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Abstract-A simplified physical picture is extracted from the many complicated processes occur- 
ring during plastic deformation. It is based upon a set of continuously distributed straight edge 
dislocations, the carriers of plastic deformation, moving along their slip plane, interacting with 
each other and the lattice, multiplying and annihilating. The principles of continuum physics, 
that is the conservation laws of mass and momentum, and results from discrete dislocation 
modelling are then employed to analyze the situation and deduce a dosed set of relations describ- 
ing the evolution of deformation and the associated forces that bring it about. A simple method 
is suggested for extending these relations to macroscales. This way, current phenomenological 
models of plasticity are physically substantiated. Moreover, a framework is provided for rig- 
orously constructing small and large deformation theories of plasticity. Finally, a new possi- 
bility is made available for capturing the salient features of the heterogeneity of plastic flow 
including the wavelength of persistent slip bands, the width of shear bands, and the velocity of 
Portevin-Le Chatelier bands. 

I. INTRODUCTION 

Plastic deformation, as any other physical process, can be best understood by consider- 
ing and properly analyzing the underlying mechanisms responsible for it. While several 
such mechanisms, including twinning, void growth, grain boundary sliding and phase 
transformations, may be envisioned, we single out the most important and simplest of 
them all: dislocation motion and evolution. Dislocations, however, are complex geomet- 
ric objects and they reveal themselves indirectly through the electron microscope as 
"edges," "screws," "loops," "dipoles," "tangles" or "forests." Moreover, they do not just 
travel carrying deformation along, but they can also stop, multiply and annihilate. Their 
spatial distribution evolves neither isotropically nor uniformly. Instead, they move along 
specific slip planes in preferred slip directions, and they exhibit an ability to organize 
themselves in periodic layers, hexagonal and other ordered structures, in analogy to liv- 
ing systems. Such a trend to self-organization or symmetry breaking is a result of the 
competition between spatial gradients modelling dislocation motion/interaction, and 
nonlinearities modelling dislocation generation/annihilation. 

It is thus evident that the development of a physical theory of plastic deformation is 

*It is an honor and pleasure to have been given the opportunity to dedicate this article to Aris Phillips, 
not only because through his own research he set a permanent example for young scientists, in general) but 
also because he was a constant supporter of my earlier work on the mechanics and physics of diffusion in 
solids) in particular. In line with the great Greek tradition) he was an advocate of geometry) but he did not 
fail to recognize the importance of the analysis of the physical processes that bring geometric changes about. 
In fact, at the time that the majority of the mechanics journals showed hesitation towards new approaches 
to stress-assisted diffusion, environmental fracture and dislocation-based plasticity theories, Phillips' "Acta 
Mechanlca" became a vehicle for the dissemination of such ideas and helped their growth and maturity. 
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faced with two difficult problems: consideration of the complex geometries involved, 
and analysis of the nonlinear processes governing the evolution of dislocated state. Over 
the last fifty years much knowledge has been accumulated concerning the mechanical 
behavior of  "single dislocations" or "dislocation arrays" within the limitations of lin- 
ear theory of elasticity (see, for example, HmTH & LOTHE [1982]). Similarly, substan- 
tial progress has been accomplished in the understanding of the group behavior of 
"continuously distributed dislocations" in an attempt to derive a dislocation-based theory 
of plasticity (see, for example, MURA [1982]). In these studies, considerable emphasis 
was put on the geometric details pertaining to dislocation configurations, but less atten- 
tion was paid to the physics of dislocation reactions and inelastic forces associated with 
their motion. In fact, continuous distributions of dislocation theories seem to require 
an a priori  specification of quantities such as the dislocation density and flux tensors 
in order to draw conclusions for the induced plastic deformation. 

In parallel to the rigorous geometric approaches for both discrete and continuous dis- 
tributions of dislocations, there has been another set of developments, commonly known 
as "dislocation dynamics" (see, for example, Gn.M_h~ [1969]). It is exclusively concerned 
with one-dimensional deductions, but it does not require an a priori specification of the 
dislocation distribution in order to calculate plastic strains. Despite the simplifications 
introduced in this approach, which is most popular among solid state physicists, it seems 
that it correlates well with experimental data pertaining to one-dimensional tests. Thus, 
while in one dimension it can predict interesting phenomena such as upper and lower 
yield points and describe complicated stress-strain graphs, it is not designed for ana- 
lyzing three-dimensional situations and guiding the construction of macroscopic theories 
of plasticity. 

The conclusion that dislocation theory has helped greatly in the qualitative understand- 
ing of the microscopic features of plastic deformation, but not as much in guiding the 
derivation of macroscopic plasticity relations, is apparent in several contributions; see, 
for example, the review article by Ronald de Wit, contained in a recent volume edited 
by AIFANTIS & HIRTH [1985]. In the same volume some new approaches to dislocations 
including "gauge theories" and "field theories of defects" were also discussed, but, again, 
their applicability to plasticity was not of concern. 

It appears from the above discussion that there currently exists a great deal of pessi- 
mism concerning the plausibility of  utilizing dislocation concepts to construct macro- 
scopic theories of plasticity. The purpose of the present article is to advance a less 
pessimistic point of  view and establish results that, in this author's opinion, deserve 
attention not only in their own right but also in connection with generating a more 
optimistic picture about the possibility of deriving useful plasticity relations directly from 
dislocation considerations. This is attempted by searching for a compromise between 
the "geometric" theories of continuous distributions of dislocations and the "physical" 
theories of dislocation dynamics. In contrast to the continuously distributed dislocations 
approach, there is no need now to a priori  assume the dislocation density and flux ten- 
sors or to neglect the important process of dislocation generation and annihilation. It 
is necessary, however, to assume much simpler geometries in order to extract useful 
information from such types of complex physical analyses. Also in contrast to the dis- 
location dynamics approach which cannot escape its one-dimensional setting, it is now 
possible to discuss dislocation phenomena of even greater complexity within a three- 
dimensional framework. While such a new approach to dislocations was suggested a few 
years ago (see, for example, Aw~t~ms [1981], B ~ , ~ N ~  ~ An~a~ms [1981, 1982]), it was 
only recently that the potential of the method was more clearly demonstrated (see, for 
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example, AIFAIqTIS [1984,1985], W~GR~.EF ~ A~AN:rls [1985]). An account of these 
developments can be found in two recent review articles by An:~'~Tis [1986b,c]. 

Section II describes briefly the physical framework upon which the newly proposed 
conservation and constitutive equations for the dislocated state are based. The adop- 
tion of simplified geometries, that is the elaboration on a single family of dislocations 
only, is compensated for by the consideration of dislocation generation/annihilation and 
inelastic forces not accounted before in theories for continuously distributed dislocations. 
In the same ~ection, a brief comparison is given between the mathematical structure of 
this and previou.~ .heories, as applied to a single slip system; it is concluded that the pres- 
ent theory is much richer. 

Section Ill discusses the problem of the transition from microscales to macroscales. 
Instead of attempting to address the "many-body problem" in a dislocation context, by 
employing various recently proposed, cumbersome and not always physically realistic 
averaging procedures (for a critical review of the physical relevance of such procedures 
see DRUCKER [1984]), a much simpler path is suggested. A set of microscopic plastic- 
ity relations is easily obtained within the configuration of single slip by properly defin- 
ing the plastic strain rate tensor in terms of the production/annihilation rate and flux 
of dislocations, as well as the orientation tensor associated with the slip system under 
consideration. On formally eliminating the orientation tensor from these relations and 
assuming that the structure of the resulting equations is preserved during a transition 
from the microscale to macroscale (scale invariance), it is possible to obtain macroscopic 
plasticity relations by adjusting the material coefficients. Alternatively, when formal 
elimination of the microscopic orientation tensor is not possible, the transition is ac- 
complished by replacing it with a macroscopic orientation tensor associated to the 
directions of the effective stress. It is thus possible to arrive at familiar statements 
of classical plasticity and viscoplasticity from a microscopic point of view. Similarly, 
more recent internal variable plasticity models are recovered and microstructurally 
substantiated. 

Section IV considers the formulation of large deformation theories of plasticity, and 
illustrates, among other things, that the present framework is most suitable for deriv- 
ing classes of evolutionary behavior for the "back stress" of macroscopic plasticity. 
Moreover, it clearly shows that in order to preserve the structure of small deformation 
plasticity theory in large deformations, the evolution of the back stress should be mea- 
sured not by the Jaumann rate but by a properly defined corotationai rate completely 
determined within the present setting. In particular, these results provide a microscopic 
substantiation of various phenomenological proposals for the plastic spin recently and 
independently advanced by D~LFAI.~S [1983, 1984], LOR~T [1983] and Onat [1984]. The 
little understood problem of deformation-induced anisotropy and texture formation is 
considered as an example of the predictive ability of the present framework. We show 
that torsionally induced axial strains (free-end cylindrical specimens) as well as torsion- 
ally induced axial stresses (fixed-end cylindrical specimens) can indeed be predicted by 
the theory in agreement with the experimental data of BAI~e¢ et al. [1972], HpmT 
C~,~o [1982] and WRITE a AN~D [1986]. 
Finally, in Section V, we include an extended appendix on the heterogeneity of plas- 

tic deformation. It is shown that the present framework can provide a new possibility 
via bifurcation and stability analysis for a quantitative understanding of the fascinat- 
ing problem of localization of plastic flow at both the micro and macro level. The key 
issue in such considerations is the admissibility of nonconvex equations of state and the 
proper introduction of higher-order gradients to stabilize the behavior and allow for the 
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possibility of  patterned solutions. Three important topics of  current interest are briefly 
considered: The wavelength of  persistent slip bands (PSBs) formed during the fatigue 
of  monocrystals, the width of  shear bands in rigidly plastic materials and the velocity 
and structure of  deformation bands along with the staircase profile of  the stress-strain 
curve occurring during the straining of  polycrystalline tensile specimens under constant 
stress rate in the Por tevin-Le Chatelier regime. The results included in this section are 
presented in a condensed manner,  however, sufficient for stimulating the reader to 
consult with related past and forthcoming publications (e.g. AIFAr~TXS [1984, 1986a], 
WALCRAEF a An:ANTIS [1985, 1987], TRIANTAFYLLtDIS & AIFANTIS [1986], ZBm & ArrANTIS 
[1987b1). 

II. T H E  D I S L O C A T E D  STATE 

In this section we give the basic equations defining the evolution of  the dislocated 
state. This is viewed here as the material state made up of  atoms highly disturbed from 
their equilibrium position and confined at the dislocation cores (excited atoms), while 
atoms outside the cores (normal atoms) comprise as usual the lattice state. For a con- 
tinuous distribution of  dislocations, lattice and dislocated states can thus be considered 
as separate superimposed continua supporting their own density, velocity and stress, and 
interacting with each other by exchanging mass and momentum (AIFANTIS [1984, 1985, 
1986]). 

