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For the quantification of strength and identification of direction of coupling be-

tween two sub-systems of a complex dynamical system, observed from bivariate

time series, a number of measures have been proposed that can be grouped in
measures of phase synchronization, state space and information. We review all

these measures and, in particular, for the information measures we examine

different estimates of the probability distributions. We propose also a modifi-
cation of the transfer entropy measure to span larger time windows and thus be

more appropriate for flows. Simulations on systems of different types and for
varying coupling strengths showed that information measures, and the modi-

fied transfer entropy measure in particular, detect best the coupling strength

and direction. This is also found when applying the measures to pairs of EEG
channels in order to detect the propagation of pre-epileptic brain activity.

Keywords: Information flow; Directionality; Coupling; Time series; Chaos.

1. Introduction

The interaction or coupling between variables or sub-systems of a complex
dynamical system is a developing area of nonlinear dynamics and time series
analysis.1–3 The recently developed measures of interaction go beyond the
standard cross-correlation and exploit nonlinear properties of dynamical
systems. Further, indexes have been derived from these interaction mea-
sures in order to detect the direction of interaction. Interaction measures
can be split in three classes: the state-space based measures that use the
inter-distances of reconstructed points from the time series,4–6 the measures
making use of the idea of synchronization and quantify the concordance of
signal quantities such as phases or events,7,8 and the information based
measures that quantify information flow through probability distribution
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functions.9,10 All measures involve specific parameters and their perfor-
mance depends critically on them.

The information measures make no assumptions on the system dynamics
as opposed to phase or event synchronization measures that assume strong
oscillatory behavior or distinct event occurrences, respectively, and the state
space methods that require local dynamics being preserved in neighbor-
hoods of reconstructed points. For the probability density functions used in
information measures, different estimates have been proposed. In a recent
work,11 we have compared the histogram-based,12 kernels,13 and k-nearest
neighbors14 estimators for the mutual information on scalar time series and
found through simulations that for nonlinear systems they are consistent
only when noise is added to the data, meaning that the estimates converge
with the time series length. Moreover, the estimation and convergence de-
pends on the method specific parameter, especially for the histogram-based
methods, where both equidistant and equiprobable binning have been used.

Here, we extend the simulation study to measures of the information
flow that involve joint and conditional probability density estimation from
bivariate time series. Information flow measures included in this investiga-
tion are the transfer entropy,9 the coarse-grained transinformation rate15

and the conditional mutual information.16 The information measures are
also compared to state space and synchronization directionality measures.

The structure of the paper is as follows. In Section 2, the directional
coupling measures are discussed. In Section 3, the evaluation procedure
and the simulation systems are presented and in Section 4, the results are
discussed. In Section 5, we present an application of the measures to pre-
epileptic EEG signals and in Section 6, the main conclusions are drawn.

2. Directional coupling measures

Let us assume a bivariate time series {xt, yt}Nt=1, where xt and yt are ob-
served variables from systems that may have unidirectional or bidirectional
interaction. For simplicity, we refer to the variables with X and Y , respec-
tively. We are basically concerned here with interaction of nonlinear dy-
namical systems and therefore we study measures that have the power to
detect this type of interaction, skipping correlation and coherence measures
used in linear multivariate analysis.17,18 We also do not consider methods
of mutual nonlinear prediction.19
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2.1. State space measures

This class of interaction measures involves the state space reconstruction
from each time series separately using standard delay embedding, i.e. the re-
constructed points from each time series are xt = [xt, xt−τ , . . . , xt−(m−1)τ ]′

and yt = [yt, yt−τ , . . . , yt−(m−1)τ ]′ for the same embedding dimension m

and delay τ . The measures operate on the neighboring reconstructed points.
The nonlinear interdependence measure (NI) assumes the time indices

rt,j and st,j , j = 1, ..., k of the k-nearest neighbors of xt and yt, respec-
tively.4 The mean squared Euclidean distance of the k-nearest neighbors to
yt is R(k)

t (Y ) = 1
k

∑k
j=1 ‖yt − yst,j

‖2, and the X-conditioned mean squared

Euclidean distance of yt is R(k)
t (Y |X) = 1

k

∑k
j=1 ‖yt − yrt,j

‖2. Then the NI
measure is defined as

S(Y |X) =
1
N ′

N ′∑
t=1

R
(k)
t (Y )

