International Journal of Solids and Structures 48 (2011) 1962-1990

Contents lists available at ScienceDirect = LR
SOLIDS AND
. . STRUCTURES
International Journal of Solids and Structures e

journal homepage: www.elsevier.com/locate/ijsolstr

Gradient elasticity in statics and dynamics: An overview of formulations,
length scale identification procedures, finite element implementations

and new results

Harm Askes **, Elias C. Aifantis®

2 University of Sheffield, Department of Civil and Structural Engineering, Sheffield S1 3JD, United Kingdom
b Aristotle University of Thessaloniki, Polytechnic School, Laboratory of Mechanics and Materials, 54006 Thessaloniki, Greece

ARTICLE INFO

Article history:

Received 18 October 2010

Received in revised form 31 January 2011
Available online 15 March 2011

Keywords:

Gradient elasticity
Generalised continuum
Internal length scale
Wave dispersion
Singularity removal
Size effect

ABSTRACT

In this paper, we discuss various formats of gradient elasticity and their performance in static and
dynamic applications. Gradient elasticity theories provide extensions of the classical equations of elastic-
ity with additional higher-order spatial derivatives of strains, stresses and/or accelerations. We focus on
the versatile class of gradient elasticity theories whereby the higher-order terms are the Laplacian of the
corresponding lower-order terms. One of the challenges of formulating gradient elasticity theories is to
keep the number of additional constitutive parameters to a minimum. We start with discussing the gen-
eral Mindlin theory, that in its most general form has 903 constitutive elastic parameters but which were
reduced by Mindlin to three independent material length scales. Further simplifications are often possi-
ble. In particular, the Aifantis theory has only one additional parameter in statics and opens up a whole
new field of analytical and numerical solution procedures. We also address how this can be extended to
dynamics. An overview of length scale identification and quantification procedures is given. Finite ele-
ment implementations of the most commonly used versions of gradient elasticity are discussed together
with the variationally consistent boundary conditions. Details are provided for particular formats of gra-
dient elasticity that can be implemented with simple, linear finite element shape functions. New numer-
ical results show the removal of singularities in statics and dynamics, as well as the size-dependent
mechanical response predicted by gradient elasticity.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Classical continuum solid mechanics theories, such as linear or
nonlinear elasticity and plasticity, have been used in a wide range
of fundamental problems and applications in civil, chemical, elec-
trical, geological, mechanical and materials engineering, as well
as in various fields of physics and life sciences. Even though the
scales that these theories were initially designed for were ranging
roughly from millimetre to metre, to describe deformation phe-
nomena and processes that could be captured by the naked eye,
they were also used in the last century to describe phenomena
evolving at atomistic scales (elastic theory of dislocations), earth
scales (faults and earthquakes) and astronomic scales (relativistic
elastic solids). More recently, observations in advanced optical
and electron microscopes have been interpreted by using classical
continuum mechanics theory; in the last few years standard elas-
ticity formulae have also been used to characterise deformation
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behaviour at the nanoscale (e.g. nanotubes or other nanoscale
objects).

It is in this regime of micron and nano-scales that experimental
evidence and observations with newly developed probes such as
nano-indenters and atomic force microscopes have suggested that
classical continuum theories do not suffice for an accurate and
detailed description of corresponding deformation phenomena.
More notably size effects could not be captured by standard elas-
ticity and plasticity theories, even though such effects become
dominant as the specimen or component size decreases. Moreover,
classical elastic singularities as those emerging during the applica-
tion of point loads or occurring at dislocation lines and crack tips
cannot be removed, and the same is true for discontinuities occur-
ring at interfaces. Another important class of problems that could
not be treated with classical theory is when the homogeneous
stress—strain curve contains a negative slope regime where strain
softening or a phase transformation occurs. This is the case with
elastic (twinning, martensitic transformations) and plastic (neck-
ing, shear banding) instabilities where classical theory could not
provide any information on their evolution and spatio-temporal
characteristics.
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1.1. Enriched continuum theories in solid mechanics

Roughly speaking, the inability of standard continuum
mechanics theories to deal with the above problems is due to
the absence of an internal length, characteristic of the underlying
microstructure, from the constitutive equations. Special materials
science models and related atomistic or molecular simulations
were used extensively as an alternative, but a convenient and
sufficiently general mechanism-insensitive framework was lack-
ing. On the other hand, a plethora of articles on generalised con-
tinuum mechanics appeared in the 1960s along the lines set out
by the brothers Cosserat in the early 1900s (micropolar, micro-
morphic). However, they were excessively complex with too
many parameters and equations to convince the experimentalist
and motivate the designer to consider them seriously. Even more
importantly, the majority of these theories were useful for dis-
persive wave propagation studies only, and key issues on non-
convex equations of state and associated material instabilities
along with size effects were not touched upon. A brief but
self-contained review on generalised continuum mechanics theo-
ries as related to the present article can be found in Altan and
Aifantis (1997).

It was only in the 1980s that Aifantis proposed a simple model
of gradient plasticity for strain softening materials, motivated by
gradient dislocation dynamics, in order to determine the width of
shear bands (Aifantis, 1984, 1987). The simplicity of this formula-
tion relies in the fact that only one additional constitutive constant
is required. The resulting model also dispenses with non-unique-
ness and non-convergence of mesh-size dependent finite element
simulations. This was readily shown by de Borst and Miihlhaus
(1992), de Borst et al. (1995) as well as Tomita and Fujimoto
(1995) who used the shear band solution of Aifantis as a bench-
mark for their gradient code development. This strand of work
has been extended by various other authors to damage problems
later on in the 1990s (Fremond and Nedjar, 1996; Peerlings et al.,
1996a; Comi, 1999).

In the beginning of the 1990s, Aifantis proposed another sim-
ple model with only one additional constant for use in elasticity
(Aifantis, 1992). This gradient elasticity model has been shown
to eliminate strain singularities from dislocation lines and crack
tips (Altan and Aifantis, 1992; Ru and Aifantis, 1993). Even
though this model could be formally obtained as a special case
of the earlier gradient elasticity theories of the 1960s, its physical
motivation originated from elastic considerations of nano-poly-
crystals and its specific form could not be guessed or concluded
by formal considerations alone. This model revived the interest
in gradient elasticity and a large number of papers have been
published in the last two decades on this topic. Several issues re-
lated to the form and sign of the gradient terms and associated
gradient coefficients, the corresponding extra boundary condi-
tions and their physical meaning, the elimination of elastic singu-
larities and the prediction of size effects, as well as numerical
aspects and experimental validation, are still open and need fur-
ther consideration. It is indeed the aim of this paper to provide a
critical review of the above aspects and to present some fresh
perspectives and new results.

1.2. Historical overview of gradient elasticity

The use of gradient elasticity to simulate the mechanical behav-
iour of materials and structures is not a novel idea - in fact, it has
been advocated for more than a century and a half. However, the
scope of study has varied widely over the years. This has already
been touched upon in the previous Section, but in this Section we
will provide a more systematic discussion focussed on elasticity
that will also help in providing perspective to the remainder of

the paper. We will distinguish three main periods of activity, each
of which has its own focus.!

1.2.1. Pioneers

There have been some sporadic efforts in the 19th century to
enrich the continuum equations of elasticity with additional high-
er-order derivatives so as to capture the effects of microstructure.
As early as the 1850s, Cauchy suggested the use of higher-order
spatial derivatives in the continuum equations in order to approx-
imate the behaviour of discrete lattice models with more accuracy,
whereby the size of the elementary volume appeared as an addi-
tional constitutive parameter (Cauchy, 1850a,b, 1851). These initial
efforts were of an explorative character; they were not aimed at
mathematical completeness but instead at capturing certain phys-
ical phenomena.

Somewhat later, Voigt developed a comprehensive description
of the kinematics, balance laws and constitutive relations of dis-
crete lattice models for crystals. He included molecular rotations
alongside molecular displacements, as well as their conjugated
forces (Voigt, 1887a). However, the resulting differential equations
were quite complicated and solutions of boundary value problems
were found only by making a number of additional assumptions
(Voigt, 1887b,c). In the early 20th century, this area of research
was expanded through the work of the Cosserat brothers. They
equipped the kinematics of the three-dimensional continuum
equations with three displacement components as well as three
micro-rotations and included the couple-stresses, which are conju-
gated to the micro-rotations, in the equations of motion (Cosserat
and Cosserat, 1909).

1.2.2. Renaissance

Despite some isolated activities in the first half of the 20th cen-
tury, it was not until the 1960s that a major revival took place.
Interestingly, this occurred around the same time on either side
of the then East-West divide. Landmark papers of the Soviet school
include Aero and Kuvshinskii (1961), Pal’'mov (1964), Kunin (1966)
and Vdovin and Kunin (1966); see also the somewhat later work of
Levin (1971). From the Western school, the most renowned papers
are those by Toupin (1962, 1964), Mindlin and Tiersten (1962),
Mindlin (1964, 1965, 1968), Mindlin and Eshel (1968), Kroner
(1963, 1967) and Green and Rivlin (1964a,b).

Initially, the focus of these studies was on extension of the Coss-
erat theory and couple-stress theories (Toupin, 1962; Mindlin and
Tiersten, 1962; Toupin, 1964), but these were also extended into
elaborate full gradient theories (Kroner, 1963; Green and Rivlin,
1964a; Mindlin, 1964, 1965; Mindlin and Eshel, 1968). Many of
the latter studies are quite complicated theories aimed at generat-
ing and including a mathematically complete set of higher-order
gradients, rather than focussing at a more limited set of higher-or-
der gradients that are essential to capture the physical phenomena
of interest.

1.2.3. Modern times

A second revival took place in the 1980s and beyond. Eringen
derived a simple stress-gradient theory from his earlier integral
nonlocal theories (Eringen, 1983), although interest in this work
has remained largely dormant till the late 1990s. On the other

! Incidentally, there is a remarkable similarity between the history of gradient
elasticity and the history of Greece, going from Ancient Greece as the cradle of
European civilisation, via the baroque splendour of the Byzantine Empire, to the
renewed vigour and focus of Modern Greece - with periods of relative silence in
between (Ozkirimli and Sofos, 2008). This analogy may serve as a tribute to the many
members of the Greek mechanics community who have contributed to the
development of gradient elasticity theories, in particular Professor loannis Vardou-
lakis ( *1949-12009), a close collaborator of the second author in the initial stages of
the third wave of gradient theory development.
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hand, inspired by earlier studies in plasticity (Aifantis, 1984, 1987)
Aifantis and coworkers formulated gradient elasticity theories for
finite deformations (Triantafyllidis and Aifantis, 1986) and infini-
tesimal deformations (Aifantis, 1992; Altan and Aifantis, 1992;
Ru and Aifantis, 1993). Subsequently, these theories were extended
with additional terms accounting for surface effects (Vardoulakis
et al., 1996; Exadaktylos et al., 1996). Compared to the more elab-
orate theories of the 1960s, these newer theories are much simpler
in that they contain fewer higher-order terms, which is manifested
by the smaller number of additional constitutive constants that
need experimental validation. Indeed, the guiding principle in for-
mulating these theories has been to include only those higher-or-
der terms that are required to describe the pertinent physics (such
as localisation of strain without singularities). Similarly, in dynam-
ics the focus was on formulating simple theories with as few addi-
tional constitutive coefficients as possible and to relate these
coefficients to lattice geometries — see Andrianov et al. (2003,
2010b) for recent reviews.

With the increase of using computer methods for simulations,
the implementation of gradient elasticity became the focus of a
few studies. Especially finite element implementations of gradient
elasticity tend to be non-trivial due to the more complex structure
of the governing partial differential equations. Whilst certain
authors have focussed on implementing the more complete (and
more complicated) theories of the 1960s, see for instance (Shu
et al,, 1999; Amanatidou and Aravas, 2002; Zervos, 2008; Papani-
colopulos et al., 2009), some others have exploited the simplicity
offered by the Aifantis theory which has led to notably straightfor-
ward finite element implementations (Tenek and Aifantis, 2002;
Askes et al., 2008b; Askes and Gitman, 2009).

1.3. A note on methodology: complexity versus simplicity

In formulating models for engineering science, a balance must
be found between induction (deriving general principles from par-
ticular cases) and deduction (deriving particular cases from general
principles). More particularly, engineering science requires exper-
imental validation as well as theoretical development. Whilst the
main focus here is not on experimental validation of gradient the-
ories, we wish to emphasize that models in general, and gradient
theories in particular, should not be more complicated than is war-
ranted by experimental observations. Pleas for simplicity have
been made throughout history, for instance:

“we may assume the superiority, other things remaining equal,
of the demonstration which derives from fewer postulates or
hypotheses”,

as attributed to Aristotle. Isaac Newton noted as his first of four
rules of reasoning in philosophy that

“nature is pleased with simplicity, and affects not the pomp of
superfluous causes”,

whereas more recently Albert Einstein opined that

“la]ny fool can make things bigger, more complex, and more
violent. It takes a touch of genius - and a lot of courage - to
move in the opposite direction.”

We will apply this methodological principle of striving for sim-
plicity in discussing gradient elasticity theories, especially con-
cerning the number of additional parameters in a theory.

1.4. Aim, objectives and outline

In this paper, we set out to clarify a number of aspects of gradi-
ent elasticity that are sometimes deemed controversial or unre-

solved. Thus, we will discuss various formats of gradient
elasticity and how they are related to each other. We will also treat
the use of gradient elasticity in statics versus its use in dynamics,
the identification of the additional constitutive constants, finite
element implementations and appropriate formats of the bound-
ary conditions.

We will start the paper with an overview of various gradient
elasticity theories in Section 2, with particular emphasis on
those theories whereby the higher-order terms can be written
as the Laplacian of associated lower-order terms. Thus, we treat
the theories of Mindlin, Eringen and Aifantis, as well as pertinent
extensions to dynamics. Some gradient elasticity formulations
used in dynamics turn out to be unstable, and in Section 3 we
will review two studies from the recent literature where such
formulations are used, with suggestions for improvement. Next,
the identification and quantification of the length scale parame-
ters is treated in Section 4. We provide an overview of various
studies whereby the length scales are related to the size of the
corresponding Representative Volume Elements or other micro-
structural properties via analytical, numerical or experimental
techniques. The finite element implementation of gradient elas-
ticity is discussed in Section 5. Whilst this is generally not a triv-
ial task, we show that the theory of Aifantis and its extension to
dynamics allow for simple and straightforward finite element
implementations.

Whereas Section 2 gives an overview of the various theories
available in the literature and Sections 3-5 provide discussions of
earlier results, Section 6 presents original results that demonstrate
the capability of gradient elasticity to avoid singularities in the
stress and strain fields as well as the capability to predict size-
dependent mechanical response. Some concluding remarks are gi-
ven in Section 7.

2. Overview of various gradient elasticity formats

Many different formats of elasticity theories with micro-
structural influences exist. For instance, one could distinguish
mono-scale formulations, in which all variables are defined on
a single scale of observation, and multi-scale formulations,
where different variables relate to different scales of observa-
tion. One could also distinguish between the nature of the
additional variables, which may or may not aim to describe
internal rotations of the medium - internal rotations are in-
cluded in so-called Cosserat-type theories, couple stress theories
and micropolar theories.

We will not attempt to provide a complete overview of all
types of elasticity theories with microstructural effects. Thus,
we will not consider Cosserat-type or micropolar theories, and
we will focus on linear elasticity theories with infinitesimal
strains. We will start with a brief discussion of Mindlin’s theory
of elasticity with microstructure, which is multi-scale in that it
incorporates kinematic quantities at macro-scale and micro-scale,
but afterwards we will focus on mono-scale theories where gradi-
ent-enrichment takes the form of the Laplacian of the relevant
state variables.

2.1. Mindlin’s 1964 theory

In a landmark paper, Mindlin (1964) presented a theory of elas-
ticity with microstructure. He distinguished between kinematic
quantities on the microscale and on the macroscale, and the kinetic
energy density 7 as well as the deformation energy density &/ were
written in terms of quantities at both scales. In particular,

1 .. 1 .
T =5 puihi + ipffl//ijl//ij (1)
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and

1 1 1
U = 5 Cijati€ia + 5 BijajVia + 5 Ayamn Kk Kimn + Dijam K xim

+ Fijtim Kijk€im + Gija V11 (2)

where u;, &, Yy, vy and K are the macroscopic displacement, the
macroscopic strain, the microscopic deformation, the relative defor-
mation (i.e. the difference between macroscopic and microscopic
deformation) and the gradient of the microscopic deformation,
respectively. As such, we have &; =1 (u;; + ), y; = W — ¥y and
Kijk = Yjk;. Furthermore, p is the mass density (assumed to be equal
at both scales of observation) and ¢, is related to the size of the unit
cell of the microstructure. Finally, the constitutive tensors Gy, Bjjki,
Aijkimns Dijiim, Fijium and Gy contain 1764 coefficients, a daunting 903
of which are independent (Mindlin, 1964). For isotropic materials,
the number of independent elastic constitutive coeffients reduces
to a much more tractable, yet still considerable, amount of 18, by
which the deformation energy density of Eq. (2) can be written as
(Mindlin, 1964)

1 1 ]b A 1b A 1b .1 1
U =5 Aiigj + Heyij + 5017575 + 5027575 + 5 D37y + 817k

1
+82 (“/,-j + Vj,-) &ij + 1 KiikKijj + A2 KiikKjij + 5 Kiik Kjk

1 1 1
T 5 QakijjKikk + A5 Kiji Kk + 5 A Kl + 5 A1oKijiKijk

+ an KijkKjki + %aBKiijikj + %aMKiijjik + %GISKiijkji 3)
where 1 and pu are the usual Lamé constants and the various a;, b;
and g; are 16 additional constitutive coefficients.