For the case of  one family of  dislocations moving along their slip system designated 
by (n, p) with n denoting the unit normal to the slip plane and p the unit vector in the 
slip direction, the mass and momentum balances for the dislocated state are given by 
(AIFANTIS [1984-86]) 

ap 
Ot + div j = 6 , 

div T n = f , 

(1) 

and the relevant constitutive equations are assumed to be of  the form 

T D = t m M  + t~ ~ ® p + t~ n ® n , 

= ( ~  - y r  + 13j)~ + ( ~ -  y~r~ + B j ¢ ) n  , (2) 

= d ( p , j ,  r , j c ,  rc) , 

In eqn (1) p denotes dislocation density, j dislocation flux and T D dislocation stress. 
The source terms c and f measures the "effective mass" and "momentum"  exchange 
between dislocated and lattice states. Specifically, ~ represents the generation, immobili- 
zation or annihilation of  dislocations and f includes, among other things, the effects of  
lattice friction, damping and the Peach-Koehler force acting on a dislocation as a result 
o f  the applied stress. 

In eqn (2) the orientation tensor M of  the slip system and the glide and climb com- 
ponents j and Jc o f  the dislocation flux are defined by 

M = ~ ( n ® p + y ~ ) n )  , j = j - p ,  j c = j - n  , (3a) 
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while the glide and climb-like components of  the effective resulted stress r and r~ are 

defined respectively by 

r = t r ( T L M )  , r , = t r ( T t ' v ® v )  , (3b) 

where T L denotes the stress tensor carried by the lattice and plays the role of  an effec- 

tive stress 

T t" = S - T ° , (4) 

with S being the total stress. In the absence of  dynamic loading effects, the quasi-static 
equilibrium equations for S is, as usual, 

div S = 0. (5) 

The coefficients (tin, t~, t~), (¢x, 7, B), (o~c, "/c,/~,) should be regarded, in general, as 
functions of  the variables entering in (2)3 including an additional quantity l represent- 
ing an internal length scale such as mean free path or average distance travelled by dis- 
locations. For  simplicity, however, we will view these coefficients as functions of the 
density p above as this suffices for our purposes. The coefficients (tm,t~, G) measure 
the interaction forces between dislocations and are responsible for the development of  
internal stress. The coefficients (o~, oLc) measure the lattice-dislocation interaction and 
are responsible for yielding. The coefficients (7,7c) measure the effect of  Peach-  
Koehler force, while 03, f3,) measure the drag associated with dislocation motion and 
are responsible for internal damping and viscoplastic flow. 

We conclude this section with a brief calculation showing explicitly that the present 
dislocation framework summarized by the conservation and constitutive equations (1) 
and (2) contains, indeed, the equations of  continuously distributed theories of  disloca- 
tions. The most recent review on this subject is very clearly given by KOSEVlCH [1979]. 
The governing balance equation in this theory is a tensorial differential statement ex- 
pressing the conservation of  Burgers vectors in the form 

& + curl j r  = 0 , (6) 

where a is the dislocation density tensor, j r  the transpose of  the dislocation flux ten- 
sor and (curl J)ij = ~iu~dy~.t. For the derivation of  eqn (6), small deformations must be 
assumed and dislocation reactions must be neglected. Moreover, the traditional use of  
(6) requires specification of  a and J as there are no additional statements to provide a 
closed system of  equations. 

To proceed further we define a and J of  (6) in terms of  the quantities a and j of  the 
present theory and configuration as follows 

a = f  (t ® b ) a d / 2 ,  J = f ( t  x j ) ® b d ~  , (7) 

where* b denotes the common Burgers vector of  the parallel edge dislocations under con- 
sideration, (b = [blv) and (t,dO) denote a unit tangent vector and a solid angle respec- 

*Note that time differentiation was interchangeably denoted by either a superimposed dot or a partial deriva. 
tire as no essential difference between the two is to be assigned for the cases under consideration. Also, the 
usual indicial notation is adopted when necessary and the symbols., x, ® denote inner product, cross product, 
and dyadic respectively. 
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tively, such that the product p dD represents the total number of  dislocations passing 
through a unit area perpendicular to t and located inside dD around the direction of  t. 
Upon substitution of  (7) into (6) we have 

f ( ~  + d iv j ) ( t  ® b)dD = f ( [g rad j ] t  ® b)d/') , (8) 

which, on noting that in the present case there is no dislocation flux in the n and t direc- 
tions (t is the cross product  of  n and p, t = n x p) and therefore 

aj 
( [gradj ] t )  ® b = ( t . gradj )p  ® b = Ibl ~ ~ ® ~ : 0 ,  (9) 

it suggests that 

f(b + d iv j ) ( t  ® b)dD = 0 , (io) 

implying, as the domain of  integration is arbitrary, that the local balance law as ex- 
pressed by eqn (1) can be recovered within the structure of  continuously distributed dis- 
locations but with the source term d lost. 

Further insight on the comparison between the two approaches can be gained by con- 
sidering the rather recent proposal of  introducing inelastic forces within the continuous 
distributions of  dislocations structure, as suggested by KosEvicn [1979], 

t × S b - B v - f = O  , (11) 

that is by directly extending the equation of  motion for a single loop from the discrete 
to the continuous distribution case. As before, t denotes the tangent and b the Burgers 
vector, S the total stress, v an average dislocation velocity, B a microscopic viscosity (ten- 
sor or scalar) coefficient and f a threshold-like force representing the resistance to dis- 
location motion caused by the discreteness of  the lattice. For the present case of  parallel 
edge dislocations gliding on their plane (n) in the slip direction ~, = b / l  b I, we have t = 
n x J,, and it thus follows that the ~, and n components  of  (11) are exactly the I, and n 
components of  f in eqn (2)2 with S replaced by T L and an obvious identification of  the 
remaining quantities. In this connection, we remark that interaction forces between dis- 
locations can only be considered in (11) through the total stress S of  the corresponding 
Peach-Koehler term. In contrast, such effects are accounted for in the momentum bal- 
ance (2)2 through both the divergence of  the dislocation stress T ° and the threshold-like 
force terms entering the structure of  f through the coefficients (~,o~c). 

We thus see that expression (11) is just a balance of  forces motivated directly by dis- 
crete modelling, while (1)2 supplemented with (2)1 and (2)2 is a continuum mechanics 
statement of  conservation o f  momentum and brings forward the important stress T ° 
which is a direct counterpart  of  the "back stress" of  macroscopic plasticity. It is noted 
that the dislocation stress T ° , not present in previous continuum dislocation theories, 
accounts for inelastic forces and dislocation-core effects and plays a central role in the 
formation and stability of  dislocation patterns. This, as shown by An:A.,~TIS [ 1985] and 
W.~GaAEr • AxrANrls [1985], is due to the fact that the divergence of  T ° in (1)2 gen- 
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erates gradient-dependent terms whose competition with the nonlinear terms generated 
by d in eqn (2h leads to dynamical instabilities and provides a mechanism for the nucle- 
ation and evolution of dislocation bands and microscopic deformation bands. With 
respect to the particular point of view that we wish to advance here regarding macro- 
scopic plasticity, it will be shown in Section IV that the presence of T ° is essential in 
substantiating nonlinear plasticity models of the kinematic hardening type, and produc- 
ing physically based expressions for the plastic spin. 

Ill. FROM MICROSCALES TO MACROSCALES 

In this section we show how the structure of the "microscopic" equations (1) and (2) 
can be utilized to obtain "macroscopic" relations of plasticity. The method that we pro- 
pose is essentially an answer to the questions: What are the "macroscopic" quantities 
of interest and how do they relate to the "microscopic" quantities of eqns (I) and (2)? 

The discussion becomes simpler by noting immediately that macroscopic plasticity 
theories are usually based on sufficiently large scales over which plastic micro-hetero- 
geneities are smoothed out. Then, it is not unreasonable to assume that the diver 
gence terms in eqns (1) do not have any influence on the particular question addressed 
here and can be formally dropped. Also macroscopic plasticity theories are usually 
based on the assumption of plastic incompressibility. Again, it is not unreasonable to 
assume that the dislocation processes that bring volume changes about, that is the climb 
processes, can be neglected from the present considerations. This suggests that the terms 
with subscript "c" drop from eqn (2). Finally, the coefficient t, in the dislocation stress 
expression (2)~ can be assumed to vanish, as the normal stress t,(,, ® v), which is 
mostly responsible for climb, is expected to play a much less significant role than the 
normal stress t , (n ® n), which accounts for, among other things, dislocation dipole 
presence and decomposition. With these simplifications, the microscopic equations to 
be used for macroscopic deductions have the form 

b = e ( p , j ,  r )  , 

S = T L + Tn; 

f = u - ' / r + B j = 0  , 

T n = t m M + t n N  , 

(12) 

where for convenience we have set n ® n = N, and also replaced the partial time deriva- 
tive in (1) with the material time derivative, denoted by a superimposed dot, for the pres- 
ent case of  macro-homogeneity and quasistatic considerations. 

We are now ready to begin the identification procedure between macroscopic and 
microscopic quantities. In particular, the microscopic stress quantities S, T L, and T n 
of (12)3 are assumed to preserve their character and interrelationship during their tran- 
sition to the macroscale, where they are identified with the macroscopic total stress, 
macroscopic effective stress and macroscopic back stress respectively. For convenience, 
we will maintain the same symbols for designating these stress quantities in both scales. 

As macroscopic plasticity theories are usually based on a yield condition, we have to 
identify this feature within the microscopic theory. This is done via the "reduced" equa- 
tion of motion for the dislocated state (I 2) 2, which can be rewritten as 

r = x + ~ j  , (13) 
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where 

K=c~/~r and ~ = / ~ / 7  

Having thus identified a microscopic yield condition through eqn (13), it remains to 
define one more central quantity of macroscopic plasticity theory: the plastic strain E p. 
In conformity with established resul ts - that  the plastic strain rate I~ p is a state variable, 
rather than the strain E p i t se l f -we  propose the following relationship for it: 

E P  = - y P M  , (14) 

where the orientation factor M determines the tensorial character of  plastic flow and 
the scalar ,~u its intensity. As the orientation tensor M is traceless, eqn (14) reflects the 
fact that climb processes were neglected and plastic incompressibility was assumed. 