R
(k)
t (Y |X)

, (1)

where N ′ = N − (m − 1)τ . Values of S(Y |X) close to zero suggest
independence of Y and X, while significant positive values of S(Y |X)
suggest dependence of Y on X. The measure is non-symmetric, so if
S(Y |X) > S(X|Y ) then Y depends more on X than vice versa. It has
been reported that NI is robust against noise and capable of detecting
weak inter-dependence.4,20,21

Recalling that neighboring points correspond to nearby trajectories or
equivalently recurrences of a single (chaotic) trajectory at the neighbor-
hood of reference, NI bears a great deal of similarity to the measure of
mean conditional probability of recurrence (MCR).6 According to the visu-
alizing method of recurrence plot,22 the recurrence matrixes of X and Y are
respectively RXi,j = Θ(εx−‖xi−xj‖) and RYi,j = Θ(εy−‖yi−yj‖), where Θ
is the Heaviside function and εx, εy are distances (radii when the distance
metric is Euclidean). In addition, the joint recurrence matrix of (X,Y ) is
defined as JX,Yi,j = Θ(εx−‖xi−xj‖)Θ(εy−‖yi−yj‖). The concept of recur-
rence has been used to quantify a weaker form of synchronization, whereas
MCR is an extension of it that detects the direction of the coupling. Then
MCR of Y given X is

MCR(Y |X) =
1
N ′

N ′∑
i=1

∑N ′

j=1 J
X,Y
i,j∑N ′

j=1R
X
i,j

. (2)

In loose terms, MCR estimates the probability of recurrence on Y when
there is synchronous recurrence on X. The independence and direction of
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dependence is defined as for NI, so if MCR(Y |X) > MCR(X|Y ) then X

drives Y and if MCR(Y |X) ' MCR(X|Y ) then the coupling is symmetric
(same strength of coupling in both directions). The main difference between
NI and MCR is that MCR uses counts of neighboring points according to
a distance threshold, whereas NI uses the distances for a fixed number of
neighboring points.

2.2. Synchronization measures

Reverting from state space dynamics to phase dynamics, the measure of
directionality index (DI) quantifies the degree the phase dynamics of one
oscillator is influenced by the phase dynamics of another oscillator.8 To
form the DI measure it is assumed that the two time series indeed ex-
hibit oscillating behavior, so that phases φX(t), t = 1, . . . , N , can be ex-
tracted from {Xt}Nt=1, typically using the Hilbert transform (the same for
Y , also for the following expressions). It is also assumed that the phase
increments ∆X(t) = φX(t+ τ)− φX(t) are generated by an unknown two-
dimensional map ∆X(t) = FX [φX(t) − φY (t)] fitted by a finite Fourier
series

∑
m,lAm,le

imφX+ilφY . The fitted functions for X and Y are used to
quantify the cross dependencies of phase dynamics of the two systems given
as

c2X =
∫ 2π

0

∫ 2π

0

∂FX
∂φX

dφXdφY , c2Y =
∫ 2π

0

∫ 2π

0

∂FY
∂φY

dφXdφY . (3)

The directionality index is defined as:

dX,Y =
cY − cX
cX + cY

, (4)

where dX,Y close to -1 or 1 suggests unidirectional coupling driven by X or
Y , respectively, while dX,Y ' 0 suggests symmetric bidirectional coupling
or no coupling. The main disadvantage of this method is that it is not
always possible to extract phases from scalar time series.