The theoretical basis, completeness and richness of Mindlin's
theory of elasticity with microstructure cannot be overstated.
Yet, it must also be acknowledged that for practical purposes the
use Eq. (3) is limited as it requires the formidable task of quantify-
ing, experimentally or otherwise, the 16 additional coefficients.
However, Mindlin also formulated simpler versions of his elasticity
theory with microstructure, in which a number of assumptions are
made that allow to express the deformation energy density in
terms of the macroscopic displacements u; only, thus dropping
the multi-scale character of Eqgs. (1)-(3). These were denoted as
Forms I, Il and III, respectively, and they differ in the assumed rela-
tion between the microscopic deformation gradient x;; and the
macroscopic displacement u;.

Form I: The microscopic deformation gradient is defined as the

second gradient of the macroscopic displacement:
Kijk = Ug,j.

Form II: The microscopic deformation gradient is assumed to be
the first gradient of the macroscopic strain, that is ;.
k = Ejk,i and in turn Kijk = %(uk_,‘j + uj.ik)-

Form III: The last form is slightly different in that it splits the
microscopic deformation effects into two parts, namely
a gradient of macroscopic rotation Li = %eﬂmum,,‘, (where
ejim is the Levi-Civita permutation tensor) and the sym-
metric part of the second gradient of macroscopic dis-
placement iy = 3 (Ui + U + Ury)-

Nevertheless, despite the theoretical differences between the
three forms, the equations of motion of the three forms are identi-
cal, whether expressed in terms of displacements (Mindlin, 1964)
or in terms of stresses (Mindlin and Eshel, 1968). Since we wish
to focus on the final format of the equations of motion, we will
ignore the differences between the three Forms and concentrate
on Form II for further derivations. The deformation energy density
for Form II simplifies as

1.
U= §A8ii8jj + UEij&ij + A1 &iki€jjk + A28jji€kki + A3Eik iEjk

+ A4&jki€jki + As5&jk i€ij k (4)

where the definition of the various constitutive coefficients is
slightly different from those in Eq. (3), but we will ignore this differ-
ence here - the interested reader is referred to Mindlin (1964).
Although less well-known, Mindlin also suggested a simplification
of the kinetic energy (Mindlin, 1964, Section 10), that is

1 .. 1 ..
T:Epuiu;+§p£fuijuij (5)

With both these amendments to the kinetic and deformation en-
ergy densities, the equations of motion can be expressed entirely
in terms of the macroscopic displacements as

4a, + 4a, + 3as + 2a4 + 3as

(A4 WU + pakig; = 2 e
as +2a4+a i i
— %Ui.jjkk +bi = (il — £ily) ©

where b; are the body forces.

Although Eq. (6) still contains one additional inertia parameter
(namely ¢;) as well as five additional elastic parameters (namely
a;-as), it can also be seen that the latter appear in two groups.
Within the spirit of Section 1.3, the distinction between the various
q; is irrelevant for practical purposes. For this reason, we will write
Eq. (6) as

5 & , & , .
(/1+,u)<1€2(()x12<>uj,,-j+u<1 538&%>uuj+b;=p<lélax'z>ui
)
(7)

where

as +2a4 + as
2u

gzz\/4a1+4a2+3a3+2a4+3a5 and £ —

202+ 1)
8)

so that now only three additional parameters appear, namely /1, ¢»
and /3. From Eq. (7) we can make a few pertinent observations.
Firstly, the additional parameters ¢;, ¢, and /3 have the dimension
of length, and can be linked to the underlying microstructure, as
we will explore further in Section 4. Secondly, all higher-order
terms in the equations of motion are found as the Laplacian of the
corresponding lower-order terms; this holds for the stiffness terms
as well as for the inertia terms.

As we will see in Section 4, Laplacian-type gradients often ap-
pear naturally in microstructural motivations of gradient theories.
There is also a strong physical background of Laplacian-type gradi-
ents, since Laplace operators describe diffusion processes and
Laplacian-type gradients are thus representative for nonlocal
redistribution effects. Thus, the most versatile gradients are, argu-
ably, Laplacian-type gradients. In the remainder of this study we
will concentrate on gradient elasticity theories that incorporate
the Laplacian of relevant state variables. We will discuss these the-
ories separately for use in statics and dynamics.

2.2. Laplacian-based theories for statics

The primary motivation for using gradient elasticity in statics
has been to dispense with the singularities that appear at crack tips
and dislocation cores. It has been shown on many occasions that
these singularities can be avoided with an appropriate use of gra-
dient elasticity (Eringen, 1983; Altan and Aifantis, 1992; Ru and
Aifantis, 1993; Unger and Aifantis, 1995; Gutkin and Aifantis,
1996, 1997, 1999; Gutkin, 2000; Askes and Gutiérrez, 2006; Askes
et al.,, 2008b). One of the most popular theories of gradient
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elasticity is due to Aifantis and coworkers in the early 1990s
(Aifantis, 1992; Altan and Aifantis, 1992; Ru and Aifantis, 1993).
Although its formulation was inspired by earlier studies in gradient
plasticity, not elasticity with microstructure, it was later demon-
strated (Altan and Aifantis, 1997) that the Aifantis theory is for-
mally a special case of the Mindlin theory as given in Eq. (7).
Namely, the two length scales ¢, and ¢5; of the Mindlin theory are
in the Aifantis theory taken equal to each other, which greatly sim-
plifies further mathematical and implementational treatment.

The Aifantis theory can be written in a number of alternative
formats, and one of these formats exhibits stress gradients. Stress
gradients also appear in an earlier yet less well-known theory of
gradient elasticity, namely the one due to Eringen (1983). We will
treat these two theories in chronological order. We will also clarify
the differences between the Eringen theory and the Aifantis theory
with stress gradients.

2.2.1. Eringen’s 1983 theory

Eringen’s work is probably best known for advocating the use of
integral-type nonlocality, where volume averages of state variables
are computed. For the purpose of the present discussion, we focus
on nonlocal stresses. The nonlocal stress tensor, denoted as O"igj, is
computed from the local stress tensor, indicated with o, via

0% (x) = /V (5)0 (X + 5)dV (9)

where the local stresses are related to the displacement gradients as
usual, that is 0§ = Cyjall . Furthermore, o(s) is a nonlocal weight
function that is non-negative and decreasing for increasing values
of s. The meaning of Eq. (9) is that the nonlocal stress at point x
is the weighted average of the local stress of all points in the neigh-
bourhood of x, the size of which is set via the definition of o.

Eringen also formulated a theory of nonlocal elasticity where
the integrals are replaced by gradients (Eringen, 1983). The math-
ematical manipulations and the approximation error in going from
integral-type nonlocality to gradient-type nonlocality depend on
the choice of the weight function o, but the final result is given
as a partial differential equation as

T — Zzaij,kk = 0} = Cyjallx, (10)
where / is a length scale parameter, the magnitude of which follows

from the definition of the nonlocal weight function o.

2.2.2. Aifantis’ 1992 theory

In the early 1990s, motivated by earlier work in plasticity
(Aifantis, 1984, 1987) and nonlinear elasticity (Triantafyllidis and
Aifantis, 1986), Aifantis and coworkers suggested to extend the lin-
ear elastic constitutive relations with the Laplacian of the strain as
(Aifantis, 1992; Altan and Aifantis, 1992; Ru and Aifantis, 1993)

35 = Cia (€ — £*€ximm) (11)

where / is again a length scale parameter. The associated equilib-
rium equations are

Cijka (Uiejt — CUiejimm) + bi = 0 (12)

For isotropic linear elasticity, Cyjx = Adij i + 1oidji + 1dudjk, and it is
then easily verified that Eq. (12) is a special case of Eq. (7), namely
with ¢, = 3 = ¢. It is also possible to derive Eq. (12) directly from Eq.
(7) by requiring additional symmetries in the elastic energy of Eq.
(4) as has been argued by Lazar and Maugin (2005).

In a follow-up work, Ru and Aifantis (1993) developed an oper-
ator split by which the fourth-order equilibrium Eq. (12) can be
solved as an uncoupled sequence of two sets of second-order equa-
tions, that is

C,‘jkluiﬂ +b;=0 (13)

followed by

4 2,8
up — 14 uk,mm

=uj (14)
where two separate displacement fields are distinguished. Firstly, uf
obey the equations of classical elasticity (13) and therefore carry a
superscript c. Secondly, uf are the same as u; in Eq. (12) but are ap-
pended a superscript g to emphasize that they are affected by the
gradient activity as per Eq. (14). This operator split has also been
used by Lurie et al. (2003).

When Eq. (14) is substituted into Eq. (13), the original Eq. (12)
are retrieved, and with appropriate boundary conditions the solu-
tion of Egs. (13) and (14) is the same as the solution of the original
Eq. (12). However, the appeal of Egs. (13) and (14) is their uncou-
pled format, which allows to solve uf first from Eq. (13), after which
u# can be solved from Eq. (14). Such an approach greatly facilitates
analytical and numerical solution strategies and is not possible
with Mindlin’s general gradient elasticity as given in Eq. (7).

Remark 1. Infinitely many simplifications of the general Mindlin
gradient elasticity theory are possible by taking various ratios ¢,/¢s.
However, only the case ¢, = /3 allows to replace Eq. (12) by Egs.
(13) and (14). Although the Aifantis theory is sometimes referred
to as merely a simplification of the Mindlin theory, this particular
simplification opens up a whole new field of solution methods that
are not available for the Mindlin theory (or indeed other simpli-
fications of the Mindlin theory, that is by taking ¢,/¢3 # 1). In fact,
many authors who set out to use the general Mindlin theory make
the appealing particularisation towards the Aifantis theory, see for
instance (Amanatidou and Aravas, 2002; Polyzos et al., 2003;
Tsepoura et al., 2003; Papargyri-Beskou et al., 2009), although this
is not always acknowledged as such (Georgiadis, 2003; Karlis et al.,
2007; Georgiadis and Anagnostou, 2008).

Remark 2. Aifantis also suggested another Laplacian-based theory
of gradient elasticity, whereby the gradient effects only affect the
volumetric strain, not the total strain (Aifantis, 1995). As a result
of this restricted gradient dependence the Ru-Aifantis operator-
split cannot be applied to this particular format, and we will not
consider this particular variant of gradient elasticity further.

In the original Ru-Aifantis approach the gradient-enrichment is
expressed in terms of displacements, as given in Eq. (14). By differ-
entiation, it is also possible to evaluate the gradient-enrichment in
terms of strains (Gutkin and Aifantis, 1997, 1999; Askes et al.,
2008b), that is

1

2

&g — L& = € = 5 (”i.l + ”f,k) (15)
or, after pre-multiplication with the constitutive tensor Cyy, as
Cita (5 — 6y m ) = Cotalt (16)

whereby & =1 (ui, + uﬁk>. The use of either Eq. (14), Eq. (15) or Eq.

(16)in conjunction with Eq. (13) does not impact on the general solu-
tion of the field equations, but the variationally consistent boundary
conditions are different in the various cases, see Section 5.3 and
(Askes et al., 2008b) for more details. It was also shown that the
use of Eq. (14) does not necessarily remove the singularities from
all strain components at the tips of sharp cracks, whereas all singu-
larities were removed when using Eqs. (15) or (16), as demonstrated
by Askes et al. (2008b) and Askes and Gitman (2009), respectively.

2.2.3. Comparison of the Eringen theory and the Aifantis theory
The left-hand-side of Eq. (16) can of course also be interpreted
in terms of stresses as (Gutkin, 2000; Askes et al., 2008b)

¥ — 2o% = Cil, (10

ij,mm
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The fact that Egs. (10) and (17) describe the same gradient depen-
dence raises the obvious question: to which extent does the
stress-based operator split Aifantis theory coincide with the earlier
Eringen theory?

The answer to this question lies in the format of the balance of
momentum equations (Askes and Gitman, 2010). In Eringen’s the-
ory, equilibrium is expressed in terms of the divergence of O';gj,
whereas in Aifantis’ theory the divergence of a¢ is used, i.e.

y

0%, +bi=0 (Eringen) (18)
versus
05, +b; =0 (Aifantis) (19)

In the Aifantis theory, 6§ can be obtained directly from the deriva-
tive of the displacements uf, therefore Eq. (19) can also be written
as a set of n*® equations with n*? displacement unknowns uf, where
n*d is the number of spatial dimensions. As mentioned above, these
displacements u{ can then be used as input for Eq. (17), and the re-
sult is an uncoupled set of equations, namely Eq. (13) followed by
Eq. (17). In contrast, in the Eringen theory the relation between
the equilibrated stress tensor, which is aﬁ and the displacements
is a differential equation as given in Eq. (10). As a result, Egs. (10)
and (18) are coupled and must thus be solved simultaneously.

The implications for numerical implementations are significant,
as will be discussed in Section 5. However, a unification of the two
theories is also possible and will be addressed in Section 2.4.2.

2.3. Laplacian-based theories for dynamics

We will now focus our attention on Laplacian-based gradient
elasticity theories for dynamics. The main motivation for using gra-
dient elasticity in dynamics has been the description of dispersive
wave propagation through heterogeneous media, rather than the
removal of stress and/or strain singularities. Many researchers
have derived gradient elasticity models from associated lattice
models consisting of discrete masses and springs. The resulting
models are often of the format of Eq. (11), although the sign of
the higher-order term tends to be positive, not negative as in Eq.
(11). Whereas the strain gradients with negative sign are stable,
strain gradients with positive sign are destabilising, which has
been demonstrated on various occasions, e.g. (Askes et al., 2002;
Metrikine and Askes, 2002). The sign of the gradient term and
the issues of uniquenss and stability versus the ability to describe
dispersive wave propagation have led to a lot of discussion, see for
instance the early study of Mindlin and Tiersten (1962) and more
recently Yang and Guo (2005) or Maranganti and Sharma (2007)
where this dilemma was called the “sign paradox”. Comparative
studies between the models with positive and negative sign were
presented by Unger and Aifantis (2000a,b) and Askes et al. (2002).

However, with a few mathematical manipulations it is fairly
straightforward to translate the unstable strain gradients into sta-
ble gradients of stress or acceleration. Such modifications of unsta-
ble gradients are the key to unifying gradient elasticity
formulations for statics and dynamics (Askes and Aifantis, 2006).

2.3.1. Lattice dynamics and unstable strain gradients

In many studies, gradient elasticity theories have been derived
from the continualisation of the response of a discrete lattice, see
for instance an early work of Mindlin (1968) or more recently
Chang and Gao (1995), Rubin et al. (1995), Miihlhaus and Oka
(1996). To illustrate this approach, we will consider the one-
dimensional chain of particles and springs depicted in Fig. 1. All
particles have mass M and all springs have spring stiffness K; fur-
thermore, the particle spacing is denoted with d. The equation of
motion of the central particle n is written as

Fig. 1. One-dimensional discrete model consisting of particles and springs.

K(upi1 — 2Uy + Uy 1) = Mily (20)

Continualisation is performed by translating the response of the
discrete model into a continuous displacement field u(x,t). For the
central particle this implies u,(t) = u(x,t) and for the neighbouring
particles u,.; = u(x * d,t). Taylor series are applied to the latter, that
is

u(x +d,t) = u(x,t) + du(x, t), +%d2u(x, B £ (21)
by which Eq. (20) can be rewritten as

1 , o
E<u.xx + ﬁd U jox + - > = pil (22)

where the mass density p = M/Ad, the Young’s modulus E = Kd/A and
A is the cross-sectional area. When terms of order d* and higher are
ignored, the constitutive equation that can be retrieved from Eq.
(22) reads

o= E(s +o5d g) (23)

As can be verified, the main difference between Egs. (23) and (11)
concerns the sign of the strain gradient terms. The strain gradients
in Eq. (11) are equivalent to those derived from the positive-definite
deformation energy density of Eq. (4), and therefore the strain gra-
dients in Eq. (11) are stable. By implication, the opposite sign of the
strain gradient term in Eq. (23) makes this term destabilising. Insta-
bilities manifest themselves in dynamics by an unbounded growth
of the response in time without external work. Instabilities are also
related to loss of uniqueness in static boundary value problems -
see Askes et al. (2002) for a discussion and examples of instabilities
in statics and dynamics.

