Dislocation patterning in fatigued metals as aresult of dynamical instabilities
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The nucleation of persistent slip bands in stressed materials is described as a cooperative
phenomenon for dislocation populations. It is the competition between their mobility and their
nonlinear interactions {creation, annihilation, and pinning} which causes the instability of
uniform dislocation distributions versus inhomogeneous ones and leads to the formation and

persistence of dislocation patterns.

INTRODUCTION

Current studies on fatigue failure in metals emphasize
the role of persistent slip bands (PSBs) with their characteris-
tic ladderlike structure in the initiation of cracks."* The lad-
derlike structure is composed by an alternate succession of
rich and poor dislocation regions characterized by an intrin-
sic wavelength. These microstructural nonuniformities are a
general feature of a large class of materials and although they
may differ from one material to another with respect to
structural details they always induce strain localization and
act as preferential sites for microcrack nucleation.

In accordance with the observation that the develop-
ment of PSBs in crystals under cyclic loading corresponds to
a plateau in the stress-strain curve, a two-phase mode} has
been developed which interprets this phenomenon as the re-
sult of a phase transitionlike behavior. The two phases are
identified with the soft and hard material regions and this
analogy has led to good qualitative agreement with experi-
mental observations.>* However, important questions relat-
ed to the nucleation of PSBs within the surrounding vein
structure of the matrix, the characteristic wavelength of the
patterns, and their stability and relaxation when the stress is
removed, have not been addressed and remain unanswered.

In an effort to elucidate these questions, we propose a
reaction-diffusion scheme for the dynamics of the disloca-
tion populations in fatigued metals able to reproduce the
characteristics of the distocation patterns for increasing
stress amplitudes. Some ingredients of this model have al-
ready been discussed in previous communications,’ where a
detailed elaboration on one and two dimensional aspects was
given.

DISLOCATION MICROSTRUCTURES

According to detailed experimental investigations
mainly of copper single crystals, two types of dislocation
patterns are formed in fatigued metals at low to intermediate
stress amplitudes. One is the matrix or vein structure con-
sisting of dense multipoles of primary edge dislocations
(veins) separated by dislocation poor regions (channels). The
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width of both the veins and the channels is of the order of 1.2
um, and the distocation density is of the order of 10> m~?in
the veins and ~6.5X 10" m~? in the channels. The second
structure is Jadderlike and corresponds to PSBs (see Fig. 1).
It develops in primary slip planes and is formed by the
successive alternation of dislocation poor regions (=~10"3
m %} and of regularly spaced walls of high dislocation den-
sity (=10"3 m~?}. The wavelength of the pattern is distribut-
ed around a peak at 1.4 um and its wave vector is parallel to
the direction of the applied resolved shear stress.*'°

Moreover, the experimental data and simple theoretical
models lead to a plateau in the cyclic stress-strain curve
which corresponds to the formation of PSBs in the matrix
and to the progressive filling of the sample with PSBs (see
Fig. 2). The analogies with phase transitions which have
been deduced from such curves'"'? are an important step in
the understanding of this phenomenon but are too superfi-
cial to render all of its richness mainly because it is related to
the nucleation of a highly anisotropic structure in a nearly
isotropic one.

The experimental observations also lead to the conclu-
sion that the dislocation patterns within the PSBs are the

FIG. 1. Dislocation pat-
terns showing matrix and
PSB structures in slip (a)
and cross-slip (b) planes.
High dislocation density
domains correspond to
dark regions.'?

(b) 1),,m
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result of a dynamic equilibrium between different processes
such as creation, annihilation, pinning, and diffusion. This is
reminiscent of self-organization phenomena in other driven
systems,'>'* where the competition between nonlinearities
and diffusivities lead to instabilities which induce different
kinds of spatial patterns {e.g., Rayleigh-Bénard, Taylor—
Couette, Turing instabilities). It appears, therefore, that re-
action-diffusion equations could be appropriate to describe
the dislocation dynamics, their motions, and interactions.
This justifies our attempt to build a minimal mode! for the
spatial ordering of dislocation populations based on balance
equations deduced from a few, now well-established as-
sumptions.

