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ABSTRACT

This paper presents a method for embedding watermarks (some call them signatures)
m digital pictures. The signatures are considered to be digital images with few grey
levels, which are embedded in digital grey or color pictures. The extraction of the
watermark, by an unauthorized person, is mmpossible since a chaotic mixing of the
code takes place. Our study is based on the theory of toral automorphisms which may
be proved to be a useful tool in digital copyright protection.

1. INTRODUCTION

Nowadays, the use of multimedia services over computer networks is rapidly increasing.
But, also, the problems associated with enforcing copyright protection on these services
become more and more significant. The use of watermarks (or digital signatures) has
been proposed as a particular, but efficient solution to the above mentioned problem
[1-3]. A digital watermark is a code which is embedded into digital data for copyright
protection.If the data represent an image, then the visual perception of the image must
remain unaltered after embedding. The watermark completely characterizes the owner
and proves the ownership of the image.

There are some requirements which must be satisfied by a watermarking algorithm
such as visual and statistical invisibility and resistance to compression. It is desirable
that the algorithm is described by a standard procedure employing a set of parameters
which is the key for embedding and detection of the watermark. Generally speaking,
the algorithm consists of two independent procedures :

1. Selection of the secret code being embedded mto an mmage.
2. Embedding by a superposition law which alters the intensity levels of
some pixels of the image.
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The watermark embedding takes place at the first procedure, by a suitable chosen en-
cryption of the original code, and/or at the second procedure, by the use of a nonlinear
superposition law.

In this paper we use as a watermark an N x N image S embedded in an original
M; x M, mmage [ to be protected. We propose a spatial transformation of S such
that only the knowledge of a specific set of numbers can lead to the extraction of S
from 1. We use toral automorphisms which are strongly chaotic (mixing) systems [4,5].
We consider a digital image as a set of pixels which form a two dimensional integer
lattice. Toral automorphisms are characterised by special properties when they act
on such lattices. In section 2 we point some main definitions from the theory of toral
automorphisms, we state the "recurrence” property and we suggest a simple system
which produces chaotic spatial transformations of images. In section 3 we describe a
watermarking algorithm.

2. TORUS AUTOMORPHISMS ON INTEGER LATTICES

A two-dimensional “torus automorphism” can be considered like a spatial transforma-
tion of planar regions which belong in a square two- dimensional area. The heart of the
transformation is a 2 X 2 matrix with constant elements. The term torus automorphis-
m, usually, refers to this matrix. Let U =[0,1) x [0,1) C R? is the domain where an
automorphism is applied and r= (x,y) a point on U.The action of the automorphism
on r gives the I’ = (', y’) by the following formula [4,5]:

YAt or (y,):(a;az)(y) (mod 1) 1)

where (i) a;; € 7, (ii) detA =1 and (iii) A has eigenvalues A\ € R — {—1,0,1}.

The conditions (i) and (i) ensure the existence of the inverse automorphism which
is represented by the matrix A~'. The condition (iii) stands for "hyperbolicity” which
is a neccesary property for a chaotic behaviour. By using (ii), the relation A, = 1/,
is proved. Iterated actions of A on a point ry form a dynamical system which can be
expressed like a map

r,41 = A"rg (mod1) or r,41 = Ar, (mod1), n=0,1,2,.. (2)

The set of points {ry,r;,r9,...} is an orbit of the system. It can be shown that r; € U,V:
and for every ry € U i.e. U remains mvariant under the automorphism.

We consider the action of the system (2) on a subset Vo C U. Then Vj is transformed
to a subset Vi C U which occupies the same area like Vj since detA = 1. The
transormation of Vj is characterized by the two directions which corespond to the
directions of the eigenvectors u(A;), and u(X2) of A. Suppose that Ay > 1, then Ay =
1/A1 < 1 and the Vj is stretched to the direction of u(\; ) and is shrinked to the direction
of u(Az). Those directions exist at every point of U and they form a “hyperbolic set”.
As a consequence of such hyperbolicity is the chaotic evolution of the orbits and the
spreading of small subsets of U/ in all the space of U. Roughly speaking, this property
is called “mixing”. A famous automorphism in dynamics is the “cat map” which is
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Figure 1: Chaotic mixing of the “cat” by system (3).
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In figure 1, the action of system (3) on the “cat” (figure la) is represented. At the
first iteration (figure 2b) we observe the directions of shrinking (el) and stretching
(e2). The points of the “cat”, which tend to leave the square, are repositioned due to
the modulo operation. After some iterations the “cat” spreads m all the region of the
square (figure 1c) and we get a “mixed cat”.

defined as [5]

The set of torus automorphisms is a special subset of Anosov diffeomorphisms which
exhibit strongly chaotic motion i.e. local instability, ergodicity and mixing and decay of
correlations. Every Anosov diffeomorphism is structurally stable and it is topological
conjugate to some torus automorphism [4,5]. The orbits O = {rg,r;,ry,...} of all
automorphisms are classified in two main categories according to their initial point
g = (1‘07;%) :

a) T and/or yq are irrational. The orbit O visits any neighbourhood of every point of
U as n — oo (ergodicity) and the set O is infinite and dense m U.

b) zg and yo are rational. In this case In # 0 such that r, = ry. The orbit is periodic
and the set O is finite. The number of the elements of O is the period of the orbit.

