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Abstract. Non-singular solutions for dislocation and disclination fields have recently been 
obtained by the author and his co-workers by using a robust model of gradient elasticity theory. 
These solutions, whose form is simple and easy to implement, are obtained by reducing the 
gradient elasticity problem to a corresponding linear elasticity boundary value problem through 
the solutions of an inhomogeneous Helmholtz equation where the source term is the classical 
singular solution. The Laplacian in the Helmholtz equation, involving the extra gradient 
coefficient, produces a new term in the gradient solution which asymptotically approaches the 
negative of the classical elasticity solution on the dislocation line. Thus, the singularity is 
eliminated and an arbitrary estimate of the dislocation core size introduced in classical theory, 
is not required. These predictions are tested against atomistic calculations and their 
implications to various dislocation related configurations are discussed. Due to the simple and 
elegant form of these solutions, it is hoped that they will be useful in discrete dislocation 
dynamics simulations. 

1.  Introduction 
Higher-order elasticity theories have been introduced as early as in the 18th Century (Cauchy, Voigt) 
and later in the 19th Century (brothers Cosserat) as discussed briefly in [1]. In the 1960’s-70’s period, 
a large number of significant contributions were made in this field (Toupin, Rivlin, Mindlin, Kroner, 
Kunin, Eringen) with most notable among them, for the present purposes, the 1965 Mindlin’s strain 
gradient theory. For a literature account of these early contributions the reader may consult [1] and the 
references quoted therein. These theories, in their most general form, included a prohibitively large 
number of constants (sometimes over 1000) and the solution of boundary value problems was not a 
realistic task to undertake. Most of them were worked out for wave propagation studies and for 
modeling dispersion effects. Even the famous - and still popular today - Mindlin’s simplest theory 
involved 5 new constants which were not only difficult to evaluate but they were also competing each 
other without being able, among other things, to eliminate singularities from dislocation fields. 

It was not until 1992 that this task was conveniently accomplished through the author’s gradient 
elasticity theory (Gradela), involving only one new extra constant c with a direct physical 
interpretation. Determination of this constant (commonly known as gradient coefficient) from 
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atomistic models, as well as experimental data from wave propagation, size effect and finite 
dislocation and crack stress/strain field studies is possible, even though much more work in this 
direction is required. Since the author’s 1992 paper [1] (for a recent review see also [2]), over 500 
articles have been written in the 1995-2008 period using Gradela as a basis. Nevertheless, the solution 
of boundary value problems remained as a difficult task in most of these works, due to the complexity 
of the boundary conditions derived from variational formalisms. 

A simple method to use Gradela for the solution of boundary value problems is briefly outlined in 
the next section. 

2.  Gradela’s Robust Version 
Following [2], we outline here the basics of Gradela as follows: It turns out that the stress and strain 
fields ( , )   can be determined from the inhomogeneous Helmholtz equations 

2c        ;       2c      , (1) 
where ( ,   ) are the macroscopic fields and ( ,  ) are the local gradient-dependent fields. The 

macroscopic fields ( ,   ) are determined from the classical constitutive equation of Hooke’s law 

 tr 2G  1     , (2) 

where ( ,G ) are the Lamé constants. The derivation of Eq. (1) from the general gradient elasticity 
theory is established by adopting a procedure similar to that of Ru and Aifantis [3] but a more robust 
and direct procedure is possible as discussed elsewhere.  

The solution of boundary value problems now proceeds as follows: First we determine ( ,  ) 
from classical elasticity and the corresponding boundary value problem. Next we determine ( ,  )  
from the inhomogeneous Helmholtz equation with “self-consistent” boundary conditions; a task which 
will also be discussed, in general, elsewhere. In the next section we give a direct application of the 
method to determine the stress and strain field of a screw dislocation. 

3.  Screw Dislocation 
On the basis of Eq. (1) we write the corresponding expression for yz  component of the strain tensor 

for a screw dislocation within the Gradela framework, i.e. 
2 0

yz yz yzc      , (3) 

and express, furthermore, the solution yz  as the sum 0 extra
yz yz yz     . The classical term 0

yz  is found 

from Hooke’s law of Eq. (2) and the corresponding elastic boundary value problem, as 
20

yz (b 4 )(cos r) (b 4 )(x r )      , where b denotes Burgers vector magnitude and (r,θ) are the 

usual polar coordinates. Upon substitution of the preceding two expressions in Eq. (3) we obtain 
extra extra
yz yzc 0    . (4) 

In general, the above (homogeneous) Helmholtz equation admits solutions, through the separation 
of variables technique, of the form 

 extra
yz n n

r r
Acos n Bsin n I K

c c

    
           

    
. (5) 

where (I,K) denote modified Bessel functions of the first and second kind, respectively, and (Α,Β,Γ,Δ) 
are constants. By imposing the condition extra

yz
r
lim 0


  , we have 0  . Moreover, in view of the 

symmetries involved in the present configuration of a screw dislocation, we may set B=0 and n=1. 

