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Abstract. We study the dynamics at the 4:5 exterior mean motion resonance using the model of the
restricted three-body problem with the Sun and Neptune as primaries. The position and the stability
character of the periodic orbits determine critically the structure of the phase space and particularly
the qualitative characteristics of the long-term evolution of trans-Neptunian objects (TNOs). Using
the circular planar model as the basic model, we extend our study to other models by considering
the ellipticity of Neptune’s orbit and the inclination of TNO’s orbit. Families of symmetric periodic
orbits of the planar elliptic and the three-dimensional problem (circular or elliptic) are found. The
stability of all orbits is also examined. Finally, we show the evolution of a real object, i.e. the 2003
FC128, which is located near the 4:5 resonance.
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INTRODUCTION

The interest in studying exterior resonances is continuously growing after the discovery
of many objects at the edge of the Solar System, beyond the orbit of Neptune, called
Egdeworth-Kuiper (E-K) belt objects or trans-Neptunian objects (TNOs). Several stud-
ies of the dynamics of the E-K belt have been made up to now ([9], [8], [2], [11], [10]).

The restricted three-body problem (RTBP) is an efficient model for understanding the
underlying dynamics of the resonant orbits in Kuiper Belt. In this model the primary
bodies are the Sun and Neptune and the small body (of negligible mass) represents
a potential TNO. As far as the Kuiper belt dynamics is concerned, the families of
symmetric periodic orbits at the 1:2, 2:3 and 3:4 resonances have been studied previously
([5]). A complete study of periodic orbits for higher-order resonances was made in [14].

For the study of inclined orbits, the three-dimensional (3-D) RTBP should be con-
sidered as the basic model. Three-dimensional symmetric periodic orbits of the circular
RTBP have been studied by several authors in the past ([1], [12]). These studies re-
fer to families of 3D periodic orbits associated to the dynamics near the Lagrangian
equilibrium points. As far as the dynamics in Kuiper belt is concerned, families of 3-D
symmetric periodic orbits were computed in [5], [6], [7].

The study of the dynamics at the 4:5 mean motion resonance with Neptune will
be done by computing the position and the stability of periodic orbits. Other known
methods are: averaged Hamiltonians and mapping models. The periodic orbits are of
particular interest since they define the structure of the associated resonance. In this



paper we shall consider a hierarchy of models: (i) planar circular, (ii) planar elliptic,
(iii) 3-D circular and (iv) 3-D elliptic RTBP. We will compute families of symmetric
periodic orbits, discuss about the topology of the phase-space and present the long-term
evolution of real TNOs near the 4:5 resonance.

THE PLANAR CIRCULAR RTBP

We assume that the orbit of Neptune is circular and we consider a rotating frame of
reference Oxyz whose x-axis is the line joining the Sun (S), with Neptune (N), the
positive direction being from S to N, its origin is at their centre of mass, the y-axis is
in the orbital plane of Neptune and the z-axis is perpendicular to the xy plane. In the
usual normalized units where the radius SN = 1, the gravitational constant is G = 1 and
the total mass mS +mN = 1, the differential equations of motion are the equations of the
circular restricted 3-body problem (e.g. [13]).

The symmetric periodic orbits of the planar circular RTBP correspond to the initial
conditions:

x(0) = x0, y(0) = 0, ẋ(0) = 0, ẏ(0) = ẏ0. (1)

At half the period T of the orbit we must have:

y(x0, ẏ0; T/2) = 0, ẋ(x0, ẏ0; T/2) = 0. (2)

Equations (2) give the periodicity conditions for a symmetric periodic orbit in the planar
circular problem. A symmetric periodic orbit of multiplicity p starts perpendicularly
from the x-axis and again crosses the x-axis perpendicularly after p intersections in the
same direction.

FIGURE 1. The families I and II of 4:5 resonant symmetric periodic orbits at the plane:
(a) x(0)− h and (b) x(0)− e(0). The gap at the resonance is due to the non-continuation of
the circular orbits. The symbols “S” and “U” denote stability and instability respectively. The
symbol “x” stands for collision orbit. The small body is initially at perihelion (e(0)>0) or at
aphelion (e(0)<0).