Multi-dimensional extensions of Eq. (23) have been derived on
many occasions. The exact format of the stress-strain relations de-
pends on the types of particle interactions that are taken into ac-
count, but a general representation of such models can be
written as (Chang and Gao, 1995; Miihlhaus and Oka, 1996; Suiker
and de Borst, 2001; Askes and Metrikine, 2005; Vasiliev et al.,
2010)

0 = Cij (& + €€t mm) =

where the length scale parameter ¢ is usually a closed-form alge-
braic expression in terms of the particle spacing d. The positive sign
that precedes the higher-order strain gradients in Eq. (24) again
indicates that such terms are destabilising.

2.3.2. Stable stress gradients or stable acceleration gradients

Many researchers have realised the instability of the strain gra-
dients given in Egs. (23) and (24) and suggested modifications that
avoid instabilities, e.g. Collins (1981), Rubin et al. (1995), Chen and
Fish (2001), Andrianov et al. (2003), Andrianov and Awrejcewicz
(2008), Pichugin et al. (2008), Andrianov et al. (2010b). One of
the used techniques consists of taking the Laplacian of Eq. (24),
multiplying with ¢2 and substracting the result from the original
Eq. (24), by which

0y — 20y = Cyjuén (25)

where terms of order ¢4 have been ignored. Clearly, Eq. (25) is
equivalent to Eq. (10). The energy functional underlying Eq. (25)
is positive definite in terms of stresses and stress gradients, see
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e.g. (Askes and Gutiérrez, 2006), hence the unstable strain gradients
of Eq. (24) have been replaced by stable stress gradients.
The equations of motion based on Eq. (24) read

Cijta (Uiejt + CUjimm) + bi = pil; (26)

The technique described in going from Eq. (24) to Eq. (25) can also
be applied to Eq. (26), leading to

Cithicji + bi = p (il — 02Ul m ) (27)

where the unstable strain gradients have now been replaced by
acceleration gradients. Comparison of Eq. (27) with Egs. (5) and
(6) shows that the acceleration gradients of Eq. (27) are associated
with a positive definite kinetic energy density and, therefore, they
are stable.

Remark 3. Although at first sight the derivations of Egs. (10) and
(25) seem to be based on different arguments, one can derive Eq.
(24) via a Taylor series expansion from Eq. (9), as has been
demonstrated by Huerta and Pijaudier-Cabot (1994), Peerlings
et al. (1996b).

Remark 4. Eq. (27) can also be derived from Eq. (25) by taking the
Laplacian of the generic equations of motion ay; + b; = pii;, multi-
plying with ¢? and substituting Eq. (25). Thus, Eqs. (25) and (27)
are closely related. In infinite continua they produce the same dis-
persive behaviour of propagating waves, although the boundary
conditions take different formats in the two models.

2.4. Dynamic consistency

The main motivation to use gradient elasticity in statics was to
avoid singularities in the elastic fields, as explained in Section 2.2 -
this can be achieved with stress gradients or with stable strain gra-
dients. The main motivation for gradient elasticity in dynamics
was to describe dispersive wave propagation, which can be done
with unstable strain gradients, stress gradients or acceleration gra-
dients, cf. Section 2.3. It is of interest to see which gradients, or
which combinations of gradients, produce a theory that is applica-
ble to statics as well as dynamics.

2.4.1. Stable strain gradients and stable acceleration gradients

Obviously, combining stable and unstable strain gradients is not
fruitful, since one of the two strain gradients will dominate and the
effect of the other strain gradient will be lost; moreover, the dom-
inant strain gradients could be destabilising. Stress gradients are
capable of removing singularities and of capturing wave disper-
sion. Furthermore, stress gradients such as those in Eq. (25) are sta-
ble. Another powerful gradient elasticity theory is obtained by
combining stable strain gradients with acceleration gradients. Such
a theory was already suggested by Mindlin, cf. Eq. (7), see also
(Georgiadis et al.,, 2000). More recently, a theory with (stable)
strain gradients and acceleration gradients was derived from a dis-
crete lattice, and the simultaneous appearance of the two types of
gradients was denoted dynamic consistency (Metrikine and Askes,
2002; Askes and Metrikine, 2002; Metrikine and Askes, 2006). Such
a model was also derived from various micromechanical consider-
ations by Engelbrecht et al. (2005) and Gitman et al. (2005). A re-
cent overview of applications in continuum mechanics and
structural mechanics can be found in Papargyri-Beskou et al.
(2009).

A dynamically consistent model incorporates more than one
length scale. The simplest version is to take ¢, =¢5 in Eq. (7), by
which

Cikt (Ukji — L Ukjinm) + bi = p (il — €31l m ) (28)

where /s is the relevant length scale for statics and ¢, is the length
scale that is added for use in dynamics. The two length scales can
be related to the size of the Representative Volume Element in stat-
ics and dynamics (Gitman et al., 2005; Bennett et al., 2007).

Remark 5. The causality of this model, and other gradient
elasticity models, has been studied by Metrikine (2006) and Askes
et al. (2008a), whereby causality is understood in the sense of
Einstein: in a causal model a signal should not be able to propagate
faster than the speed of light. To ensure causality, it was shown
that another term, proportional to a fourth-order time derivative,
must be included in the formulation. However, for simplicity we
will not follow that particular recommendation in the present
study.

2.4.2. Unification of the theories of Eringen and Aifantis

In Section 2.2.3 we discussed the gradient elasticity theories
of Eringen and Aifantis, and their differences, from a statics point
of view. However, a dynamics point of view provides further in-
sight and can in fact be used to unify the two theories (Askes
and Gitman, 2010). To illustrate this, we start with revisiting
the concept of implicit constitutive equations, applied to gradient
elasticity. Implicit constitutive relations seem to have been pio-
neered by Morgan (1966) and have more recently been expanded
by Rajagopal (2003, 2007). For the specific case of Laplacian-
based gradient elasticity, a generic implicit constitutive equation
can be written as

o o
(1 - & ﬂ) oij = Ciu (1 - & ﬂ) & (29)

where g; and g, are two generic constitutive constants that can be
expressed in terms of (the square of) the length scale parameter /.
Eq. (29) must, as always, be accompanied by balance of momentum
and strain-displacement relations.

Firstly, we consider the static case. Expressing the equilibrium
equations as g;;; + b; = 0, it can be easily verified that Eringen’s the-
ory is obtained by setting g, = 0 and Aifantis’ 1992 theory by taking
g1 =0. The subsequent operator split formulations of Egs. (14) and
(15) can also be obtained via oy;; + b; = 0 and g; = 0. Conversely, the
stress-based formulation of Eq. (16) is obtained by setting g, =0
but by expressing the equilibrium equations in terms of G i in-
stead of oy, as already commented upon in Section 2.2.3. Whereas
Eq. (15) removes singularities from the strain field and Eq. (16) re-
moves singularities from the stress field, the most general version
of Eq. (29), that is taking g; # 0 and g, # 0, has recently been dis-
cussed by Aifantis (2003) and shown to be able to eliminate singu-
larities from stress and strain fields.

For the dynamic case, we start with the usual equations of mo-
tion oyj; + b; = pii;. In order to substitute the implicit constitutive
relation (29), one can take the Laplacian of the equations of motion,
multiply these with g;, and substract the result from the original
equations of motion. The result is

o . .
(1 -8 6x§1> 0ijj + b = p(ili — &1 ilimm) (30)

where it is assumed that the second derivatives of the body forces
vanish. Substitution of Eq. (29) then yields

g . )
Cija <] -8 8?) &uj+bi = P(Ui - & ui‘mm) (31)
m

which is identical to the dynamically consistent gradient elasticity
given in Eq. (28) for g, = 2 and g, = ¢2. Hence, in terms of equations
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of motion, the dynamically consistent gradient elasticity model,
which is a particular case of the Mindlin model, unifies the gradient
elasticity theories of Eringen and Aifantis, whereby the acceleration
gradients play the role of the gradients due to Eringen and the strain
gradients are the same as those in the Aifantis theory.

In terms of constitutive relations, the implicit constitutive equa-
tion given in expression (29) provides a similar unification, as ar-
gued above, although this would then raise the obvious question
how such an implicit constitutive equation for gradient elasticity
could be motivated. As a partial answer to this question, the argu-
ments of scale invariance in gradient elasticity outlined by Aifantis
(2009b) could be exploited. The macroscopic stress tensor ¢;; and
strain tensor ¢; can be related to their atomic scalar counterparts
s and e via (Aifantis, 2009b)

0jj = (as65 + bsMy)s and &; = (a:6; + b.Mj)e (32)

where the various a and b are upscaling constants. Furthermore,
Mj; = 1 (min; + mjn;) where m; and n; denote the orthonormal vec-
tors that set the directions of the atomic lattice. The format of the
(scalar) atomic stress—strain relation between s and e sets the for-
mat of the (tensorial) macroscopic stress-strain relation between
oj and g, as explained in Aifantis (2009b). Thus, using the classical
relation s = Ke on the atomic scale with K a constant, we obtain the
classical relation oj = Gjuew on the macroscale. However, if the
atomic scale stress—strain relation takes the implicit gradient for-
mat of s — g5k = K(e — g2e 1), then the macroscale stress-relation
adopts the format given in Eq. (29). Thus, a tensorial macroscale im-
plicit constitutive equation can be derived from a scalar atomic
scale implicit constitutive equation. Whilst this does not provide a
complete motivation for implicit constitutive equations, it should
nevertheless be simpler to derive these in a scalar format than in
a tensorial format. This is, however, left for future research.

2.5. Dispersion analysis

To assess the differences between the various formats of gradi-
ent elasticity discussed in the previous sections, and to assess their
relevance for dynamic applications, the dispersive properties are
studied next. For simplicity and transparency of argument, the
one-dimensional case is investigated first, and some comments
about the multi-dimensional case are made afterwards. Of the dif-
ferent models presented in Section 2.3 only two need to be distin-
guished, namely those of Eqgs. (28) and (25) - the models of Egs.
(24) and (27) can be retrieved through a suitable parameter choice
from the model of Eq. (28).

For completeness, we will also include the results of the Aifantis
model given in Eq. (11), although this theory was proposed for use
in statics rather than dynamics.

2.5.1. One-dimensional case

A general harmonic solution u(x,t) = ttexp(i(kx — wt)) is as-
sumed, where i is the amplitude, i is the imaginary unit, k is the
wave number and o is the angular frequency. Substituting this
solution into the one-dimensional version of Eq. (28) yields

2 21,2
czo_ _ 1 +£;k2 (33)
kicz  1+e5k
where ¢, = \/E/p is the elastic bar velocity and E the Young’s mod-
ulus. The models of Eqs. (11) and (27) are found by taking ¢4 = 0 and
45 =0, respectively. Furthermore, the model of Eq. (24) is found by
taking ¢, =0 and by replacing ¢ with —¢2.

For the model of Eq. (25), simultaneous solutions for the
displacement u(x,t) = tiexp(i(kx — wt)) and the stress o(x,t) =
6 exp(i(kx — wt)) are considered, where ¢ is the amplitude for

the stress solution. With these substitutions, the equation of mo-
tion pii = g, gives

—pw*i = ikG (34)
and Eq. (25) itself yields

(1+ k%) = iEkil (35)
Elimination of @i and & then results in
w? 1

K2 142K (36)
Note that the latter result is also obtained with the model of Eq.
(27), cf. Eq. (33) with ¢ = 0. Thus, for the description of one-dimen-
sional wave dispersion the model with stress gradients and the
model with acceleration gradients are equivalent.

In Fig. 2 the phase velocity ¢ = w/k (normalised with c.) is plot-
ted against the wave number k (normalised with ¢) for the various
models. For the dynamically consistent model with strain gradi-
ents as well as acceleration gradients we have taken ¢3/¢2 = 2. It
can be seen that the model with stable strain gradients leads to
phase velocities that are larger than the elastic bar velocity c,
and they grow unbounded for the larger wave numbers, which is
physically unrealistic. The model with unstable strain gradients
exhibits a range of realistic phase velocities for wave numbers
k < 1/¢. However, for wave numbers k > 1/¢ the phase velocity is
imaginary. This implies that the response can grow unbounded
without applying external work to the system, which is an indica-
tion of instability. The model with stress gradients and the model
with acceleration gradients are denoted with a single curve in
Fig. 2 (as explained above), and they show phase velocities that
are bounded for all wave numbers, while they tend to zero for
increasing wave numbers. The model that includes both strain gra-
dients and acceleration gradients behaves qualitatively the same,
except that a non-zero horizontal asymptote is approached for
the larger wave numbers.

2.5.2. Two-dimensional case

The simplest format of the Mindlin model, given in Eq. (7), has
three length scales, two of which are related to strain gradients
whilst the third is related to acceleration gradients. In the dynam-

1.8f . 8

141 - .

12} : stable strain gradients ]
) ) — unstable strain gradients
— — stress gradients or inertia gradients

- - strain gradients and inertia gradients 1

dimensionless phase velocity c/ce

1.5 2 25 3

dimensionless wave number ki

Fig. 2. Normalised phase velocity c/c. versus normalised wave number ¢k for
theories with stable strain gradients (dotted), unstable strain gradients (solid),
stress gradients or inertia gradients (dashed) and strain gradients together with
inertia gradients using o = 2 (dash-dotted).
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ically consistent model of Eq. (28) only two length scales are pres-
ent: one related to strain gradients and one related to acceleration
gradients. To assess the difference between Eqgs. (7) and (28), two-
dimensional wave propagation is studied. The two displacement
components uy and u,, are written in terms of a dilatational poten-
tial @ and a distortional potential ¥ as

Uy=0x+¥, and u, =0, ¥, (37)

With these substitutions, Eq. (7) can be written as

K
ox
0
y

+

{(i + 1)(Pii = GPiij) + 1P — D i) — P(‘p - f?‘i".n‘) }

{ura—aww) —p(v-ava)} =[] o8

K3
ay
_ 0

23

by which it follows that the two expressions in brackets must each
be zero.

We substitute general harmonic waves via @ = ®exp
(i(kex + kyy — ot)) for the dilatational potential and ¥ = P exp
(i(kex + kyy — wt)) for the distortional potential, whereby @ and
¥ are amplitudes whilst k, and k, are the wave numbers in the
x and y direction. For compressive waves it is found that

Y 21,2 21,2
e 1 +Z+*2P,“£2k +Z+"2ME3I< 39)

a 1+ 2K

and for shear waves we have

2 1+ 62K
AT 40
s 1

where ¢, = /(24 2u)/p and ¢; = \/pu/p are the phase velocities of
compressive waves and shear waves in classical elasticity; further-

more, k = ,/kﬁ + k;. Thus, for the general case that ¢, # ¢35 the dis-

persion curve of compression waves differs from that of shear
waves. However, if we take ¢, = ¢3, it can be verified that the disper-
sion curves of compression waves and shear waves are the same.

3. Review of recent studies with unstable strain gradients

Gradient elasticity with unstable strain gradients is a popular
tool for the description of dispersive waves, since many studies
have related the unstable strain gradients to the underlying
microstructure in an intuitively appealing and transparent man-
ner as illustrated in Section 2.3.1. However, the use of unstable
strain gradients may lead to anomalous conclusions. In this Sec-
tion, we will discuss two recent studies that employ unstable
strain gradients.

3.1. Discussion of the work of Maranganti and Sharma (2007)

Maranganti and Sharma (2007) have performed a comprehen-
sive quantification of the constitutive parameters of gradient elas-
ticity. They employed a molecular dynamics framework and fitted
the gradient elasticity parameters from the numerical atomistic
simulations for an impressive range of materials, including metals
and polymers. As the starting point of their investigations, they
postulated an energy density functional. The energy densities used
for their version of gradient elasticity can be retrieved from Eq. (3)
in Maranganti and Sharma (2007) as

for the kinetic energy density 7, and

1 1 2
U= 5 Cijtattijtye s + Dijigm Ui jUic jm + Flgjk)lmnui‘jkul.mn + F,gjk)lmnuijuk.lmn

(42)

for the strain energy density ¢/, where the tensors D, ) and F?
contain the higher-order contributions. Note that all higher-order
terms appear in the strain energy - the kinetic energy retains its
classical format, and consequently acceleration gradients are absent
in this formulation.

