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1. Introduction

In two previous papers published 18 years ago in a Special Issue of this Journal dedicated to Eringen on the occasion
of his 70th birthday generalized models of continua were formulated and solutions to specific problems were obtained
to interpret experimental observations that could not be captured by classical theory. One paper by the author (pp.
1279-99) illustrated how gradient dependent constitutive equations can lead to the determination of shear band
widths/spacings and the elimination of elastic strain singularities that occur during deformation localization and fracture.
Another paper by Eringen (pp. 1551-65) was much broader in scope illustrating how nonlocal or integral type consti-
tutive equations can provide new input not only for deformation and fracture, but also for other problems of fluid
mechanics and electromagnetic theory.

The common basic premise in both papers was the introduction of a characteristic material parameter or internal length
to account either for the effect of underlying microstructure in complex media, or the interaction of “bulk” and “surface”
points in small size volumes. While Eringen’s approach appeared to be more general in its formulation, its application to dis-
location and crack problems resulted eventually to a reduced constitutive equation incorporating the Laplacian of stress in
the standard linear expression of Hooke’s law. On the contrary, the author’s starting point for elasticity problems was the
generalization of classical Hooke’s law by an extra term containing the Laplacian of strain. As a result, stress singularities
were eliminated in the first case, while strain singularities were eliminated in the second case. [In fact, for a screw disloca-
tion, the nonsingular expression for the stress in the first case turned out to be the same with the nonsingular expression for
the strain (within a multiplicative shear modulus factor) in the second case.]

However, microscopic heterogeneity in both stress and strain is usually developed during elastic or plastic deformations
and, therefore, both stress and strain gradients should be accounted for in the relevant constitutive equations leading to the
description of a larger class of deformation and fracture phenomena. A formal justification for such type of stress and/or
strain gradient dependencies for elasticity and plasticity is provided in Section 2 by introducing the concept of implicit gra-
dient constitutive equations.
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In Section 3, gradient dependent stress-strain relations for elastic and plastic deformations at the micron and submicron
regimes are derived by viewing the continuum as a medium where its (bulk) points can exchange momentum with internal
or external surfaces. As a result, a nonlocal source term appears in the momentum balance and higher order gradients are
generated in the governing differential equations depending on the constitutive assumptions made for this extra term. The
simple original models of gradient elasticity and gradient plasticity discussed in Section 2 can now be derived within this
bulk-surface interaction approach. These micro/nano elasticity and micro/nano plasticity constitutive equations can conve-
niently be extended to include rate effects and nonlinearities. The resulting equations can be used for interpreting viscoelas-
tic and viscoplastic behavior at the micro/nano scales and discuss, in particular, strain or strain rate softening instabilities
along with corresponding phenomena of nucleation/propagation of strain or strain rate bands. Such gradient dependent rate
equations can alternatively be derived by focusing, instead of the momentum balance, to a mass balance equation taking into
account the exchange of “effective” mass between bulk and surface points which takes place through the carriers of anelastic
or plastic deformation, such as vacancies, dislocations, and other structural defects.

In Section 4 three basic problems are considered within the gradient approach. The first problem is concerned with the
elimination of elastic singularities from crack tips as this topic was Eringen’s favored one. The second problem is concerned
with the derivation of a modified version of Johnson’s spherical cavity model for indentation within a simple gradient plas-
ticity framework. The third problem is concerned with nucleation and growth of strain bands; in particular, the propagation
of a deformation front as a result of the competition between deterministic gradients and stochastic effects, and the man-
ifestation of this phenomenon in the serrated stress-strain graph. Finally, in Section 5 certain results on size dependent
stress-strain curves obtained for nanopolycrystals of varying grain size are presented. The experimental curves are again
interpreted through gradient dependent constitutive equations where, however, the gradient term is now replaced by a grain
size dependent term derived on the basis of a simplified dimensional but robust microscopic argument.

2. Implicit gradient constitutive equations
2.1. Gradient elasticity

In general, both strain and stress gradients may affect the constitutive response of materials. A systematic way to account
for this is to employ the framework of implicit constitutive equations (Morgan, 1966; Rajagopal & Srinivasa, 2009). In the
case of gradient dependent elasticity models, this idea may most simply be pursued by starting with an implicit constitutive
equation of the form

f(c,g, V¢, V?6) = 0, (1)

where f is a general linear isotropic function of both stress and strain, as well as of their Laplacians. It is pointed out that the
dependence of the first gradients Vg, Ve is suppressed as this would lead, in general, to third order tensors that previous
linear models of gradient elasticity do not usually consider. There might be, however, situations where the first gradients
need to be accounted for, like in the case of beam bending within an approximate strength of materials treatment. In this
case the second gradient of strain vanishes and related size effects have been interpreted by assuming that the axial stress
depends on the strain and its first gradient (Aifantis, 1999).

