imposes a strain

(�0 > �m) on a system described by the softening curve of Eq. (31), it decomposes in a high strain domain of width of the order
of n�1(where the maximum strain is �2 = �0 � d) and the remaining space (where the strain is �1 = �0 � 2d).

3.3. Nonuniform materials and multiple shear bands

When uniform strain reaches instability, unstable modes start growing, which induces the nucleation of shear bands.
Although the growth of unstable modes may always be randomly induced by fluctuations, it usually starts preferentially
at local defects or weak zones. In this case, the spatial pattern propagates into the system through a front propagation pro-
cess. In the same spirit, the presence of local hard zones may hinder or stop spatial modes propagation. On the other hand,
the presence of hard zones between neighboring bands should limit coarsening by impeding their coalescence. As a result, in
such two-phase materials, regular distributions of hard zones should favor multiple shear banding. This situation may be
described by the model of Eq. (32) where �m varies periodically between a minimum (�W) and a maximum (�h) value, which
correspond to weak and hard zones respectively. Then Eq. (32) becomes
q@2
t � ¼ @

2
x ½jð�; _�Þ � c@2

x�� ¼ @
2
x s@t�þ sm � að�� �w � DðxÞÞ2 � c@2

x�
h i

; ð34Þ
where �w is constant and D(x) is a positive periodic function with wave number q1. This yields, for linear evolution of per-
turbations �̂ðxÞ from a uniform strain �0,
q@2
t �̂ ¼ @

2
x s@t � 2að�0 � �mðxÞÞ � c@2

x

� �
�̂ ¼ @2

x s@t � 2að�0 � �w � DðxÞÞ � c@2
x

� �
�̂ ð35Þ
For (�0 < �w), the uniform strain remain stable, but for �w < �0 < �h, it is only locally unstable and one may consider D(x) as an
external modulation imposed on the system. Close to instability, the dynamics may be reduced to an amplitude equation for
the fastest growing mode, with wave number q0, in the presence of an external forcing of wave number q1. It is now well
known that for q1 > 4q0, the resonance between external forcing and fastest growing mode is weak. If, furthermore,
q1 > 4

ffiffiffi
2
p

q0 (or k0 > 4
ffiffiffi
2
p

k1), the coupling with any unstable mode is weak and will not affect significantly the resulting spa-
tial pattern. One may thus expect that in this case, the scenario described earlier (which finally leads to one final shear band
in the system) remains valid.

On the contrary, if q1 < 4q0 (or k0 < 4k1), strong resonances may occur between external forcing and unstable modes. For
resonant forcing (q1 = nq0(n¡4)), the pattern wavelength should remain locked to a multiple of the forcing wavelength
(k0 = nk1ðk0 ¼ nk1Þ). For non resonant forcing, commensurate–incommensurate structures develop, which consist in layered
domains, where the wavelength is locked, separated by domain walls, where the phase of the pattern changes abruptly
(Walgraef, 1996). In this case, coarsening can hardly occur and arrays of shear bands are expected to remain in the system,
which confirms the link between material heterogeneity and multiple shear bands.

These considerations should be put in parallel with numerical simulations of shear band formation in a heterogeneous
material with weak zones (Shi, 2004). In this work, it is observed that, for densely distributed weak zones (i.e., the spacing
between weak zones is less than shear bandwidth), nearby shear bands coalesce to form a single larger shear band. Once a
dominant shear band is formed, the other shear bands start to unload. For sparsely distributed weak zones (i.e., the spacing
between weak zones is larger than the shear bandwidth), separated shear bands occur simultaneously, which confirms that
the distribution of weak zones plays an important role in the shear band formation.

4. Deformation instabilities in heteroepitaxial film growth

The combination of atomic deposition and nonlinear diffusion may lead, below a critical temperature, to the instability of
uniform deposited atomic layers. This instability may trigger the formation of self-assembled nanostructures which corre-
spond to regular spatial variations of the substrate coverage. Since film-substrate lattice misfits coverage inhomogeneities
generate internal stresses, the coupling between deposition dynamics and film elasticity fields has to be considered. For sta-
ble uniform layers in the high and low temperature limits, this coupling may be neglected. Nevertheless, elastic deformation
instabilities may be induced by compressive misfit strains only. These could lead to square deformation patterns, on the
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surface of isotropic films thinner than the critical thickness for misfit dislocation generation. For intermediate temperatures,
this coupling is destabilizing and may generate triangular or hexagonal deformation patterns as well. At low coverage
these patterns correspond to arrays of dots, as in Stranski–Krastanov growth, although their formation here is dynamically
driven.