Event synchronization is the relative timing of certain “events” in the
time series (like spikes, local minima or maxima), i.e. quasi-simultaneous
appearances of these events in the two time series.23 Let cτ (X|Y ) denote
the number of times an event appears in X shortly after it appears in Y (for
details see [23]), allowing a time lag τ between two synchronous events. The
strength of the coupling, termed as event synchronization (ES), is expressed
by the normalized total of synchronized events

Qτ =
cτ (Y |X) + cτ (X|Y )

√
nxny

, (5)
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and the coupling direction, termed as event delay (EvD), by the normalized
difference

qτ =
cτ (Y |X)− cτ (X|Y )

√
nxny

, (6)

where nx and ny are the total number of occurrences of events in X and
Y . The measures are normalized so that 0 ≤ Qτ ≤ 1 and −1 ≤ qτ ≤ 1.
For Qτ = 1 the events of the signals are fully synchronized while Qτ = 0
suggests no synchronization. When qτ is close to 1 an event in X is likely
to precede an event in Y and thus X drives Y , and respectively when qτ
is close to -1 suggests that Y drives X. As also mentioned in [23], τ is not
fixed but adapted to the time interval between events at each step (it is
half of the minimum of times from the current event to the preceding and
to the succeeding event for both X and Y ).

2.3. Information measures

The information measures make use of the Shannon entropy for the uncer-
tainty or information in X, H(X) = −

∑
x pX(x) ln pX(x), where pX(x) is

the probability function defined on a proper binning of X. Further, the con-
ditional entropy is H(X|Y ) = −

∑
x,y pX,Y (x, y) ln pX,Y (x,y)

pY (y) and the mutual

information is I(X,Y ) = −
∑
x,y pX,Y (x, y) ln pX,Y (x,y)

pX(x)pY (y) , where pX,Y (x, y)
is the joint probability of (X,Y ) (assuming proper binning of Y as well).
In the presence of a third variable Z, the conditional mutual information
I(X,Y |Z) of the variables X,Y given the variable Z is

I(X,Y |Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z). (7)

For a scalar time series, mutual information is defined in terms of a
delay, I(X,Y ) = I(xt, xt−τ ) = I(τ) and for bivariate time series a natural
extension is the cross mutual information I(xt, yt−τ ). If instead of yt−τ
the difference ∆τyt = yt+τ − yt is considered, then the (cross) mutual
information conditioned on yt is I(xt,∆τyt|yt) and can be found from (7).
The average of I(xt,∆τyt|yt) for delays up to a maximum delay τmax is the
measure of mean conditional mutual information (MCMI)16

iX→Y =
1

τmax

τmax∑
τ=1

I(xt,∆τyt|yt) (8)

that quantifies the information transferred from X to Y at a later time con-
ditioning on the current state of Y , i.e. the level of driving of X to Y . iY→X
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is defined similarly. A different expression for the conditional mutual infor-
mation is used to define the measure of Coarse-grained transinformation
rate (CGTR).10,24 Averaging on time increments τ as for MCMI, CGTR
measures the average rate of the net amount of information transferred
from X to Y and is defined as:

CiX→Y =
1

τmax

τmax∑
τ=1

I(xt, yt+τ |yτ )− 1
2τmax

τmax∑
τ=−τmax,τ 6=0

I(xt, yt+τ ). (9)

If CiX→Y ' 0 then there is no information flow, while if CiX→Y > 0 then
X influences Y . If CiX→Y > CiY→X then X influences Y more than vice
versa.

The states of X and Y in MCMI and CGTR are scalars xt and yt, re-
spectively, but can also be given by vectors xmx

t = [xt, xt−1, . . . , xt−(mx−1)]′

and ymy

t = [yt, yt−1, . . . , yt−(my−1)]′. The latter is used in the measure of
transfer entropy (TE)9

TX→Y =
∑

p(yt+1,y
my

t ,xmx
t ) ln

p(yt+1|y
my

t ,xmx
t )

p(yt+1|y
my

t )
. (10)

TE quantifies the information flow from X to Y by the amount of informa-
tion explained in Y at one step ahead from the state of X, accounting for the
concurrent state of Y . The concept of transfer entropy extends the Shan-
non entropy for transition probabilities and quantifies how the conditioning
on X change the transition probabilities of Y . The inclusion of vectors in
the probabilities does not allow for reliable estimation of TE for small data
sets, although there are several methods for efficient coarse graining. It has
been shown that with proper conditioning, transfer entropy TX→Y is the
exact equivalent to the conditional mutual information I(xt, yt+τ |yt).2,3 In
the computation of TE, only one time step (lag) ahead is considered, as
opposed to MCMI where all lags up to some τmax contribute to the esti-
mation.