In the special case when f in Eq. (1) is a linear isotropic tensor function of its arguments, the relevant representation the-
orem for f gives

tr(o1 € + 026)1 + 03€ + 046 + A& [tr(ois€ + 0g6)1 + 07€ + otg6] = 0, (2)

where the coefficients o’s are constants. Various strain and/or gradient models that have previously appeared in the litera-
ture can be obtained by properly selecting the constants o’s.

In this connection, it is pointed out that the models corresponding to non-vanishing o and og are not contained in Mind-
lin’s strain gradient theory (e.g. Mindlin & Eshel, 1968 and references quoted therein). In particular, the following gradient
models may be obtained on the basis of Eq. (2) through a proper choice of the constants o’s

i = Cju(1 = cV)ew; &5 = Cu(1 = cV)aw; (1 - c1V?)0y = Cia(1 = 6,V )ew, 3)

where Gjj is the usual fourth-order elastic stiffness tensor which in the isotropic case is expressed in terms of the Lamé con-
stants (4, i) as Gy = 260k + U(didj + dudjk). The model of Eq. (3); is the one used by Aifantis and co-workers (e.g. Aifantis,
1992; Altan & Aifantis, 1997; Askes, Bennett, Gitman, & Aifantis, 2008; Exadaktylos, Vardoulakis, & Aifantis, 1996; Gutkin
& Aifantis, 1999; Lazar, Maugin, & Aifantis, 2005; Ru & Aifantis, 1993; Unger & Aifantis, 1995) to eliminate strain singularities
and interpret size effects; as well as several other authors (e.g. Georgiadis, 2003; Karlis, Tsinopoulos, Polyzos, & Beskos, 2007;
Stamoulis & Giannakopoulos, 2008), often without proper references. The model of Eq. (3), is the one derived by Eringen on
the basis of a nonlocal relation between stress (¢) and strain (€) (e.g. Eringen, 1977, 1983, 1985, 1992, 2002; Eringen, Spezi-
ale, & Kim, 1997). The model in Eq. (3); is an example of implicit gradient elasticity. It was discussed by the author in Aifantis
(2003) and has been shown (in contrast to Eq. (3); which leads to the elimination of strain singularities and to Eq. (3), which
leads to the elimination of stress singularities) that it can eliminate both strain and stress singularities from dislocation lines
and crack tips (e.g. Aifantis, 2009a, 2009b and references quoted therein).
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An alternative derivation of the implicit gradient elasticity model given by Eq. (3); may be established by starting with
Eringen’s nonlocal model (see, for example, Eringen, 1983, 1985, 1992)

Sy, (a Vo2 -7, (4)

oy = / K(ix = X) (285,35 + 2165 (x)) 425 K(x—X) = 5L

where Ky denotes modified Bessel function. It then follows (Altan & Aifantis, 1997), through a Taylor expansion up to second
order terms, that ¢y — ¢, V03 = og with o = Jef, + 2ueg; ie. (6 &°) denotes a classical local Hookean pair of stress and
strain fields related through the standard linear elasticity expression. By using the definition of a “macroscopic” strain tensor
& as a volume-type average of the local strain tensor &, i.e. &;(X) = (1/Vo) [, &;(X +r)d2 and expanding in a Taylor series up
to second order terms as before, it can be shown (Aifantis, 1995) that &; = & + czvzsfj. The positive constant ¢, depends on
the size of the elementary volume («R?/10 for a spherical volume V, of radius R) which, in turn, depends on the underlying
microstructure and the degree of existing heterogeneity. The preceding expression can be inverted, within a second spatial
order approximation (e.g. Vardoulakis & Aifantis, 1989), to read & = &; — czvze,-j; and, thus, the above relation between o
and g is reduced to the model of Eq. (3)3 for isotropic Gy [A similar argument for Eq. (3); was first advanced in Aifantis
(2010) where a typo (c; « 1/R? instead of ¢, « R?/10) has occurred.]

Another yet more general derivation, but with a different interpretation of Eq. (3); may be obtained by a slight modifi-
cation of a “homogenization” argument utilized in Gitman, Askes, and Aifantis (2005). Instead of writing an integral expres-
sion for the “macroscopic” stress 0'3.” by viewing it as a volume average of the “microscopic” stress ¢f' and assuming a linear
inhomogeneous relation for it in terms of the microscopic strain & (Gitman et al., 2005), we introduce an average stress X
and an inhomogeneous scale modulus Hyy, such that Zj; = (1/Va) . Hijz-k,aff,dv. The quantity V5, denotes the elementary
representative volume over which the average stress X; is calculated or measured, and the scale modulus Hﬁk,, as well as the
local stress field o, vary within Vive- Next, we assume linear Taylor expansions of the form Hjy, = H + Hjy ,0Xm and
05 = 0y + 0} ,0Xp, where Hyyy and o are the values of Hﬁ,d and ¢} at the center of the assumed elementary volume, say a
cube, of characteristic size ¢. By carrying then out the integration in the above equation for Xy, it can be shown that
2ii=Hjulow — (£2/12)64mm]; and a similar expression can be deduced for an average strain Ejj, if the same scale modulus
is assumed and the same size is also considered for the representative elementary volume over which the local strain is inte-
grated. Finally, on assuming that the average stress X is linearly related to the average strain Ej; by an average constant
stiffness Gyj( 2 = GjniExi), the model of Eq. (3); is deduced with ¢, = . [Different values of ¢; and c, are obtained if the scale
moduli Hj;, and Hj, and the corresponding representative elementary volume sizes ¢* and ¢ are different for the stress and
strain fields. It is also noted that, for notational convenience, throughout this paper the same symbol c is used sometimes for
gradient terms of different form and meaning, as well as sign.]