4.1. The dynamics of a deposited layer on a substrate

The derivation of the deformation dynamics of a thin film on a substrate, in the presence of a spatially varying defect con-
centration field has already been presented in Walgraef, Ghoniem, and Lauzeral (1997). The evolution equation for the film
bending coordinate can be adapted to the present case where various structural defects (vacant sites, deposited atoms and
adatoms, islands, grains, etc.) induce lattice dilatation (positive or negative) in the deposited layer. It may be written in the
form of a von Karman model which can be shown to yield
Fig.
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Here n is the bending coordinate of the film of thickness h ;g is a structural viscosity coefficient which takes care of the dis-
sipation effects due to film-substrate interactions; c+ and c� are the atomic concentrations at the layer top and bottom sur-
faces, respectively; and j is the adhesive bond stiffness constant defined by F(n) = �jn, where F(n) denotes the adhesive force
(per unit surface) between film and substrate: this force may be represented by the universal bonding curve, usually invoked
in process zone fracture models (Needleman, 1990), and is approximated here by a linear dependence in n (which is justified
for small displacements); z is the film coordinate perpendicular to the substrate surface with (x,y) denoting the planar coor-
dinates parallel to the substrate surface; rij is the stress tensor (�ij is the strain tensor); n,ij stands for @2n/@x@y with
D ¼ r2

x þr2
y; while E is the film’s Young modulus and m its Poisson ratio. Finally, if E0 stands for the self-energy of deposited

atoms, then E0 	 h with h 	 0.3b3K, where b is the Burgers vector magnitude and K the bulk elasticity modulus. The com-
ponents of the in-plane stress tensor rij are given by Walgraef et al. (1997)
rii ¼
E

2ð1� mÞ �m þ
E

2ð1� m2Þ ðn
2
;i þ mn2

;jÞ; rij ¼
E

1þ m
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where, as before i = x (or y) and j = y (or x), while �m denotes the misfit strain induced by the substrate on the deposited layer
in isotropic conditions. The schematic representation of the physical configuration considered is shown in Fig. 4.

The governing differential relation given by Eq. (36) shows that the film’s bending evolution is coupled to the atomic cov-
erage at the top and bottom film surfaces. In a previous publication (Walgraef, 2003), the growth of a deposited film on a
substrate has been described by a reaction–diffusion model, based on atomic adsorption, desorption and diffusion. In this
description, the space–dependent coverage at the bottom film surface tends to c� 	 1, while c+ = c0u+(r, t). The evolution
of u+ may also be obtained from this model, and the relevant dynamical system becomes
4. Schematic representation of the basic mechanisms and geometric factors involved during deposition of an elastic film in a rigid substrate.



152 D. Walgraef, E.C. Aifantis / International Journal of Engineering Science 59 (2012) 140–155
@2
t nþ g@tn ¼ �

Eh2

12qð1� m2ÞD
2nþ 1

2q
rabn;ab �

j
qh

nþ @c0

b3qh
ð/þ � 1Þ; ð38Þ

@t/þ ¼
1
s
ð1� /þÞ/þ þ Dhr2 1

c0
ln

/þ
1� c0/þ

� �0

kBT
/þ �

n2
0

kBT
r2/þ þ

mhh
2c0kBT

r2n

" #
;

where c0 ¼ a�b
a and s�1 = a � b, with a and b denoting the adsorption and desorption rates, respectively; Dh is the lateral dif-

fusion coefficient; �0 = n� and n2
0 ¼ na2�, where � is the atomic pair interaction energy, n is the lattice coordination number

and a is the lattice constant. Fickean diffusion and local thermodynamic equilibrium have been considered in the derivation
of Eq. (38); and for the sake of simplicity, surface diffusion and misfit strains have been considered as isotropic.