Considering the *“sign” paradox discussed in Section 2.3,
Maranganti and Sharma (2007, p. 1840) attribute the dilemma
partly to the “extreme simplicity of the strain-gradient models that
are typically used”, and they further suggest that the particular for-
mat of gradient elasticity they used avoids the stability constraints.
The one-dimensional strain energy density following from Eq. (3)
in Maranganti and Sharma (2007) reads

U= %Eu,xu,x + F(])u.xxu.xx + F(z)u‘xu‘xxx (43)

where we have left out contributions in terms of u 4u yx. According to
Maranganti and Sharma (2007, p. 1840), KV is required to be posi-
tive whereas “there is no such restriction on the tensor F?”. How-
ever, in our opinion it is necessary to constrain F?) (taken as a scalar
in the one-dimensional case), based on the following arguments.

3.1.1. Non-uniqueness of the higher-order contributions to the strain
energy density

In contrast to the classical terms in the strain energy density,
the higher-order contributions are non-unique. This has been
noted by Maranganti and Sharma in the discussion of their Eq.
(6¢) and has also been addressed by Polizzotto (2003), Askes and
Metrikine (2005) and Metrikine and Prokhorova (2010). In partic-
ular, contributions in terms of I can be replaced by contributions
in terms of F?), and vice versa, which follows straightforwardly
from integration by parts on a domain 0 < x < L:

L L
/ Ul X = — / Ul e GX 4 [U L] (44)
0 0

Thus, the volumetric contributions of V) and F? to the strain en-
ergy can be exchanged, while the only difference concerns a contri-
bution to the boundary conditions. In the light of this non-
uniqueness of the strain energy density and to guarantee stability
of the resulting model, it is necessary to require that FV) — F2) > 0,

Fig. 3. Mode IIl fracture problem - geometry and boundary conditions for
numerical simulations.
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3.1.2. Instability of resulting governing equations
Using Eq. (43), the one-dimensional equation of motion is ob-
tained as

.. 1
pu = Eu.xx - j (F(U - F(ZJ)u‘xxxx (45)

If no stability constraints are imposed on F?), it would be possible
that F?>FY, Defining an internal length scale ¢ via ¢ =

1 (Fa) - F“))/E, such a model would be unstable for wave numbers

k> 1/¢ in dynamics, as is shown in Section 2.5.1. Moreover, the re-
sponse of a static boundary value problem would be non-unique
for integer values of the ratio L/27t¢, see for instance (Askes et al.,
2002). In fact, Fig. 3 in Maranganti and Sharma (2007) exhibits
the instability in dynamics: the dispersion curve (in terms of angu-
lar frequency rather than phase velocity) is first increasing, then
decreasing and eventually crosses the horizontal axis. As mentioned
in Section 2.5.1, for wave numbers k > 1/¢ the angular frequency is
imaginary, thus leading to an unbounded increase of the response
in time.

Consequently, models according to Eq. (43) with F? > K1) are
unstable. Furthermore, this cannot be mitigated by shifting contri-
butions between F') and F? in Eq. (43). Maranganti and Sharma
report their fitted constants of gradient elasticity in terms of a
symmetrised tensor fimn = Fijj, — Fijm- All tables in Maranganti
and Sharma (2007) report positive values for fi11111, from which it
follows that the gradient elasticity constants fitted by Maranganti
and Sharma result in unstable models.

One could argue that these high wave numbers which would
trigger instabilities are well beyond the first Brillouin zone and,
thus, beyond the validity range of the model. Indeed, Maranganti
and Sharma (2007, p. 1836) explicitly indicate that they fitted
the constitutive constants of gradient elasticity for very small wave
numbers only. However, in numerical simulations all wave num-
bers may be present in the signal, and a continuum model should
in our opinion be stable for all wave numbers, be they inside or
outside the Brillouin zone.

Remark 6. The non-uniqueness of the strain energy density of
gradient elastic media has been discussed by Metrikine and
Prokhorova (2010). Based on symmetry of stresses and relations
between standard stresses and higher-order stresses, they con-
clude that the energy density of a gradient elastic material should
not contain products of first-order and third-order displacement
derivatives; instead, such contributions should be recast as prod-
ucts of second-order and second-order displacement derivatives.
This would resolve the dilemma between K'’ and F?, as all higher-
order contributions should then appear in K'), not F?,

Remark 7. Despite the criticism expressed above, we do believe
that the results of Maranganti and Sharma are extremely useful.
One could simplistically say that they used dispersion to obtain
length scales, instead of using length scales to obtain dispersion.
Thus, the particular format of gradient elasticity is perhaps of les-
ser importance, and the calculated values of the internal length
scales can be straightforwardly used in other formats of gradient
elasticity. For instance, unstable strain gradients can be simply
translated into stable inertia gradients with Eq. (27) or into stable
stress gradients with Eq. (25).

Remark 8. In a more recent paper, Jakata and Every (2008) fit the
constitutive parameters of gradient elasticity by means of experi-
mental data. They use the same gradient elasticity formulation as
Maranganti and Sharma, i.e. the one with unstable strain gradients,
although they performed their fitting procedure over a larger range

of wave numbers. Significantly, they report positive values for
fi11111 (which has the same meaning in their work as in the work
of Maranganti and Sharma). Thus, our comments on the work of
Maranganti and Sharma also apply to the work of Jakata and Every.
However, we wish to express our appreciation of the formidable
work carried out and, as above, suggest that the results be used
in equivalent gradient elasticity theories with stable inertia gradi-
ents or stable stress gradients.

3.2. Discussion of the work of Wang, Guo and Hu (2008)

In order to describe wave dispersion in carbon nano-tubes
(CNTs), Wang et al. (2008) formulated a gradient-enriched Timo-
shenko beam theory and a gradient-enriched shell theory. In both
cases, gradient elasticity with unstable strain gradients was used,
in particular Eq. (23). One of the main conclusions of Wang and
coworkers is that a cut-off wave number exists beyond which
the group velocity (that is, the propagation speed of the energy)
is imaginary. Moreover, the cut-off frequency for the group veloc-
ity as reported by Wang and coworkers is different from the cut-off
frequency for the angular frequency. This is an unusual observa-
tion, since the group velocity is the derivative of the angular fre-
quency with respect to the wave number, and one would
normally expect that the angular frequency and the group velocity
are imaginary for the same range of wave numbers.

Below, we will show that the appearance of a cut-off frequency
is due to the use of unstable strain gradients. This will be demon-
strated for Euler-Bernoulli beam theory and illustrated for Timo-
shenko beam theory, both of which are enriched with combined
strain/acceleration gradients. We will also show that for the case
of unstable strain gradients the cut-off frequencies for angular fre-
quency and group velocity coincide. Here, we will not carry out a
detailed comparison between the two beam theories and the var-
ious gradient formulations - this has been done elsewhere (Askes
and Aifantis, 2009). The main conclusions were, firstly, that the
dynamically consistent model is the most suitable to describe flex-
ural wave dispersion in CNTs; secondly, using dynamically consis-
tent gradient elasticity allows for excellent fits with molecular
dynamics simulations, irrespective of whether Euler-Bernoulli
beam theory or Timoshenko beam theory is used.

3.2.1. Euler-Bernoulli beam theory
In Euler-Bernoulli beam theory, the transverse equation of mo-
tion without distributed forces is written as

PAily = M (46)

where A is the cross-sectional area and M is the bending moment.
The longitudinal direction of the beam is denoted with x whereas
y denotes the transversal direction. Using combined strain/acceler-
ation gradients, the longitudinal normal stress can be written as

0 =E(e—Cew) + plie (47)

The bending moment can then be expressed as
M= / oydA = El(k — 2Kk ) + plic (48)
A

where I = [, y?dA is the second moment of area, K = —uy, is the
curvature, and ¢ = ky. The transverse equation of motion is found as

pAlly = —EI (uy xox — Zf Uy xoooxe) — plﬁﬁﬂy,xm (49)

A general harmonic solution u, = i1, exp(i(kx — wt)) is substituted,
so that Eq. (49) leads to

(1+ 2k

=R )

(50)
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where again ¢, = /E/p and R = ,/I/A is the gyration radius. The
group velocity ¢, is defined as ¢, = dw/dk, which after some algebra
can be written in normalised format as

21,2 2 )2 ;21,6
e _ pi 2+ 30k + R gk - (51)
Ce (1+ 2K (1 +R2e§k“)

The model with unstable strain gradients, as used by Wang and
coworkers, is found by taking ¢, =0 and replacing ¢ by —¢. It can
be seen from Egs. (50) and (51) that both the angular frequency
and the group velocity become imaginary (and, therefore, destabil-
ising) for k > 1/¢. Conversely, taking /; > 0 and ¢4 > O prohibits imag-
inary values for w and cg.

3.2.2. Timoshenko beam theory
For the Timoshenko beam theory we use Eq. (47) and a similar
expression for the shear stress 7, that is

T=G(y - ) + P (52)

where G is the shear modulus and y is the shear strain. The rotation
of the cross section ¢ is given by ¢ =u,x — 7. Using €= —¢,y, the
bending moment is expressed in terms of ¢ as

M= 7EI(¢.X - [gd’xxx) - ,Olfﬁt/ﬁx (53)
For the shear force Q we have
Q = GAB(tyx — ¢ — ity + ) + PABEE (il — ) (54)

where B is the Timoshenko shape factor of the cross section, which
for thin-walled circular cross section equals g = 1. The equation of
transverse motion is thus written as

pAily = Q = GAB (uyxx —x— 4? U yxxxx + é? ¢,xxx) + PAMﬁ (nyx - ¢x>
(55)
and the equation of rotational motion reads
Pl = Q — My = GAB(Uyx — § — Py + Pob ) + PABL (uy - '45)
HEN(ax — £ o) + PILG (56)

We substitute u, = fi,exp(i(kx — wt)) as well as ¢ = ¢pexp
(i(kx — t)). The two equations of motion (55) and (56) accordingly
lead to

[prA(l + BRIP) — GABK* (1 + egkz)]ay

- [GAﬁ(l +212) — ? pAﬁeg] ikeb (57)
and
[wz (pl + pABE + pl£§I<2> — GAB(1 + £2K*) — K*EI(1 + zf/?)] ikeb

- [GAk2 B+ £2) — w? pAﬁegkz} i,

(58)

For non-zero amplitudes 1, and é it is then found that
w? 2 2 A 2
—— |1+ 2k + K + = Ezk}
K'cs {( k)1 Plake) II<2ﬁd

2
- % [% 14 BRI+ %(1 + éﬁkz)} (1421
+%(1 + 2K =0 (59)

Resolving Eq. (59) for the angular frequency w leads to lengthy
closed-form expressions which hardly offer any insight; this holds
even more for the group velocity c, which is the derivative of w.

For this reason, they are not reproduced here. However, the special
case of unstable strain gradients (¢; = 0,¢> = —¢%) and thin-walled
cross section (B = 1) is elaborated further, and we will also assume
that Poisson’s ratio v =1 as suggested by Wang et al. (2008). With
these specifications an expression for the angular frequency is
found as

21,2 21,2 41,4
ek /—1_£2,<2.\/5+29R K’ & v/25 + 290R°K + 361R’k

42R*K?

(60)
where again the radius of gyration R = /I/A. The group velocity
associated with the lower angular frequency branch (and norma-
lised with c.) is given by

(1 ,gsz)(58R2k,M>
G _

V/25+290R2k? +361R*K*
Ce \/ 192R*(1 - 2k?) (5 +29R?*k* — /25 + 290R*K* +361R41<4)

2£2k<5 +29R%K* — /25 4 290R*I? +361R41<4)

\/ 192R*(1 - 2k?) (5 +29R%K* — /25 + 290R*K’ +361R4k“)
(61)

Although Eq. (60) and, in particular, Eq. (61) are lacking in transpar-
ency, an important observation is that the only parameter set that
leads to imaginary solutions is k > 1/¢; this holds for the angular fre-
quency as well as for the group velocity.

3.2.3. Critique

The observation of Wang and coworkers that is most relevant to
the context of this paper is the appearance of cut-off wave numbers
as such, which is undesirable as they are an indication of instabil-
ity. Although we argue that cut-off wave numbers can be avoided
by an appropriate choice of gradient enrichment, we also comment
on the coincidence (or otherwise) of the cut-off wave numbers for
the angular frequency and the group velocity.

The appearance of cut-off wave numbers is a central theme in
the study of Wang and coworkers, but it must be realised that this
is not an intrinsic property of all formats of gradient elasticity. In-
stead, cut-off wave numbers are the consequence of one particular
type of gradient enrichment, namely unstable strain gradients. The
use of stable strain gradients combined with acceleration gradients
avoids all cut-off wave numbers, which is clearly demonstrated for
the Euler-Bernoulli beam theory in Egs. (50) and (51). For the Tim-
oshenko beam theory, we have provided solutions for the angular
frequency in (Askes and Aifantis, 2009) which demonstrate that
cut-off frequencies do not occur if combined strain/inertia gradi-
ents are used.

The results presented by Wang and coworkers indicate that the
cut-off wave number of the angular frequency is significantly dif-
ferent from the cut-off wave number of the group velocity. This
is reported for unstable strain gradients used in shell theory and
in Timoshenko beam theory (Wang et al., 2008). However, this dif-
ference does not appear in our derivations; rather, the cut-off wave
number (beyond which instabilities are triggered) is the same for
the angular frequency and the group velocity. Given that the group
velocity is the derivative of the angular frequency, one would ex-
pect that they are imaginary for the same range of wave numbers.

Wang et al. (2008, p. 1437) suggest that the appearance of a cut-
off frequency in the group velocity offers an explanation why
molecular dynamics results are unavailable for wave numbers lar-
ger than this cut-off wave number. As we have mentioned above,
the appearance of a cut-off wave number is an artefact of the par-
ticular format of gradient elasticity equipped with unstable strain
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gradients. Since cut-off wave numbers are absent in most formats
of gradient elasticity, their association with inavailability of molec-
ular dynamics results should, in our opinion, be treated with
reservation.

4. Identification and quantification of length scale parameters

One of the main issues of gradient theories in general, and gra-
dient elasticity theories in particular, is the identification of the
length scale parameters. It is normally assumed that these length
scale parameters are some representation of the material’s micro-
structure, but a more quantitative approach is desired for the
application of gradient elasticity to practical problems. In this Sec-
tion, we will summarise various strands of research efforts aimed
at the identification and quantification of the gradient elasticity
constants. As it turns out, a recurrent trend is that the length scale
parameters are related to the heterogeneity of the material.

4.1. Relation with size of representative volume elements

An alternative approach to describe the response of heteroge-
neous materials is homogenising the response of a Representative
Volume Element (RVE). An RVE is usually defined at the microlevel
of observation as a cell large enough for the response to be statis-
tically homogeneous. For periodic microstructures the RVE is the
unit cell, whilst for randomly heterogeneous materials the RVE is
theoretically infinitely large but in practice taken as the smallest
size for which the response is statistically homogeneous within
user-defined error thresholds (Ostoja-Starzewski, 2002).

The size of the RVE, denoted as Lgyg, is obviously a parameter
with the unit of length, and a pertinent question is whether the
RVE size can be related to the length scale parameters of gradient
theories. Nested finite element solution procedures have been for-
mulated in which the constitutive response at the macroscopic le-
vel is determined by solving a boundary volume problem on an
RVE at the microscopic level. A recent addition has been to include
higher order gradients in this scale transition, resulting in so-called
second-order homogenisation schemes (Kouznetsova et al., 2002,
2004a). It has been demonstrated that such a scheme automati-
cally leads to a gradient theory in the spirit of Eq. (12) on the mac-
roscopic level in which the length scale parameter ¢ is found in
terms of the RVE size (Kouznetsova et al., 2004b; Gitman et al.,
2004). Both Gitman et al. (2004) and Kouznetsova et al. (2004b)
found that ¢ = 13, although the latter study assumes a homo-
geneous material for which the RVE size is theoretically zero. If
such an approach is extended to dynamics, the dynamically consis-
tent gradient elasticity theory of Eq. (28) is obtained whereby the
coefficients of strain gradients and acceleration gradients are re-
lated to the static RVE size and the dynamic RVE size, respectively
(Gitman et al., 2005, 2007a).

In this approach, the question “how large is the length scale?” is
in fact rephrased as “how large is the RVE size?” Many studies have
been devoted to the quantification of RVE sizes for randomly het-
erogeneous materials, and the general trends are that the RVE size
increases with increased contrast in material properties, see for in-
stance (Kanit et al., 2003; Gitman et al., 2006). In a related fashion,
statistically inhomogeneous elastic media have been considered
where Taylor series expansions for random fields result in gradient
elasticity models as given in Eq. (12) with the internal length scale
¢ depending on the correlation properties of the medium (Frantz-
iskonis and Aifantis, 2002; Aifantis, 2003).

