BIFURCATIONS OF PERIODIC ORBITS IN
THE GENERAL 3-BODY PLANETARY PROBLEM

G. VOYATZIS and T. KOTOULAS
Department of Physics, Section of Astrophysics, Astronomy
and Mechanics, 54 124, Thessaloniki, Greece
E–mail: voyatzis@auth.gr

Abstract. In this paper we present cases of bifurcation of families of periodic orbits within
the framework of the general three body problem. We restrict ourselves to the 2/1 and 3/1
resonant cases of two-planet systems and we demonstrate bifurcations which cause critical
changes in the structure of families of periodic orbits, and, furthermore, in the topology of
phase space, as the planetary mass ratio ρ varies. We consider the whole range $0 < \rho < \infty$
and, therefore, we include the passage from external to internal resonances.

1. INTRODUCTION

It is well known that resonant families of periodic orbits exist for the general three
body problem. These families can be obtained either by continuation from a family of
circular orbits (Voyatzis and Hadjidemetriou, 2005,2006) or by computing stationary
solutions of the averaged resonant Hamiltonian (Beauge et al, 2003; Michtchenko et
al, 2006). In a resent work (Voyatzis et al, 2008) we show that all these families can
be derived by continuation of the families of the circular and the elliptic restricted
problem.

The basic model, which is used here, is the general planar three body problem
(TBP) consisting of a star S of mass m_0 and two planets P_1 (inner) and P_2 (outer).
The system is given in a rotating frame which reduces the system to three degrees of
freedom (Hadjidemetriou, 1975, 2006).

Since $m_1 \ll m_0$ and $m_2 \ll m_0$, the position of periodic orbits depends (in first
order) to the planetary mass ratio $\rho = m_2/m_1$. For $\rho = 0$ we get the restricted
problem and the case of external resonances (i.e. the massless body moves outside
the orbit of the massive planet). For $\rho = \infty$ (but keeping m_2 finite) we get the
case of internal resonances of the restricted problem (i.e. the massless body moves
inside the orbit of the massive planet). By varying ρ, the existing families of periodic
orbits are continued and obey bifurcations at critical values of ρ. Such bifurcations
are demonstrated in the present paper for the 2/1 and 3/1 resonances. For each case,
details are given in Voyatzis et al. (2008) and Voyatzis (2008), respectively.
2. BIFURCATIONS IN 2/1 RESONANCE

Considering the 2/1 external resonance of the restricted problem \((\rho = 0)\) we mention the existence of the following families: (i) in the circular problem we have a symmetric family \(I\) from which an asymmetric family \(A_1\) bifurcates. (ii) in the elliptic problem we have a symmetric family \(S_1\) and an asymmetric family \(A_2\), which bifurcate from family \(I\) (iii) an asymmetric family \(A_3\) which bifurcates from \(S_1\) within the framework of the elliptic problem. In the general problem, for \(\rho \approx 0.275\), \(A_3\) and \(A_2\) go through a bifurcation and generate a new family \(A_{32}\).

The evolution of the family \(A_1\), as \(\rho\) increases, is regular without structural changes up to \(\rho \approx 0.37\). In Fig. 1a, which corresponds to \(\rho = 0.3\), it is shown that the family \(A_1\) has come close to the family \(A_{32}\). At \(\rho \approx 0.37\) the two families collide and two new families are generated, namely the family \(A_4\) and the family \(A_{123}\) (Fig. 1c). We call such a bifurcation as a collision-bifurcation. In this case only the family \(A_{32}\) has an orbit of critical stability, which separates the family in a stable (a) and in an unstable part (b). The family \(A_1\) is whole stable and there is no clear border between its parts c and d. After the bifurcation, an orbit of critical stability is shown only in the new family \(A_4\), while the family \(A_{123}\) is whole stable and starts and ends at bifurcation points of the symmetric family \(S_1\).