4.2. Deformation instabilities in a monoatomic layer

The system of Eq. (38) admits a uniform steady state, /+ = 1,n = 0, which corresponds to a uniform and undeformed depos-
ited layer. Its stability versus inhomogeneous coverage and deformation perturbations is given by the linear evolution of
small perturbations / = /+ � 1 and n, which in Fourier space may be written as
s@tuq ¼ �½1þ Cð1� lÞq2 þ q4a2Cl�uq þ q4 mhhDhs
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where C ¼ Dhs
c0ð1�c0Þ

and l ¼ c0ð1�c0Þ�0
kBT .

At sufficiently high and low temperatures, uniform atomic coverage which evolves through adsorption–desorption pro-
cesses and nonlinear diffusion on the substrate, is known to be stable. This is due to the fact that the factor Dhs

kBT in the
coverage evolution equation, i.e. Eq. (38), tends to zero in the high and low temperature limits (Walgraef, 2003). Similarly,
the coupling between film bending and coverage fluctuations becomes irrelevant in these limits, where the system may
thus be described by the evolution of the bending coordinate only. In isotropic systems, its linear evolution is given by
the equation
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In this case, undeformed layers are unstable for compressive misfit strains �m /
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. On the other hand, for larger misfits (j�mj > j�cj), the linear growth rate is maximum for spatial mod-

ulations of wavenumber q0 and the corresponding preferred wavelength k0 is given by the relations
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Deformation patterns are thus expected to develop beyond instability (i.e. for j�mj > j�cj), according to the nonlinear elasticity
equation, which in real space, reads
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and f ¼ n
h. The simplest patterns may be thought of as one-dimensional deformations of

preferred wavevector arbitrarily oriented (without loss of generality) parallel to the x-axis, and such that f = A(x,y) exp
(iq0x) + c.c., with c.c. denoting comlex conjucate. Their amplitude equation reads:
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which is valid close to instability and describes the evolution of the system on asymptotic space and time scales
ðx 	 1=

ffiffiffiffi
�;
p

y 	 1=�1=4; t 	 1=�Þ (Walgraef, 1996). Hence, close to instability, the second time derivative of the von Karman
equation is scaled by �2 and may be neglected with respect to the dominant of order � terms. In this regime, this term
can only contribute if dissipative effects are vanishingly small, and can be scaled as

ffiffiffi
�
p

(the time scale being set by
t 	 1=

ffiffiffi
�
p

). This equation gives, as uniform steady state solution, jA0j = �/g. The stability of this solution versus spatial mod-
ulations of critical wavevector making an angle w with the x-axis may be studied through amplitude equations of the form
f ¼ Aexpðiq0xÞ þ Bexp½iq0ðx cos wþ y sin wÞ� þ c:c:;
which may be written (for uniform amplitudes) as
s0@T A ¼ �A� gAðjAj2 þ cðwÞjBj2Þ; s0@T B ¼ �B� gBðjBj2 þ cðwÞjAj2Þ; ð46Þ
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and c(w) = [2 m + 2(1 � m) cos2(w)].
One-dimensional deformation patterns jA0j = �/g are thus unstable, since c(w) < 1 for a range of angles w such that

cos2ðwÞ < 1�2m
2ð1�mÞ. Furthermore, since c(w) is minimum for w ¼ p

2, selected patterns should correspond to square planforms such

that f = A(x,y)exp(iq0x) + B(x,y)exp(iq0y) + c.c. with amplitude equations
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5. Conclusions and outlook

