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  A robust form of gradient elasticity theory introduced by the 
author at the beginning of the 1990s  [1]  and further estab-
lished and extended upon at the beginning of the 2000s  [2]  
has been used to eliminate strain and stress in dislocation and 
crack problems where classical linear or nonlinear elasticity 
and other forms of generalized continuum theories (gradi-
ent, nonlocal, or Cosserat type) fail to do so. This theory has 
also been used with success to interpret size effects observed 
in twisted microwires and bent microcantilever beams  [3] . 
As the higher-order stress and strain terms introduced in the 
constitutive equation of the aforementioned gradient elastic-
ity theory also require the introduction of additional math-
ematically consistent and physically reasonable boundary 
conditions, there was an initial hesitation to fully use the the-
ory for revisiting classical elasticity problems where physi-
cally unreasonable singularities persisted and observed size 
effects could not be captured. Nevertheless, the explosive 
progress in nanosciences and nanotechnology and the need 
for effective approaches to address nanomechanical prob-
lems in small volumes [e.g., microelectromechanical system 
(MEMS)/nanoelectromechanical system (NEMS) devices]
where standard mechanics tools used for macroengineering 
and microengineering applications do not suffi ce has induced 
an enormous publishing activity on the use of gradient elas-
ticity theory in modeling the mechanical behavior of nano-
objects (for a review, see  [4]  and references quoted therein) 
and in determining stress and strain fi elds in nanovolumes. 
In particular, the so-called Ru-Aifantis theorem  [5]  has been 
used to derive easy-to-use nonsingular expressions for the 
strain fi eld of the mode III crack problem, and these expres-
sions have been checked against corresponding fi nite ele-
ment calculations. Similar analytical expressions for mode 
III have been provided in  [6, 7] , and more recently, special 
solutions for mode I, which are valid under certain condi-
tions, were also listed in  [8]  (see also  [9] ). 

 These solutions for crack problems and the special condi-
tions for which they are valid, either exactly or as approxi-
mations, were not discussed so far, and corresponding results 
were kept unpublished in anticipation of additional fi ndings 
by the author ’ s students and collaborators, as well as by other 

researchers working on the topic. The purpose of the present 
note is to supplement the preliminary information released in 
 [6, 8]  (see also  [9] ) with some additional results and details 
that might be helpful to the material mechanics and fracture 
communities in evaluating the current status of gradient elas-
ticity theory in relation to crack singularities. This becomes 
particularly important in connection with experimental fi nd-
ings pertaining to nonsingular distributions of strain near 
crack tips and the development of new techniques to analyze 
displacements at the nanoscale  [10 – 13]  (see also  [14, 15] ). 

 Before we proceed with the stress/strain analysis of the 
aforementioned crack problems, we fi rst refer briefl y to sev-
eral recent articles that have dealt with this problem using gen-
eralized elasticity theories. These include earlier publications 
by the author and his coworkers [ 16 ,  17 , see also  18 ,  19 ;  20 , 
see also  21 – 24 ], as well as other contributors [ 25 , see also  26 , 
 27 ;  28 – 31 ], many of which  [29 – 31]  have used the author ’ s 
simplifi ed version of gradient elasticity model  [1]  given by the 
following Laplacian of strain modifi cation of Hooke ’ s law: 

   σ    ij    =  [  λ  (  ε    kk  )  δ    ij   + 2  μ  ε    ij  ]- c  ∇  2 [  λ  (  ε    kk  )  δ    ij   + 2 μ   ε    ij  ]. (1) 

 In several of these articles, the elastic singularities at the 
crack tip persist. For example, the analyses in  [29 – 31]  show 
that certain components of the stress and strain fi elds still 
remain singular, exhibiting a stronger singularity ( ∼  r  -3/2 ) than 
the classical one ( ∼  r  -1/2 ). In particular, the normal stress com-
ponent   σ   22  attains a positive (tensile) maximum value at some 
distance away from the crack tip and then becomes negative 
(compressive), going to negative infi nity as it approaches the 
crack tip. The physical meaning of these solutions will be dis-
cussed elsewhere. The modest purpose of this note is to show 
that it is possible to obtain explicit solutions for the stress 
and strain fi elds, which remain nonsingular as the crack tip 
is approached. Such nonsingular behavior for the stress fi eld 
has also been discussed earlier by Elliot  [32]  and Eringen 
 [33]  (see also  [34 – 38] ) based on atomistic calculations and 
nonlocal elasticity, respectively. The main advantage of the 
expressions given below is that they are easy to use for revis-
iting a large number of engineering problems in linear frac-
ture mechanics and for checking their validity against related 
experimental measurements. 