In concluding this subsection on gradient elasticity, it is noted that another special model - more general, however, than the
isotropic version of Eq. (3); - of the general case of Eq. (2) may be deduced by assuming «; # o5 (both #0) and ¢, = o = 0tg = 0.
Then by writing out explicitly the corresponding equilibrium equation in terms of the displacement u, the result is

(+ w1 —cx VAdivu+ p(1 — cV*)Vu =0, (5)

where (c*, c¢) are directly related to «’s in Eq. (2). For ¢ = ¢* this model is reduced to that of the isotropic version of Eq. (3);;
otherwise, Eq. (3); is generalized, as it should, to include two different gradient coefficients for the hydrostatic and shear
gradient contribution. The above model with ¢ =0 has been used earlier to interpret size effects in hollow specimens (e.g.
Aifantis, 1999, 2009a, 2010 and references quoted therein).

2.2. Three critical remarks on the original gradient elasticity model (GRADELA)

2.2.1. The robustness of GRADELA

The GRADELA model, i.e. the isotropic version of Eq. (3);, is the simplest possible case of strain gradient elasticity incor-
porating both volumetric and shear effects. This model was initially derived for elastically deforming nanopolycrystals
viewed as a mixture of two phases: the “bulk” and the “grain boundary” phases, each supporting their own displacement
and Hookean stress fields, and interacting with each other through an internal body force proportional to the relative dis-
placement (see, for example, Aifantis, 1994; Altan & Aifantis, 1997 and references quoted therein). This was certainly a dif-
ferent motivation than the one led Mindlin (Mindlin & Eshel, 1968) to a substantially more involved strain gradient elasticity
theory by assuming the most general quadratic dependence of the elastic energy density on the first gradients of the strain
tensor, as it will be discussed below. The main advantage of GRADELA, (which contains only one extra constant) over Mind-
lin’s theory (which contains five extra constants) is the fact that solutions of boundary value problems can be found in terms
of corresponding solutions of classical elasticity through an inhomogeneous Helmholtz equation (Ru-Aifantis theorem; Ru &
Aifantis, 1993). This is partly why the interest in gradient elasticity has been revived in recent years following the publication
of the original robust GRADELA model in the mid nineties, as discussed in Aifantis (2010) and papers quoted therein. In this
connection, the work of Sharma and co-workers (see, for example, Maranganti & Sharma, 2007 and the rest of his papers
referenced therein) is mentioned as an example. He found many applications of gradient elasticity for various nanotechnol-
ogy problems. He used a slightly more general version than GRADELA, but in our opinion, all his results could be obtained by
using the isotropic version of Eq. (3); with simpler solution formulae and without loss of physical insight or other pertinent
information.
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An additional point that is frequently overlooked by current workers on nonlinear elasticity with a non-convex strain en-
ergy density, has to do with the fact that GRADELA has indeed readily motivated the inclusion of strain gradients in this field.
The first paper on this topic by Triantafyllidis and Aifantis (1986) was concerned with the localization of deformation in
hyperelastic softening materials. Even though not widely recognized, this article has prompted a large amount of recent
work on phase transitions (twinning and martensitic transformations) in modern continuum mechanics where the introduc-
tion of strain gradients in the non-convex form of strain energy function has provided a “stabilizing” mechanism for captur-
ing spatial features of the evolving microstructural phases when the material enters the regime (non-convex region) where
homogeneous states are unstable.

2.2.2. Relation to Mindlin’s theory
Another clarifying remark concerns the relation of GRADELA to Mindlin’s strain gradient elasticity theory (Mindlin &
Eshel, 1968). Mindlin’s starting point is a strain energy density expression of the form

W =W + C1&jEikk + C28iikEiij + C38iikEijk + Calijijk + C5Eij ki (6)

where the first term w° of the rhs is the classical Hookean contribution and the rest five terms comprise the most general
contribution of the first gradients of the strain tensor. In this notation, the corresponding strain energy density expression
for GRADELA reads

W =W+ /207, 8k 2W = 0585 O = Aemmdy + 2185 = 05; = 0; 0 = 0j; — cVzafj, (7)
where the last two relations of Eq. (7) are deduced from a virtual work “principle” (Aifantis, 2010) similar to that of Mindlin’s
(Mindlin & Eshel, 1968). Mindlin defines an elastic second order stress of=0w/dg; and a third order stress
Tijk = OW/9g;, = coy;, in our terminology, and derives boundary conditions from the aforementioned variational principle
which, even in the simple case of GRADELA, are complicated in form and often difficult to interpret physically. In fact, the
isotropic version of Eq. (3); results form Mindlin’s strain energy function given by Eq. (6) when the choice