Remark 9. An unresolved issue in this line of thinking is the
treatment of materials that exhibit strain-softening. On the one
hand, it has been shown on many occasions that the inclusion of

length scale parameters is essential to capture the physics of the
problem and to maintain well-posedness of its mathematical
description, see for instance (de Borst et al., 1995) and references
cited therein. On the other hand, it has also been demonstrated
that RVEs do not exist for softening materials, by which the
concept of RVE size (and its relation to the length scales of gradient
theories) becomes meaningless (Gitman et al., 2007b) and other
micro-macro relations must be explored (Gitman et al., 2008).

4.2. Closed-form solutions

Over the years, several procedures have been suggested to de-
rive the gradient elasticity constants from the constitutive proper-
ties of a composite material or an equivalent discrete model of
masses and springs. For composite materials, the gradient elastic-
ity length scale parameters are normally found to be increasing
with increasing contrast in material properties between the con-
stituents. In case the response of a discrete model is continualised,
the length scales of gradient elasticity are usually related to the
particle spacing of the discrete model (see also Section 2.3.1).

4.2.1. Strain gradients obtained through mixture theory

On a nanoscopic scale one may distinguish between atoms that
are placed in the interior of a grain and atoms that are located on
the grain boundary. Under certain kinematic and dynamic con-
straints, the elastic governing equations turn out to be of the gra-
dient type, and the material parameters can be related to the
parameters of the two phases (interior and boundary) as well as
their interaction forces (Altan and Aifantis, 1997; Aifantis, 2000).
The two phases are indicated with superscripts a and b and as-
sumed to behave elastically. The divergence of stress in each phase
is thus written as

;= (A + WOy + pouiy (62)

b b by b by b
Oi; = (A" + Wy + puy; (63)
where 1 and p indicate the Lamé constants for each phase. The
interaction between the two phases is assumed to be governed by
an internal body force proportional to an interaction stiffness K, that
is

ol = K(uf —u?) (64)

of; =K} —uf) (65)
From Eqs. (62) and (64) an expression for u” can be found; similarly,
u“ can be obtained by combining Egs. (63) and (65). Hence,

b b b
. P,
u=ub - < uby — fu?-ff (66)
L ue
ub =yl — < uy — ?u?ﬂ (67)

Next, the expression for u? is substituted back into Eqs. (62) and
(64); likewise, the expression for u® is substituted into Egs. (63)
and (65). These two results are added up, which yields

(A7 (0 20 4 YU+ (U o+ 0
2900 4 200ub + 270 e 4 3pc b I
K e ¢
where the average displacements u; =3 (u® +u?). Yet again, the
higher-order terms are found to be the Laplacian of the lower-order
terms. In fact, it can be verified that Eq. (68) is the static version of

the Mindlin model given in Eq. (7), whereby the two length scales ¢,
and /3 are given by

Ui jikk = 0 (68)
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pepb
K(pe+ pb)

(69)

and /(3 =

, A0 250 ub 4 27P pe 4 3pepd
=
K ()v“ + e+ 2+ ,ub>

For general constitutive parameters of the two phases it will hold
that ¢, # /(5. Aifantis’ theory with ¢, = /3 is retrieved for the special
case that

G MU 200+ ) (70)
W+ A+ 2w+ 201

where i=a and j = b or vice versa.

4.2.2. Continualisation of a periodic discrete lattice

In Section 2.3.1 the most straightforward continualisation
method has been discussed and it was shown that the resulting
higher-order strain gradients are destabilising. In recent years,
more sophisticated continualisation procedures have been sug-
gested that avoid the instabilities discussed in Section 2.3.1.

Ioannidou et al. (2001) suggested to continualise a discrete
medium where nearest neighbour interaction takes place with po-
sitive elastic spring stiffness and next-nearest neighbour interac-
tion is governed by negative elastic spring stiffnesses. With an
appropriate selection of parameters this results in a gradient elas-
ticity formulation with stable strain gradients. However, for com-
pleteness it must be mentioned that this concerns a model with
unstable strain gradients (related to positive spring stiffnesses) as
well as stable strain gradients (related to negative spring stiffness-
es) with the latter outweighting the former. This seems quite a
restrictive assumption and may not be generally representative
for many materials. It is also mentioned that with the dominance
of stable strain gradients over unstable strain gradients unbounded
phase velocities are found for the higher wave numbers, see
Section 2.5.1.

Vasiliev et al. (2010) distinguish multiple displacement fields
which are related hierarchically. In their continualisation ap-
proach, each displacement field is associated with a distinct range
of wave numbers, by which an improved correspondence with dis-
crete lattice models can be obtained.

Metrikine and Askes (2002, 2006) suggested an alternative con-
tinualisation method that relaxes the kinematic link between dis-
crete model and continuum model as described in Section 2.3.1.
In their approach, the continuum displacement is not linked one-
to-one with the discrete particle displacement at the same loca-
tion, but instead as the weighted average of the displacements of
multiple particles in a (limited) neighbourhood around the same
location. With the notation of Section 2.3.1 (and thus assuming
one spatial dimension - see (Metrikine and Askes, 2006) for the
two-dimensional version), this approach can be described by

AUy .1 (t) + un(t) + aUp_q (t)

ux6) = 1+ 2a

(71)

which defines the continuum displacement u(x,t) as the weighted
average of the three discrete particle displacements u,., u, and
u,_1, where a is a dimensionless weighting constant. After some
lengthy but straightforward derivations, a dynamically consistent
gradient elasticity model with strain gradients and acceleration gra-
dients is obtained (Metrikine and Askes, 2002), that is

10a-1 , _ .. 1 2.
E<u,xx - md u.xxxx) - P(U - 1 +2ad u.xx) (72)

The coefficients accompanying the higher-order gradients are thus
found in closed form in terms of the particle spacing d and the
weighting constant a. Nevertheless, the meaning of the weighting
constant is less clear than that of the particle spacing.

Remark 10. Eq. (72) can be seen as a unification of the theory with
unstable strain gradients and the theory with inertia gradients. For
a=0 Eq. (71) reduces to the standard continualisation assumption
of Section 2.3.1 and, consequently, Eq. (72) becomes identical to
Eq. (22). Conversely, taking a = {5 means that the strain gradients
disappear from Eq. (72) and the format of Eq. (27) is retrieved. The
method of alternative continualisation is related to asymptotic
equivalence of gradient series as explored by Pichugin et al. (2008).

4.2.3. Homogenisation of a laminate

Fish and co-workers studied dispersive wave propagation
through laminated composites and they applied homogenisation
with multiple length scales and time scales to arrive at a gradient
elasticity theory with unstable strain gradients, which were after-
wards rewritten as stable inertia gradients (Chen and Fish, 2001;
Fish et al., 2002b,a). Interestingly, the obtained internal length
scale ¢ was expressed in terms the constituents’ volume fractions
and material properties (and in particular the contrast in material
properties). This problem was also studied more recently by
Andrianov et al. (2008, 2010a), who obtained similar results.

Denoting the two constituents with superscripts a and b, a peri-
odic laminate with unit cell size d is taken. The volume fractions
are o and (1 — o) for phases a and b, respectively. The effective
mass density p and effective Young’'s modulus E were found as
Chen and Fish (2001)

, E°E
=op®+(1-0 and E=———— 73
p=ap’+(1-o)p 1 o)F 1 o (73)
The obtained gradient-enriched equation of motion reads
1 .
E<u‘xx +ﬁyd2umx> = pil (74)

where the dimensionless coefficient y captures the contrast in
acoustic impedance and is given by Chen and Fish (2001)

_ a.a b b 2
V(oc(l :x)(Ep Ep)) 75)

p((l — )+ och)

The instability of Eq. (74) was acknowledged and it was suggested
to translate the unstable strain gradients into stable inertia gradi-
ents (Chen and Fish, 2001), similar to the technique discussed in
Section 2.3.2.

The results of Fish and coworkers were used more recently to
quantify the higher-order coefficients of a one-dimensional version
of Eq. (28) (Bennett et al., 2007). A key assumption in this study
was to use the link between the static length scale /s and the static
RVE size as explained in Section 4.1 - for a periodic laminate the
static RVE size Ly, = d. After a bit of straightforward algebra, the
two length scale parameters ¢; and ¢; were obtained as Bennett
et al. (2007)

1
V12

that is, both length scales are expressed in terms of the microstruc-
tural constituents and geometry, without any free parameter. Fish
et al. (2002a) have also suggested multi-dimensional extensions
of Eq. (74) and its counterpart with stable inertia gradients.

y+1
12

L d and (3= d (76)

4.3. Quantification of length scales

So far, we have discussed how to relate the length scales of gra-
dient elasticity to other constitutive or geometrical properties of
the material, which could be termed “identification of length
scales”. However, there are also a number of studies devoted to
obtaining numerical values for the length scales, or in other words
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the “quantification of length scales.” The methods used in these
studies are either experimental validation or validation through
nanoscale simulation techniques such as lattice dynamics or
molecular dynamics (MD).

4.3.1. Experimental validation

As mentioned in the Introduction, the robust and simple gradi-
ent elasticity models with one additional parameter were proposed
to interpret deformation phenomena that could not be captured by
classical theory, such as necking and the formation of shear bands,
as well as the occurrence of size effects. Similarly, in dynamics such
simple theories were used to capture the effects of dispersive
waves. It was thus necessary to check the validity of the models
against the corresponding experimental data and also in relation
to the reasonableness of the values obtained for the coefficients
of the newly introduced higher-order terms, that is the length scale
parameters. In gradient plasticity the shear band widths and spac-
ings were determined in relation to a value of the internal length
that was directly related to the grain size for polycrystalline spec-
imens or the dislocation spacing/source distance of single crystals.
The same was true for size effect interpretations of plastically
twisted microwires of varying diameter or plastically bent micro-
beams of varying thickness, as well as for micro/nano indentations
where the hardness varied as a function of indentation depth.

In gradient elasticity, various estimates were obtained from dis-
persive wave characteristics. Dispersion of various types of waves
has been established for many microstructured materials, see for
instance the studies of the 1960s and early 1970s (Yarnell et al.,
1964b,a; Warren et al., 1967; Verble et al., 1968; Price et al.,
1971). A rudimentary gradient elasticity interpretation of experi-
mentally obtained ultrasonic wave dispersion results in metals
was given by Savin et al. (1970). More recent efforts cover a vast
range of scales, including those of Stavropoulou et al. (2003) for
marble, Jakata and Every (2008) for a number of cubic crystals,
and Erofeyev (2003) for a range of metals - see also the references
cited therein. Furthermore, size effect measurements of torsion
and bending were performed of specimens made from materials
with a dominant microstructure, such as bones and foams where
the length scale parameter was related to the average cell size. De-
tails on these can be found in Aifantis (1999, 2003), where also
some comments on the physical background of the length scale
parameters are provided.

More recently, the robust and simple gradient elasticity model
of Aifantis was used to describe characteristics at the atomic scale,
such as dislocation core sizes, as well as to interpret measurements
pertaining to the dislocation density tensor and internal strain
states through X-ray profile analysis (Kioseoglou et al., 2006,
2008, 2009; Aifantis, 2009a). The length scale parameter values
estimated from these measurements are directly related to the lat-
tice spacing, as expected. In these papers, atomistic computer sim-
ulations are also presented based on MD potentials and it shown
that the simple gradient elasticity model is indeed superior to such
simulations which become very difficult to carry out in the prox-
imity of the dislocation line.

Further results have been obtained by Lam et al. (2003), who
used a re-formulation of the Mindlin theory that, when applied to
beam theory, is governed by a single independent length scale
parameter. The experimentally obtained value for this length scale
is in the order of microns for an epoxy beam and may be considered
to be somewhat high, but this could potentially be related to the
particular boundary value problem that is considered and how gra-
dient effects are activated under these boundary conditions.

4.3.2. Nanoscale numerical simulations
Opie and Grindlay (1972) postulated a Lennard-Jones potential
for lattices consisting of noble gas solids argon, krypton and xenon

close to a temperature of 0 K. They also assumed linear elastic
equations of motion with strain gradients but without inertia gra-
dients. The Lennard-Jones potential has two free parameters, and
by comparing the dynamic response of the lattice with that of
the gradient elastic continuum all constitutive coefficients (classi-
cal as well as higher-order) were found in terms of these two
parameters. Thus, assuming that the classical constitutive elastic
constants can be fitted from experiments, the higher-order consti-
tutive constants are found as well. DiVicenzo (1986) followed a
similar procedure but focussed on gallium-arsenic, which is aniso-
tropic. Similar to the study by Opie and Grindlay, strain gradients
were included but inertia gradients were ignored. One of the man-
ifestations of anisotropy was the appearance of spatial displace-
ment derivatives of odd order. The various higher-order stiffness
tensors of the gradient-enriched continuum were again found by
comparison with the response of the lattice model.

Wang and Hu (2005) simulated the propagation of flexural
waves in carbon nanotubes (CNTs) by means of MD and with beam
theories. They used Euler-Bernoulli and Timoshenko beam theo-
ries extended with unstable strain gradients. The length scale
was related directly to the interatomic spacing via the procedure
described in Section 2.3.1, and as such no fitting procedure was
used to quantify the length scale from the MD results. Neverthe-
less, the results of gradient elastic Timoshenko beam theory were
in good agreement with the MD results, although the use of unsta-
ble strain gradients implies that the model should not be used be-
yond a certain cut-off wave number. Moreover, the results
obtained with Euler beam theory are much further removed from
the MD results (Wang and Hu, 2005). Duan et al. (2007) used
MD simulations to fit the length scale parameter of the Eringen
model in Timoshenko beam theory. The fits were carried out for
the first four eigenfrequencies of beams with either clamped-
clamped or clamped-free boundary conditions. The best fit of the
length scale parameter was usually found (i) to decrease somewhat
with increasing mode number (with one exception), and (ii) to de-
crease importantly with increasing slenderness, i.e. the ratio of
CNT length over CNT radius.

The findings of Wang and Hu (2005) were revisited more re-
cently by the authors of the present article (Askes and Aifantis,
2009), whereby the two beam theories were enriched with unsta-
ble strain gradients, stress gradients, inertia gradients and the
dynamically consistent combination of stable strain gradients with
inertia gradients. In particular the dynamically consistent gradient
elasticity model leads to results that show an excellent fit with the
MD results of Wang and Hu; interestingly, this holds not only for
the Timoshenko beam theory but also for the Euler-Bernoulli beam
theory (Askes and Aifantis, 2009). A rudimentary fit of the dynamic
length scale ¢4 of dynamically consistent gradient elasticity was
carried out to match the results of beam theories with those of
MD. It was found that the dynamic length scale ¢4 scales more or
less with the radius of the CNT, and it is significantly larger in Eu-
ler-Bernoulli beam theory than in Timoshenko beam theory (Askes
and Aifantis, 2009).

Maranganti and Sharma (2007) used three methods to simulate
the material behaviour at the nanoscale, namely empirical lattice
dynamics (similar to the work of DiVicenzo mentioned above),
ab initio lattice dynamics and empirical MD. Obtained values for
the length scales are typically in the order of magnitude of
1071~ 10~°m for a variety of materials, ranging from metals to
polymers.

5. Numerical implementations
Gradient elasticity has not yet found the widespread dissem-

ination in practical applications that would be warranted by
its theoretical foundations. One of the main reasons is that
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straightforward, robust numerical implementations of gradient
elasticity were lacking until recently. In particular finite element
implementations must be provided for a material model to be used
widely. Most finite element formulations are based on the assump-
tion that the partial differential equations (p.d.e.) to be discretised
have at most second-order derivatives with respect to the spatial
coordinates. Discretisation of such second-order p.d.e. requires
continuity of the primary unknowns (here: displacements) but
not of their spatial derivatives - this is denoted as C°-continuity.
In contrast, the fourth-order spatial derivatives such as those given
in Eq. (7) require C'-continuity whereby both the primary un-
knowns and their spatial derivatives are continuous.

Certain authors have used meshless methods for the implemen-
tation of gradient elasticity, by which ¢'-continuity is easily acco-
modated (Askes and Aifantis, 2002; Tang et al., 2003; Sansour and
Skatulla, 2009). Boundary element implementations for gradient
elasticity have also been developed, in particular by Tsepoura
et al. (2002), Polyzos et al. (2003), Tsepoura et al. (2003), Polyzos
et al. (2005), Karlis et al. (2007). However, in this Section we will
focus on finite element implementations. After a brief overview
of finite element strategies, we will discuss the simplest imple-
mentations for most of the main formats of gradient elasticity trea-
ted in Section 2. Another obstacle to a wider dissemination of
gradient theories has been a lack of agreement on which boundary
conditions should be used. Since this is closely related to finite ele-
ment implementations, in that variationally consistent formats of
boundary conditions must be taken, this issue is addressed here
as well.