 Let us start with the strain fi eld analysis for a mode III crack. 
The well-known classical elasticity asymptotic expressions for 
the nonvanishing strain components   

0
3αε  (  α    =  1,2) read 
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 where ( r ,  θ  ) denotes the usual polar coordinates from the 
crack tip,   IIIK aτ π∞=  is the stress intensity factor,   τ    ∞   denotes 
the antiplane shear stress applied at infi nity and  a  is the half 
crack length. Then the gradient elasticity solution for the 
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component   ε   23 , for example, is determined from the inhomo-
geneous Helmholtz equation  [2]  
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 By setting   ( ) ( ) ( )23 III 2 2 cos 2K G E rε π θ=  in Eq. (3), it follows 

that the unknown function  E ( r ) satisfi es the differential equation 
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 whose solution is 
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 By requiring that   
0

23 23ε ε=  for  r  →  ∞  and   ε   23   =  0 for  r  → 0, we 

conclude that  B   =  0 and  A   =  -1; thus, 
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 and a similar expression is obtained for   ε   13 , i.e., 

   
( )-III

13 - sin 1- .
22 2

r cK
e

G r

θ
ε

π
=

 
(6b) 

 Motivated by these fi ndings and adopting a more gen-
eral gradient elasticity model by replacing   σ    ij   in Eq. (1) with 
  2-ij ij ijcσ σ σ= ∇  as discussed in  [2] , it turns out that the corre-
sponding stress components (  σ   23 ,  σ   13 ) for mode III read 
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 Analogous results can be derived for mode I. In particular, 
the governing equation for the stress fi eld turns out to be 

   
2 0- ,ij ij ijcσ σ σ∇ =

 
 (8) 

 where   
0
ijσ  is the classical elastic stress fi eld. For example, 

the   σ   22  component is determined from the inhomogeneous 
Helmholtz equation 
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 where   IK aσ π=  is the usual stress intensity factor for mode 

I (  σ   is the applied tensile stress and a is the half crack length) 
and ( r ,   θ  ) are the usual polar coordinates with origin at the 
crack tip. By writing the angular component of the right-hand 
side of Eq. (15) as [(5/4)cos(  θ  /2)-(1/4)cos(5  θ  /2)], inserting 
this into Eq. (9), splitting this equation in two parts, sepa-
rately solving the two resulting inhomogeneous Helmholtz 

equations using superposition, and fi nally taking into account 
the boundary conditions   0

ij ijσ σ→   as  r  →  ∞  and  r  → 0, it turns 
out that, under certain conditions, the relevant nonsingular 
solution can be cast in the form 
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 Alternative forms of the mode I solution can be obtained 
if one may not insist on the vanishing of   σ   22  at the crack tip. 
One form of solution with such property turns out to be com-
posed from the usual elastic solution and an additional term 
that varies as  r   -3/2 , thus recovering the form obtained by other 
authors (e.g.,  [31]  and references quoted therein). A detailed 
discussion on the various forms of solutions at the crack tip 
(singular or not) and their relevance to experimental observa-
tions is postponed for the future. 

 It is pointed out that the above solution for mode I, which 
was also listed in  [8]  (see also  [9] ) is only valid as an approxi-
mation of the exact asymptotic expression for the stress fi eld, 
which is more complex than the one given by Eq. (10). This 
is not the case for the mode III solution given by Eqs. (6) and 
(7) for the strain and the stress fi elds, respectively. The degree 
of approximation used for obtaining the simplifi ed expression 
given by Eq. (10) for   σ   22  and other analogous expressions for 
the rest of stress and strain components will be discussed in a 
future publication. A detailed discussion of these results and 
the ones listed below can be found in  [39] . It turns out that, 
by adopting the same procedure as the one that led to Eq. (10) 
and using Mathematica (Wolfram Research, Champaign, IL, 
USA), the exact solution for   σ   22  reads 

   
( )

θ
σ

π

θ

−

−

⎡ ⎛ ⎞
= ⎢ ⎜ ⎟⎝ ⎠⎢⎣

⎤⎛ ⎞
+ + + + ⎥⎜ ⎟⎝ ⎠ ⎥⎦

2I
22 5/ 2

2 2

5cos 1-
24 2

5
-cos -6 2 3 3

2

r

c

r

c

K
r e

r

c r e c cr r

 
(11) 

 The corresponding expressions for   σ   11  and   σ   33  read 
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 and 

   

-
I

33

2
cos 1- .

2

r

cK v
e

r

θ
σ

π

⎛ ⎞
= ⎜ ⎟⎝ ⎠

  

(13) 

 Finally, a series expansion in the above formulas for  r  → 0 
gives the following asymptotic forms for the fi nite stress com-
ponents near the crack tip 
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 It thus turns out that, strictly speaking, only component   σ   33  
and hydrostatic stress   σ   h   =  1/3(  σ   11  +   σ   22  +   σ   33 ) for mode I have the 
exponential dependence shown in Eq. (10), which is exact for 
mode III as shown in Eq. (7), but it holds only as an approxi-
mation of convenience for mode I. More details on all these 
issues and corresponding plots for all stress and strain compo-
nents for modes I, II, and III will be provided in a forthcoming 
article  [40] .  
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