Now, we restrict ourselves to the evolution of the family \(A_{123}\) for \(\rho > \rho_2\). As it is shown in Fig. 2a, as \(\rho\) increases, the ending points of the family move on along the family \(S_1\) in opposite direction and the family shrinks and, finally disappears at \(\rho \approx 1.034\). In Fig. 2b we present the above transition by considering the stability index \(b_2\) (Hadjidemetriou, 2006) for the orbits along the family \(S_1\). In this case only the index \(b_2\) indicates the stability, since it is \(-2 < b_1 < 2\). The horizontal axis of the associated plot indicates the eccentricity of the periodic orbits along the family \(S_1\). As \(\rho\) increases, the curve of \(b_2\) values is raised continually and for \(\rho > 1.034\) is located above the value \(b_2 = -2\). Thus, the unstable part of \(S_1\) disappears and, consequently, the family \(A_{123}\) disappears too. We call such a bifurcation break-bifurcation. After this bifurcation, as \(\rho \to \infty\), the family \(S_1\) does not show any structural changes and can be assumed to coincide the family \(S_1'\) for the internal 2/1 resonance.
GLOBAL BIFURCATIONS IN THE GENERAL 3-BODY PROBLEM

Figure 2: a) The evolution of the families A_{123} and S_1 as ρ passes the critical value $\rho \approx 1.034$ and takes large values. b) The stability index b_2 along the family S_1, which determines the interval of instability ($b_2 < -2$) and the bifurcation points (at $b_2 = -2$) of the family A_{123}.

3. BIFURCATIONS IN 3/1 RESONANCE

In Voyatzis and Hadjidemetriou (2006), it is shown that the 3:1 resonance shows four families S_i, $i = 1, \ldots, 4$ of symmetric periodic orbits which bifurcate from the circular family. Voyatzis (2008) computed these families for a wide range of the mass ratio ρ and verified the results obtained by Michtchenko et al (2006). In the following we consider the evolution of families of asymmetric periodic orbits as ρ increases.

In Fig. 3(left) we present the 3/1 resonant asymmetric family A_4 and A_{43}, which bifurcate from the symmetric family S_4, for various values of ρ. The bifurcation point B_4, as ρ varies, forms the characteristic curve B_4. We can obtain that at the critical value $\rho \approx 0.52$ the characteristic curves show a structural change at the point C. For $\rho < 0.52$ we have the family A_4 which extends up to high values of eccentricities. For $\rho > 0.52$ we have the family A_{43}, which terminates at the bifurcation point B_3 that belongs to the symmetric family S_3.

In Fig. 3(left) there is a region which is not occupied by the families A_4 and A_{43}. This region is indicated by the text “families A_3 and A_0” and contains new families of asymmetric periodic orbits, which, as ρ increases, evolve as it is shown in the panels of Fig. 3(right). We showed above that the bifurcation points B_3 are ends of the families A_{43} for $\rho > 0.51$. For lower values of ρ, the points B_3 are bifurcation points of new families, called families A_3, which exist as $\rho \to 0$. Starting from small values of ρ (e.g. panel (a)), apart from A_3 we obtain the asymmetric family A_{00} whose characteristic curve forms a loop. For $\rho \approx 0.175$ the families A_{00} and A_3 involve in a collision-bifurcation at point B_c (panel (b)) but, in this case, the two families join after the bifurcation and form one family, called again A_3 (since it still bifurcates from B_3). For $\rho > 0.52$, family A_3 shows a structural change and now the family is called A_0 and its bifurcation point is computationally undetermined.

Combining the family structures shown in Figs. 3(left) and 3(right), we can obtain that for $\rho < 0.52$ we have the families A_3 and A_4. At $\rho \approx 0.52$ the two families go
4. CONCLUSIONS

In this paper we demonstrated some important bifurcations which takes place in resonances of the three body problem of planetary type. The so called collision-bifurcations, take place when, by varying the ratio of the planetary masses, two families collide in the space of initial conditions. After such a collision, new families are generated and the characteristic curves of periodic orbits show substantial changes, which definitely are followed by topological changes of phase space.

Acknowledgment

The authors would like to express their gratitude to Prof. Hadjidemetriou for his supervision and support to their research.

References