Next we note that the condition yz
r 0
lim 0

   implies  A b 4 c    , since  1

r 0
lim K r c c r


 . 

Thus, we find that extra
yz 1[ b (4 c)]K (r c)cos      and, therefore, 
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yz 1 yz 12

b x x r bcos 1 1 r
K or K

4 r 4 rr c c c c

      
                  

. (6) 

We note again that for r 0 ,  1K r c c r  and, thus, yz  vanishes on the dislocation line. 

Similar expressions we obtain easily for xz  and the corresponding stress components, as well as for 

the strain energy. 

4.  Dislocation Self-Energies 
Partial dislocations in Wurtzite GaN were considered [4] though continuum and atomistic calculations 
by using respectively gradient elasticity and a modified Stillinger-Weber potential of the form 

      1

ij
4 r d

ij ij
2 ij

ij

r 1 e , r d
V r ; 2 body term,

0 , r d

          
 

 



k
 (7) 

and 

       
1 1

ij ik
2r d r d

3 ij ik ijk ijk 0V r , r , k e cos ; 3 body term
           , (8) 

where the various coefficients are constants and the rest of the symbols have their usual meaning (see, 

for example, [4c] for details of atomistics). Figure 1a shows a partial eb 1 6 2023  edge dislocation 

in GaN. The GaN structure involves 2 hcp superlattices with lattice constants 
o o

a 3.2A, and a 5.2A  . The far displacement field was computed by using anisotropic elasticity and 

the calculation of energies was established first for each atom ( iV ) and then for a supercell 
( S iV V ) involving 16000 atoms. The quench molecular dynamics method of Verlet [5] was 

employed with periodic boundary conditions and the defect energy was calculated from the formula 
S S

d Dislocated PerfectW V V  . Figure 1b shows the simulation results for the self-energy W stored in a region 
bounded by a cylinder of radius R for an edge partial dislocation delineating a I1 stacking fault formed 
by a precipitated interstitial loop. [Large symbols denote N-polarity, whereas small symbols denote 
Ga-polarity.] 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1: a)  GaN dislocated supercell; b) Self-energy W stored in a cylindrical region of radius R for 
edge partial dislocations 
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Figure 2 shows the plots of the corresponding analytical results obtained from Gradela based on the 
relevant strain energy expression. This expression is non-singular and reads 

 
2

E
0 1 2

Gb R 1 R c R 2c
W ln 2K 2 K ,

4 1 2 R R2 c c c

                       
 (9) 

which for R   reduces to the simpler expression 
 

2
EGb R 1

W ln
4 1 22 c

 
    

    
, where 

E 0.577...   denotes the Euler’s constant. [It should be noted that the term 1 2  in this last expression 
and a corresponding term in Eq. (9) should be replaced, in general, with a term which depends on the 
Poisson’s ratio. This term is approximately 1 2  for the model of Eq. (1) for an edge dislocation in the 
limiting case of R  .] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Comparison of self-energy calculated from Gradela and classical elasticity for three edge 
partial dislocation configurations 

 

From these results we note that the gradient coefficient c (or internal length c ) varies in the range 
o

2c 0.2 2.2 A  , and the following invariant relations also hold: 
o

core 0W c r 0.33 0.008 eV A  , 
o

gW (b) c b 0.3 0.008 eV A  . [More details on experimental and atomistic simulation 
considerations contained in this and the next section can be found in the articles listed in [4] as 
obtained by the electron microscopy group of Aristotle University.] 

5.  Dislocation Cores and Dislocation Density Tensor 
Recently, high resolution transmission electron microscopy and image processing, along with circuit 
mapping techniques were used to obtain, through a Geometric Phase Analysis (GPA), dislocation core 
configuration. GPA enables to record the displacement fields through which we can calculate the 
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corresponding deformation/distortion fields and, therefore, to compare the relevant strain components 
and the Dislocation Density Tensor (DDT) through the familiar expression: 

0 outside core ,
;

0 including core.