TE involves the time window lengths mx and my (or embedding dimen-
sions when using delay one). While mx is selected using standard embed-
ding criteria, my has commonly been set either equal to mx or most fre-
quently to 1. For time series from flows, we propose the states to be defined
through separate delay embedding, i.e. xmx

t = [xt, xt−τx
, . . . , xt−(mx−1)τx

]′

and ymy

t = [yt, yt−τy , . . . , yt−(my−1)τy
]′ for proper selection of the delay pa-

rameters. Moreover, there is little information flow to observe for one step
ahead when the data are densely sampled and in line with MCMI we use a
delay (or better a step ahead) τ instead of 1.
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We consider two estimators for the probability functions in all informa-
tion measures, the one estimator uses equidistant binning (ED)12 and the
other estimator uses correlation sums.25

3. Setup

The evaluation of the measures is assessed by means of Monte Carlo sim-
ulation on different types of systems. Directionality coupling measures are
computed on coupled systems for increasing coupling strengths in order
to evaluate the ability of the measures to detect the degree and direction
of coupling. We use 100 realizations from the different simulation systems
(linear and nonlinear/ chaotic systems, unidirectional and bidirectional),
with time series lengths n = 1024, 2048, 4096. Analytically, the simulation
systems are:

• Two AR(1) systems with unidirectional coupling:

xt+1 = 0.5xt + ext

yt+1 = 0.5yt + cxt + eyt

with coupling strength c = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and ext , e
y
t normal

iid with variance 1.
• Two unidirectionally coupled Henon maps:

xt+1 = 1.4− x2
t + 0.3xt−1

yt+1 = 1.4− cxtyt + (1− c)y2
t + 0.3yt−1

with coupling strength c = 0, 0.1, 0.2, 0.3, 0.4, 0.5.
• A Rössler system (x1, y1, z1) driving a Lorenz system (x2, y2, z2):

ẋ1 = −6(y1 + z1)

ẏ1 = −6(x1 + 0.2y1)

ż1 = −6(0.2 + z1(y1 − 5.7))

ẋ2 = 10(x2 + y2)

ẏ2 = 28x2 − y2 − x2z2 + cy2
1

ż2 = x2y2 −
8
3
z2

with coupling strength c = 0, 0.5, 1, 1.5, 2.
• Two bidirectionally coupled Henon maps:

xt+1 = 1.4− x2
t + 0.3xt−1 + c2(x2

t − y2
t )

yt+1 = 1.4− y2
t + 0.3yt−1 + c1(y2

t − x2
t )

with coupling strengths (c1, c2) = (0.05,0.05), (0.1,0.05), (0.1,0.1),
(0.15,0.05), (0.2,0.05).
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The range of the coupling strengths is bounded from zero (independent
systems) up to the level of almost complete synchronization. All the time
series are first normalized to have mean 0 and standard deviation 1. The
values for measure parameters are set as follows: number of bins b = 8 for
measures requiring coarse graining, radius for finding neighbors r = 0.15,
number of neighbors k = 10, Theiler window W = 10 (to exclude time
correlated points). For all systems apart from the unidirectionally coupled
Rössler–Lorenz system we set: embedding dimension m = 2, time lag τ = 1,
maximum lag for the average of time increments in information measures
τmax = 10, and for transfer entropy τ = 1,mx = my = 1, τx = τy = 1.
For the unidirectionally coupled Rössler–Lorenz system we set: m = 5, τ =
5, τmax = 20, and for transfer entropy: τ = 5,mx = my = 2, τx = τy = 5.

4. Results

For systems that are unidirectionally coupled, directionality measures
should increase with coupling strength at the direction of coupling and
be stable (and close to zero) at the opposite direction and when there is no
coupling (c = 0). We start with the results from the simulations of unidi-
rectionally coupled AR(1) system. As expected, state space measures and
DI do not discriminate between the linear stochastic systems, even for large
time series lengths, due to the lack of nonlinear dynamics (in local state
space) and phase dynamics, respectively. On the other hand, EvD regarding
the local maxima of the time series, seems to discriminate the directionality
at a level that increases with the coupling strength, as shown in Fig. 1a.
Both estimators of MCMI (with correlation sum and equidistant binning)
detect the directionality of the coupling correctly (see Fig. 1b and c), and
even for small time series lengths, while CGTR does not seem to detect
the directionality of the coupling. Both estimators of TE (from binning
and correlation sum) detect the direction of information flow correctly (see
Fig. 1d and e).