REACTION-DIFFUSION MODEL

We consider the creation of dislocations under an ap-
plied external stress by means of internal sources such as
Frank-Read and Bardeen-Herring sources. Accordingly,
the dislocation population is sufficiently high to be repre-
sented by a continuous dislocation concentration on a space
scale larger than a few lattice spacings. Moreover, creation
mechanisms compete with dynamical annihilation processes
during glide which are operative even at low temperatures.

Furthermore, when the applied shear stress reaches a
sufficiently high value or when thermal activation domi-
nates local energy barriers, dislocations may break free and
move rapidly with a stress-dependent velocity.'> Hence, the
dislocation populations may be divided in siow {gliding,
climbing, cross-slipping, or even pinned at obstacles) and
fast (freed by high shear stresses) ones. Such a distinction has
also been made earlier®'® with the names immobile and mo-
bile assigned, respectively, to the slow and fast moving dislo-
cations.

The local concentrations of these two dislocation popu-
lations pg and p,- are assumed to obey the following balance
equations:

Ps + div js = a — bps — cps — Bps + ypfpé,} "

Pr + div jp = Bps — ¥pep5,
wherea, b, ¢ represent creation and annihilation rates of slow
dislocations; B p gives the rate of production of fast disloca-
tions liberated by the applied stress when it surpasses a
threshold value; and ¥ corresponds to the pinning rate of fast
moving dislocations by practically immobile dipoles.

The coefficient B becomes operative above a certain
threshold stress and it may generally depend on various me-
chanical fields such as the stress, strain, and their rates. For
instance, in certain circumstances, 5 may be taken to vary
linearly with the local rate of plastic deformation € which, in
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turn, may be written as & = éexp [ (4 /T )7 — 7, — B [ps) |
where 7 is the applied stress with 7, being its threshold
value, and B\/;'E is the back stress due to slow dislocations.
The various rate constants are directly related to the shear
modulus and the Burgers vector and they may also depend
on the temperature 7, impurity density, as well as stacking
fault energy. In a simpler situation, 8 may be proportional to
h(r — 7o), where h is the usual Heaviside function and m a
growth coefficient.

The next step is to develop an expression for the cur-
rents js and j.. While a mechanical procedure'*'¢ is possi-
ble, leading to appropriate expressions of diffusive type for
the dislocation fluxes, we adopt here a somewhat different
approach based on the introduction of chemical-like poten-
tials for the dislocation species. Indeed, this assumption of
the existence of potentials is the only one reminiscent of an
underlying possible thermodynamics structure. Other ther-
modynamic questions such as the correct form of the energy
equation and the appropriate form of a dissipation inequality
for dislocation species are rather involved and delicate sub-
jects and are not addressed in this presentation. Under these
circumstances, we can write the flux jg as

Js = —MsVus, {2)

where M is the mobility tensor and u the chemical poten-
tial-like variable.

In the framework of a statistical mechanical analysis
based on the elasticity energy, 1 may be written as

pst) = E, + f dr'J (v — ' |}f (F)olr), 3)

where E_ is the core energy of dislocations, J the pair interac-
tion, and fis a distribution function taking into account the
possibility for the Burgers vector to be positive or negative.
Due to the screening effect of dislocations of different
Burgers vectors, the pair interaction is effectively short
ranged and y¢(r) may be approximated by the expression (a
similar approximation was adopted in another paper'’)

ps(rj~E, +Jps(r) + J1lj”vi V,psir), (4)

where J ' = fdrJ (r)f(r) and J ' = ifdrr,r;J (r)f(r). Hence,
we have

Jsi = Mijvj(J(O)pS + J(kll)vk Vv, psh (5)

where M, and J {] take into account the lattice structure and
the orientations of slip and cross-slip planes. For the sake of
simplicity in the qualitative discussion we pursue here, the
mobility tensor will be considered as diagonal. Moreover, we
will assume that the mobilities associated with slipping and
climbing/cross slipping are such that M, ~M  >M,.. The
coordinate x denotes the slip direction, z the direction per-
pendicular to it on the slip plane, while the coordinate y
being normal to the slip plane measures the effective mobil-
ity due to climbing the cross slipping effects. In the notation
of Part III of a related paper’ the axes y and z were inter-
changed for convenience.