   

    (10) 

It is well known that elasticity theory leads again to singularities. For example, for a screw 
dislocation, the appropriate component of the dislocation density tensor reads    z zb x y    , 

where zb  is the Burgers vector. 
For the same dislocation configuration, application of Gradela in the form 

2 2
1 1; c       , gives 2

z z 1 0 1b (2 )K (r )    ; which is still singular, but smoother than 
the �-function. 

To obtain results enabling comparison with experiments we use a modified higher-order Gradela 
model which reads  

2 2 4 4
1 2          .  (11) 

The corresponding solution for the appropriate component of the dislocation density tensor is now 
obtained as  

2 2
z z 1 2 0 1 0 2(b 2 )(1 c c )[K (r c ) K (r c )]      ;    2 2 2 2 2 4

1 2 1 1 2 2c c , c c    .  (12) 

It then turns out that for 1 2 2c c   , we have 

z
z 13

2 2

b r r
K

2 2

 
      

. (13) 

This suggests that for 2
z z 2r 0 b (4 )    , i.e. the relevant component of the dislocation density 

tensor is finite on the dislocation line. Figure 3 is borrowed from recent work of the author and his co-
workers [4b]. It shows a good comparison between the predictions of Gradela and the experimental 
measurements, as depicted in the companion Table. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: a) HRTEM experimental image of an edge partial dislocation bounding a I1 SF (1210 
projection). The intensity peaks corresponding to the positions of atomic columns have been marked 
with dots. The dislocation core (5/7- or 12-atom rings configuration) which has been identified by 

both GPA and peak finding is indicated; the stacking sequence . . . ABABCAC. . .across the SF is also 
indicated. b) Corresponding dislocation density tensor components ax and ay (3D representations and 

in-plane projections) obtained by GPA with   g = 1010 and g = 0002, respectively, using masks of 
radius equal to g/4 around the Bragg spots in Fourier space 

a) b) 
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Table: DDT Measurements -     

Dislocation core 5/7 ring (nm) 8 ring (nm) 

Experimental 0.29 0.31 

Calculated 0.25 0.31 

6.  X-ray Line Profile Analysis 
The Fourier Transform (FT) of the line profile, designated by A(L), is given, according to Warren and 
Averbach [6], by the expression  

2 2 2 2
s Llog A(L) log A (L) 2 g L     , (14) 

where L is the Fourier variable, g is the absolute value of the diffraction vector and sA  is the size 

Fourier transform, while 2
L  denotes as usual the mean square strain. For random atomic 

displacements 2
L  is constant. For randomly distributed dislocations Krivoglaz and Ryaboshapka [7] 

obtained the expression 

   22
L b 2 Clog D L    , (15) 

i.e. the K-R formula valid for small L values only (D is the crystallite size,   is the dislocation 
density). Wilkens [8] improved the K-R formula by calculating the mean strain for the entire L range. 
The same logarithmic term as in the K-R formula holds but it does not diverge with crystallite size, 
depending on a correlation length parameter *

eR  outsize of which there is no dislocation interaction 

( *
eR  denotes the radius of a tube with dislocation density  ). 
According to the continuum theory for linear deformations, the longitudinal strain parallel to the 

direction of g is  

 
L 2

L 2

1 L L 1
L, s ds

L 2 2 L


      
                          g

g g g g g g g
r u r u r r

g g g g g g g
 (16) 

where u denotes displacement and   strain, while the mean square strain is found from the relation 

  22
,L

V V

L, dV dV     g g r . (17) 

In the case of the (100) reflection, we obtain 

   

   

L 2

xx

L 2

xx

1
L, s ds for any  L 0,

L

and  

0,   for  L = 0 .



    

  

g x

g

r r e

r r

 (18) 

The strain function for edge dislocations can be computed by using Gradela (e.g. [2]). It turns out, 
in particular, that the xx  component of the strain tensor   corresponding to an edge dislocation with 

Burgers vector b xb e  is 

 
 

     
2 2

2 2 2 2
xx 1 24

1 2 r 2xb b
y y y r 3x y

4 1 2 1r

                   
, (19) 
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where    1 1 2 24 23

1 1 2c
K r c , K r c

r rr c

       
,  2 2 2r x y  . Figure 4 depicts the variation 

of 2
L  with respect to logL as obtained through the classical model and a logarithmic approximation, 

through the gradient model, and through measurements for polycrystalline Cu. The crossing of the 
experimental curve over the Gradela curve is most likely due to the experimental uncertainty. The 
more accurate data shown in Figure 5 for a Cu single crystal result to an experimental curve which 
seems to have the same trends as the Gradela theoretical curve. The X-ray line profile for the 
deformed Cu single crystal given in Figure 5a depicts the measured line profile of the (111) reflection 
of a deformed single crystal Cu sample: the (count) intensity I is plotted as a function of 0K K , 

where  K 2sin    and 0K  is the K value at the exact Bragg position. The intensity scale is 

logarithmic. The corresponding prediction from Gradela is given in Figure 5b, i.e. the mean square 

strain 2
L  as a function of logL, as determined experimentally for deformed Cu single crystal by FT. 