5.1. Overview of finite element implementations

Roughly, two classes of finite element implementation strate-
gies for gradient elasticity can be distinguished, which are based
on next nearest neighbour interaction or on the discretisation of mul-
tiple fields. Higher-order continuity can be attained by dropping the
usual finite element property that nodes only interact with each
other if they are attached to the same element. Thus, “nearest
neighbour interaction” is given up for “next nearest neighbour
interaction” to attain C'-continuity. This is the case, for instance,
with novel discretisation techniques such as discontinuous Galer-
kin methods (Engel et al., 2002) and the subdivision surfaces par-
adigm (Cirak et al., 2000) - in fact, also the meshless methods
mentioned above fall in this category. Although only the displace-
ment field needs to be discretised, these approaches do not fit eas-
ily in standard finite element packages, that normally rely on
nearest-neighbour interaction to enable an element-by-element
assembly.

Alternatively, multiple fields (rather than the displacement field
only) can be discretised. In this case, one should distinguish be-
tween (i) formats of gradient elasticity that lead to fourth-order
p.d.e. in terms of displacements only, and (ii) formats of gradient
elasticity that consist of second-order p.d.e. in terms of displace-
ments and additional variables. Finite element strategies for gradi-
ent elasticity with fourth-order p.d.e. include the following.

« Hermitian finite elements are truly C'-continuous. The displace-
ments as well as all first derivatives and some second deriva-
tives are interpolated; the number of degrees of freedom per
element normally increases by a factor four (Petera and Pitt-
man, 1994) to six (Zervos et al., 2001). This approach has
recently been extended to 3D (Papanicolopulos et al., 2009). It
was also noted that although the number of degrees of freedom
per element increases, the number of elements needed for a cer-
tain accuracy decreases due to the additional resolution pro-
vided by the interpolation of the displacement derivatives
(Papanicolopulos et al., 2009).

o Mixed finite elements fulfill the continuity requirements only in
a weak sense. Displacements and the first derivatives are inter-
polated; the number of degrees of freedom per element typi-
cally increases by a factor two (Shu et al., 1999; Matsushima
et al., 2002; Kouznetsova et al., 2004a), three (Soh and Wanji,
2004) or four (Amanatidou and Aravas, 2002). Care may be
required to ensure that the finite element passes several patch
tests: a specific element might pass one patch test but fail
another, compare for instance element QU54L16 from Shu
et al. (1999) with element I-13-70 from Amanatidou and Aravas
(2002).

Other formats of gradient elasticity consist of second-order
p.d.e. in terms of the displacements and one or more other vari-
ables; these p.d.e. may be coupled or uncoupled.

e Zervos (2008) provided an implementation of Mindlin’s theory
of elasticity with microstructure, i.e. based on Eq. (3), whereby
the primary unknowns are the displacements and the micro-
deformations. Interestingly, he also demonstrated that the
response of gradient elasticity can be emulated with the same
implementation by a specific choice of higher-order constitu-
tive coefficients. Namely, the coefficients accompanying the rel-
ative deformation 7; as defined in Section 2.1 must be set very
large so as to penalise the difference between micro-deforma-
tion and macro-deformation, by which the response of elasticity
with microstructure reduces to the response of gradient elastic-
ity (Zervos, 2008). The performance of this approach has been
compared to that of Hermitian finite elements by Zervos et al.
(2009).

o Askes and Gutiérrez (2006) developed an implementation of a

variant of the Eringen theory discussed in Section 2.2.1. The
interpolated unknowns are the displacements together with
the nonlocal strains (rather than the nonlocal stresses), and it
was shown that the interpolation polynomials of the displace-
ments should be taken of lower degree than that of the nonlocal
strains in order to avoid oscillations.
Nevertheless, for optimal convergence rates (in the sense of
error reduction for a uniform increase in number of elements)
it is not sufficient to take the interpolations simply as, say, lin-
ear for the displacements and quadratic for the nonlocal strains.
Although this topic has not been studied intensively in gradient
elasticity, many attempts have been made in classical elasticity
to implement finite elements with separate interpolations for
stresses and displacements, see for instance (Arnold et al,,
1984; Arnold and Winther, 2002) The resulting implementa-
tions tend to be complicated and involve, for instance, a mixture
of nodal degrees of freedom, edge degrees of freedom and ele-
ment degrees of freedom (Carstensen et al., 2008). This holds
for classical elasticity, and it appears that the additional compli-
cation of gradient-enrichment will not result in less cumber-
some implementations. Thus, a simple and straightforward
implementation of the Eringen theory that provides optimal
convergence has not been accomplished as yet, and may not
be feasible.

e Some specific formats of gradient elasticity such as Eq. (12)
allow for an operator-split as has been explored by Ru and
Aifantis (1993). Instead of one set of fourth-order p.d.e., two
sets of second-order p.d.e. are solved sequentially as outlined
in Section 2.2.2. The number of degrees of freedom per element
thus increases, but the two systems are formally decoupled and
can be solved separately, which limits the computational costs
involved (Tenek and Aifantis, 2002; Askes et al., 2008b). This
approach for statics has inspired a similar solution strategy
for dynamically consistent gradient elasticity given in Eq. (28),
although the resulting equations are coupled rather than
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uncoupled (Askes and Aifantis, 2006; Askes et al., 2007; Bennett
and Askes, 2009).

In the next Section, we will discuss simple and effective c° finite
element implementations of gradient elasticity with strain gradi-
ents, acceleration gradients, and the dynamically consistent com-
bination of strain gradients with acceleration gradients.

5.2. Finite element equations

In this Section, we will depart from the index tensor notation
used in the remainder of this paper and switch to matrix-vector
notation. Furthermore, we will give the finite element equations
for the 2D case, but extension to 3D is straightforward. Discretisa-
tion of the displacements is performed with shape functions N;
which are collected in a matrix Ny, i.e. in 2D:

N, — N, O N, 0O - (77)
0 Ny 0O N ---

The continuum displacements u = [u,, uy]T are related to the nodal

displacements d = [d1,d1y, dax, Aoy, - - .J" via u = N,d. Similar discreti-

sations can be performed for other fields, such as the nonlocal

strains or the nonlocal stresses. Furthermore, we define the usual

derivative operators V and L as

2.0
K X
vz[?;;‘} and L=|0 & (78)
5 4
)y X

while also V2= V'.V.
5.2.1. Strain gradients

The Ru-Aifantis theorem discussed in Section 2.2.2 splits the
original fourth-order p.d.e. of gradient elasticity into two sets of
second-order p.d.e., the first of which are the p.d.e. of classical
elasticity:

L'CLu‘ +b=0 (79)

where the body forces b = [b,,b,]” and C is the matrix equivalent of
the constitutive tensor Cy. Taking the weak form of Eq. (79) with
domain 2 and boundary I', followed by integration by parts, gives

w'bdQ +

Q I'n

/ (Lw)' CLu‘dQ = w'tdlr (80)
Q

where w = [w,,w,]" is a vector with test functions and t = [t,,¢t,]" are
the user-prescribed tractions on the Neumann part I', of the
boundary. Using the finite element discretisation mentioned above,
Eq. (79) leads to

/ B'CB,dQ d° = Kd — f 81)
Q

which defines the stiffness matrix K. Furthermore, the strain-dis-
placement matrix B, =LN,, whilst the force vector f collects the
contributions of the body forces as well as the externally applied
tractions.

The gradient activity is introduced by using the displacements
of classical elasticity as input in either Eq. (14), Eq. (15) or Eq.
(16) - finite element implementations of all three formats have
been discussed by Askes et al. (2008b). The displacement-based
Ru-Aifantis approach has been implemented and tested earlier by
Tenek and Aifantis (2002) and was also extended for use in damage
mechanics by Rodriguez—Ferran et al. (2005). We will treat the
finite element discretisation of Eq. (16) in some detail; the discret-
isation of Eq. (14) or Eq. (15) is a straightforward exercise. The
matrix-vector version of Eq. (16) reads

c(sg - fzvzag) = CLu (82)
where & = [8§X,8§y,y§y]T. Again, the weak form is taken and the

second-order gradient term is integrated by parts, which gives

T ) 088 awT ol
/Q[wngJrf(a Ca +dy By de
- f W'e(n - VCe)dT = / W CLu‘dQ (83)
r JQ

where n = [n,,n,]|” contains the components of the normal vector to
the boundary I', and w now contains three components. We will
ignore the boundary term for now and discuss boundary conditions
in Section 5.3.

For the discretisation it is necessary to expand the shape func-
tion matrix N given in Eq. (77) to accomodate all three nonlocal
strain components, by which & = N.e® where e® contains the com-
ponents of the nodal nonlocal strains. The same shape functions N,
are used to discretise the test function vector w, while we again
use u‘=N,d. The resulting system of equations reads (Askes
et al., 2008b)

r »(ONI AN, ON! cN: / T .
/Q{Ngcmw ((,)x T % ay dQ et = [ NICB,dQ d

(84)

The shape functions N, can be chosen independently of N,; it then
seems most convenient to use the same finite element mesh for Egs.
(81) and (84).

5.2.2. Acceleration gradients

The gradient elasticity format with inertia gradients is probably
the most efficient format, since the gradient enrichment can be
introduced without computational overhead. In matrix-vector
notation, the equations of motion can be written as

L'CLu+b = p(ﬁ - 42v2ﬁ) (85)

The only difference with respect to classical elasticity is the higher-
order inertia term, which does not impose additional requirements
on the continuity of the interpolation, therefore finite element dis-
cretisation is straightforward. The weak form of Eq. (85), upon inte-
gration by parts, reads

ow’ g ow' ot
T 2
/Q(LW) CLud9+/QP[W“+E <8x oy 6y>]dg

‘wbde+ [ wtdr (86)

Q I'n

where the tractions t now also include inertia effects. The discre-
tised system of equations is obtained as Fish et al. (2002b,a)

M+ ?Hld + Kd = f (87)

where K and f are the same as in Eq. (81
the mass matrix are defined as

). The two contributions to

ON! AN,
0x O0X

ON' 6N
M= N'N,dQ and H= u 271 d
szp u xzp< oy 83’)

(88)

The system of equations in expression (87) has the same dimension
as in classical elasticity. For a solution in the time domain, a time
integration algorithm (e.g. the Newmark scheme) must be selected.
Guidelines on the choice of the element size and the time step size,
relative to the internal length scale ¢, were derived by Askes et al.
(2008c).
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5.2.3. Combined strain-acceleration gradients
The dynamically consistent format of gradient elasticity, writ-
ten in matrix-vector notation, reads

LTCL<ug - BVu) = p(ﬁg - Vi) (89)

where the superscript g has been used to indicate gradient depen-
dence. Since there are now two higher-order terms, the Ru-Aifantis
theorem of Section 2.2.2 cannot be applied directly, except for the
case /s = {4, which is non-dispersive (Askes et al., 2007; Gitman
et al., 2007a). However, the fourth-order p.d.e. can be split into
two sets of second-order p.d.e. with a similar manipulation, that is

- AV =uf (90)
by which Eq. (89) becomes
L'CLu® = p(ﬁg - ff,Vziig> (91)

where u“ are (as yet unidentified) auxiliary displacements.

It has been shown that Egs. (90) and (91) can be written as a set
of coupled and symmetric second-order p.d.e. (Askes et al., 2007;
Bennett and Askes, 2009). Furthermore, the two displacement
fields u® and u” can be identified as the macroscopic displacements
uM and the microscopic displacements u™, respectively (Bennett
et al., 2007). Thus, the simultaneous appearance of macroscopic
and microscopic displacements in the equations re-introduces
the multi-scale nature of gradient elasticity that was present in
Mindlin’s theory of elasticity with microstructure, given in Egs.
(1)-(3). The resulting equations are obtained as

2
% I

e (B 22,
L' CLu =p72u775u (92)

2 I

S

2 2 2 2

Since both equations are now second-order in space, a standard ¢°
implementation can be used. The weak form of Eq. (92), upon inte-
gration by parts, reads

w'bdQ+ [ w'tdl’

Q I

2 2 2
:/pr b gm L= b gw)go (94)
Q I L

— / (Lw) CLu™dQ +
Q

S

which involves the standard traction boundary conditions in their
usual format. A similar treatment of Eq. (93) results in

L vl ouM  ovT aguM
T%d s (__gym M 22 e T dQ
/gp{v e R C e e
- %vrp(fﬁ —&)(n-vaM)ydr =0 (95)
JI
where v is a vector of test functions.
It is assumed that the same shape functions N,, are used for the
two coupled displacement fields as well as for the associated test

functions. Ignoring the boundary integral in Eq. (95), the system
of discretised equations reads

L 0] - [

(96)

where f and K are given in Eq. (81), whilst M and H are given in Eq.
(88). For positive definite system matrices, it is required that ¢4 > 4.
Discretisation aspects of Eq. (96), such as element size and time step
selection, are discussed by Bennett and Askes (2009).

5.3. Consistent boundary conditions

In the previous Section we have treated the finite element equa-
tions in some detail, but we have only cursorily dealt with the
boundary conditions. In fact, the issue of boundary conditions in
gradient elasticity has long been a topic of debate. Adopting the
distinction given in Section 5.1, gradient elasticity appears either
as a set of fourth-order equations with the displacements as the
sole unknowns, or as a set of coupled second-order equations with
the displacements and the components of another variable (stres-
ses, micro-deformations) as unknowns. In the former case, the
higher order of the governing equations means that higher-order
boundary conditions must be formulated. In the latter case, addi-
tional boundary conditions accompany the auxiliary differential
equations.

Some implicit agreement among the community seems to
emerge in that most authors use higher-order boundary condi-
tions that are proportional to the second-order derivatives (rather
than first-order derivatives) of the displacement. Recent discus-
sions on the issue of boundary conditions in gradient elasticity
can be found in Shu et al. (1999), Polizzotto (2003), Askes and
Metrikine (2005), Askes et al. (2008b,a), Kaplunov and Pichugin
(2008), Andrianov et al. (2010b), Froiio et al. (2010) and the
majority of these studies confirm observed trends to adopt sec-
ond-order displacement derivatives. Reasons for this particular
choice are based on energy arguments (Polizzotto, 2003), removal
of singularities (Askes et al., 2008b), suppressing undesired
boundary layer effects (Askes et al., 2008a) or simply implemen-
tational convenience (Askes and Aifantis, 2002). However, some
researchers have focussed on the correspondence between the
gradient elasticity theory and the related discrete model, and
the most appropriate format of the gradient elasticity boundary
conditions then depends on the nature of the boundary condition
in the discrete model (Kaplunov and Pichugin, 2008; Andrianov
et al., 2010b).

Here, we will discuss boundary conditions as they are ob-
tained in their variationally consistent format in Section 5.2,
and we will return to using index notation. Furthermore, we will
compare the obtained boundary conditions with the variationally
consistent boundary conditions that are associated with Eq. (7).
The Ilatter have been derived by Mindlin, and complicated
expressions have been obtained whereby derivatives were split
into normal and tangential components (Mindlin, 1964; Mindlin
and Eshel, 1968). We will not provide detailed derivations of
these boundary conditions, but they can be summarised as
follows:

o Either the displacements or a conjugated stress tensor are pre-
scribed on the boundary. This stress tensor is similar to the
stress ¢y given in Eq. (11) and it contains contributions propor-
tional to the strains and the second spatial derivative of the
strains. In case acceleration gradients are included as well, it
also contains a contribution proportional to the second time
derivative of the strains.

Either the (normal component of the) derivative of the displace-
ments or a conjugated higher-order stress tensor are prescribed
on the boundary. This higher-order stress tensor is proportional
to the second-order derivative of the displacements.

In discussing the variationally consistent boundary conditions
of the finite element implementations of Section 5.2, an important
criterium will be to which extent the boundary conditions of the
simplified models coincide with the boundary conditions of the
original Mindlin model.

Throughout, superimposed bars indicate prescribed values of
the relevant variables.
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5.3.1. Strain gradients

Using the Ru-Aifantis theorem of Section 2.2.2, the gradient
elasticity format with strain gradients leads to two pairs of bound-
ary conditions. The first set are the boundary conditions of classical
elasticity related to Eq. (81), that is

either uf =i or o=t 97)

which is consistent with the first set of boundary conditions of the
Mindlin model.