There are two families of periodic orbits for the 4:5 resonance, symmetric with respect
to the x-axis, one of them corresponding to the small body at perihelion at t =0 (Family
I) and the other to the small body at aphelion (Family II). A monoparametric family



FIGURE 2. Periodic orbits along the family I4:5: (a) e=0.05, U (b) e=0.30, S (c) e=0.44, S and
(d) e=0.87, S. The development of a non-perpendicular collision orbit and the change of the
multiplicity from 1 to 3 and from 3 to 7 is clearly seen. The symbols “+” and “•” denote the
positions of Sun and Neptune respectively.

FIGURE 3. Periodic orbits along the family II4:5: (a) e=0.10, S (b) e=0.30, S (c) e=0.44, U
(close to collision) and (d) e=0.70, S. The development of a non-perpendicular collision orbit
and the change of the multiplicity from 1 to 5 is shown.

of symmetric periodic orbits is defined by a smooth curve in the plane x0− h of initial
conditions, which is called the ”characteristic curve”. Along each family the eccentricity
of the small body increases starting from zero.

In Fig. 1 we present the resonant families I and II of periodic orbits. The stability type
is also indicated. In Figs. 2, 3 we show some samples of symmetric periodic orbits of
family I and II respectively. The evolution of the orbits and the change of multiplicity
is shown. In Fig. 4 we present two surfaces of section at the energy levels h1 = −1.50
(Fig. 4a) and h2 = −1.46 (Fig. 4b). We note that apart from the 4:5 resonance, several
other first order resonances appear. As the h increases, the width of the resonant island
decreases (see also [8]).

FIGURE 4. Poincaré maps taken at two characteristic energy levels: (a) h1 = −1.50 and (b)
h2 =−1.46.



THE PLANAR ELLIPTIC RTBP

In this section we study the resonant dynamics of the elliptic restricted three body
problem. We have two degrees of freedom, as in the circular problem, but now the system
is non-autonomous. The distance between the Sun and Neptune is not constant and the
xOy frame is not a uniformly rotating system. The initial conditions also involve the
position and velocity of the Sun and Neptune at t=0. For a symmetric periodic orbit of
the small body we get:

y(0) = 0, ẋ(0) = 0, ṙ(0) = 0, θ(0) = 0, π, (3)

with an indication that Neptune is at perihelion (p) or aphelion (a) at t=0. The nonzero
initial conditions are then: x(0)=x0, ẏ(0) = ẏ0 and also r(0), θ̇(0), which, however, are
determined from Keplerian theory in terms of the eccentricity of Neptune. Thus, the
eccentricity of Neptune (eN) appears as a parameter of the problem. By varying eN we
have a family of periodic orbits of the elliptic problem. For ṙ(0)=0 and θ (0)=0 or π the
periodicity conditions are now:

y(x0, ẏ0; eN ; T/2) = 0, ẋ(x0, ẏ0; eN ; T/2) = 0, (4)

where T is the period of the periodic orbit in the rotating frame. Due to the fact that at
t = T /2 we must have ṙ=0 and θ=0, π too, it arises that the period T must necessarily
be a multiple of TNep where TNep is the period of Neptune. This means that the periodic
orbits in the elliptic problem in the rotating frame are also periodic in the inertial frame.

There is one pair of families of periodic orbits bifurcating from the planar orbits of
the family II4:5, at e1 =0.25, and another pair of such families bifurcating from the point
e2=0.87. The first pair is: E4/5

1p , E4/5
1a and the second one is: E4/5

2p , E4/5
2a . These families

are shown in Fig. 5. The curves on the x0-ẏ0 plane are the two families of the circular
problem that are given in Fig. 1.