Let o = (p1/q1,p2/q2) be a point of U with p;,q; € Z+ coprimes and N the least
common multiple of ¢1,¢q. We consider the descrete subset W of U which is defined as

W ={(z,y)|lx = k/N,y =1/N,k, 1€ {0,1,..,. N —1} }

ro belongs to W which remains invariant under the action of an automorphism, i.e.
all the points of an orbit belong to W. Thus, the evolution of the orbits in W under
the antomorphism (1) is equivelant to the evolution of orbits in an integer lattice
L = {(k,]),0 < k,I < N} under an automorphism where the periodic condition
(mod 1) is replaced by (mod N).

The evolution of the orbits in . depends exclusively on the one of the eigenvalues
(say A1) of the automorphism and it is described by the congruent [6]

& = M¢ (mod N)
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Figure 2: Recurrence time P versus the size N of the lattice for the system (4) and for
some parameters k.

where ¢, ¢ are quadratic integers which corespond to integer vectors (k,!) € L. Since
A1 is a function of ¢ = tr(A) = an + axn, we obtain a one-parameter family of toral
automorphisms 7. A great subset of 7 is represented by the family of one-parameter
systems which is defined as follows :

An(b): L — T (ii):(}g ki1)(§) (mod N) (@)

where (z,,y,) € L =[0,N —1] x [0, N —1]. For the N — 1 integer values of k in the
domain [1, N) we obtain a finite family of systems Ay(k). The greatest eigenvalue is
A =1+4+0.5(k + (* + 2k)1/2) and is real for every k£ > 0.

An extended study of the periodic orbits of antomorphisms can be found m [6-9].
All the orbits of system (4) are unstable periodic orbits with periods 7" which depend
on the parameters k& and N and the initial point of the orbit. We can state the following
corollary :

For any integer lattice L of size N there is an integer P = P(k, N) such that

AN(R)E = € (modN) , YE€ L (3)

We call the mteger P “recurrence time”. Thus any lattice point is a fixed point under
the action of AN (k) and also the periodicity condition A" (k)¢ = A'(k)é holds, for
all positive integers 7,7 and for all ¢ € L.

Figure 2 shows the recurrence time as a function of N and for some parameter
values k of system (4). In most cases and for N prime number, P is equal to N —1
or N+ 1 and it is a common period for all periodic orbits in the lattice.The irregular
character of P = P(N, k) is caused by the complication of the integer arithmetic rather



than by the chaotic properties of the antomorphism. An orbit itself usually displays
an unstable behaviour and a “random” distribution in the lattice.

The automorphism (4) is mizing. It distorts any area element of the torus, that it is
spread over the entire available area. If the automorphism acts on a sublattice L' C L,
which contains a finite number of points, then I disperses under the action of AR (k)
and its image contains points which are distributed irregularly m L. For n = P we
obtain a complete recurrence and the subset L’ is reconstructed. We mentioned that
the dynamics of the chaotic orbits of automorphisms, can be described exactly without
numerical errors, because computations are performed by using integer arithmetic.

3. CHAOTIC MIXING AND WATERMARK EMBEDDING

A digital image can be understood as a bounded lattice of size M; x M,. Each point
of the lattice (a pixel) is characterized by its grey level or by the three intensity levels
of red, green and blue colour. Next we consider grey level images of size N x N which
are represented as :

I = {1'2]7(%]) < L7;L'Z']‘ € {0717..,G — 1}}

where I is an N x N lattice of grid size 1 and (i is the total number of intensity levels.
A torus automorphism Ax(k) is applied on an image [ = Iy. The result is a new image
I; with a chaotic reallocation of pixels without effect on their mtensity levels.

L = AnN(k)]O such that ('ihjl) = AN(k)(ZOLJO) s Lizs = Ligjo

By repeating the action of An(k) on Iy we obtain a set of images [;,7 = 1,.., P — 1,
where P is the recurrence time.

In figure 3, the automorphism (4) is applied on the 256 x 256 image “Lena”. Mixing
is observed after some iterations. Some background patterns, which show some order
(e.g. the diagonal lines in case ¢) do not provide any mformation about the original
structure of the image. The original image [j is reconstructed from an image I, either
by the inverse system Ay" or by the system itself after P — n iterations. In any case
the reconstruction of a mixed mmage requires the knowledge of the parameter of the
automorphism and the nmumber of iterations.