For the unidirectionally coupled Henon map we observe that MCR de-
tects the increase of coupling in the correct direction, but it wrongly indi-
cates the same but at a lesser degree in the other direction (see Fig. 2a). On
the other hand, and as Fig. 2b shows, NI is at the order of 10−3 and there-
fore no information flow is detected. DI detects correctly the strength and
the directionality of the coupling but with a large variance, even for large
time series lengths, and does not allow for a clear indication of directionality
for all cases (see Fig. 2c). EvD also does not detect any information flow.
On the other hand, all information measures detect correctly the strength
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Fig. 1. Average and standard deviation (shown as error bars) of the directionality

measures for 100 realizations of unidirectionally coupled AR(1) system. (a) DI and EvD
as shown in the legend, for n = 4096. (b) MCMI computed by correlation sums, n =

1024. (c) As in (b) but for equidistant partition. (d) TE computed by correlation sum,

n = 1024. (e) As in (d) but for equidistant partition.

and the directionality of the coupling even for small time series lengths
(results for CGTR and TE are shown in Fig. 2d-f).

For the unidirectionally coupled Rössler–Lorenz system, we note that
the detection of the directionality of the coupling is expected to be more
difficult as the two flows are of different type. The simulations showed that
EvD, NI, DI and MCMI could not detect the direction and strength of the
coupling, whereas MCR and CGTR could both detect it, even for small
time series lengths. Using the TE measure with the standard parameters
(τ = 1,mx = 2, my = 1 and τx = τy = 1) we get only slight difference of
the TE on the two directions (somehow larger difference is obtained using
the histogram based estimator as shown in Fig. 3a, d). However, estimation
of TE using proper reconstruction of state space, detects the coupling only
in the correct direction and again better for the histogram based estimate
(see Fig. 3b and e). The detection improves with the increase of time series
length as shown in Fig. 3c and f. The strong dependence on data size is
due to the estimation of probability densities regarding the reconstructed
points rather than the samples.

For the bidirectionally coupled Henon system the synchronization mea-
sures (for phase and event) fail to detect the direction of stronger coupling,
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Fig. 2. Average and standard deviation (shown as error bars) of the directionality

measures for 100 realizations of unidirectionally coupled Henon system. (a) MCR, for
n = 4096, (b) NI, for n = 4096 and (c) DI, for n = 4096. (d) CGTR, for n = 1024.

(e) TE computed by correlation sums, for n = 1024. (f) As in (e) but for equidistant

partition.
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Fig. 3. Average and standard deviation (shown as error bars) of the directionality
measures for 100 realizations of unidirectionally coupled Rössler–Lorenz system. (a) TE

computed by correlation sums, for τ = 1,mx = 2,my = 1, n = 1024. (b) As in (a) but
for τ = 5,mx = my = 2, τx = τy = 5, n = 1024. (c) As in (b) for n = 2048. (d), (e), (f)

As in (a), (b), (c) respectively, but for equidistant partition.
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as there are no distinct phases or events in the time series. Regarding the
state space measures, MCR correctly estimates the driver-response interac-
tion only when it is present as shown in Table 1, whereas NI gives always
small values independently of the coupling setting. All information mea-

Table 1. Average of the directionality measures for 100 realizations of bidirectionally
coupled Henon map for n = 1024.