As the shear stress points in the x direction, the domi-
nant part of the current associated with the mobile disloca-
tions should be proportional to their glide speed v. Various
empirical relationships between v and the stress intensity
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have been proposed ranging from a power law v = v, (7/7,)™
to exponential expressions of the type
v = vg exp[ — (7o/7)"]. They only emphasize the fact'®'®
that v is negligible below the threshold stress 7, and jumps to
a finite value beyond threshold. Moreover, as the applied
stress (and hence the velocity) is periodically reversed in cy-
clic experiments that we are concerned with here, the effec-
tive current is diffusive on time scales longer than the period
of the cyclic loading. This, together with the fact that posi-
tive and negative dislocations move in opposite directions at
each stress reversal, leads rigorously to the following expres-
sion for the flux j-

jr=—DVpp, (6)
with D being of the order of the thermal diffusivity below 7,
and increasing rapidly to its maximum value above 7.

INSTABILITIES AND PATTERNS

The model proposed in the preceding section is inhomo-
geneous and contains nonlinear couplings between different
variables. Hence, exact solutions are, in general, difficult to
obtain. However, as we are interested in the evolution of the
dislocation populations to their steady states, the problem
may be simplified by the use of the slow mode dynamics
which is able to describe the asymptotic dynamics of the
system with a reduced number of spatially inhomogeneous
variables. Effectively, the slow or unstable modes which play
here the role of *“‘an order parameter” are just the eigen-
modes associated to the eigenvalues of the linear evolution
matrix corresponding to the longer time scales of the prob-
lem. The fast modes may usually be adiabatically ejiminated
according to the so-called “slaving principle” leading to the
reduction of the full nonlinear problem to its dominant
aspects in the long time limit.?°

The slow mode o may be expressed here as a linear com-
bination of the deviations from the homogeneous steady-
state concentrations p3 and p%{g(o%)=a — bp¥ — o3’ =0,
P3PS =B /v, and its Fourier transform o, is found to obey
the following kinetic equations

Oy = ©,0, —erdka — 10k ——uJ'dk dk'o,_,_ o0,
{7)

where

w, = o, —w, + [(“’1+“)2)2—4ﬂ7’P0sZ]”2}, (8)
and

oy=r+B—d\g; + 4, — @) —dqu,} o

w; = 15 + 42D,
with

_ iJ(O)Z[ , _ 1'](0)!
"Mum*—gv’g)’ 7 —-:-Z'I-}-(—l;l- ,
o (10

d“ =M, |[JY, d =M, _Mn)_z_ .

The quantities u and v are algebraic functions of the various
constants appearing in (1) with » being positive. Also, we
have assumed that J¢) in Eq. (5) is isotropic, i.e. J!)
— J(”Sk,.

Hence, below and not too far above threshold, w, may
be safely approximated to be
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2
g
w, =r—d\lq; + ¢, —@f —d,q; + 5,
x 1

(11)
with

02

g = W;S : (12)
This approximation fails far above threshold where the slow
mode dynamics may even include oscillations.’ Such effects
will, however, not be considered in the present analysis.

According to the enhancement of the dislocation mo-
bility and of the creation rate of free dislocations, different
regimes and steady states may be obtained from the slow
mode kinetics (11} for increasing stress intensity. For conve-
nience, we discuss these possiblities in four distinct stages as
follows:

{I) At low values of stress, mobilities and plastic defor-
mation rates are vanishingly smatl (r < 0, 8~0). Consequent-
ly, the homogeneous dislocation density ps = p2, p% = Ois
stable.