We showed in this paper that the rate equation or reaction-transport-diffusion (RTD) approach provides a qualitative
description of the behavior of forest and mobile dislocation densities in crystalline materials under loading. It is shown
how plastic deformation and dislocation patterning occur as the result of a dynamical equilibrium between dislocation free-
ing and immobilization in the forest (similar behavior should be obtained on replacing the forest by sub-boundaries or other
obstacles to dislocation motion).The analysis illustrates the effect of the glide system (single and double slip) on the pattern
structure. It justifies the fact that the combination of dislocation glide and interactions with the forest leads to an effective
diffusive motion of mobile dislocations. It relates wavelength selection, deformation band growth and propagation to rele-
vant materials parameters. It allows to test the effect of different physical mechanisms or loading processes on instability
thresholds, pattern nucleation, selection and stability. It is necessary, however, to access the relation of this approach to
the dominant microscopic underlying mechanisms or, in other words, to determine its position in the framework of multi-
scale modeling. Although the proposed method describes the collective behavior of dislocation populations, it is based on
elementary dynamical events between few dislocations. Hence, the corresponding kinetic coefficients, cross-sections, anni-
hilation and characteristic interaction lengths may be provided by microscopic numerical computations. The determination
of reliable kinetic coefficients in the rate equations may not only improve quantitatively the results, but also their incorpo-
ration in macroscopic descriptions. A rather new feature was the introduction of stochastic elements of the Groma–Zaiser
type into the original Walgraef–Aifantis model. The resulting improved hybrid model is able to reproduce dislocation clus-
tering for low external stress and low forest density. However, on increasing stress, inhomogeneous dislocation distributions
transform into wall patterns with the walls being perpendicular to the glide direction. This qualitative change is due to the
fact that, at low stress, the dynamics is conservative and of the spinodal decomposition type, while at high stress, forest dis-
locations become important and a dynamical equilibrium between dislocation freeing and immobilization sets in. This trig-
gers an instability of the Turing type where the combination of dislocation glide and pinning within the forest leads to an
effective diffusive motion of mobile dislocations, as in the case when stochastic effects were neglected. However, this effec-
tive diffusion coefficient becomes space dependent through its dependence on the forest density. Hence spatial non unifor-
mity of this density may strongly affect the nucleation and stability of wall patterns.

Another topic discussed in the paper was concerned with dynamic shear banding. An explicit stress-stain curve with a
softening region was considered and strain gradient terms are included in the model. For unstable uniform strains, the sec-
ond strain gradient acts as a stabilizer versus short wavelength modulations. Based on the fact that the mean strain is con-
served and on similarities with spinodal decomposition, a scenario is proposed for the evolution of spatial modes. For short
times, a regular array of bands develop, with a separation distance selected by linear effects. When time goes on, coarsen-
ing occurs and thin bands disappear at the expense of thicker ones. Finally, one band remains the width and profile of
which is determined by the corresponding material parameters and the initial uniform strain. In heterogeneous materials,
weak zones act preferentially as nucleation centers for deformation bands. Hard zones, on the contrary, may suppress
deformation propagation and band coarsening. For regularly distributed weak zones, it is anticipated that multiple shear
banding is favored when the spacing between weak zones becomes comparable or larger than the separation between
bands. This preliminary discussion is also based on generic arguments of pattern formation theory. It should be checked
explicitly, both analytically and numerically, for appropriate material parameters, stress–strain curves and flow stress
expressions.
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The last topic considered in the paper was concerned with the evolution of a growing monoatomic layer, deposited on a
substrate.This evolution has been described by a dynamical model of the reaction–diffusion type, coupled with internal
stresses, generated by coverage or concentration variations and misfit strains induced by the film-substrate coupling. In this
description, the coupling between surface coverage variations and deformation field is destabilizing. Below the critical thick-
ness for nucleation of misfit dislocations, this coupling may induce regular deformation patterns. Well above the critical tem-
perature of adsorbed layer instability, pattern formation may be induced by compressive misfit stresses only. Preferred
structures should correspond in this case to square lattices in isotropic systems. For lower temperatures, but still above
the adsorbed layer instability temperature, the coupling between coverage inhomogeneities and film deformation is two-
fold: on one hand, it enlarges the linear instability domain; on the other hand, it adds new contributions to the nonlinear
terms of the dynamics and, in particular, quadratic ones. As it will be discussed in detail in a follow-up article, these contri-
butions may modify the selected deformation patterns. Effectively, when coverage nonlinearities dominate, stable patterns
should correspond to hexagons, or wrinkles. When elastic nonlinearities dominate, stable patterns should correspond to
squares or hexagons. In this case, the amplitude of the deformation pattern is larger for squares than for hexagons. For ultra-
thin films, the results derived within this approach are reminiscent of Stranski–Krastanov growth, although they are strongly
dependent on dynamical aspects. Furthermore, instability thresholds, critical temperatures, wavelengths, buckle amplitudes
etc., may be explicitly expressed as functions of kinetic rates and material parameters. Hence, quantitative results may be
obtained for specific systems, which could allow comparisons with experimental data.