Coupling strengths

Measures (0.05,0.05) (0.1,0.05) (0.1,0.1) (0.15,0.1) (0.2,0.05)

MCR(X|Y ) 0.0874 0.1018 0.1655 0.1363 0.1873
MCR(Y |X) 0.0875 0.0940 0.1649 0.1133 0.1453

S(X|Y ) 0.0022 0.0032 0.0075 0.0045 0.0074

S(Y |X) 0.0022 0.0032 0.0075 0.0051 0.0101

iX→Y (Cor. Sum) 0.1519 0.2273 0.3876 0.3159 0.3609
iY→X(Cor. Sum) 0.1473 0.1555 0.3870 0.1820 0.1847

iX→Y (hist. based) 0.1398 0.1769 0.2267 0.2172 0.2551
iY→X(hist. based) 0.1386 0.1387 0.2269 0.1503 0.1519

CiX→Y 0.1749 0.2036 0.1119 0.2336 0.2629

CiY→X 0.1734 0.1663 0.1124 0.1609 0.1391

TX→Y (Cor. Sum) 0.1007 0.1818 0.2787 0.3121 0.3984
TY→X(Cor. Sum) 0.0990 0.1044 0.2804 0.1323 0.1318

TX→Y (hist. based) 0.1021 0.1415 0.1660 0.2075 0.3021
TY→X(hist. based) 0.1024 0.0999 0.1658 0.1224 0.1300

sures perform properly (see Table 1). They all give about the same value
for both directions when the coupling is the same in both directions. When
there is stronger coupling in one direction, TE turns out to give the larger
difference for the two directions. For example, for c1 = 0.15 and c2 = 0.1,
TX→Y increases by about 136% from TY→X for the estimator using cor-
relation sums and 70% for the estimator using histograms, whereas the
increase for MCMI is 74% (correlation sums estimator) and 45% (estima-
tor using histograms) and for CGTR is also 45%. Note that these results
are for n = 1024, and for larger time series the difference in the presence of
stronger coupling in one direction is much more clear.

5. Application

As an application, we assess the examined information flow measures in
detecting the propagation of the epileptic activity that may be used as a
predictor of an impending seizure. The problem of direct and indirect trans-
fer of information among EEG channels is not considered here (for this see
e.g. [26,27]). Specifically, we investigate whether changes in directionality of
coupling and information flow occur in brain areas of an epileptic patient at
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two different periods prior to seizure onset. The data are extra-cranial mul-
tichannel recordings of electroencephalographs (EEG) from a patient with
back left temporal (LT) lobe epilepsy. We compare the measures on record-
ings from 60 to 50min before seizure onset (early preictal state) and on
recordings from 10min before and up to seizure onset (late preictal state).
We use two electrodes from the epileptic focus area (LT1 and LT2) and
investigate the information flow to other areas close or farther from it: oc-
cipital channels (OC1, OC2), middle channel (MI) and right temporal (RT)
channel.

For each of the two periods and for each channel we derive 20 consecutive
non-overlapping time series of 30sec each and compute all directionality
measures for pairs of LT1 and LT2 to all other selected channels. The
parameters of the directionality measures are: m = 10, τ = 5, k = 10,
W = 10, r = 0.15, mx = my = 2, τx = τy = 5, b = 8, τmax = 20. We
observed a slight decrease in information flow from focus to other areas
(mostly from LT to OC and MI) moving from early to late preictal state,
but this could be observed only with some measures, as shown in Fig. 4.
Although transfer entropy seemed to perform better than other measures
in the simulation study, in this application it did not perform any better
than the other measures.
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Fig. 4. Estimated values from the two preictal states of (a) MCMI (histogram based)
from channel LT1 to RT, (b) DI from LT1 to MI, (c) NI from LT1 to OC2, (d) TE

(histogram based) from LT2 to MI, and (e) MCMI (histogram based) from channel LT2
to OC2. The states are indicated by the time in sec, with reference to time 0 at seizure
onset and they are separated by a vertical dashed line.
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6. Conclusions

From the simulation study we educed that information measures and specif-
ically transfer entropy were able to detect the directionality in coupled sys-
tems independently of the type of the system (linear or non-linear, map or
flow). Moreover, information measures seem to perform better for short time
series lengths than state space and synchronization measures do. The pro-
posed generalized form of TE introducing reconstructed points and larger
time increment seems to perform well, however the selection of the embed-
ding parameters is crucial. In the simulations, we used standard values for
measure parameters, as given in the literature, and further investigation
with optimized parameters is needed to completely assess the usefulness of
the measures. In the EEG application we found that only a few direction-
ality measures could give a slight change in the information flow from the
epileptic focus to other brain areas when comparing the period about an
hour prior to seizure to the period just before seizure onset.
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