Next we consider as watermark an N x N image S (e.g. the signature of the
manufacturer) which is embedded into an M; x M image Iy (M; > N and My > N).
From the embedding, we get a signed image [, such that i) its visual perception remain
unaltered and i) S can be detected only if the watermark parameters are known. The
second requirement is satisfied when a mixing of S (say S’) is embedded in /o.The
first one can be satisfied by an appropriate superposition of S’ on I. We propose an
embedding of a watermark S with few grey levels into an original grey level image I,.
The procedure is also applicable for colour images.

The images S, [y are represented as

S = {Sij7'i7j (& {07..7N — 1}782']‘ & {07172}}
]0 = {xiﬁi € {07"7M - 1}7] € {07"7M - 1}72}2’]‘ € {07"7G - 1}7G > 1}
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Figure 3: Mixing of “Lena” by Al,(1) for b)n = 1, ¢) n = 5 and d) n = 10. For
n = P =192 “Lena” is reconstructed.

The grey level 0 of S correspond to watermark that should not reconstructed neces-
sarily. Also, the levels 1 and 2 can be transformed to desired grey levels. We act the
automorphism A% (k) on S and we get a mixed image S5’

S/ = {5;]'72.7]. € {07"7N - 1}75;]' € {07172}}

S’ is superimposed on a connected N x N subset Iy of I5. Iy is determined by its size
N and its position in Iy (say e. g. the upper-left corner (p;,ps2)). Then, we change the
grey level parity of the pixels of Iy as follows :

1 e

Y iy ]f‘sij 1
L—— e 2 Lol
T =8 DT = Yy ]fsj-j—Z

xw ]fSZ]:O

where

1) g if 2;; odd 2 ) if x;; even
Yij = { x;;£1 if z;; even and y7y; = r; £1 if z;; odd

The signed image I, is represented as
I, = {yij,’i (& {0,..,M — 1},] < {0,..,M — 1}7yij < {0,..,G — 1}}

where y;; = x;; if x;; € In and y;; = x;-j if 2;; € Iy. It is remarkable that only a part
of the pixels of Iy C Iy is affected by the operation . The grey levels of the rest of



(b)

Figure 4: (a) signed “Lena” and (b) the reconstruction of the watermark “Playboy”.

the pixels in Iy change slightly so that the visual perception of I is same as that of
Ip.
watermark’s embedding is described by the size N of Iy, the position (p,p2) of Iy
m Iy, the parameter k of the automorphism and the number of iterations n for mixing.
watermark’s detection in [, is achieved as follows :

i) Act the automorphism A% 7 (k) on Iy, where P the recurrence time.
i) Replace the grey level of pixels (7,7) m Iy by the grey level X if y;; is
even and by Y if y;; is odd.

The watermark S appears like a two grey level image on a two grey level “chaotic”
pattern. An example of the above procedure is illustrated m figure 4 where the water-
mark “Playboy” is embedded in a 41 x 41 box at position (197,202) in “Lena”. The
watermark has been mixed by using the parameters k£ = 17 and n = 10.

4. CONCLUSIONS

In this paper we mtroduced a chaotic transformation of images which is based on the
mixing property of toral automorphisms and we proposed a method for embedding
a watermark i a digital image. The watermark is mixed by the chaotic system (4)
and is embedded in an image such that its visual perception to remain the same.
The reconstruction of the watermark from the signed image is succeded by applying
the same system and by using a specific set of parameters which characterizes the
watermark embedding.

Since the set of values for the parameter £k of the automorphism is finite and small
(0 < k < N), a “trial and error” procedure can lead to the reconstruction of the
original image (or a watermark). Also, the composition of some automorphisms A% (k;)
belongs to the general form (1) where the values of the four integer parameters a;; are
restricted by the parameter N and by the property detA = 1. A more complex system,
possessing many independent parameters, can arise if we use different automorphisms
on sublattices having different sizes.



The embedding procedure which is presented in section 3 is based on a simple su-
perposition law which however does not imply robustness. Compression of the image
and additive noise destroy the watermark. If the watermark consists of a small number
of pixels (compared to the total size of the image) then we can use a superposition
law which corresponds any pixel of the watermark to a special intensity alteration of a
set of pixels. We mention that the mixing of the watermark can take place in specific
sublattices of the image. Such alterations can create a hidden pattern with specific
attributes such that i) the decision that a pixel belongs to a watermark depends on the
attribute of its neighbourhood pattern and i) the attributes resist under compession
and noise. The satisfaction of these criteria needs further investigation which is in
progress.
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