To gain further insight into the nature of the scalar measure of plastic flow rate "~P, 
it is instructive to consider situations where the definition of  the plastic strain itself is 
meaningful and reasonably quantified in terms of  a relatively small number of  disloca- 
tion parameters (All :ANTIS [1985]): 

E p = q / P ( p , l ) M  . ( I 5 )  

This relation may stand on its own right as far as one does not rush to relate it directly 
to stress or use it in a constitutive equation. In eqn (15) p is the dislocation density and 
l, which as mentioned earlier was suppressed from the constitutive equations (2), denotes 
an internal length-scale parameter, such as average "flight distance" of  dislocations. 
Upon differentiation, eqn (15) gives 

]~P = " ~ P M  + "yP]~'I , (16) 

where 7 p is as in (t5) and qP may be readily expressed as 

5/p = Ah  + Bj  , (17) 

with the scalar coefficients A and B defined-~ by A = 07P/ap and B = 07P/0l.  Relation 
(17) clearly shows that, in conservative glide, the plastic flow rate depends on both dis- 
location production (the A b  term) and dislocation speed (the Bj  term). It is worth noting 
that if we set A = 0, then substitution of  (17) into (14) yields a direct three-dimensional 
generalization of  Orowan's celebrated equation of  dislocation dynamics. 

Another important feature revealed from the rate form of  (15) is the fact that only 
when the slip system (n, p,) remains unchanged (for example, the slip plane does not 
rotate) with respect to the external timed system of  coordinates, and therefore 1~i van- 
ishes, does eqn (16) reduce to (14). For most of  the discussion that follows in this sec- 
tion we will drop the second term of  the right-hand side of  (16) by either assuming zero 
material rotation or considering it of  "second order" as being the product of two "first- 
order" terms. In general, 1~! relates to spin terms which, in contrast to linear elasticity, 
are not usually negligible in plasticity even for small deformation theory. For large plas- 

tAlternatively,  and  certainly more  generally and correctly, eqn (17) can be viewed as a constitutive equa- 
tion rather than  a consequence o f  differentiating the relation 3, p = "t P(P, I). 
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tic deformations, of course, the rotation effect and the associated spin is the essence of 
the theory, and the subject is considered in detail in the next section. 

On returning to (14) we view it along with (13) and (12) as the basic vehicle for accom- 
plishing the micro-macro transition. What is still missing, however, is a macroscopic 
interpretation of the microscopic orientation tensor M. To establish such a macroscopic 
counterpart for M we note first that, physically, the product of rj represents a micro- 
scopic working or power term due to dislocation motion along their slip plane. It 
should, therefore, be a nonnegative quantity. In view of the definitions (3a)~, (4) and 
(14) this observation implies the statement 

rj > 0 ** (S - T °)  .E P  > 0 , (18) 

which could be viewed as a microscopic justification of the well-known statement of 
plastic irreversibility. In deriving (18) we have assumed, for simplicity, that A = 0 and 
of course B > 0. Indeed, (18) may be viewed as the appropriate dissipation or entropy 
inequality which can motivate the determination of a macroscopic substitute for M. 
Consistently with the macroscopic principle of maximum dissipation for maximum 
entropy production, we may now search for that M which maximizes the left hand side 
of inequality (18)2 and therefore (18)1. Under the current assumptions, maximizing rj 
is equivalent to maximizing ~/Pr, and for a preassigned amount of plastic flow rate "~P 
the system will try to maximize its entropy production by maximizing the orientation- 
dependent quantity r [ r  = tr(TLM) = T/-.M]. 

The above discussion suggests the following maximization problem for a macroscopic 
determination of M 

r = max(tr(TLM)l , 
(19) 

~ = 0 ,  T ° = 0 ,  i = 0 ,  x = c o n s t .  (22) 

t r M = 0 ,  t r M - ' = ~  , 

where the constraints in (19) are a direct consequence of the definition (3a)~. The solu- 
tion to (19) is obtained through the use of Lagrange multipliers. It gives (BAMMANN R, 
AIrANrIS [1982], AIFANTIS [1984]) 

TL' 
r = x / 7 ,  M =  2~/J ' (20) 

where T v denotes the deviatoric part of the effective stress T t- and J its second 
invariant 

J =  ~ttrTV2 , TL' = TL -- l ( t rTL)l  . (21) 

With this determination of M it is now possible to derive classes of macroscopic plas- 
tic behavior by utilizing directly the basic equations (12), the yield condition (13), and 
the plastic strain rate equation (14) or (16). 

III.l .  Classical plasticity 

Let us assume the conditions that the classical theory of perfect plasticity is based 
upon, that is zero hardening, rate-insensitivity and constant yield stress. Within our 
framework, these assumptions can formally be expressed as follows: 
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Then upon comparison of  (13) and (20) we have 

J = K 2 , (23) 

the classical Huber-Mises yield criterion, where now J is the second invariant of the 
deviatoric part of  the total stress J = IS '  .S',  since the back stress T ° was assumed to 
vanish. 

Upon substitution of  the expression of  M given by (20)2 into definition (14), we have 

!~ p - =  "YP S '  , (24) 

which, in view of  (23) and the relation implied by (14) -fP = V'21~P.I~ p = 24f1 with H 
denoting the second invariant of  l~p, becomes 

S' , (25) 
K 

that is the Prandtl-Reuss flow rule. 

III.2. Classical viscoplasticity 

If we maintain all but one of  the assumptions embodied in eqns (22), that is allow for 
rate-sensitivity effects, we must require 

¢: 0 . (26) 

Then assuming again, for simplicity, that A = 0 in (17) and defining the viscosity coef- 
ficient ~ = g/B, we obtain from the microscopic dynamic yield condition (13) with the 
use of  (20)1 and (14) 

( K ) S ' ,  (27) 2 . E p  = 1 - 7 7  

that is the Hohenemser-Prager  viscoplastic flow rule. In turn, the overstress 4, is given 

by the formula 

4 , _  47 1 (28) 
K 

and the appropriate macroscopic yield condition reads 

= K + 2aTx/H . (29) 

III.3. Isotropic hardening 

Here we return to the assumption of  neglecting rate-sensitive effects but relax the 
restriction of  constant yield or flow stress. We also retain the hypothesis of  Vanishing 
back stress, as this is the central feature of  isotropic hardening, but let the dislocation 
production term d be different than zero and responsible for the hardening mechanism. 
Thus, in place of  (22) we now have 

¢ 0  , T ° = 0  , ~ = 0  , K = ~ ( p )  . (30) 
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We assume, in particular, that the source term ~, whose general form is given by 
eqn (12), is proportional to the rate of microscopic plastic work r j ,  which, in turn, is 
proportional to the macroscopic plastic work, S.EP. We thus have 

~o¢ rjo¢ S . E  p = b = A S  "~r  , (31) 

where the coefficient A is assumed to be constant. On using (31) to change variables in 
(30)2 and recalling eqn (23), which is also valid for the case of  nonconstant x, we 

obtain 

J =  K 2 , K = ~(Wp) , wp = f S . d E  p , (32) 

that is the classical statement of  isotropic hardening. 

1II.4. Kinema t i c  hardening 

Here we consider the effect of plastic anisotropy signified by the nonvanishing of the 
back stress T ° .  For simplicity, we maintain all other assumptions embodied in eqn (22). 
Then 

T ° *: 0 , (33) 

and the microscopic yield condition (13) with g = 0, reads 

-~(S' - TO') • (S' - T D') = K 2 , (34) 

where the primes, as usual, denote deviatoric parts and the macroscopic results (20)2 
together with (12)3 were used. Condition (34) is the classical yield condition of 
kinematic hardening. 

To complete the description, evolution equations for the back stress T n are required. 
Such equations can be derived from the present microscopic theory by utilizing (12)1 
and (14) to formally eliminate the microscopic orientation tensors M and N and then, 
on the basis of  the scale invariance argument, assume that the resultant relations hold 
true at the macroscale. An easy result can immediately be derived by considering that 
T ° in (12)4 is deviatoric. Then G vanishes and 

T ° = traM , (35) 

which also suggests that T D and I~ p are coaxial. By differentiating (35), neglecting 
rotation effects (M = 0), and using (14) to eliminate M, we obtain with c = i,n/3; p 

j.D = cl~P , (36) 

that is the classical statement of  Prager's kinematic hardening rule. 
A less familiar hardening rule is obtained by retaining G • 0 and therefore 

T D = t . ,M + t .N  , (37) 

emphasizing, among other things, that the plastic strain rate Eu and the back stress T D 
are not coaxial. Again, on differentiating (37) and eliminating from the resultant equa- 
tion the orientation tensors M and N with the aid of  (14) and (37) we obtain 
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- t o  = c E P  _ d T  D , (38) 

where now the coefficients c and d are defined by 

I in 
c = ( imtn  - t m i . )  , d = -- . (39) 

P fn tn 

The form of  evolution equation (38) is reminiscent of  the Armstrong-Frederick evanes- 
cent memory hardening rule, and it will be discussed in the next section in conjunction 
with large deformation theory. 

III.5. V e r t e x  t y p e  t h e o r i e s  

Here we show how the present structure can generate a class of  plasticity models com- 
monly known as "corner"  or "vertex" theories. To accomplish this we start with (16), 
the complete rate form of  (15), without dropping the spin terms associated with 1~1. 
Then on recalling the macroscopic result (20)2, with the assumption o f  course that 
T ° = 0, we obtain by direct differentation 

1 { _ (40)  sv/ 
2 J  ] ' 

which, in view of  the definition of  J = ~S' .S ' ,  gives upon substitution to (16) 

[ s'(s'.s') ] 
= 2v'J ~ 2 J  j , (41) 

which is precisely the starting formula of  the corner theory of  plasticity as reported, for 
example, by STOREN ~, RICE [1975]. 

In concluding this section on small deformation theories of  plasticity we remark that 
the central result contained in formula (20) and utilized excessively in establishing the 
micro-macro transition, may be cast in slightly more general forms by relaxing the 
assumptions embodied in the maximization procedure. For example, for "frictional" 
materials and volume-sensitive cases where the yield condition depends on hydrostatic 
stress (e.g. metals with voids, soils), it is reasonable to modify the maximization problem 
(19) as 

max(z  - OtaN) = r , 

t r M = 0 ,  t r M 2 = ~  , t r ( M N ) = 0 ,  t r N = l  , 

(42) 

where z is as before (with T ° = 0), ON = t r (SN) ,  and o~ a friction-like coefficient. 
Then, on using again the method o f  Lagrange multipliers, we can derive 

a (43) " / ~ -  ~-Jl = ~  , 

with J~ and J~ denoting the first invariant of  stress and second invariant of  deviatoric 
stress, respectively. Condition (43) is precisely the classic result of  DRtrr~R k, Pa.~6ER 
[1952] postulated on strictly macroscopic grounds to solve problems o f  soil plasticity. 
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Accordingly, the flow rule (24) is easily modified, but we do not consider this subject 
further. 