For the second set of equations, various options are available as
discussed in Section 2.2.2: the second set of equations can be ex-
pressed in terms of displacements, strains, or strains pre-multi-
plied with the constitutive coefficients:

o It was shown by Askes et al. (2008b) that not all singularities
are removed from the strain field of a mode I fracture test in
case the second set of equations is written in terms of displace-
ments, therefore we will not consider this particular option.

e Expressing the second set of equations in terms of strains leads
to a model whereby all singularities are removed from the
strain field, but the behaviour at a bi-material interface differs
qualitatively from the behaviour of Eq. (12), that is the model
prior to the operator split. Namely, the use of Eq. (15) sets con-
tinuity of the gradient of strain over the interface, whereas with
Eq. (12) continuity of the gradient of stress is obtained. This was
illustrated for the one-dimensional case by Askes et al. (2008b).
We will not consider this format of operator split further.

o When the second set of equations is written in terms of strains
pre-multiplied with the constitutive coefficients, that is Eq. (16),
the associated boundary conditions are

either & =& or N Ciely = 0 (98)

These particular boundary conditions approach those of the Mindlin

model best: the higher-order essential boundary conditions are re-

lated to displacement derivatives (though not necessarily normal
derivatives) and the higher-order natural boundary conditions are
cast in terms of strain derivatives, similar to the higher-order stress
tensor of the Mindlin model. The two models behave qualitatively
the same, although some minor quantitative differences remain
(Askes et al., 2008b).

This particular solution method of gradient elasticity with
strain gradients consists of a set of uncoupled equations, the first
of which are the equilibrium equations. The second set of equa-
tions renders nonlocal strains, and the associated nonlocal stresses
are not necessarily equilibrated. This may lead to difficulties in
interpretation, for instance at free boundaries. However, it is also
possible to prescribe the components of the nonlocal strain aﬁ such
that the relevant corresponding nonlocal stress components are
zero on free boundaries. This has been suggested recently by Aifan-
tis (2009¢,b) and will be further illustrated in Section 6.1.3.

5.3.2. Acceleration gradients

The partial differential equations of gradient elasticity with
acceleration gradients only are second-order in space, therefore
only one set of boundary conditions must be applied, although
the natural boundary conditions are extended compared to classi-
cal elasticity. In particular,

either u; =1u; or niojj = n; (Cijkluk‘l + pfzﬂij) =t (99)

For finite element implementations, this means that no special
measures need to be taken, since the right-hand-sides of both
essential and natural boundary conditions are the same as in classi-
cal elasticity. This is reflected in Eq. (87).

5.3.3. Combined strain-acceleration gradients

The variationally consistent boundary conditions of the dynam-
ically consistent gradient elasticity model, in its operator-split ver-
sion, have been derived by the authors in Askes et al. (2007). They
read

H m __ 5m St (.. m __ ¢,
either u =" or noy = mCyuey = t; (100)

either uM =} or mo} =np(¢; - £)ii)] =0 (101)

The left-hand-sides of the natural boundary conditions can be inter-
preted as the projections of two stress tensors, whereby Egs. (100)
and (101) contain a stiffness-related stress and an inertia-related
stress, respectively. Thus, a non-standard natural boundary condi-
tion in terms of a higher-order stress tensor is absent in this format
of gradient elasticity.

In a one-dimensional example, it has been suggested to use ty-
ings between the microscopic and macroscopic displacements, that
is u™ = uM, on the boundaries in order to emulate the effects of the
non-standard natural boundary condition (Askes et al., 2008a);
such a constraint was shown to eliminate boundary layers and
would also ensure that the same volume change is predicted by
microscopic and macroscopic displacements. In Section 6.1.4 we
will investigate the effects of such tyings on the removal of
singularities.

6. Applications and new results

Whereas the previous Sections were focussed on a systematic
discussion of earlier results, in this Section we will present some
new results. The advantages of gradient elasticity, compared to
classical elasticity, are threefold: (i) with gradient elasticity the
singularities can be avoided that typically appear in classical elas-
ticity, (ii) the size-dependent mechanical response of heteroge-
neous materials can be captured with gradient elasticity, and (iii)
dispersive wave propagation can be described by gradient elastic-
ity. Wave dispersion has already been addressed in the comparison
between the various models given in Section 2.5 (see also Askes
et al. (2008a) and Papargyri-Beskou et al. (2009) for two recent
comparative studies), and we will focus here on the removal of sin-
gularities and the description of size effects.

Throughout, in the numerical examples spatial discretisation is
performed with four-noded bi-linear quadrilateral finite elements.
In the dynamic examples the unconditionally stable constant aver-
age acceleration variant of the Newmark scheme is used for time
integration.

6.1. Removal of singularities

In classical elasticity, singularities may appear where abrupt
changes in the boundary conditions occur or at non-convex corners
in the domain. Singularities can be avoided when gradient elastic-
ity is used with appropriate boundary conditions, as has been dem-
onstrated on many occasions, see for instance (Altan and Aifantis,
1992; Ru and Aifantis, 1993; Unger and Aifantis, 1995; Altan and
Aifantis, 1997; Lazar and Maugin, 2005; Askes et al., 2008b; Askes
and Gitman, 2009; Gitman et al., 2010). We will study the effects of
gradient elasticity on singularities appearing where point loads are
applied as well as at the tips of sharp cracks. We will also investi-
gate the effect of boundary conditions in dynamically consistent
gradient elasticity. However, for illustration we will first review a
simple analytical procedure for mode III fracture.

6.1.1. Static mode III fracture - analytical solution
Many studies have been devoted to analytical solutions of
mode Il cracks in gradient elasticity. Altan and Aifantis (1992)
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used Fourier transforms for a finite crack in an infinite medium,
whereas Unger and Aifantis (1995) formulated a closed form solu-
tion for a semi-infinite crack in an infinite medium, although at one
stage in their derivations the assumption of unstable strain gradi-
ents was made. Vardoulakis and coworkers studied finite mode III
cracks in infinite gradient elastic media with additional surface en-
ergy terms; this extra term does not change the field equations but
has an effect on the boundary conditions (Vardoulakis et al., 1996;
Exadaktylos et al., 1996). In all these studies, the higher-order
boundary conditions were taken proportional to the second-order
derivative of the displacement, except (Unger and Aifantis, 1995)
where the first-order derivative of the displacement was used.
More recently, Georgiadis (2003) analysed semi-infinite cracks in
an infinite medium using the Aifantis theory in statics (although
not acknowledged as such) and the dynamically consistent theory
in dynamics. The results in the latter work predict a stress singular-
ity the sign of which is opposite to that of classical elasticity, which
seems to be an undesirable feature of this solution.

In view of the Ru-Aifantis theorems discussed in Section 2.2.2,
the pertinent governing equation for mode III is expressed in terms
of the shear strains as
& — . = & (102)
i.e. an inhomogeneous diffusion equation for the gradient-enriched
strain ?ﬁ where the classical strain &; acts as a source term. From
classical linear elastic fracture mechanics it is well known that
the shear strains exhibit singularities at the crack tip. For a finite
crack in an infinite medium, the two non-vanishing shear strains
of classical elasticity are given by

Asing and & :A cosg
26V2nr 2 2 26V2nr 2

where the usual polar coordinates r and 0 are adopted with origin at
the crack tip, Ky = 7+/7a is the stress intensity factor and G is the
shear modulus. Furthermore, 7> is the far-field antiplane shear
stress and a is half the crack length. For &, we can write

Ky 0
&, = &(r) cos=
23 ZG /_27'5 ( ) 2

If we substitute this expression into Eq. (102), we find that the un-
known function £(r) must satisfy the following equation:

<
é13 =

(103)

(104)

Iz ,[0*6 108€ 1
<1+4r2)5e (mzﬂm)wf (105)
This leads to a general solution for £(r) as
_ 1 —r/t T/l
5_7F(1+Ae +Be ) (106)

Here, A and B are constants that can be determined via the bound-
ary conditions, including those at infinity. We require the far-field
shear strain to be finite, hence B = 0. Furthermore, we set ¢, =0
for r — 0, by which it follows that A= —1. Thus,

8g _ KIII
B o6v2nr

which is finite for r — 0. A similar result can be obtained for the
other gradient-enriched shear strain &§,.

Using appropriate boundary conditions is essential for the re-
moval of singularities, as we will explore further below. Other
boundary conditions, such as the ones used by Georgiadis (2003),
may not result in similarly simple solutions or may even lead to
stresses and strains with a singularity proportional to 32 i.e.
stronger than classical elasticity where it is proportional to /2,

0
_ e cos Y
(1-e )c052 (107)

6.1.2. Static mode III fracture — numerical solutions

Next, we will use numerical finite element solutions to simulate
the behaviour of mode III fracture. We will verify that crack tip and
point load singularities can be avoided with gradient elasticity. In
addition, we will study the performance of gradient elasticity in
cases where the crack is positioned perpendicular to a bi-material
interface. In such cases, the order of the singularity depends on the
relative magnitude of the elastic constants of the two materials,
with the more severe singularities appearing in case the crack is
positioned in the stiffer material. In a recent study, it was shown
that such singularities can be removed if gradient elasticity is used
in a mode I fracture problem (Askes and Gitman, 2009); here, we
will extend the analysis to mode III fracture. The studied geometry
and boundary conditions are shown in Fig. 3, where by L = 500 mm
and F=10 N. For a mode III test the only required material param-
eter in classical elasticity is the shear modulus G; here, G; = 10 N/
mm? and G, = 1000 N/mm?. Furthermore, the internal length scale
¢=50 mm in the simulations with gradient elasticity.

Fig. 4 shows surface plots of the shear strain components 7y,
and 7,,, both obtained from classical elasticity and from gradient
elasticity whereby the latter is obtained from the former via Eq.
(84). For these results, the domain was discretised with 32 x 32
four-noded quadrilateral finite elements. It can be seen that the lo-
cal strain field (obtained with classical elasticity, that is £=10) is
dominated by singularities which occur where the two point loads
are applied as well as at the crack tip. These singularities are re-
moved by the gradient enrichment - note for instance the different
scaling of the vertical axes used on the left and the right of Fig. 4. In
Fig. 5 the nonlocal strain components are plotted along the line
y =0 for different finite element meshes (ranging from 8 x 8 ele-
ments to 64 x 64 elements). It can be seen that both strain compo-
nents converge to a unique solution if gradient elasticity is used.

A more quantitative understanding can be obtained by investi-
gating the actual values of the strains at the positions where singu-
larities occur in classical elasticity. In Table 1, values of the local
and nonlocal shear strains are collected at the point where the load
is applied. Based on the values from the four finite element
meshes, we have also carried out a Richardson extrapolation. It
can be seen that the two local strain components roughly double
in value for every successive mesh refinement. Thus, they do not
converge - or rather, they converge to infinity. Convergence to fi-
nite values is observed for the two nonlocal strain components.
However, convergence is slow, which is due to the ratio of shear
moduli of the two materials. With G; < G,, the order of the singu-
larity is larger than for the homogeneous case G; = G,, which has
an adverse influence on the convergence of the numerical gradient
elasticity solutions. Conversely, taking G; > G, (so that the crack
extends through the softer material) reduces the order of the sin-
gularity and leads to improved convergence of the numerical gra-
dient elasticity solutions, see (Askes and Gitman, 2009).

6.1.3. Static mode I fracture

In the next example, we revisit and extend the mode I fracture
problem presented earlier by Askes et al. (2008b) and shown in
Fig. 6. The geometrical and material parameters are L=1 mm,
E=1000 N/mm?, v=0.25 and ¢=0.1 mm. Prescribed displace-
ments 4 =0.01 mm imply a nominal vertical normal strain
gyy =0.01 if effects of the crack are excluded. For symmetry rea-
sons, only the top-right quarter is modelled. In an earlier study,
convergence upon mesh refinement was demonstrated (Askes
et al., 2008b); here, we will demonstrate the effects of equilibrating
the nonlocal stresses with externally applied tractions.

In Fig. 7 the three nonlocal stress components, obtained from
0% = Cyjuey, are plotted. The top-right quarter is modelled with
16 x 16 bilinear quadrilateral finite elements. In the left column
of Fig. 7, the boundary conditions accompanying Eq. (83) are taken
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Fig. 4. Mode III fracture problem - surface plots of g, (top left), y%; (top right), y5, (bottom left) and 73, (bottom right).
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Fig. 5. Mode I fracture problem - convergence upon mesh refinement for %, (left) and 7,

Table 1
Mode III fracture problem - mesh refinement study and Richardson extrapolation for
shear strains at position (x,y) = (2L,0).

Mesh 'yf(z V)%z Vf’z ﬁz

8x8 1377103 0.865-10  —1.372.10°3 —-0.822-1073
16 x 16 2.7781073 1.059-10°3  —2.765.1073 -1.019-10°3
32 x 32 5.546-1072 1170103  -5539.10°3 ~1.132:10°3
64 x 64 11.087.10°%  1.229.107  -11.083-10> —-1.192.10°3
Extrapolation ~ 20.785.103  1.290.10% -20.785.107% -1.254.103

as homogeneous natural boundary conditions throughout, that is the
natural boundary conditions suggested in Eq. (98). In the right col-
umn, the nonlocal strain components are prescribed such that
0x =0 on the vertical edges, o,, =0 on the face of the crack and
0y = 0 throughout. It can be seen that this particular adjustment
of the boundary conditions has a moderate effect on the results.
Although equilibrating the nonlocal stresses with externally ap-

8 x 8 elements
---16 x 16 elements
---32 x 32 elements
—— 64 x 64 elements

500 750

X [mm]

1.5 .
0 250 1000

(right) along y = 0.

plied tractions may facilitate interpretation of the results, it must
be emphasised that the nonlocal stresses are not equilibrated in-
side the domain (i.e. away from the boundaries).

6.1.4. Point load singularities in dynamics

Next, we will study the removal, or otherwise, of singularities in
dynamics. We will compare the gradient elasticity theory with
acceleration gradients as well as the dynamically consistent theory
with acceleration gradients and strain gradients. In order to sepa-
rate the effects of field equations and boundary conditions, we con-
sider the two problem statements given in Fig. 8. Singularities are
expected in classical elasticity at the position where the point load
is applied. In the geometry of Fig. 8(a), the singularity appears in
the middle of the specimen and is therefore not influenced by
boundary conditions. On the other hand, boundary conditions
may affect the singularity in the geometry of Fig. 8(b) where the
force is applied on the free boundary.
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Fig. 6. Mode I fracture problem - geometry and boundary conditions; the solid line
indicates the presence of a crack.

For the geometric and material parameters we have taken
H=05m, p=1kg/m? and a plane strain assumption with
E=100N/m? and v = 0.25. The length scale parameters are taken
as ¢=0.1 m in the model with acceleration gradients only, whereas
¢4=0.1 m and 4 = 0.05 m in the dynamically consistent model. The
indicated forces are oriented 45° off the x-axis and they have mag-
nitude v2 N; they are applied from time t=0s onwards. Sliding
boundary conditions are applied where indicated in Fig. 8. Struc-
tured meshes are used with square finite elements of size h, and
the number of elements is specified for the x-direction. For the
time step At we follow the recommendations given by Bennett
and Askes (2009) as At = h{y/2c.ls. All reported results were ob-
tained at time t = 0.05 s which is roughly equal to the time needed
for the wave fronts to propagate to the edges of the indicated
domains.

First, we study the performance of the model with acceleration
gradients. In Fig. 9 the three strain components are plotted along
the line y = H. The left and right column contain the results of
Fig. 8(a) and (b), respectively. The various line types denote differ-
ent mesh densities, ranging from 8 to 64 elements in the x-direc-
tion. Both columns of Fig. 9 show an unbounded growth of all
three strain components, which indicate that singularities are pres-
ent in the solution. From the results on the left of Fig. 9 it can be
concluded that equipping the field equations with acceleration
gradients is not sufficient to remove singularities. Furthermore,
the results on the right of Fig. 9 demonstrate that this deficiency
in the field equations cannot be ameliorated via the boundary con-
ditions. Thus, this particular format of gradient elasticity is suitable
to describe wave dispersion (as shown in Section 2.5) but not to re-
move singularities.

Secondly, the dynamically consistent gradient elasticity model
is considered, in particular its multi-scale formulation discussed
in Section 5.2.3. Fig. 10 shows the results pertaining to Fig. 8(a),
whereby the two columns relate to the microscopic and macro-
scopic strains, whereby the various line types indicate different
mesh densities again. Since the force is applied in the interior of
the specimen, the format of the boundary conditions of this model
as discussed in Section 5.3.3 is irrelevant for now. As can be seen
from Fig. 10, singularities persist in the microscopic strain compo-
nents (left column) but the macroscopic strain components (right
column) are free of singularities; note the difference in vertical axis

range. This can be understood as follows: from Eq. (90) it follows
that

el — el = e (108)
Comparing this last expression with Egs. (9) and (10), we obtain by
implication

M(x) = /V (s)el (x + 5)dV (109)
which means that the macroscopic strain is the volume-average of
the microscopic strain. Singularities in the microscopic strains do
therefore not carry over to the macroscopic strains.