1=0=0e=0, c3=14/2, c4=Uc, (8)

is made. In this connection, it is noted that in Feynman'’s linear theory of gravity (Feynman, 1995) - see also the discussion by
Lazar and Maugin (2005) contained in the reference for Feynman listed in the bibliography - an expression like Mindlin’s
given by Eq. (6) is used but the following choice is made for the gradient coefficients

C1=—C=-2UC, C3=—C4=—-Uc, ¢5=0. (9)

Then it easily turns out that the quantity (1/2uc)tji = —(ince); = &ikl€jmnéinkm is equivalent to the 3-D linear Einstein’s
tensor. Initially, gauge theories of dislocations (see, for example, Lazar & Anastassiadis, 2009 in the reference for Feynman
listed in the bibliography and references therein) were based on Feynman/Einstein choice of the constants c’s given by
Eq. (9), but they gave unphysical results; the situation was repaired afterwards by essentially employing Aifantis’ choice
of ¢'s given by Eq. (8), leading to the isotropic version of Eq. (3);. It is also important to point out here that the stress oy sat-
isfying the standard equilibrium equations is identified as the Cauchy stress for which boundary conditions should be as-
signed. In this connection, it is noted that in other recent articles (e.g. those by Lazar and co-workers; see references in
the bibliography) a different terminology is used: o is referred to as the Cauchy stress and oj; is referred to as the total stress.
This difference in interpretation is of no consequence in the present discussion and it will be elaborated upon elsewhere.

2.2.3. GRADELA’s J-integral

Several results of elasticity theory concerning dislocations, cracks and other inhomogeneities can be extended within the
GRADELA model. In particular, many expressions derived for dislocations by using linear elasticity can now be revisited with
GRADELA to obtain corresponding scale-dependent expressions and re-interpreting related physical phenomena at small
scales. For example, the appropriate expression for the J-integral is

Jie= / [Woj — Gtk — cayuin]n; dC, (10
C

where w denotes the appropriate gradient dependent elastic strain energy density (ie. 2w = g{&;+ coy &1
05 = J&mmd;j + 2uey) and Cis a closed curve surrounding, for example, the crack tip. The usefulness of the above expression
in gradient elastic fracture mechanics has to be assessed; a task left for a future article where the Peach-Koehler force, the
image force, and other key-formulae of classical dislocation theory will be revisited and their implications to various engi-
neering configurations at the nanoscale will be discussed. Finally, it is noted that the simple formula given by Eq. (10) can
also be deduced from the rather complex mathematical expressions derived recently by Lazar and co-workers for
conservation laws of more general gradient elasticity theories (Agiasofitou & Lazar, 2009).
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2.3. Gradient plasticity

Next, attention is focused to deformation theory of plasticity for which the isotropic function f in the beginning of this
section is replaced by a scalar isotropic function f designating the yield condition. A generalized yield condition can then
be deduced (by using standard representation theorems for isotropic scalar functions) in terms of the invariants of (o, €)
and their Laplacians. If a J,-type gradient dependent yield condition is desirable, the corresponding yield expression for
the case of isotropic hardening may be written as

T—cx V2T =K(}) — cV?y, (11)

where 7 (the flow or equivalent stress) and y (the equivalent plastic strain) are the second invariants of the deviatoric stress
and plastic strain tensors; defined later after Eq. (19). For ¢* =0, Eq. (11) reduces to the author’s original gradient plasticity
model (Aifantis, 1984). Various justifications for the original (¢* = 0) gradient dependent yield condition (or gradient depen-
dent flow stress) have been provided in previous articles (e.g. Aifantis, 1992, 1994, 1995, 2003 and references quoted there-
in) with a most recent account provided in Aifantis (2009b) and Forest and Aifantis (2010). In Aifantis (2009b) the V?y in Eq.
(11), with ¢* =0, is derived from the configuration of single slip and a scale invariance argument by also averaging over all
possible slip systems (Section 4 of Aifantis (2009b)). In Forest and Aifantis (2010) a link is established between Eringen’s
micromorphic theory and the author’s gradient plasticity theory (Section 2.2 of Forest and Aifantis (2010)).

On returning to Eq. (11), it is remarked that the arguments employed earlier in this section for deriving various types of
gradient elasticity models can also be adapted to the case of plasticity. In this connection it is pointed out that if first gra-
dients are included in the general form of the yield condition discussed above, the following expression may be deduced

T—CVT-VT— VT =K(y) —cVy - Vy —cV?y. (12)

This equation with (¢* = ¢* = 0) was used earlier to interpret size effects in bending (Aifantis, 1999; Tsagrakis, Konstantin-
idis, & Aifantis, 2003).