Despite of the drawbacks related to the mathematical difficulties in the nonlinear regime and the rather little attention to
the physical mechanics at the atomic and subatomic scale, the present approach may be viewed as a compromise between
molecular/discrete dislocation dynamics (MD/DDD) simulations and more complex dislocation-density tensor based theo-
ries which are not yet well-suited for interpreting dislocation and, more generally, deformation patterning phenomena.
The analytical results obtained from linear stability analysis provide a useful guide for understanding the behavior in the
nonlinear regime for which numerical analysis is necessary for a quantitative treatment of the governing partial differential
equations. An open problem is the connection between microscopic and macroscopic descriptions. This, for example, may be
established through the construction of a plasticity framework capable of describing deformation at macroscopic scales (e.g.
shear bands, localized macroscopic strain zones) based on physical processes at microscopic scales (e.g. dislocation struc-
tures/patterns) and accounting also for microscopic features (e.g. dislocation line tension). In connection with this, reference
is made to a more recent approach which rather than using scalar density measures without internal ‘structure’, the dislo-
cation densities contain information regarding the direction of motion of the represented dislocations in terms of additional
‘configurational’ coordinates. In two-dimensional situations this can be done by introducing signed dislocation densities
which determine the direction of motion on the slip plane with respect to the applied stress (e.g. Groma, Csikor, & Zaiser,
2003), in analogy to the distinction between positive and negative dislocation densities first introduced effectively in the
W-A model (e.g. Walgraef & Aifantis, 1985b). In three-dimensional plasticity, on the other hand, it is in general necessary
to endow the continuum theory with additional structure. This structure can consist of an additional dislocation velocity
field as used in Sedlacek, Schwarz, Kratochvil, and Werner (2007), provided that such a field can be defined without ambi-
guity (this requires that each material volume element contains only dislocations of a single orientation).

Another approach initiated in El-Azab (2000) and further pursued in Hochrainer, Zaiser, and Gumbsch (2007), Sandfeld,
Hochrainer, Zaiser, and Gumbsch (2011) distinguishes dislocations according to their orientation, and thus operates in a
higher-dimensional state space. In such an approach, additional information about dislocation curvature must be included
to correctly describe the changes in line length (and thus dislocation density) associated with the expansion or contraction of
curved dislocation segments during their motion. In such a higher-dimensional formulation, the concept of dislocation trans-
port needs to be extended to the additional ‘configurational’ coordinates to account for changes in the direction and curva-
ture of segments (Hochrainer et al., 2007; Sandfeld et al., 2011). Irrespectively of the details of the kinematics, non-local
dislocation interactions can, because of the presence of screening correlations, be represented in terms of gradient expan-
sions (Groma et al., 2003) which make the dislocation velocities depend in a non-local manner on the dislocation densities,
as also discussed herein. From the viewpoint of dislocation density dynamics, this leads to diffusion-like terms in the equa-
tions of evolution as used in the original W-A model. Beyond this formal similarity, these more recent models allow to link
the diffusion-like terms to the strain gradients used in phenomenological gradient plasticity, as oriented dislocation densi-
ties can be directly related to strain gradients. Thus, it may be argued that such dislocation-density based framework pos-
sesses the structure of a second-order gradient plasticity theory, and indeed produces results similar to those obtained by
strain gradient plasticity when applied to the problem of microbending (Aifantis, Weygand, Motz, Nikitas, & Zaiser, 2012).
[For another recent account of dislocation dynamics description of the microbending problem and polygonization, the reader
is referred to Le and Nguyen (2010).] These current developments of dislocation density dynamics may thus pave the way
towards a unification of two strands of development - gradient dislocation dynamics as starting from the original W-A mod-
el, and gradient plasticity – towards a comprehensive substructure-based theory of plastic flow.
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