Next, the influence of boundary conditions in the multi-scale
formulation of dynamically consistent gradient elasticity is studied.
As discussed in Section 5.3.3, various options exist, in particular
related to emulating the effect of zero higher-order stresses. In a
one-dimensional study, it was suggested to apply tyings between
macroscopic and microscopic displacement on the boundaries, i.e.
add the constraint u™ = u™ on the boundaries. This was shown to
remove boundary layers from the macroscopic strain (Askes et al.,
2008a). To extend this concept to multiple dimensions, one has
the possibility to apply tyings to the normal components of the
two displacement fields (i.e. require that uMn; = u™n; where n; are
again the components of the outward normal vector) or to apply
tyings to all displacement components (i.e. require that uM = u™).
In Fig. 11 the strain components are plotted for the geometry of
Fig. 8(b), using a finite element mesh of 32 x 16 elements. We have
used the two variants of tyings described above, as well as leaving
the macroscopic displacement unconstrained. The microscopic
strains indicate singularities irrespective of which kind of boundary
conditions is used for the macroscopic displacements. On the other
hand, the boundary conditions have a significant effect on the
macroscopic strain: leaving the macroscopic displacement uncon-
strained results in smooth macroscopic strains, whereas both types
of tyings lead to singularities in all three macroscopic strain compo-
nents. From these results, it seems that one has to accept the
boundary layers reported in Askes et al. (2008a) for a complete
removal of singularities from the macroscopic strains.

In summary, the following conclusions can be drawn regarding
the removal of singularities in dynamics:

e Acceleration gradients alone do not remove singularities, irre-
spective of whether these appear in the interior of the domain
or on the boundary. This indicates a deficiency in the field equa-
tions which cannot be remedied via appropriate boundary
conditions.

e To remove singularities, it is a necessary (though not sufficient)
condition that the field equations contain strain gradients.
In the multi-scale formulation of dynamically consistent gradi-
ent elasticity, strain gradients can be effective to remove singu-
larities from the macroscopic strains, although the associated
microscopic strains are still singular.
In the multi-scale formulation of dynamically consistent gradi-
ent elasticity, the boundary conditions play an important role in
the removal of singularities. For all singularities to be removed
from the macroscopic strains, the macroscopic displacement
must remain unconstrained. Imposing tyings between macro-
scopic and microscopic displacement on the boundary may lead
to singular macroscopic strains.

6.2. Size effect

Next, we will present some results on the size-dependent
mechanical response of specimens modelled with gradient elastic-
ity. The occurrence of size effects in gradient elasticity has been re-
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ported before (Aifantis, 1995, 1999; Askes and Aifantis, 2002;
Askes et al., 2008b). Here, we will study additional geometries that
exhibit singularities in case classical elasticity is used. However,
before we proceed with the presentation of new numerical results,
we will discuss, as in the case of the elimination of elastic singular-
ities, analytical results for a benchmark problem.

1983
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Fig. 7. Mode I fracture problem - surface plots of stress components %, (top row), o5, (middle row) and g,, (bottom row); non-equilibrated (left column) and equilibrated

6.2.1. Shear layer

We consider an elastic layer of thickness H in the y-direction,
extending infinitely far in the x-direction, subjected to an exter-
nally applied shear stress 7 parallel to the x-direction. In the ab-
sense of a body force, the governing one-dimensional equation
reads
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Fig. 8. Two geometries for dynamic analysis - force applied on interior of the
domain (left) and on free boundary (right).

Gty — Clxyyyy) =0 (110)
The solution for u, can be written as
uy = Ay + Ay + Az sinh <%) + A4 cosh <%) (111)

where the various A; are constants that must be determined
through the formulation of appropriate boundary conditions. We
will adopt the following boundary conditions (Zervos, 2008):

y=0: u=0 (112)
1 _
y=+5H: Gluxy — Cyyy) =7 (113)
y:i%H: Uy =0 (114)
After a bit of algebra, see Zervos (2008) for details, it is found that
_T( , sinh(y/¢)
=g (y ¢ cosh(H/2¢) (115)

and an effective (average) shear strain 7y as

0.2 0.4 0.6 0.8
X [mm]

0.2 0.4 0.6 0.8
X [mm]

0.2 0.4 0.6 0.8
x [mm]

=31

1y —
L[> ouy :1<17% (116)

[T iy By y = 7 tanh(H/Zé))
With an effective shear modulus G defined as G = 7/7, the ratio of
effective shear modulus over actual shear modulus is found as

c i (117)

= -1
¢ = (l 2 tanh(H/Zl))
which is a decreasing function of H/¢. For relatively large specimens,
where ¢ < H, this ratio reaches the asymptotic value of 1, but larger
values of effective stiffness are obtained for smaller specimens
where /¢ is of the same order of magnitude as H.

Tekoglu and Onck (2005) simulated similar size effects in cel-
lular materials. They used two modelling strategies: a detailed
micro-structural model where every cell wall is included explic-
itly, as well as so-called couple stress theory. They studied the
same shear layer problem that is discussed in this Section, and
for this particular problem the governing equation of couple
stress theory is identical to the governing equation of the 1992
Aifantis theory of gradient elasticity given in Eq. (110). Tekoglu
and Onck fitted the response of couple stress theory with the re-
sponse of the micro-structural model; they obtained an excellent
agreement for the effective shear modulus, see (Tekoglu and
Onck, 2005, Figs. 9 and 10). Since the governing equations for
the shear layer problem are identical in couple stress theory
and in gradient elasticity, it can be concluded that gradient elas-
ticity is equally capable of fitting the size effects observed in the
discrete modelling of cellular materials. The values of the length
scale parameter ¢ can therefore be fitted to the cell size d of
the cellular materials. For the regular and irregular hexagonal
geometries studied by Tekoglu and Onck, the best fits are
¢ ~Ld” and ¢ ~1d*, respectively. This agrees quite well with
the results of other studies that relate the length scale to the Rep-
resentative Volume Size (Kouznetsova et al., 2004b; Gitman et al.,

2004, 2005, 2007a) - as discussed in Section 4.1, all these studies

suggest that > = LI ;.

e

0.2 0.4 0.6 0.8 1
X [mm]

0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1
x [mm]

Fig. 9. Gradient elasticity with acceleration gradients - profiles of the strain components along the line y = H for Fig. 8(a) in the left column and Fig. 8(b) in the right column.
Line types indicate 8 (dotted), 16 (dashed), 32 (dash-dotted) and 64 (solid) elements in the x-direction.
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Fig. 10. Dynamically consistent gradient elasticity - profiles of microscopic strains (left) and macroscopic strains (right) along the line y = H for Fig. 8(a). Line types indicate 8
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Fig. 11. Dynamically consistent gradient elasticity - profiles of microscopic strains (left) and macroscopic strains (right) along the line y = H for Fig. 8(b). Line types indicate
tying the normal displacement components on the boundary (dotted), tying both displacement components on the boundary (dashed), or leaving the macroscopic

displacement unconstrained (solid).

Remark 11. Note that the definition of the length scale given by
Tekoglu and Onck (2005) differs by a factor 1+/2 compared to the
one used in Eq. (110); that is, the length scale ¢, used by Tekoglu
and Onck is related to the length scale ¢ in Eq. (110) via 2 = 1 /2.

6.2.2. Square unit cell with square hole
The first numerical size effect example is the square unit cell
with square hole as depicted in Fig. 12, which under the given

boundary conditions can be thought of as the Representative Vol-
ume Element of a tensile plate with periodically spaced holes.
The dimensions of the hole are related to the dimensions of the
unit cell through a proportionality factor & = 1. The Young’s modu-
lus E = 1000 N/mm?, the Poisson ratio v =0.25 and the specimen is
modelled with a plane stress assumption. The imposed displace-
ment is scaled with the dimension L such that the nominal vertical
normal strain g™ = /L = 0.01, which leads to a nominal vertical
normal stress g,o™ = 10.67 N/mm?. The tested range of unit cell



1986 H. Askes, E.C. Aifantis/International Journal of Solids and Structures 48 (2011) 1962-1990

u

(1-a)L
’L aL
p—————————————
al 1—a)L

Fig. 12. Square unit cell with square hole - geometry and loading conditions.

dimensions is L € [0.25,0.5,1,2,4,8] mm. The material length scale
parameter is taken as ¢ = 0.1 mm. Following the recommendations
for dynamics (Askes et al., 2008c; Bennett and Askes, 2009) the fi-
nite element size should be related to the magnitude of the length
scale parameter. We have taken the element size roughly a third of
the length scale parameter in the simulations with gradient elastic-
ity. However, we have also carried out simulations with classical
elasticity; we have distinguished here between analyses where
the element size is constant (and equal to the analyses with gradi-
ent elasticity) and analyses where the element size scales propor-
tionally with the geometric dimensions of the specimen.
We define a stress ratio as

nom
stress ratio = 2 (118)
Gmax
W

where g} is the vertical normal stress at the corner of the hole as
retrieved from the finite element analysis. This stress ratio quanti-
fies the stress concentration at the corner and is thus an indicator
for the strength of the specimen: the lower the stress ratio, the low-
er one would expect the strength of the specimen to be. In Fig. 13
the stress ratio is plotted in a double-logarithmic scale against the
specimen dimension L (normalised with the material length scale ¢).

In classical elasticity, singularities are expected to appear at the
corner of the hole where the stress is sampled. It then depends on
the used finite element mesh (element size as well as polynomial
degree of the shape functions) to what extend the singularity can
be captured. If the element size is taken proportionally to the spec-
imen dimension L, each finite element model is a perfectly scaled
version of all other finite element models. As a consequence, the
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Fig. 13. Square unit cell with square hole - stress ratio versus specimen size for
classical elasticity and gradient elasticity.

same stress distribution and the same stress ratio of Eq. (118)
are expected. This is confirmed by the horizontal line in Fig. 13.
On the other hand, if the finite element size is constant, irrespec-
tive of the size of the specimen, the larger specimens will have a
relatively better resolution of the finite element mesh and thus
provide a better approximation of the stress singularity. As a result,
the stress ratio decreases with increasing specimen size if a con-
stant element size is used.

In contrast, the singularities at the corner are removed when
gradient elasticity is used. For the smaller specimen sizes, the
material length scale ¢ is of the same order of magnitude as the
dimension of the hole, and the result is an extreme smoothing of
the stresses across the entire specimen. Therefore, the stress at
the corner of the hole differs hardly from the nominal stress, and
stress ratios very close to 1 are obtained. For the larger specimen
sizes, there is some smoothing of the stresses through the gradient
dependence, but a significant stress concentration is still present at
the corner of the hole. Thus, stress ratios well below 1 are obtained.

6.2.3. Indentation

Next, we simulate an indentation test as shown in Fig. 14. A
wedge-shaped indenter, assumed to be rigid, is pressed into a spec-
imen of gradient-elastic material. The inclination angle of the in-
denter is set by a parameter «, and the interaction between the
indenter and the gradient-elastic specimen is simulated with a
simple contact algorithm. For symmetry reasons, only the right
half of the problem is analysed. The prescribed displacement of
the indenter is it = L/4a. The constitutive parameters of the gradi-
ent-elastic material are E=5000N/mm? v =1 and ¢=0.1 mm

| L/4a
L
y
L« i
L/4 3L/4

Fig. 14. Indentation test — geometry and loading conditions.
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Fig. 15. Indentation test - stress ratio versus specimen size.
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within a plane strain analysis. For the geometry, a range of speci-
men dimensions have been used ranging from L=0.2 mm to
L=10 mm.

To obtain an indication for the strength of the specimen we
use again Eq. (118), where now ¢,;°™ = —E/4a and o} is evalu-
ated at the tip of the indenter. In Fig. 15 we have plotted the
stress ratio against the normalised specimen size. The curve has
been obtained with o =2, but with the specific definition of the
stress ratio the results are independent of the indenter’s inclina-
tion angle. Firstly, it is noted that the stress ratio is finite, not sin-
gular as it would be in classical elasticity. For small values of L/¢
the stress concentration at the indenter tip are smoothed signifi-
cantly through the inclusion of strain gradients. For larger values
of L/¢ this effect of the strain gradients becomes less and less
dominant.

7. Conclusions

In this paper, we have discussed various aspects of gradient
elasticity. We have focussed on Laplacian-based gradient elasticity
theories, that is, theories whereby the higher-order terms are pro-
portional to the Laplacian of the corresponding lower-order terms.
Furthermore, our emphasis has been mainly on mono-scale theo-
ries, whereby the kinematic variables relate to a single scale of
observation. The higher-order terms may be strain gradients or
acceleration gradients, which stem from additions to the potential
energy density and kinetic energy density, respectively. The most
important observations are summarised below.

e We have started our overview with Mindlin’s theory of gradient
elasticity. This particular model has five additional constitutive
parameters associated with strain gradients and two associated
with acceleration gradients, but in the Laplacien-format of the
Mindlin theory the equations of motion have three independent
length scales: two related to strain gradients (also referred to as
stiffness-related length scales) and one related to acceleration
gradients (i.e. an inertia-related length scale).
For static applications, a single independent length scale seems
enough. The most powerful reduction of the Mindlin model in
statics is the 1992 Aifantis model, whereby the two length
scales mentioned earlier are equal to each other. The Aifantis
theory has been shown, on many occasions, to be effective in
the removal of singularities and the description of size-depen-
dent mechanical response. We do not claim that other simplifi-
cations of the Mindlin theory may not be equally effective;
however, the 1992 Aifantis theory has the additional, and signif-
icant, advantage that finite element implementations are sim-
ple and straightforward.

e For dynamic applications, the inclusion of the inertia-related
length scale is essential to describe dispersion. Without this
term, phase velocities will either become unbounded or imagi-
nary for the larger wave numbers. The inclusion of one or two
independent stiffness-related length scales of the Mindlin
model depends on the application. If the two stiffness-related
length scales are equal to each other (as in the 1992 Aifantis
theory), then the dispersion relations of compressive waves
and shear waves are the same; if the two stiffness-related
length scales are unequal the dispersion of compressive waves
is quantitatively different from that of shear waves.

e The dynamically consistent format of gradient elasticity, which
includes acceleration gradients as well as strain gradients, has
also been shown to provide a unification of the two gradient
elasticity theories of Eringen and Aifantis.

e There are still many attempts in the recent literature to model
dynamic behaviour of microstructured materials with unstable

gradient elasticity theories, e.g. (Yang and Guo, 2005; Wang and
Hu, 2005; Every, 2005; Every et al., 2006; Wang et al., 2008;
Maranganti and Sharma, 2007; Jakata and Every, 2008). Such
theories are usually equipped with strain gradients but not with
acceleration gradients. We have reviewed two studies from the
recent literature where such gradient elasticity theories were
used, and we have also suggested simple and straightforward
improvements: the unstable strain gradients can be translated
into stable stress gradients or stable acceleration gradients,
without compromising the capacity to predict wave dispersion.
In this paper, we advocate the use of acceleration gradients or,
for greater flexibility, the combined use of acceleration gradi-
ents and (stable) strain gradients.

The required identification and quantification of the additional
constitutive parameters, usually cast as certain material length
scale parameters, is normally perceived as a drawback of using
gradient theories. We have provided an overview of analytical,
numerical and experimental procedures by which the length
scale parameters can be quantified or expressed in terms of
other parameters that are more easily quantified.

Another perceived drawback of using gradient elasticity theo-
ries is the lack of robust and efficient finite element implemen-
tations. However, much progress has been made in recent years.
We have given an review of a number of approaches and treated
in more detail certain formats of gradient elasticity that lend
themselves to simple and efficient finite element implementa-
tions. In particular, the 1992 Aifantis theory of gradient elastic-
ity, its operator split format due to Ru and Aifantis (1993) and
its extension to dynamics (Askes and Aifantis, 2006; Askes
et al., 2007) can be implemented efficiently using standard
finite element technology.

The removal of singularities from stress and strain fields has
historically been one of the main motivations to use gradient
elasticity. We have provided a few new results that demon-
strate the importance of using appropriate boundary conditions.
In statics, the Ru-Aifantis theorems can be applied on the level
of displacements, strains or stresses, which lead to different var-
iationally consistent boundary conditions. Singularities are
avoided if the Ru-Aifantis theorem is applied to strains or stres-
ses, see also (Askes et al., 2008b). In dynamics, we have used a
multi-scale reformulation of dynamically consistent gradient
elasticity, including strain gradients as well as acceleration gra-
dients, and it was shown that it is essential to include strain gra-
dients in order to avoid singularities — acceleration gradients
alone are not sufficient. However, the boundary conditions also
play an important role in the removal (or otherwise) of
singularities.

In contrast to classical elasticity, it is possible to simulate size-
dependent mechanical behaviour with gradient elasticity. This
has been demonstrated for a number of geometries, and in cor-
respondence with earlier results from the literature it has been
found that the gradient effects are most significant if the mate-
rial length scale parameter is of the same order of magnitude as
the dimension of the geometric object (hole, indentor or other-
wise) that triggers gradient activity.
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