3. Deformation in nanovolumes: the bulk-surface interaction

An extended continuum mechanics framework is outlined here for addressing the mechanical response of ultrafine grain
(ufg) and nanocrystalline (nc) polycrystals. This extension is based on generalizing the standard continuum mechanics struc-
ture by introducing extra terms modeling the “interaction” between “bulk” and (external or internal) “surface” points, as
well as appropriate constitutive equations for these terms. We apply this idea below to consider separately elastic and plastic
deformations, and separately viscoelastic and viscoplastic deformations. Such “bulk-surface” interaction idea was first out-
lined in Aifantis (1978) where the standard balance laws for mass, momentum, energy and entropy where generalized to
include nonlocal source terms accounting for the aforementioned exchange processes between bulk and surface points.
The resulting governing differential equations are proposed to be used in connection with the determination of the mechan-
ical response of polycrystals at the submicron and nano regimes for both elastic (micro/nanoelasticity) and plastic (micro/
nanoplasticity), as well as viscoelastic (micro/nanoviscoelasticity) and viscoplastic (micro/nanoviscoplasticity) deformations.

3.1. Micro/nanoelasticity

Within the bulk-surface interaction approach the standard equilibrium equation div ¢ =0 is generalized to include an
additional internal body force f representing the exchange of momentum between bulk and surface, for the present case
of small volumes. Then, the balance law of linear momentum in the absence of inertia effects reads

dive® =f, (13)

where 6® is the usual stress tensor of the bulk material and f is an internal-like force modeling the momentum exchange
between the “bulk” and “surface” points. It is further assumed that f is determined by a higher-order stress or “hyperstress”
M of third order which, in turn, may be expressed as the gradient of the second-order stress S or extra stress modeling bulk-
surface interaction; i.e. f = divdivM; M = VS.

The simplest possible constitutive assumption for the extra stress S is to assume it proportional to the bulk stress a®, i.e.
S =co®, and then Eq. (13) can be written as

dive =0; ¢ =c®—- Ve’ (14)

If for ¢® we adopt the usual Hooke’s law of classical elasticity, i.e. 6® = A(trg)1 + 2ug, where (4, i) denote, as before, the
Lamé constants, it follows that the total stress o, including both the usual stress corresponding to the bulk and its interaction
with the surface, is determined by the equation

dive =0; o = A(tre)1 + 2ug — cV2[A(tre)1 + 2ue), (15)
i.e. the equations of the original GRADELA model.
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3.2. Micro/nanoplasticity

To derive modified equations for plasticity, attention should be focused first on the yield condition and the corresponding
expression for the flow stress, as this is the starting point in any development of plasticity theory. This can be done, along
similar lines as for the elastic case, by considering the case of simple shear for which the corresponding one-dimensional
counterpart of Eq. (13) reads

o — . (16)

Here 7” is the bulk shear stress and f is the one-dimensional scalar counterpart of the exchange of momentum force between
“bulk” and “surface” points. In physical terms, t’ may be identified with the resolved shear stress on a representative slip
system with the coordinate x denoting the slip direction and y the coordinate normal to it. As in the elastic case, it is assumed
that the scalar f is given by the second spatial derivative of another scalar field M which, in turn, is given by the spatial deriv-
ative of another scalar field S, i.e.f = dyyM; M = 9,S. Then Eq. (16) yields

HTt=0=1=1"-9M, (17)

where the second equation may now be viewed as the appropriate gradient-dependent expression for the flow stress,
required for continuous yielding. Unlike to the linear elastic case where the interaction of “bulk” and “surface” points can
be expressed equivalently either in terms of stress or in terms of strain, it is assumed here that in the case of plastic flow
it is the shear strain y which determines the bulk-surface interaction. In other words, it is assumed that S = ¢y with c being
a constant and, thus, Eq. (17), can be written as

T = K()) — COyyY, (18)

where the standard plasticity relation z” = k() was assumed for the bulk stress. The three-dimensional generalization of Eq.
(18) reads
T=K(y) -V, (19)
where 7 is the equivalent or effective stress © = , /1/20;0}; 0} = 0 — 1/30udy and y the corresponding equivalent or effec-
tive shear strain (i.e. y = [7dt, y = \/2&z¢; with & denoting the rate of the plastic strain tensor).
Alternatively, for cases where stress gradients determine the bulk-surface interaction, the quantity S may be taken to be
proportional to the bulk stress ¥ as in the elastic case. Then, the corresponding expression of the flow stress 7 reads

T=K(y) —cV*) —cVy-Vy, (20)

where the gradient coefficients are proportional to /() and x”(y) respectively, with prime denoting differentiation of a func-
tion with respect to its argument. In other words, a special case (¢* = ¢* = 0) of the phenomenological implicit gradient con-
stitutive expression given by Eq. (12) has resulted where, however, the internal length parameters (as determined by the
gradient coefficients ¢ and ¢) vary with the plastic strain 7. Such types of gradient dependent flow stress have been used
in Tsagrakis et al. (2003) to model size effects in microbending.