IV. LARGE DEFORMATION PLASTICITY 

In this section we elaborate on the problem of plasticity at finite strains. It is clearly 
shown that the present dislocation framework is most suitable for deriving classes of 
large deformation plasticity theories. Attention is confined to kinematic hardening mod- 
els where evolution equations for the back stress T ° are desired. Two outstanding 
issues, not unrelated to each other, are of considerable interest currently in this area of 
research: material rotation and the constitutive structure of back stress. Formally, the 
effect of material rotation is reflected on the type of corotational rate used to measure 
the evolution of the back stress. Thus, in a certain sense, it may be viewed as being of 
a constitutive nature not requiring a separate treatment. If it is desired, however, to 
maintain some degree of continuity in extending a specific constitutive equation, for 
example Prager's kinematic hardening rule (36), from small to large deformations, then 
it is necessary to separate the strain rate effect from the material rotation effect. 

A mechanism for accomplishing it most conveniently is provided by the structure of 
single slip as follows. We imagine an observer riding with the slip system which now, 
in contrast to the small deformation cases considered in the previous section, is rotat- 
ing with a specific angular velocity depending on the spin of the continuum within which 
it is embedded, as well as the rate of plastic deformation (or strain rate) and the level 
of internal stress development (or back stress). It is then natural for this observer to 
adopt the same constitutive structure as in small deformation theory, where rotation 
effects are absent, by computing the various field quantities with respect to the rotat- 
ing frame. The description is completed by developing an appropriate expression for 
the angular velocity or spin of the slip system with respect to the external fixed axes of 
coordinates. 

The process outlined above is carried out explicitly below where classes of evolution- 
ary behavior for the back stress T ° are obtained on the basis of microscopic analysis. 
The results provide a direct physical justification of various phenomenological models 
previously proposed in the literature on intuitive or experimental grounds, and suggest 
explicit expressions for the corresponding phenomenological coefficients. Moreover, 
they readily show the physical relevance of  plastic spin and its importance in comput- 
ing the appropriate corotational rate for the back stress. In particular, the specific con- 
stitutive expression for the plastic spin proposed recently and independently by DArALtAS 
[1983], LO~T [1983] and ONAT [19841 is rigorously derived on microscopic grounds and 
a micromechanical framework for more general physically based forms is made 
available. 

We begin with some standard kinematic relationships of large-deformation elasto- 
plasticity to set up the background for the subsequent analysis. The multiplieative de- 
composition of the total deformation gradient F, routinely used in continuum plasticity 
for the last twenty years but introduced by physicists and dislocation dynamicists over 
thirty five years ago, is also employed here; however, in a slightly different version 

F = RUeF p , (44) 

where R denotes the rotation of the lattice-slip system or material rotation (as opposed 
to the rotation of the continuum), U e is the elastic stretch and F p represents the purely 
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plastic part of  the deformation gradient. In usual theories of  elastoplasticity the first two 
terms of  the right-hand side of  eqn (44) are lumped together and denoted by F e, the 
elastic deformation gradient. As this practice may raise some questions concerning the 
uniqueness of  the intermediate relaxed configuration, that is the configuration of  the 
continuum after removal of  F e, we retain decomposition (44) as our starting point. 
Assigning R to certain characteristic directions of  the material, in this case the lattice 
or slip directions, it removes the above ambiguity and allows for a clear presentation 
of  the main ideas. Physically, R arises from the geometric constraints imposed by the 
boundary conditions on the slip directions, U e arises from the usual reversible lattice 
displacements of  elastic nature and F p arises from permanent or irreversible slipping of  
crystal portions with respect to each other due to dislocation motion. 

The velocity gradient L can now be computed via eqn (44) as 

L = 17F -t  = I~R r + RI~IeU e-t R r + RUeFPF p-I U e-I R r (45) 

On recalling the unique decomposition of  L to its symmetric part or stretching D and 
antisymmetric part or vorticity W (the spin of  the continuum) 

L = D + W , (46) 

and denoting the symmetric and antisymmetric parts of  the various second-order ten- 
sors in eqn (45) by subscripts "s" and "a ,"  respectively, we have 

D = D e + I )  p , W = to + W e + W p , ( 4 7 )  

where 

~o = RR r , D e = (RUeU e-I Rr)s , W e = (RI~/eU e-I Rr)a , 

D p = ( R U e I : p F p - I u e - t R T ) s  , W p = ( R U e F P F P - 1 U e - i R r ) a  . 

(48) 

Relations (48) indicate, among other things, that for pure plastic deformations (U e = 
1), the elastic stretching and spin vanish (D e = W e = 0) but the spin o f  the slip system 
or material spin fa is clearly different than zero and adds up with the plastic spin W p 
to give the total spin of  the continuum or vorticity W. 

Even though the above analysis was directly motivated by the configuration of  sin- 
gle slip, the derived kinematic relations may be viewed as holding in general, provided 
that the physical meaning assigned to each one of  the terms in eqn (44) is adjusted ac- 
cording to the particular underlying mechanism of  elastoplastic deformation.  Return- 
ing to the present case of  single slip we need to further elaborate on the identification 
of the material spin fa with the spin o f  the slip system (n, v). First we note that this iden- 

tification implies 

/ ~ =  fay  , l i l t = f a n  , (49) 

which, in turn, give 

l ~ l = f a M - M f a  , l q = f a N - N f a  . (50) 
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Relations (49) and (50) clearly show that the corotational rate of all orientation quan- 
tities with respect to the rotating slip system vanish identically, that is 

; = ~ - ~ v = 0 ,  h = f i - ~ n = 0 ,  

~1 = 1~1 - o~M + MoJ , ~" = ~ / -  o~N + NoJ , 

(51) 

suggesting that rotation effects can formally be suppressed if the constitutive equations, 
for example the evolution equation for the back stress T ° , are expressed with respect 

to the rotating frame. 
To see this more explicitly let us recall the constitutive equation for the back stress 

(37) 

T ° = t . , M  + t n N ,  (52) 

whose material differentiation gives 

"i "° = (imM + i~N) + (tml~! + t~N) , (53) 

which in view of  eqns (50) and (52) becomes 

.~o = ( i m M  + i .N)  + (~T ° - TDo~) , 

and, on defining the corotational rate -1-o of  the back stress by 

~-o = i-o _ o~T D + TOw , (54) 

we have 

"l " °  = imM + inN • (55) 

This suggests that the corotational rate "l" D is given by exactly the same constitutive 
expression as "i "° obtained from (52) or (53) by neglecting the rotation effect (1~1 = 
lq = 0). In turn, this shows that for large deformations the rotation effect is most con- 
veniently incorporated by computing the rate of  back stress corotationally with the slip 
system, while maintaining the same constitutive structure as in the case of  small defor- 
mations where rotation effects are neglected. 

To proceed further we assume that the unit vector in the slip direction p is attached 
to the continuum so that its instantaneous angular velocity can be computed from the 
well-known formula of  continuum mechanics 

= ( D  + W ) v  - ( v . D v ) v  , (56) 

holding for the rate, with respect to fLxed axes o f  coordinates, of  any unit material fila- 
ment p. In view of  eqn (49)t and a rearrangement of  eqn (56) we can easily show that 

= W - [ (~  ® p ) D  - D ( ~ ®  v) ]  , (57 )  
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providing a relation between the spin of  the slip system ~0 (spin of the material), the vor- 
ticity W (spin of  the continuum), and the stretching tensor D (strain rate). Then, on 
recalling (47) we can conclude that the elastic and plastic spins W e and ~ are given 
by the expressions 

w e = ( v @ p ) D e - D e ( j ' @ ~ ' )  , W P =  ( p @ g ) D P - D P ( J ' @ v )  . (58) 

In what follows we will assume small elastic deformations so that elastic spin effects 
are negligible and thus W e = 0. Then eqn (47)2 gives 

= W - W p , ( 5 9 )  

where, as before, the plastic spin W p is determined by the direction of  anisotropy (p) 
and the rate of  plastic deformation 

W p = (~,(~)p)D p -  O p ( p ~ ) p )  . (60) 

This is the place to introduce an explicit relation for the rate of  the plastic deformation 
D p. The most straightforward extension of eqn (14) from small to large deformations 
is 

D p = "~PM . (61) 

Then, in view of  the definition of M (3a)~, we obtain upon substitution of  eqn (61) into 

(60) 

W p = 5  'pf/ , / 2=  t 0 ' @ n - n @ v )  . (62) 

This is precisely the expression for the plastic spin postulated in usual theories of  crystal 
plasticity and was shown here to be a consequence of  standard kinematic arguments in 
conjunction with the constitutive equation (61) for D p. 

Next we derive a macroscopic relation for the plastic spin W p by eliminating the 
orientation tensor f / f r o m  eqn (62) via the use of expressions (52) and (61) for the back 
stress T ° and the plastic strain rate D p. The result is 

W p = - tn - l (TOD p _ DPT o) , (63) 

which provides a microscopic derivation of  a proposal advanced recently on phenom- 
enological grounds by DArALtAS [1983], LORET [1983] and ONAT [1984]. The derivation 
(63) was first obtained in a joint work by Dafalias and Aifantis (see Appendix of AzrA~'~- 
a'Is [1986c]). In fact, more details on various aspects discussed in this section can be 
found in forthcoming articles by DArAttaS & ArFAm'zS [1987] and ZBm • AzrANxzs 
[1987a]. 

Having a constitutive representation for the plastic spin W p readily available, we can 
explicitly make use of  eqn (55) for the evolution of  back stress T n.  Indeed, the same 
arguments that led to eqn (38) can be employed here to derive its large-deformation 
counterpart .  This is precisely the form given by (38) with !~ p replaced by D p, i "n 
replaced by ~n ,  and the coefficients c and d still given by (39). Finally, the macro- 
scopic representation for the orientation tensor M as given by eqn (20) still holds for 
the finite theory, leading again, through (61), to the flow rule (24) with I~ p replaced by 
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D p and S' with S' - T ° '  . On collecting the above results, we have the following cen- 
tral equations for macroscopic plasticity at finite deformations 

C' 
D p =  ~ ( S ' - T  n') , 

W ° =  ( -  ~ ) ( T O D  p - D p T  n) , (64) 

signifying, among other things, that not only a constitutive equation for the symmet- 
ric part of the plastic velocity gradient D p is necessary but also for its antisymmetric 
part W p. Moreover, the rate of the back stress T n should be taken corotationaUy with 
the spin ~ = W - W p, that is the difference between the vorticity or total spin of  the 
continuum and the plastic spin. 