It is noted that 2
L  obtained this way is not singular, but it tends to a finite value for L 0 . These 

and the rest of the results listed in this section, which are also reviewed in a recent article by the author 
and co-workers [9], will be discussed in detail in [10]. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Variations of 2
L  with respect to logL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: (a) X-ray line profile for a deformed Cu single crystal determined experimentally;                     

(b) Corresponding 2
L  graph determined theoretically from Gradela 
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The results depicted in Figures 4 and 5 suggest that careful measurements seem to validate the 

predictions of Gradela. To support this further we provide in Figures 6 and 7 results pertaining to 
polycrystals with ultrafine grain size produced by the ECAP method. As already mentioned, some of 
these results are included in a recent article on applications of gradient theory [9], but an extended 
discussion focussing on the application of Gradela to X-ray line profile analysis is forthcoming [10] 
where details on the relevance of Figures 6 and 7 will be given. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: a) X-ray line profile for ECAP Cu polycrystal; b) Corresponding 2
L  graph 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: The effect of Background (bg) I vs. 0K K  data on the 2
L  vs. logL plots 

 

7.  Revisiting Dislocation Theory 

7.1.  Other Non-singular Dislocation Models 
It is pointed out that non-singular dislocation models have been proposed in the literature before. 
Reference is made, in particular, to the classical Peirls-Nabarro atomistic model, to Li’s hollow 
dislocation model, and to a more recent Cai/Arsenlis/Weinberger/Bulatov dislocation core-spreading 
(or b-spreading) model [11].  
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It turns out that the shear stress  xyσ (x,0) Gb 2(1 ν)  on the glide plane under the assumption of 

same peak stress for these models varies according to  the following distributions: 
2 2 2x x (a 4(1 ν) )     for the Peirls-Nabarro; 3 3

01 x r x  for Li’s;  3
21 x 4c x (2 x) K x c   

for Gradela; 2 2x (x α )  for Cai/Arsenlis/Weinberger/Bulatov (CAWB) models (with 0r 0.6a , 
α 0.76a  where a denotes the lattice parameter). A comparison between the aforementioned non-
singular dislocation models is given in Figure 8a. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 8: a) Comparison of various non-singular dislocation models (for the same maximum stress); 
b) Qualitative plot of the dimensionless stress quantity G  over the dimensionless grain size 

quantity d b  

7.2.  Image Force – Inverse Hall Petch Behavior 
By following the same procedure as in Section 4, the self-energy per unit length of a screw dislocation 
within the gradient theory of micro/nanoelasticity turns out to be given by the expression 

2
E

0
Gb R R

W ln K
4 2 c c

  
        

, (20) 

where R is the radial coordinate defining the material volume surrounding the dislocation line 

considered, E   is the Euler constant, 0K   denotes the appropriate Bessel function, and the rest of the 
symbols have their usual meaning. It is emphasized again that the self-energy is not singular as in 
classical elasticity and the necessity of introducing an arbitrary dislocation core parameter for 
dispensing with such singularity is eliminated. In fact, the gradient coefficient c (its square root 
denotes the relevant material internal length) provides a new possibility to account for dislocation core 
effects as discussed in previous sections, as well as in [2] and the related bibliography listed therein.  

On using the above gradient modification of the self-energy in conjunction with a standard image 
force argument advanced in [12] (see also [13]) based on classical elasticity theory, we obtain the 
following relation 

2

1
Gb 1 1 d

b K
2 d 2 c 2 c

  
       

, (21) 

for a dislocation sitting at the center of a grain of diameter d; the second term of the l.h.s. involving the 
Bessel function is due to the gradient elasticity effect.  

The (qualitative) plot of the dimensionless stress quantity G over the dimensionless grain size 

quantity d b  (Figure 8b) has a rising and a descending branch with a maximum occurring at a critical 
grain size at the nanometer regime. Thus, in principle, this plot may be used for establishing another 

 
 

xy x,0

Gb 2 a 1


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interesting interpretation of the “standard” and “inverse” Hall-Petch behavior as it will be discussed 
elsewhere.  
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