3.3. Rate effects

In this section it is shown how to include rate effects for deforming micro/nano volumes within the above framework. For
viscoelastic behavior and a Kelvin-Voigt type solid this can easily be done on the basis of Eq. (13) of Section 3.1 by assuming
that the bulk stress o® is given by the standard expression

68 = )(tre)1 + 2ug + A°(tré)1 4+ 2°€, (21)

where the superimposed dot denotes time differentiation and (1* u*) are the corresponding viscoelastic constants. Then, the
arguments that led to Eqs. (14) and (15) can be adopted to derive, instead of Eq. (15),, the following gradient generalization
of a Kelvin-Voigt solid

6 = [A(tre)1 + 2ug] + [ (trg)1 + 2u &) — cV2[A(tre)1 + 2ug] — ¢ V2[4 (tré)1 + 2 €], (22)

where the new gradient coefficient c* measuring the effect of strain rate gradients may be neglected in a first approximation
for solid-like behavior, but not for a fluid-like behavior. A similar procedure can be employed for a Maxwell type of visco-
elastic behavior, as well as for more general viscoelastic responses of integral type.

A similar procedure can be followed for viscoplasticity by allowing the homogeneous part of t° to depend on j and assum-
ing that S varies linearly with ), in addition to y. It easily follows then that the viscoplastic counterpart of Eq. (19) reads

T=K(},9) -V -V, (23)

where in a first approximation for solid-like behavior the c*V?} term may be neglected. For linear viscous behavior (i.e. for
K(y,7) = k() + ny, with  denoting viscosity), Eq. (23) reduces to t = k(y) + ny — cy,, for one-dimensional strain softening
problems for which x(y) has a negative slope regime; x'(y) <0 = c> 0. Alternatively, for linear hardening behavior but
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nonlinear rate effects [as in the case of Portevin-Le Chatelier (PLC) effect; Aifantis, 1992, 1984/1987] Eq. (23) reduces to
0 = he + f(&) — cex for one-dimensional strain rate softening problems for which f(€) is a nonconvex function with a nega-
tive slope regime; f'(¢) < 0 = ¢ < 0 (o is the tensile stress, € is the tensile strain and h is the hardening modulus). It is noted
that the above constitutive equation for T may be used for modeling the nucleation and propagation of shear bands (in the y-
direction along which v varies) for dynamic deformations when the material enters the stain softening regime for constant
strain rate tests, while the constitutive equation for ¢ has been used for modeling the propagation of PLC bands (in the x-
direction along which € varies) for quasistatic deformations when the material enters the strain rate softening regime for
constant stress rate tests.

An alternative way to include viscoplastic effects within the bulk-surface interaction framework is by utilizing - instead
of the momentum balance given by Eq. (16) - an effective mass balance equation of the form

P8+ divj® = ¢, (24)

where p® denotes the density of an “effective” medium containing both the parent material and the evolving microstructure
(e.g. vacancies, dislocations and other structural defects carrying the plastic strain). By further assuming that the effective
mass density is proportional to the density of the carriers of plastic deformation ), one can re-write Eq. (24) in the form

7+divg=g, (25)

where y denotes the rate of plastic strain, q is the flux of plastic strain through the elementary representative volume and g is
a source/sink term. While, in general, g may include both nucleation/annihilation of defects within the elementary represen-
tative volume along with losses/production on the surface, in the case of nanopolycrystals this term is dominated by grain
boundary and other internal surface (triple grain boundary junction) processes.

It is pointed out that Eq. (25) may be viewed as a “complete balance law” for the internal variables containing both a flux
and a source term (Aifantis, 1978). In this case where } appears as a field variable in the governing equations, the effective
stress T and effective strain y should generally be considered as independent variables so that g = g(t, 7). Furthermore, by
assuming that the flux q is of a diffusive nature, say q = —D,Vy + DV, the following equation may be derived for the evo-
lution of the equivalent plastic strain y

7 =g(1,7) + D,V?y — D, V°1. (26)
The one-dimensional form of Eq. (26) for tensile deformation with D;=0 and g(o,¢) = & sinh[{c — o, — h(¢)}/s];

h(e) = —hoe[1 — (¢/&,)"] may be used to model (Aifantis, 1992) the propagation of Liiders bands (&, g, &, ho, s, n are all
constants with ¢ and o; denoting Liiders strain and stress respectively).

4. Three key basic problems

In this section we consider three basic key problems for gradient elasticity and gradient plasticity. The first is concerned
with the elimination of stress/strain singularities from a mode-I micro/nano crack tip within the structure of the robust ver-
sion of gradient elasticity, and the second problem with the modification of Johnson’s spherical cavity model during micro/
nano indentation within a robust gradient plasticity framework. The third problem is concerned with strain band nucleation
and propagation within a simple gradient plasticity framework where, in addition to deterministic gradients, random effects
in the flow stress expression are also introduced.