Various classes of  kinematic hardening behavior can now be constructed on the basis 
of  the rigorously derived macroscopic plasticity relations (64) as follows 

IV. 1. Model  1 

t~ = - 1 / L  ~" = constant. Then eqns (64)3 and (64)2 imply 

,~n = ( i_~)D p ' Wp = ~ ( T D D P -  DPTD) , (65) 

that is, the appropriate extension of  Prager's kinematic hardening rule to large defor- 
mations and a corresponding expression for the plastic spin with constant coefficient. 
The set of  eqns (65) is essentially the model utilized by D~AtIAS [1983,1984] and more 
extensively by LORET [1983] to suppress undesirable oscillations occurring in the sim- 
ple shear problem when the Jaumann rate "i rn instead of  "i "n is used. 

IV.2. Model  2 

in = - c ~ P t n ,  im= -cn~iPtm + k~P; [cn, k} = constants. Upon direct integration the 
above formulae yield 

tn = - -  ~ e -c~vp tm k + 1 ' c~ ~ ,-cnv, (66) 

where ~" and ~'* are constants of  integration. Upon substitution of  (66) into (64)3 and 
(64)2 we have 

~n  = kD p _ c .~PT  n , W p = ~'eC~*P(TODP - DPT n) . (67) 

The set of  eqns (67) is essentially the model derived and utilized by DAFAL~ ~ AIFAZ~- 
TIS [1987] through a less direct method. It is worthwhile noting that (67)~ is precisely 
the Armstrong-Frederick evanescent memory kinematic hardening rule properly ex- 
tended to account for large deformation and rotation effects. We see, moreover, that 
this microscopic derivation suggests that such type of  evanescent memory is coupled 
with an exponential form for the phenomenological coefficient in the expression for the 
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plastic spin as given by eqn (67)2 , rather than the constant coefficient suggested by 
(65)2. 

IV.3. M o d e l  3 

i .  = - ( c . ~ P r ° ) G  , im ---- --(Cnd/PT'D)Im + k'y p. We remark that all symbols above 
are as in Model 2 and the new quantity r n denotes the second invariant of back stress 
defined as usual by 

r o  = ~ f ~ T D ' T  D • (68) 

Roughly speaking, this model suggests that the evolution of the coefficients t, and tm 
is proportional to the degree of internal dissipation due to the action of internal stress 
itself. It follows that eqn (64)3 becomes 

"~O = k D  p _ Cn ~/PTDTD , (69) 

which is reminiscent of the form of the evolution equation suggested by NaOTEGA_~ ~, 
DE JONO [1982] and BAMMANN [1984]. The expression for the plastic spin is still given 
by eqn (64)2, where the determination of the coefficient t, is now coupled with that of 
T n and 5 'p through the evolution equation 

i .  + ( C n g / P r ° ) t .  = 0 . (70 )  

More details on these models and numerical solutions of simple exampte problems 
including comparisons with experimental data from torsion-tension tests are given in 
a forthcoming paper by ZBm a AIrANTXS [1987a]. Nevertheless, we include here for com- 
pleteness a representative set of theoretical predictions pertaining to two types of exper- 

i[ AL-1100 
Theory: Ml(a=15), M2(a=7), M3(a=9) 

Experiment 

MI zt ,~" M2 

4 ~ '  M 3  

O,  
o ;. 1'o 

SHEAR STRAIN 

Fig. 1. Axial strain development during torsion of  AI-1100 cylindrical bars. 
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Fig. 2. Axial strain development during tension-torsion of Ni-200 cylindrical bars. 

iments: axial strain development due to torsion Of free-end cylindrical specimens, and 
axial stress development due to torsion of fixed-end cylindrical specimens. The axial 
strain development is shown in Figs. l and 2, where theory and experiment are com- 
pared for Al-1100 and Ni-200, respectively. The axial stress development is shown in 
Fig. 3, where theory and experiment are compared for Al-1100. All three models Ml 
through M3 are used in relation to the Bailey et ai. data shown in Fig. 1. Only the first 
model M1 is used in relation to Hart and Chang's data shown in Fig. 2 and White and 
Anand's data shown in Fig. 3. 

The consistency condition [i.e. J~= 0; f =  (S' - Tn').  (S' - T n') - 2r 2 = 0] was 
used along with the relations (64) for the complete evaluation of the models. It easily 
turns out that this condition leads to the expression 

~' .  (S' - T n) 
~t, = (71) r ( t ~ , +  2r') ' 

where the prime ' in the tensorial quantities S and T n denotes, as usual, deviatoric 
part, while in the scalar quantities tm and r it denotes derivative (t~, = d t . , / d v p ,  r '  = 

dr/d' tP).  The strain rate-related parameters of the models, such as the strain harden- 
ing modulus~: h = d#/d~" and the constants ( k , c . ) ,  are evaluated with the aid of the 
stress-strain curve in tension (e .g . i . , /~p = d t m / d ' r °  = 2h /3  - 2r') ,  while the spin- 
related parameter ~'( =a/oy ,  o~ = yield stress) is obtained with the aid of torsion data. 
For each set of experimentai data depicted in Figs. 1-3, the stress-strain curve was fitted 
by the expressions 

:~# and ~ denote effective or equivalent stress and strain, respectively. 



230 ELIAS C. AII:ANI[S 

v 

CO 
09 
LU 
t'r" 
I.- 
03 

100 

8 0 .  

6 0 .  

4 0 -  

20- 

, J ,  

AL-1100 
Theory: Ml(a=4.5) ~ ~ _~ 

.... Experiment / ~---''7",~ 
/ _..--- ~ ~ - S|~a[ 5trdS& 

Axia l  s t r e s s  

-20 , ' 
0.2 0. ~, 0!6 0~8 1 1•'2 1 '4 ""' • 1.6 

SHEAR STRAIN 
Fig. 3. Axial (and shear) stress development during torsion of  AI-1100 cylindrical bars, 

.8 

a = 31 - 12e -°'6' '  (Ksi) , 

(r = 50 + 960 6 0.65 (MPa) , 

a = 5 5 +  117e °45 (MPa) , 

(72) 

respectively. The appropriate values of  the dimensionless rotational parameter a for each 
set of  data are listed in the corresponding Figs. I-3. 

V. A P P E N D I X  ON PLASTIC H E T E R O G E N E I T Y  

We conclude the presentation of this new approach to plastic deformation by address- 
ing the fascinating problem of  heterogeneity of plastic flow. Three topics of current 
interest are considered: persistent slip bands, shear bands and Portevin-Le Chatelier 
bands. The results are briefly presented in a condensed manner and more details will 
be included in forthcoming papers by WAZOSAEF & AIra.'~rIs [1987b] and ZBm ~ AIrAN- 
TIS [1987b]. The particular issues we are addressing here are the wavelength of  persist- 
ent slip bands, the width of  shear bands and the velocity of  Portevin-Le Chatetier 
bands• It is noted that each one of  the above features cannot be captured by existing 
theoretical models. In contrast, the present approach provides estimates which compare 
very well with the experimental data, as it will be seen below• 

V. 1 Persistent slip bands 

It is routinely observed during cyclic loading of  monocrystals, as well as polycrystal- 
line specimens, that several persistent slip bands (PSBs) are formed which are directly 
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associated with the occurrence of extrusions/intrusions and nucleation of surface cracks. 
A PSB consists of a number of slip planes, for example, 5000 in copper, forming a flat 
lameUa which may transverse the whole specimen. The experimental work indicates that 
only dislocations with the Burgers vector of the primary slip system are required for the 
formation of a PSB. The dislocations are well ordered. In fact, a periodic arrangement 
of long dislocation walls subdivides the PSB lamella into channels as shown in Fig. 4a. 
The walls are oriented perpendicular to the effective Burgers vector and consist of edge 
dislocation dipoles as shown in Fig. 4b. The dislocation density in the walls is rather high 
of the order of 1015 m -2 and details of the arrangement are difficult to analyze. In 
copper crystals fatigued at room temperature the mutual distance d between the walls 
and the wall thickness are about 1.3 and 0.15 #m, respectively. A low density of dis- 
locations of the order of 10 ~3 m -2 having mainly screw character is observed in the 
channels. The PSBs do not evolve within a uniform region but are embedded within an 
also patterned structure, commonly known as matrix or vein structure. This structure 
also consists of dense multipolar bundles separated by dislocation poor regions, also 
called channels. The width of both the veins and the channels of the matrix is of the 
order of 1.2/~m and the dislocation density is of the order of 1015 m -2 in the veins and 
10 ~ m -2 in the channels. 

A preliminary analysis is given next for a system of coupled nonlinear differential 
equations which we use as a simplified model describing the collective behavior of dis- 
locations during PSB formation. We will show that this model correctly predicts the 
periodic structure of the ladders and estimates reasonably well the magnitude of its 
intrinsic wavelength. Moreover, it shows that both a patterning instability associated 
with the PSB formation, as well as a temporal instability associated with strain bursts, 
are possible to occur (see also An:~rlS [1986a]). Additional physical facts for the prob- 
lems of persistent slip bands and strain bursts can be found respectively in Mtrom*,xm 
[1981] and N~u~tA~N [1968], as well as in related metal physics literature quoted therein. 

Motivated by the physical picture discussed earlier, we confine attention to one 
dimension, say x, associated with the slip direction. We also distinguish between two 
types of dislocation populations: "trapped" or immobile ones of density pl making up 
eventually the wall structure and "free" or mobile ones of density p2 travelling within 
the channels under the action of a sufficiently high stress intensity. We also assume that 
the dislocation population is sufficiently high to be represented by continuous concen- 
tration fields on a space scale larger than a few lattice spacings. Then, by employing the 
structure of the dislocation framework outlined in Section II (see also AtrAmas [1986a]), 
we can arrive at the following set of coupled differential equations for the trapped or 
immobile pt and free or mobile p2 dislocation densities 

atPl  = DI V 2  pl + g(Pt) - h ( p l , p 2 )  , 

0tp2 ----" D2V2p2 -t" h(pl,P2 ) , 
(73) 

where Ot denotes partial derivative with respect to time and Vx means partial derivative 
with respect to space. The source term g(Pl) represents the production/annihilation of 
the immobile dislocation state Pl before the stress reaches a sufficiently high level to 
liberate fast moving dislocations comprising the mobile dislocation state p2. The source 
term h (pl,p2) represents the dislocation reactions occurring after the mobile state 
comes into play, such as the breaking free of immobile dislocations, as well as the cap- 
turing and pinning of mobile dislocations by immobile dipoles and multipoles. It turns 
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Fig. 4. (a) Transmission electron microscopy picture showing the periodic structure of the persistent slip bands 
(PSB) embedded within the matrix (M) region: (b) Schematic picture of PSB and matrix formation illustrating 
the dislocation substructure and the development of an extrusion. [After Mughrabi and co-workersl 
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out (Amarrm [1986a]) that the motion of dislocations in both the trapped and free states 
can be modelled by diffusion-like terms Di V~pl and D2~'2p2, where the diffusion-like 
coefficients Dt and D2 are such that Dt <</92. In fact, the diffusivity Dt measures 
random-like effects such as interaction with vacancies, thermal events and bowing move- 
ments due to local internal stresses. Unlike the Brownian-like nature of Dr, the diffu- 
sivity D2 models the drift-like motion of dislocations liberated by the applied stress 
(An:,~a,~s [1986a]). 