THE 3-D CIRCULAR RTBP

We present in this section the 4:5 resonant families of periodic orbits of 3-D circular
RTBP. These families bifurcate from the families of type II of the planar circular
problem at those orbits whose stability is critical with respect to perturbations along
the z-axis. For the computation of the vertical stability we used the method developed
by Hénon (1973). There are five vertical critical orbits (VCOs), which are starting points
for the continuation of families of 3D periodic orbits. They belong to the family II4:5 of
the planar problem and are the following: B1(e0 =0.22), B2(e0 =0.23), B3(e0 =0.62),
B4(e0 =0.73) and B5(e0 =0.83). No such VCOs exist on the family I4:5.

The families of three-dimensional symmetric periodic orbits have the following
symmetries:

Families F: These periodic orbits are symmetric with respect to xz-plane. In this case
a periodic orbit can be defined by the initial conditions x(0) = x0, y(0) = 0, z(0) = z0,
ẋ(0) = 0, ẏ(0) = ẏ0, ż(0) = 0 and the periodicity conditions are:
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FIGURE 5. Families of periodic orbits of the elliptic restricted three-body problem at 4:5
resonance. Here e′ is the eccentricity of Neptune (eN).The symbols S, U denote for stability
and instability respectively (from [14]).

y(0) = y(T/2) = 0, ẋ(0) = ẋ(T/2) = 0, ż(0) = ż(T/2) = 0, (5)

where T is the period of the orbit. Such a periodic orbit can be represented as a point
in 3-D space x0− z0− h, where h is the corresponding Jacobi constant. By varying the
value of h we get a monoparametric family of periodic orbits.

Families G: These periodic orbits are symmetric with respect to x-axis. In this case
a periodic orbit can be defined by the initial conditions x(0) = x0, y(0) = 0, z(0) = 0,
ẋ(0) = 0, ẏ(0) = ẏ0, ż(0) = ż0 and the periodicity conditions are:

y(0) = y(T/2) = 0, ẋ(0) = ẋ(T/2) = 0, z(0) = z(T/2) = 0, (6)

where T is the period of the orbit. Such a periodic orbit can be represented as a point
in 3-D space x0− ż0− h, where h is the corresponding Jacobi constant. By varying the
value of h we get a monoparametric family of periodic orbits.

In Fig. 6 we present the families of 3-D resonant periodic orbits at the 4:5 exterior
mean motion resonance with Neptune. The eccentricity and the inclination vary along a
family, but the semimajor axis is almost constant, a4:5 ≈ 34.88 A.U. (in non-dimensional
units). Sample of periodic orbits are given in Fig.7. Finally, at Fig. 8, we show the
projections of these families on the plane e0− i0. The stability type is also indicated.
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FIGURE 6. Families of periodic orbits of the 3-D circular restricted three-body problem at 4:5
resonance. The starting and the terminating points of each family are also indicated. The axes
correspond to the initial conditions of periodic orbits. The symbol R stands for retrograde orbits.

FIGURE 7. Samples of three-dimensional periodic orbits at 4:5 resonance. Each one of them
belongs to the corresponding family presented in figure 6.

THE 3-D ELLIPTIC RTBP (ER3BP)

The 3-D elliptic RTBP is a non-autonomous Hamiltonian system with three degrees of
freedom. This model is the most realistic one in the framework of the restricted three-
body problem, since it describes the motion of the small body in space and the perturbing
planet is on an elliptic orbit.



FIGURE 8. Projection of the families of periodic orbits of the 3-D circular restricted three-
body problem at 4:5 resonance. Solid segments denote linear stability and dashed lines stand for
linear instability. The thin dotted lines denote the curves of z-argument of the angular momentum
related to the Kozai dynamics (from [7]).

There are two approximations for obtaining periodic orbits in the 3-D ER3BP:
(a) Families of periodic orbits of the 3-D ER3BP, with the eccentricity of Neptune

(eN) as a parameter, bifurcate from the families of the 3-D CR3BP mentioned above at
those orbits whose period is a multiple of TNep. The results are summarized in Table 1.

TABLE 1
Bifurcation points from 3-D CR3BP to 3-D ER3BP

Resonance Period Family Bifurcation Points
4 : 5 10π Fa e=0.204, i=80.9◦

4 : 5 10π Ga e=0.865, i=86.8◦

(b) The second way to search for periodic orbits that bifurcate to the 3-D ER3BP
is to check the vertical stability of periodic orbits of the corresponding planar elliptic
problem. From our results there are not any such periodic orbits which continue from
the planar elliptic problem to the three-dimensional one.