4.1. Elimination of singularities at the tips of nanocracks

As discussed earlier, the stress tensor ¢ for a loaded nc or ufg material weakened by a (nano) crack, is given by the inho-
mogeneous Helmholtz equation (Aifantis, 2003, 2009a, 2009b) o;; — cV2g; = 69, where ag is the classical elasticity solution

[jv
with the well-known r~'/2 singularity. For example, the ¢, component is determined from the differential equation

2 K; 0 .0 . 30
Gy — V0 NorT {cos2 <1 + sm2 sin 3 )}, (27)
where K; = ¢>\/Tta is the usual stress intensity factor for mode I (6™ is the applied tensile stress at infinity and a is the half crack
length), and (r, 0) are the usual polar coordinates with origin at the crack tip. By writing the angular componentin Eq.(27)as[(5/
4) cos 0[2 — (1/4)cos 50/2], splitting the deduced equation in two parts, solving the two resulting inhomogeneous Helmholtz
equations separately by using superposition and, finally, taking into account the boundary conditions g;; — 03. asr — oo and
r — 0, it turns out that under certain conditions the relevant non-singular asymptotic solution can be cast in the form

K 0 .0 . 30
=L lcos=(1 =sin>)|(1—e "V 2
02 \/ﬁ{co%( +smzsm2>]( e ), (28)
the distribution of which is given in Fig. 1 where scaled quantities a* = a/+/c and r* = r//c have been used in the plots. Non-
asymptotic results and more complete expressions for all components of stress and strain, along with gradient-dependent
fracture criteria, are postponed until a future publication.



1374 E.C. Aifantis / International Journal of Engineering Science 49 (2011) 1367-1377

(a) Classical singular stress (b)  Gradient non-singular stress

—

Fig. 1. Distribution of g,, at the crack tip: (a) Classical singular stress; (b) Gradient non-singular stress.

Alternative forms for the mode I solution can be obtained if different boundary conditions along the crack surface are
adopted. One such solution turns out to be composed from the usual elastic part and an additional term which varies as
32 thus recovering the form obtained by others [see, for example, Georgiadis, 2003; Karlis et al., 2007; Stamoulis & Gian-
nakopoulos, 2008 and references quoted in Aifantis (2009b)], which in this author’s opinion does not repair the weaknesses
of classical fracture mechanics. A detailed discussion on the various forms of solutions at the crack tip (singular or not) and
their relevance to nc and ufg materials should be conducted in relation to possible experiments carried out for such
configurations.

4.2. Revisit of Johnson’s spherical cavity model

Johnson's spherical cavity model for indentation was revisited in Mokios and Aifantis (2007) within a deformation version
of gradient plasticity theory of Eq. (19). The schematics for this model are shown in Fig. 2a. On adopting Johnson’s (1985)
geometric similarity {da/dr., =a/re,} and hydrostatic core incompressibility {ma?dh = na®(tanp)da = 2nr§p [Ou;(rep)/

Orepdre,} conditions, along with a perfect plasticity gradient yield condition ¢ = oy — Ve (6= 3/20}07; €=
2/3¢;e;), the spherical cavity model is solved again and modified expressions of the radial displacement u(r) and the trac-
tion t(r) are derived, namely
u(r) = (r,/r*)(ay (1 +v)/3E)[r3,/ (2, + 46)); 2 =c¢/(1+ V)E,
t(r)=—(20v/3) — 20y log(re, /1) — [{40‘y£2/15(r§p + 4[2)}{9(r,3p/r)5 —19}],
where (v, E) denote elastic moduli, oy is the yield stress, and the rest of the quantities are depicted in the sketch of Fig. 2a; the
terms in the brackets of Eq. (29) are the corrections to the classical expressions due to the inclusion of gradients measured by
the internal length ¢. Then, the graph in Fig. 2b and its comparison with the experiment (McElhaney, Vlassak, & Nix, 1998) is

obtained by assuming that the ratio of the hardness H over the yield stress oy is proportional to the ratio of pi,¢/oy. [The inter-
nal pressure pj,. at r = a equals to —t(a) as imposed by the corresponding boundary condition.]

(29)

4.3. Front propagation

In this section the problem of neck or shear band front propagation is considered by incorporating random effects in the
deterministic one-dimensional stress-strain gradient constitutive equation o = k(&) — c(0?¢/dx?). This, in view of the
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Fig. 2. (a) Schematics of Johnson’s spherical cavity model; (b) Comparison with experiment (E = 130 GPa; v = 0.34; oy = 0.36 GPa; ¢/=13.5 nm).
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Fig. 5. Comparison between theory and simulations for nc-Cu sample of varying grain size.

one-dimensional equilibrium equation d¢/dx = 0, results to the governing differential equation o = #(&)—c(d%¢/ox?), where x
denotes the direction of front propagation. By introducing small perturbations (¢, é¢) due to disorder or random effects in
the strain (¢ — ¢+ 6¢) and stress (¢ — o + 5a) fields (leading to a fluctuating flow stress x(&) — (&) + {k(¢, x), where { is a
“small” parameter), we have o= k(&) + tk(&, x) — c(d%¢/ox?); this being the governing equation defining the evolution of
the strain front in the presence of both deterministic gradients and stochasticity.