The source term g(p~) associated with the immobile state is not necessary to be as- 
signed any specific form. The source term h (p~,p2), however, modelling the interac- 
tion between immobile and mobile states, is assumed here to have the form 

h ( p l , P 2 )  ---- bPl - -  cp2p21 • (74) 

The coefficient b measures the rate with which immobile dislocations break free when 
the applied stress exceeds a certain threshold. Finally, the coefficient c measures the pin- 
ning rate of freed dislocations by immobile dipoles. 

Next, we introduce scaled quantities 

so that (73) with the aid of (74) gives the following system of coupled reaction-diffusion 
equations 

Otpl = Di V2 Pl + g(Pl) -- bPl + P2P~ , 

OtP2  = D 2 V 2 x x P 2  at" b P i  - p 2 p  2 • 

(76) 

The homogeneous steady-state solution of (76) is given by 

g(p°l) =0 , pOpO=b , (77) 

and small perturbations from it of the form 

~ l = P l - P °  , ~ 2 = P 2 - P °  (78) 

are shown to satisfy the matrix equation 

a, lp~l [D~VZxx + b + g,(pO) pO2 ] Ip~ 1 
P2 -b  DI V~ - pO2 P2 (79) 

where the tildes ~ were dropped for convenience. Taking the Fourier transform in (79), 
defined as usual by 

,80, 
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and setting g ' ( p ° )  = - a  (<0  for the stability of  homogeneous states), we can sho~ 

_p02 _ q3D2 LP2qJ 

that, in Fourier space, (79) becomes 

The stability of  (81) is determined by the characteristic equation 

w2 + 3w + 7 = O , 

where 

(81) 

(82) 

/3 = - t r [  ] = q2(Dz + D2) + (a - b + po2) , 

(83) 
y = det[ ] = q4DID2 + q 2 [ D 2 ( a  - b)  + DIp  °2] + ap °2 

The homogeneous solution (pO, p~) becomes unstable when the real part of  at least one 
of  the roots of  (83) vanishes. Indeed, there are two possible types of  instabilities: 

(a) A H o p f  bifurcation leading to homogeneous temporal oscillations occurs for 

q = 0  ; b > b° - a + p °2 . (84) 

(b) A Turning instability leading to spatially periodic solutions occurs for 

q = q c  [DtD,_J ; b > b c =  a ' / ' + p °  -~2 (85) 

As discussed earlier, the first type of  instability, which gives oscillations in time, has 
been experimentally observed in the form of  strain bursts for slow increases of  stress 
intensity or low creation rates of  dislocations. The second type of  instability, which gives 
spatial patterning, corresponds to the ladder structure of  PSBs experimentally observed 
for sudden increases of  stress intensity or high creation rates of  dislocations. It gener- 
ates, in fact, a preferred wavelength Ac (corresponding to the critical wave number qc = 
2~r/Ac) given by the expression 

,, [DID2] 1/4 
Ac = zlr [ ~  (86) 

It also turns out by comparing (84) and (85) that the patterning instability is reached 
before the temporal oscillations when b~ < bc °, that is when 

[( p02\]1/2 ]2 o ,  o 
< 1 + - 1 . ( 8 7 )  

Since it could be argued that in most cases DI << D2, it may be expected that PSB 
structures should form before the occurrence o f  strain bursts. 
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Before we proceed with the evaluation of (86), it is necessary to recall a microscopic 
formula for the diffusivity D2 of the mobile state. This is obtained by further distin- 
guishing between positive and negative dislocations (see, for example, An:Ar~s [1986a]) 
and reads 

U 2 

D2 = 2002 . (88) 

Similarly, an estimate for the diffusivity DI is needed. This is obtained by recalling the 
linearized counterpart of (76)1, i.e. 

0t01 = DI 2 V w c P l  - -  a 0 1  , (89) 

whose steady-solution 

oi - e - ~ ' / n l x  , (90) 

provides an estimate for the ratio (Dr/a)  by identifying it with the annihilation length 
11 of dislocation dipoles, i.e. 

N / - ~ - / 1  = 1.6 x l 0  - 9  m for Cu . (91) 

Next we recall Orowan's expression for the plastic strain rate 

~p = ~ I b l o ° v  , (92) 

where I b l denotes the magnitude of Burgers vector (in order to distinguish it from the 
coefficient b), as well as condition (77)2 for the homogeneous distributions. 

Upon direct combination of all these formulas we obtain the estimates~t 

_ _  v '2 l 
(93) 

which, with 11 estimated from (91) and a typical value for the Burgers vector magni- 
tude [b l  --- 2.55 x 10 - ' °  m,  gives 

16 256 
Ac = d =  ~ ~ p  ° =  d2 (94) 

Relation (94)2 is consistent with many experimental observations suggesting that the 
wavelength of periodic dislocation structures (including cell walls) is inversely propor- 
tional to the square root of the dislocation density. For the case of the ladder structure 
of PSBs, in particular, it is worth noting that empirical modelling and observations have 
resulted in a formula identical to (94)2 with 256 replaced by 280. 

The previous discussion was based on the assumption that the nonlinear interaction 
between mobile and immobile dislocations is of the form given by (74). This means that 

)The symbol ffi in eqns (93) and (94) denotes equality within a scalar multiple, which in the case of (93)2 
turns out to be (,~P/b)tn, provided that the coefficient b is taken proportional to the plastic strain rate ~P. 
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immobile dislocations are freeing at the rate bp~ to be subsequently trapped at a pin- 
ning rate COzp~ by immobile dipoles. Of  course this is only a working hypothesis and, 
in general, it is expected that tripoles, quadropoles and dislocation muttipoles will par- 
ticipate in the process. In a preliminary effort  we examined (WALGRAEF & AIFANTIS 
[1987]), the case where h(pt,p2) is thus given, instead of (74), by the generalized form 

h ( o ~ , p , _ )  = b p j  - ~ cnp~p,_ , ( 9 5 )  
,7 

where the index n models the order of  reaction. It was found that the effective diffu- 
sivity D2 in (88) is now given by 

U 2 

Dz = 2(L.c,,po,,) , (96) 

where the sum L: extends over n. It turns out that for n = 1 there is no instability but 
damped propagation of  inhomogeneities. The case n = 2 was discussed above. For the 
case where n > 2, it turns out that there is no qualitative change of  the behavior of  the 
model equations. In fact, an initial analysis shows that all previous results pertaining, 
for example, to the characterization of  the instability and the wavelength are identically 
valid provided that we formally set 

O[ne ) 1 Ec,,oo,, (97) b ~ b = b  po ap ° 1 , c - - , (=  pO---~_ 

V.2 Shear bands 

Although the problem of  localization of  plastic flow in small but finite size deforma- 
tion zones, commonly known as shear bands (SBs), has been extensively discussed in 
the last ten years or so, most of  the theoretical results were concerned with the onset 
of instability and the determination of the angle and critical loads at which a shear band 
occurs. No theory has been proposed which can successfully account for the structure 
and evolution of  the band in the postlocalization regime. For a brief review of  the sub- 
ject from the viewpoint of  the inability of  existing theories to capture postlocalization 
features such as band width, the reader can consult the recent paper by TRIANTAFYLLIDIS 
& AIFANTIS [1986]. It was, in fact, in that paper where the problem of  shear band width 
for hyperelastic materials was addressed by including higher-order deformation gradients 
into the strain energy function. This gradient approach to the problem of  localization 
of  deformation was directly motivated by earlier work on fluid microstructures and 
phase transition theory as discussed by AIFAIqTIS [1984, 1985]. 

The problem of  shear band width in plastic materials will be addressed in detail in a 
forthcoming publication by ZBm & AIFANa'IS [1987b]. However, we outline below a sum- 
mary of  the analysis as it applies to incompressible rigidly plastic materials satisfying 
the equations 

d i v S = 0  ; S = - p l  + 2 # D  , ¢~=T/'~ , (98) 

with r = ( ~ S ' . S ' )  1/2, ")/ ~- ( 2 D ' D )  ~/2, and t r D  = 0. 
The point o f  departure of  the present proposal  from previous ones is the assumption 
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f0  
that the flow stress r is not a function of  the plastic strain ~ = ~dt  only, but also 

of  its gradients. A partial motivation for such an assumption (see also COLE~N & 
HODODO~ [1985]), which here is taken to be of  the form (with c a positive constant) 

r = r ( ' t )  - cV2": , (99) 

can be found in AIFANTIS [1985]. 
The onset of  instability can be determined by employing a standard perturbation anal- 

ysis similar to that used in the previous section. We thus assume that the velocity field 
admits the representation 

v = L x  + e [ ~ : e x p ( i q z  + o:t)] I, , (1oo) 

o o 
with z = n.x,  (L,v) being constants, (n, v) denoting, respectively, unit vectors perpen- 
dicular and parallel to the band, (q, to) signifying respectively wave number and speed 
of  growth and e being a small positive number (e << l ) .  In writing (100) we have also 
tacitly assumed plane strain conditions (DII  m - D 2 2 ,  Da3 = 0) with the direction of  
plastic flow being parallel to the shear band direction p. Then we have (vt, v2) = (n2, 
-n~)  = (cos 0, sin 0), where 0 is the angle between the band direction and the x,-axis 
Ix = (xt,x2,x3)] also assumed here to coincide with the appropriate principal direction o 
of  D. On assuming an expansion for the pressure field p similar to that of eqn (100) and 
then substituting the results in (98), we obtain the onset of  localization condition 

tr{[ /z l  + m ( D n  ® Dn)]  ( l , ®  J,)} = 0 , (101) 

where ~ m - 4(h - ¢q2 _ /,t~)/oy~2 and the superscript 0 has been dropped for conve- 
nience. Under the plane strain conditions discussed earlier, eqn (101) yields 

to = - ( h  + c q 2 ) / # c o t  2 20 , (102) 

suggesting that the preferred or critical conditions for the instability to occur are* 

0 = ~ / 4  , h ~ O  , (103) 

both of  which are familiar from classical considerations, even though derived here with 
a different method most suited for the subsequent postlocalization analysis. 