A monoparametric family of symmetric periodic orbits is formed by analytic contin-
uation varying the eccentricity of the planet (e′) which is the parameter of the family in
this case. Such a family can be represented by a curve in the 4D space x0− ẏ0−z0−e′ or
x0− ẏ0− ż0−e′ accordingly to the symmetry of the periodic orbits. When e′ 6= 0 we get
two possible configurations of the system at t = 0. In the first configuration the planet
is located at pericenter and in the second one at apocenter. Thus, from each generating
orbit (or bifurcation point) two families bifurcate.



FIGURE 9. Projection of families of 3-D symmetric periodic orbits at the three-dimensional
elliptic RTBP in (a) x0− z0− e′ and (b) x0− ż0− e′ 3-D space of initial conditions. The symbol
e′ stands for the eccentricity of the orbit of Neptune.

In Fig. 9 we present the families of periodic orbits in the 3-D space. From the first
bifurcation point, given in Table 1, we obtain the families H1p and H1a, where p or a
indicates the initial position of Neptune (pericenter or apocenter, respectively). Corre-
spondingly, we obtain the families H2p and H2a bifurcating from the second bifurcation
point. These families are linearly unstable.

DYNAMICAL EVOLUTION OF TNOS NEAR THE 4:5 NMMR

In this section we study the long-term evolution of the real object 2003 FC128 which
is near the 4:5 mean motion resonance with Neptune. Its orbital elements are: a=35.127
A.U., e=0.088, i=2.4◦, ω=41.0◦, Ω=78.6◦, M=41.4◦ (Minor Planets Center). This KBO
is on a low eccentric orbit, almost circular. We have chosen a sufficient numerical
method to study the long-term evolution of this KBO; the LIE integration method with an
adaptive step size (Hanslmeier and Dvorak, 1984). This method uses direct integrations
of the equations of motion. The accuracy was preserved at 10−11. The time evolution
of the orbital elements is shown in Fig. 10 and indicates a regular orbit. However, the
evolution of the angle Ω−Ω8 switches from libration to rotation which indicates that
the orbit is rather weakly chaotic.

CONCLUSIONS

In this paper we presented families of periodic orbits at the 4:5 resonance in the model
of the 3-D elliptic RTBP. The main results are summarized below:

1) There exist two families of elliptic orbits in the planar circular problem at the
4:5 resonance; families I4:5 and II4:5. The first one is unstable until e ≈0.10 where
a perpendicular collision with Neptune occurs; then it becomes stable. The other one
(II4:5) is all stable except for a small collision area around e ≈0.47. The location of
periodic orbits is important for obtaining the structure of the phase space.



FIGURE 10. Time evolution of the orbital elements a, e i of the test body for 100 Myr. A
quasi-periodically behaviour of the orbital elements is observed.

2) The families of periodic orbits of the planar elliptic RTBP bifurcate from the known
families of the planar circular problem. We found totally four families of symmetric
periodic orbits; two of them are linearly stable and the other ones are unstable.

3) As far as the 3-D circular RTBP is concerned, vertical critical orbits (VCOs) exist
only in the family II4:5. Families of three-dimensional periodic orbits which bifurcate
from vertical critical orbits of the planar problem are symmetric with respect to the xz-
plane (Type F) or to the x-axis (Type G). They continue up to high inclination values;
stable and unstable orbits coexist in this model.

4) Families of periodic orbits of the 3-D ER3BP were also computed. These families
bifurcate from the known families of the 3-D circular problem. They have the same
symmetry as the families of periodic orbits in the 3-D circular model and are generated
by varying the eccentricity of Neptune (eN). All of them are linearly unstable.

5) The evolution of the test body (2003 FC128) seems to be weakly chaotic but
practically stable.



FIGURE 11. Time evolution of Ω−Ω8 for 100 Myr. The orbit leaves the ν18 resonance; the
argument Ω−Ω8 switches between libration and circulation.
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