(2) For higher values of stress but still below the thresh-
old 7y, the mobility increases while f remains negligible.
Hence, r may become positive leading to the instability of the
homogeneous density versus inhomogeneous perturbations.
In the idealized case discussed here (M, ~M, #M, ), the
fastest growing fluctuations correspond to wave vectors ¢
such that g3 + ¢} = g3 and ¢, = 0 and the steady disloca-
tion structure which is the most likely to appear corresponds
to maximum of the dislocation density distributed on rodlike
patterns of triangular symmetry which may be associated
with the vein structure of the matrix (see Fig. 3}. It is noted
that a set of wave vectors defined by
r—d,(q: + 9, — q5)* — d, g} > 0 are alfowed for this struc-
ture. Moreover, as the pattern appears via the spontaneous
breaking of continuous symmetries it is expected to be ex-
tremely sensitive to even small inhomogeneities. Hence, the
real structures are presumably less regular than the ones pre-
dicted by the fastest growing fluctuation argument in agree-
ment with experimental observations.*!

{3) When the stress reaches the threshold 7 = 7, inho-

0 Mixed0!  Mixed 1,2 ' 2
Possible patterns

0 Homogeneous
1 Rodlike polygonal "Matrix"
2 Periodic in x direction “PSB”

FIG. 3. Schematic bifurcation diagram for Eq. (7): & is the amplitude of the
spatial patterns with wave number g,. Plain lines represent stable states,
dashed lines unstable ones, and heavy lines give the preferred states (mini-
mizing the Lyapunov functional).
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mogeneous fluctuations with wave vectors in the x direction
become favored as the result of the anisotropy induced by the
breaking free of dislocations in this direction. Hence, a com-
petition may occur between the now deformed poiygonal
rodlike structures associated with the veins and the layer
ladderlike periodic structures in the x direction correspond-
ing to PSBs. It turns out that the preferred wave number g,
of this pattern is given by the relation

ql
2du (‘15 - ‘]3) “,3-"2—-}—2—2-
(qc + ql )
and is hence slightly larger than g,,.

(4} If the stress is increased further, a new threshold
appears beyond which the rodlike structures become defini-
tely unstable versus the ladderlike pattern which then com-
pletely fills the system.

=0, (13)

CONCLUSIONS AND PERSPECTIVES

By the association of the vein and PSBs structures with
the rodlike polygonal and ladderlike layered patterns de-
scribed in the previous section various experimental obser-
vations are qualitatively recovered.®'%?? Effectively, beyond
threshold, matrix and PSBs are metastable and as a result of
their competition PSBs may nucleate within the vein struc-
ture. Moreover, the increase of the local plastic deformation
rate corresponds to higher anisotropy and induces a contin-
uous deformation of the matrix structure. When the matrix
becomes unable to accommodate such changes it turns un-
stable and the ladderlike structure may fill the entire system.

Due to the continuous symmetry breaking, phase fluc-
tuations may be important. For example, a complete shift of
the structure as a whole should be very easy. A shift of the
ladder walls by the gliding of the pattern in the cross-slip
plane has actually been observed.'® Furthermore, stable pat-
terns with different wave vectors are possible, but their
wavelengths are distributed around the value corresponding
to the fastest growing fluctuations, in accordance with ex-
perimenal observations. Moreover, stationary phase fluctu-
ations of the patterns may also exist leading eventually to
layer splitting of the wall structure, this effect being also
observed experimentally.

To conclude, let us emphasize the fact that the model
presented here provides a conceptual framework dedicated
to the study of the formation of dislocation patterns as a
result of a competition between nonlinear interactions and
stress enhanced mobility. The main features of pattern for-
mation, pattern selection, and sensitivity observed in other
nonequilibrium driven systems are recovered. However, the
qualitative agreement with experimental findings needs
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further confirmation and the predictive power of the model
needs to be tested with realistic numerical values of the rate
and diffusion constants. In this connection, numerical simu-
lations based on the system (1) and dedicated to the dynami-
cal aspects of the nucleation process of PSBs from the matrix
will be performed in future works.
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