Having the direction of  the band thus obtained from linear stability analysis, the band 
width can now be determined from a nonlinear analysis of  an essentially one-dimen- 
sional problem for the plastic strain distribution in the direction perpendicular to the 
band. In fact, by assuming now for the velocity field, instead of  the linear perturbation 
expansion (100), the nonlinear steady-state representation 

v = L x  + f ( z ) ,  , (104) 

°It is noted that in this particular subsection h = dr~dr denotes the hardening modulus in shear while in 
other parts of  the paper h = dO/d~" measures the hardening in tension. 

*It is shown elsewhere that these conditions suggest the introduction of higher-order gradients in eqn (99) 
in order for the linearized theory to provide a definite wavelength. 
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w h e r e f ( z )  is a shape factor representing the intensity of  deformation and structure of  
the localized zone in the direction z = n. x perpendicular to the band, it follows from 
(t04) that 

D = D + g ( z ) M  ; g ( z )  = i f ( z )  , (105) 

suggesting that in the (v, n) coordinate system, the mode of deformation is simple shear- 
o 

ing in the x - z  plane. Thus, all components  of  the strain rate D but D . ,  = Dx: = D~: + 
1/2 g( z )  are uniform (equal t o / ) a ) .  It follows that all components  of  the stress S but 
Szx = S~: = S.~:. + tzg(z) are also uniform (equal to g,j). Then the only component  of  
the equilibrium equations (98h nontrivially satisfied implies 

07" 
- -  = 0 , (106) 
0z 

which in conjunction with (99) gives by integration 

c7:~ = r(2¢) - 7-0 , (107) 

where ro = r ( t )  denotes a constant o f  integration [equal to the stress applied at the 
boundary] and z(,y) is a softening type graph [admitting condition (t03)2] as shown in 

Fig. 5a. 
The solution of  (107) for -c~  < z < oo can readily be obtained by using the methods 

advanced by Aifantis and Serrin as quoted in An:A:~TIS [1984] (see also TRtANTArYLLIDKS 
8, An:ANTIS [1986]). It reads 

z = g + - [z(3,) - r0]d~/ d3~ , 
J ' t  (-') C : 

(lO8) 

where ~ is an arbitrary point and 3'~ [to = r( ' r ) ) ]  is the shear strain at z = _+oo. The 
representation (108) is valid for - ~  __< z < z* and is symmetric about  z*, with z* 
denoting the point where the graph ~/= "r(z) has a maximum 72 = q/(z*) [3,:(z*) = 0], 
Moreover,  it turns out that the triplet (r0,~1,3'2) must satisfy the following area con- 

dition (also shown in Fig. 5a) 

L "" [ r ( y )  - roJd3, = 0 , (109) 
I 

in order for the solution (108) of  eqn (107) to exist. Pictorially, the representation (108) 

is shown in Fig. 5b. 
The physical meaning of  the solution (108) in connection with the growth of  shear 

bands in rigidly plastic materials is discussed by Zsm & ArFANa'IS [1987b]. Roughly 
speaking, as soon as the applied shear q¢1 = yl ( t)  falls within the unstable region of  
negative slope, "y > 3'm, in Fig. 5b, homogeneous  deformat ions  cease to exist and a 
nonuniform solution of  the form (108), with ~ < 3',,, and 72 > qem, sets in. As condi- 
tion (109) has to be satisfied, increase of  the shear intensity 3'2 within the band implies 
a decrease o f  the applied strain 3,1 ('fl < 0, unloading). Such unloading is not permit- 
ted, however, by the present rigid plastic model and thus 3, remains constant in the 
respective regions. Since 3'1 = 71 (t) enters as a parameter  in (108), we may view it as 
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Fig. 5. (a) Schematic softening type stress-strain relation and the equal area rule. (b) Schematic distribution 
of shear strain in the direction perpendicular to the band. 

a time-like variable to be used in order to describe the growth of  plastic strain within 
the band. In fact, the condition a3,/3"y~ = 0 determines two points Z :  symmetric with 
respect to z*. In the interval z -  -< z -< z + where 37/371 -< 0 the strain profile is con- 
tinuously determined by an iterative procedure through (108) while in the region out- 
side the interval ( z - ,  z +) where 33~/a71 >- 0 the strain profile is fixed again through 
(108) once such a profile sets in. The details o f  such a construction, which is different 
than the one outlined by C O L E ~  • HODODON [1985], can be found in a forthcoming 
article by Zam ~ An:~aqTiS [1987b]. 

In the same article a comparison is made between the presently outlined procedure 
and that proposed by C o L ~ : ~  • HODODOt~ [1985] for a very special class of  materi- 
als for which 

r( 'y)  = ~,,, - c~( ' , / -  .y,,,)z , (110) 

where a ,  7m and r,,, are constants. It then turns out (Zms a Aw~r 'r is  [1987b]) that the 
distribution o f  shear strain "y is given by 
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7 l 7 ' '  0.89c 
+ ~ ( z - ~ ) - "  ; z < z -  : > :  

while the shear band width w = z + - z -  is given by 

w = 1.46 ~ , 

Z ~ Z ~ J  

( i l l )  

(112) 
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Fig. 6. (a) Numerical results illustrating the shear distribution and the structure of  the band. (b) The varia. 
tion o f  the shear band width with the strain parameter tS. 
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where the parameter 6 was defined for convenience as 8 = 7m - "h. Figures 6a and 6b, 
which are discussed in detail by Znm *, An:A~TXS [1987b], give respectively the distribu- 
tion of the shear strain as determined by (111) and the width of'the shear band as deter- 
mined by (112). 

V.3 Portevin-Le Chatelier bands 

In this concluding section we report some rather impressive preliminary results per- 
taining to the structure and propagation of the Portevin-Le Chatelier (PLC) bands. 
Roughly speaking, the PLC effect consists of a repeated propagation of deformation 
bands along a tensile specimen subjected to a constant strain or stress rate. This is 
accomplished by the appearance of abrupt stress drops or steps on the deformation 
curves, as is pictorially shown in Fig. 7a. The effect is found at slightly elevated tem- 
peratures in mild steel and at room temperature in several dilute alloys including Al, Cu, 
Ni and Fe alloys. More details on the physics of PLC effect can be found in recent 
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Fig. 7. (a) Experimental staircase stress-strain curve for AI-5% Mg. (b) Experimental loop-type stress-strain 
rate curve for AI-5% Mg. [After Kubin and co-workers] 
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papers by ESTRIN & Ktrszr~ [1986], KUBIN e t  al .  [1986] as well as references quoted 
therein. 

The PLC effect is associated with the nonlinear dependence of the flow stress on the 
strain rate; in fact, the nonconvexity due to the concurrence of  a negative strain rate sen- 
sitivity, as shown pictorially in Fig. 7b. In a series of papers by Estrin and Kubin an 
attempt was made to discuss the PLC effect on the basis of  a constitutive equation of  
the form 

o = he  + f ( g )  , (113) 

where, a, e and 4 denote as usual one-dimensional stress, strain and strain rate, respec- 
tively; the hardening rate h is assumed constant and the function f ,  being essentially of 
the loop-type depicted in Fig. 7b, takes into account the strain rate dependent interac- 
tion between mobile dislocation and localized obstacles. On the basis of ( l l3)  and qual- 
itative stability arguments Estrin and Kubin were able to speculate the profile o f  the 
PLC bands as they propagate in the form of  travelling waves along the specimen. Fig- 
ure 8 is indeed extracted from their paper and shows schematically the situation as they 
expect it. Their preliminary analysis, of  course, predicted neither the speed of  the bands 
nor their width. 

A simple quantitative explanation of  the situation can be given if the problem is refor- 
mulated within the present dislocation framework. Roughly speaking, this amounts to 
replacing eqn (113) by 

a = he + f ( g )  + ce ...... (ll4) 

where the last term models the strongly inhomogeneous character of dislocation distri- 
bution as it manifests itself in the form of strain gradients. The coefficient c is taken 
as constant for simplicity. For constant stress rate tests (~r = 6ot) and by denoting the 
homogeneous steady-state solution of  (114) by 4 ,  we have 

60 = h4  (115) 
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Fig. 8. Schematic representation of PLC bands as proposed by Estrin and Kubin on the basis of qualitative 
arguments. 
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Next. we search for travelling wave solutions of the form 

= z (V t  - x) , 

and also make use of the normalized variable 

~ =  ~ ( V t - x )  . 

Then. by also defining # = W~b-h. (114) implies 

z, ,  + I z f ' ( z ) z ,  + (z - zs) = 0 . 

( l l6)  

(117) 
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Fig. 9. (a) Predicted variation of the band velocity with the applied strain rate. ( b )  Predicted periodic struc- 
ture of the Portevin-Le Chatelier bands. 
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which is a nonlinear differential equation of Lienard's type. It can be shown that a 
unique stable periodic solution exists and that the natural speed of  the travelling wave 
is given by the expression 

f'(Zs) (119) 

Moreover,  the width of  the band can be explicitly calculated. 
More details on this problem can be found in a forthcoming article by ZmB & AIFAN- 

TtS [1987b]. In fact, Figs. 9a and 9b are extracted from their numerical analysis. They 
show the dependence of  the velocity of  the band V* on the applied strain rate and the 
profile of  the strain rate as a function of  the wave variable ~ ( ~  denotes a properly nor- 
malized band width and/Z the period). Similarly, Figs. 10a and 10b respectively show 
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Fig. 10. (a) Predicted strain profile in the PLC regime. (b) Predicted staircase stress-strain curve in the PLC 
regime. 
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the strain distribution with respect to a normalized space variable in two different 
instances and the predicted staircase stress-strain profile. 
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NOTE ADDED IN PROOF 

This article was invited and originally scheduled for the "Phillips Memorial Issue," 
earlier published in this journal; but, unfortunately, it was not completed in time. It 
does not attempt to review ongoing progress in plasticity and localization of deforma- 
tion theories. It presents, instead, results either recently obtained or currently being com- 
pleted by the author and his co-workers. 