To proceed further, we consider the following form for the random contribution k(¢, x) to the flow stress expression:
k(e, x) = f(e)g(x); i.e. we assume separable contributions of the strain and the space field. We consider, in addition, short-
range correlations in space, such that the autocorrelation of g(x) is given by (g(x)g(x')) = £5(x — X'), where ¢ = £y is the
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correlation length and d(x — x') denotes the usual delta function. It follows that the variance of the stress perturbations is
given by (602) = [ /(Ag)?] [, f2(¢)exdx, where Agf=g(—o0) denotes the strain at infinity.

By choosing f(g) = ee=**/2 and (&) = e~**/2 + he (h denotes linear hardening) one can calculate explicitly the variance
(002) = E(L/Ag)? [ {—2[e /2 — (h/2)€? + aoe — V(&) }e2e * de, where V(e) = e*/2 — (h/2)e2. By employing then a cellu-
lar automaton numerical scheme, one can obtain the graphs of Fig. 3. These preliminary results will be thoroughly discussed
in a future publication considering the effect of the competition between deterministic strain gradients and randomness on
the occurrence and evolution of plastic instabilities (Zaiser & Aifantis, 2003, 2006).

5. Stress-strain relations for nanopolycrystals

The reason for including this final section is to support the view that such type of gradient or nonlocal dependence in
standard constitutive equations may provide a quick and easy-to-use tool for capturing mechanical behavior at the nano-
scale. At the nanoscale, the representative elementary volume (REV) assumed for a continuum mechanics treatment is highly
heterogeneous and may not be sufficiently described by local fields as is the case at the macroscale, where the corresponding
heterogeneity can be “smoothed out” for stable deformations. In a first approximation then, the introduction of spatial gra-
dients in the constitutive equations offers an interesting robust approach for modeling nanostructures, size and surface ef-
fects in real time, as opposed to molecular dynamics simulations which are commonly used for modeling such effects but for
unreasonably short times (or unrealistically very high strain rates).

A mixture rule argument has been used recently (Aifantis & Konstantinidis, 2009) to model full stress-stain graphs for nc
metals with varying grain size. This modeling effort was based on a Voce’s type constitutive relation for the flow stress along
with a Hall-Petch (H-P) dependence on the grain size within a gradient plasticity framework with interfacial energy (Aifan-
tis & Willis, 2005). It turns out, however, that a simpler and rather intuitive procedure may also be adopted for this purpose.
This procedure is based on the use of an approximate microscopic dimensionless argument to replace the gradient depen-
dence of the flow stress on the grain size leading to H-P or inverse H-P relations for this quantity (as well as for the corre-
sponding hardening modulus), depending on whether hardening or softening takes place in the grain boundary space.

Roughly speaking, a H-P relationship within the earlier discussed gradient plasticity framework - for example Eq. (12)
with ¢ = ¢* =¢* =0 - may be deduced as follows. For tensile loading within the aforementioned model, the yield stress
may be written as ¢ = 6o + k¢'/?|Vg|'/?, where k is a stress-like parameter and ! is an internal length associated with dislo-
cation spacing or dislocation source distance. [Strictly speaking, such relation is deduced by slightly generalizing the depen-
dence on Vv.Vy in Eq. (12) to read (Vy.Vy)™ and taking m = 1/4. This choice of m can be justified on physical grounds by
assuming a Taylor expression for the flow stress where, however, the effect of statistically and geometrically necessary dis-
locations is additively considered.] For a grain size d, the gradient term |V¢|'/2 may be approximated as (€,/d)"* with €
denoting a reference strain. This yields a H-P relation for ¢ when the grain boundary hardens and an inverse H-P relation
when the grain boundary softens. A similar argument can lead to analogous H-P dependencies for the hardening modulus h.

Next, we assume that the flow stress is given by the Voce-type relation

0 = o7 + (05 — oy) tanhlhe/ (o5 — ay)], (30)
where o, = a2+ Icsfti’”2 denote saturation and friction stresses respectively, and h = hy — k,d~'/? is a hardening like mod-
ulus. Then, one may obtain the model predictions depicted in Fig. 4a (solid lines) and their comparison with experimental
data (Khan, Farrokh, & Takacs, 2008) as detailed in Fig. 4b. The parameter values used are ¢? =230 MPa,
ks = 92.5 kPa /m; g = 70 MPa, k; = 104 kPa v/m, ho = 827 MPa, k;, = 86 kPa /m.

The same expression for the flow stress, i.e. Eq. (30), can be used for modeling simulation results for smaller grain sizes
where an inverse H-P behavior has been documented (Schigtz, Vegge, di Tolla, & Jacobsen, 1999) as shown in Fig. 5.

The parameter values used for the fits of Fig. 5a are g; = 500 MPa; g, = 69 — ksd "/*, 6% = 3920 MPa, k; = 140 kPa v/m;
h=hy — kyd ', ho = 730 GPa, k;, = 34 MPa v/m. More details on such type of modeling and comparison with experiments
will be reported by K.E. Aifantis and co-workers (Zhang, Romanov, & Aifantis, 2011).
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