Naturally, only the basic elements of this rather new approach to plastic flow were 
outlined and more details can be found in either recently published or forthcoming arti- 
cles as listed in the references. In this connection, many current and excellent papers on 
different "micromechanics" approaches to large plastic deformation theories (e.g. Asaro, 
Havner, and their co-workers) are not quoted here. Similarly, numerous outstanding 
advances are nonlocal and softening behavior (e.g. the earlier work of Eringen and co- 
workers on nonlocal plasticity and the more recent work of Bazant, Schreyer, Coleman 
and their co-workers, on localization) are also missing from the list of references. Such 
a detailed review and comparison of the present method to previous approaches to the 
heterogeneity of plastic flow will be discussed elsewhere. Nevertheless, it is pointed out 
here that whereas Eringen's and Bazant's theories are strictly nonlocal (spatial integrals), 
Schreyer's and Coleman's approaches are pseudo-nonlocal or of a gradient type, simi- 
lar to the present approach. 

However, Schreyer's approach [H.L. SCHRE~R and Z. CnE~, J. Appl. Mech., 53, 
791 (1986)] assumes a dependence of the yield condition on the first gradient only, in 
contrast to the present approach which is heavily based on the second gradient. Cole- 
man's approach [B.D. COLEM~ and M.L. HOD~DOS, Arch. Rat. Mech. Anal. 90, 219 
(1985)], on the other hand, utilizes the second gradient of strain but not directly in the 
yield condition or the flow stress, as is the case in the present approach. In this connec- 
tion, we also point out that the shear bandwidth in the present case of rigid plastic mate- 
rials was defined by the region where continuous loading occurs. Although this is similar 
to Coleman et al.'s assumption, our construction does not require their "end" conditions 
on the second spatial derivative of strain. In any case, such a definition of shear band- 
width may be somewhat ambiguous, especially when comparisons with observations are 
sought. This problem does not arise, of course, in the definition used by Triantafyllidis 
and Aifantis (19896) in their treatment of hyperelastic materials. 

In conclusion, we also point out that the comparisons between theory and experiment 
contained in Figs. 1-3 should be viewed only in relation to recent concerns about the 
appropriateness of existing tension-torsion tests in calibrating "simple shear" large 
deformation models (due to specimen configuration, precision of available axial- 
torsional extensiometers, and assurance of specimen homogeneity). 

REFERENCES 

1952 Dt~UCKER, D.C. and PKAGER, W., "Soil Mechanics and Plastic Analysis or Limit Design," Quart. 
Appl. Math., 10, 157. 

1968 NEU~.xN~, P., "Strain Bursts and Coarse Slip During Cyclic Deformation," Z. Metallkd., 59, 927. 



246 ELIAS (++ AIF~N i }~ 

1969 GILMAN, J.J., Micromechanics of Flow in Solids, McGra~,,-Hill. New York. 
1972 BA/LEY, J.A., HAAS, S.L., and NAWAB, K.C., "Anisotropy in Plastic Torsion." !. Basic Engng., 94~ 

231. 
1975 STORE~, S.S. and RICE, J.R., "Localized Necking in Thin Sheets." J. Mech. Ph, ~,. Solids, 23, 42~. 
1979 KOSEVICI-I, A.M., "Crystal Dislocations and the Theory of Elasticity," in N.~u~.~a~ao. FR.N. (ed.), Dis- 

locations in Solids, Vol. 1, North-Holland, Amsterdam, p. 33. 
1981 AtrA~rts, E.C., "Elementary Physicochemical Degradation Processes," in SELVAO~ R~. A.P.S. (ed.), 

Mechanics of Structured Media, Elsevier, Amsterdam, p. 301. 
1981 BAMMANN, D,J. and AIFANTIS, E.C., "On the Perfect Lattice-Dislocated State interaction," in SEL- 

VADURAI, A.P.S. (ed.), Mechanics of Structured Media, Elsevier, Amsterdam, I:. "9. 
1981 MtrGHRAm, H., "Cyclic Plasticity of Matrix and Persistent Slip Bands in Fatigued Metals," in Bsutt.'~. 

O. and HstEw, R.K.T. (eds.), Continuum Models for Discrete Systems 4, North-Holland, Amster- 
dam, p. 241. 

1982 BA,'~SiANN, D.J. and AffANTIS, E.C., "On a Proposal for a Continuum with Microstructure,'" Acta 
Mechanica, 45, 91. 

1982 HAWr, E.W. and CHANG, Y.W., "Material Rotation Effects in Tension-Torsion Testing,," ira 
WAGOSER, R.H. (eds.), Novel Techniques in Metal Deformation Testing, AIME. p. 253. 

1982 HtRTH, J.P. and LOTHE, J., Theory of Dislocations, John Wiley, New York. 
1982 Mtr~tA, T., Micromechanics of Defects in Solids, Martinus-Nijhoff, The Hague. 
1982 NAGTEGAAL, J.C. and DE JONG, J.E., "Some Aspects of Non-lsotropic Workhardening in Finite Strain 

Plasticity," in LEE, E.H. and MALLET, R.L. (eds.), Plasticity of Metals at Finite Strain: Theory, Exper- 
iment, and Computation, Stanford University, p. 65. 

1983 DAFALIAS, Y.F., "Corotational Rates for Kinematic Hardening at Large Plastic Deformations," J. 
Appl. Mech., 50, 561. 

1983 LO~T, B., "On the Effects of Plastic Rotation in the Finite Deformation of Anisotropic Elastoplastic 
Materials,," Mech. Mater., 2, 287. 

1984 AtFANTtS, E.C., "On the Microstructural Origin of Certain Inelastic Models," Trans. ASME, J. Eng. 
Mat. Tech., 106, 326. 

1984 BAMMANN, D.J., "An Internal Variable Model of Viscoplasticity,," in AIrASTtS, E.C. and DAVtSOS, 
L. (eds.), Media with Microstructures and Wave Propagation, Int. J. Engng. Sci., Vol. 8-10, Per- 
gamon Press, p. 1041. 

1984 DAFAtIAS, Y.F., "The Plastic Spin Concept and a Simple Illustration of Its Role in Finite Plastic 
Transformations," Mech. Mater., 3, 223. 

198,1 DRUCKER, D.C., "Material Response and Continuum Relations; or From Microscales to Macro- 
scales," Trans. ASME, J. Engng. Mat. Tech., 106, 286. 

1984 ONAT, E.T., "Flow of Kinematically Hardening Rigid-Plastic Materials," in DVOt~AK, G.J. and 
St-tmI.D, R.T. (eds.), Mechanics of Materials Behavior-Daniel  C. Drucker Anniversary Volume, 
Elsevier Sci. Publ., Amsterdam, p. 311. 

1985 AtrANXtS, E.C. and Hmrrt, J.P. (eds.), The Mechanics of Dislocations, ASM, Metals Park. 
1985 AtrA,',rTtS, E.C., "Continuum Models for Dislocated States and Media with Microstructures," in 

ALl:ANTiS, E.C. and HmTH, J.P. (eds.), The Mechanics of Dislocations, ASM, Metals Park, p. 127. 
1985 COLEMAN, B.D. and HODGDON, M.L., "On Shear Bands in Ductile Materials," Arch. Rat. Mech. 

Anal., 90, 219. 
1985 WALORmF, D. and AtrANrlS, E.C., "On the Formation and Stability of Dislocation Structures 1, II, 

II1," Int. J. Engng. Sci., 23, 1351, 1359, 1365. 
1986a AtFANTIS, E.C., "On the Dynamical Origin of Dislocation Patterns," Mater. Sci. Eng., 81, 563. 
1986b AIrANTIS, E.C., "Mechanics of Microstructures I, II, III," in BAt.KglSrt_n.~,r, V. and Bor'raNt, C. (eds.), 

Mechanical Properties and Behaviour of Solids-Plastic Instabilities, [ICTP Enrico Fermi School of 
Theoretical Physics, 12-30 August 1985, Trieste, Italy], World Scientific, Singapore, pp. 314. 332. 
347. 

1986c AtFANTIS, E.C., "On the Structure of Single Slip and Its Implications to Inelasticity," in GtTaUs, J., 
NEMAT-NASSr:R, S., and ZARKA, J. (eds.), Physical Basis and Modelling of Finite Deformations of 
Aggregates, [Proc. International Symposium-Je.~e,r MANDEL in Memoriam, Sept. 30-Oct. 2, 1985, 
Paris, France], Elsevier Appl. Sci. Publ., Amsterdam, p. 283. 

1986 Es'rm~, Y. and Ktra~, L.P., "Micro and Macro Aspects of Unstable Plastic Flow," in An:A.NTIS, E.C. 
and GtTTOS, J. (eds.), Phase Transformations, Elsevier Appl. Sci. Publ., Amsterdam, p. 185. 

1986 TRtA~TmYtLrOtS, N. and AIFANTIS, E.C., "A Gradient Approach to Localization of Deformation. 
I. Hyperelastic Materials," J, Elasticity, 16, 225. 

1986 Writ'rE, C. and ASAND, L., private communication. 
1987 Da.Fm.tas, Y.F. and ArFANrtS, E.C., forthcoming. See also "On the Origin o f Plastic Rotations and 

Spin," Appendix to the article 1986c above. [Also MM Report No. 8, "On the Microscopic Origin 
of Plastic Spin," Michigan Technological University, Houghton, Michigan.] 

1987 KtrmN, L.P., CmI-taB, K., and Es'rRtN, Y., "Nonuniform Plastic Deformation and the Portevin-Le 
Chatelier Effect," in WAL~RAEF, D. (ed.), Patterns Defects and Microstruetures in Nonequilibrium 



Physics of plastic deformation 247 

1987- 
1988 

1987a 

1987b 

Systems (NATO Advanced Workshop held in Austin, TX, March 1986), Martinus-Nijhoff, The 
Hague. 
W ~ o ~ F ,  D. and AlrAr~rts, E.C., "Plastic Instabilities, Dislocation Patterns, and Nonequilibrium 
Phenomena," Res. Mechanica, forthcoming. 
Zam, H.M. and AirA~rts, E.C., "The Concept of Relative Spin and Its Implications to Large Defor- 
mation Theories," Mechanics of Microstructures, MM Report No. 13, Michigan Technological Uni- 
versity, Houghton, Michigan. [See also: "Constitutive Equations for Large Material Rotations" in 
DEs~a, C.S. et al. (eds.), Constitutive Laws for Engineering Materials: Theory and Applications, 
Elsevier Science Publishing, New York.] 
ZBta, H.M. and AIFA.'~rlS, E.C., "On the Postlocalization Behavior of Plastic Deformation," 
Mechanics of Microstructures, MM Report No. I, Michigan Technological University, Houghton, 
Michigan. 

Department of Mechanical Engineering and Engineering Mechanics 
Michigan Technological University 
Houghton, MI 49931 

(Received 5 August 1986; In revised form 28 February 1987) 


