CONTINUOUS DYNAMICAL SYSTEMS

$$\dot{x}_{1} = f_{1}(x_{1}, x_{2}, ..., x_{n}, t)$$

$$\dot{x}_{2} = f_{2}(x_{1}, x_{2}, ..., x_{n}, t)$$

$$\vdots$$

$$\dot{x}_{n} = f_{n}(x_{1}, x_{2}, ..., x_{n}, t)$$

ODES

$$\dot{x}_{n} = f_{n}(x_{1}, x_{2}, ..., x_{n}, t)$$

$$x_{1} = x_{1}(t; x_{10}, ..., x_{n0})$$

$$x_{2} = x_{2}(t; x_{10}, ..., x_{n0})$$

$$\vdots$$

$$x_{n} = x_{n}(t; x_{10}, ..., x_{n0})$$
[$x = x(t, x_{0})$] Solution

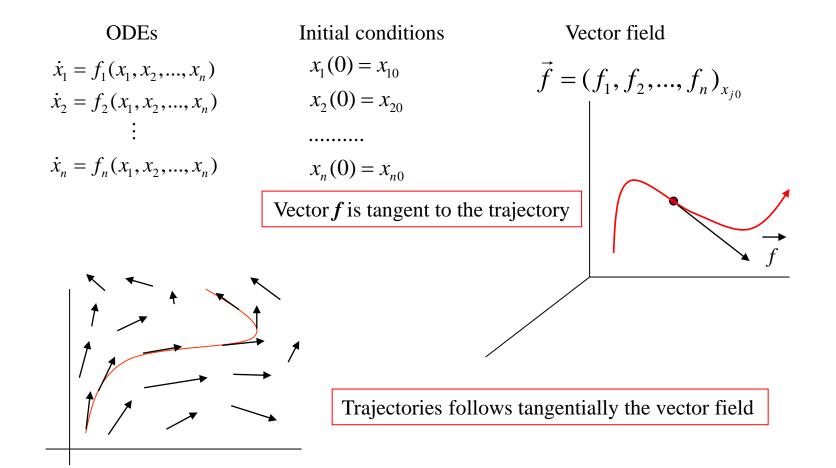
 $\vec{f} = (f_1, f_2, ..., f_n)$

Vector field of the system

AUTONOMOUS SYSTEMS

The vector field of an autonomous system is constant in time

$$\frac{\partial f_i}{\partial t} = 0 \qquad \forall i = 1, 2, \dots, n$$



AUTONOMOUS SYSTEMS

>> Consequences due to the continuity of the vector field and Cauchy Theorem.

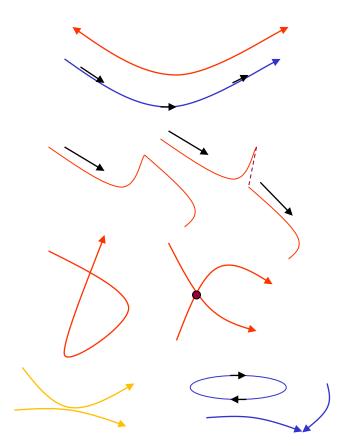
• The vector field flow has the same direction along the orbit.

• Trajectories are continuous and differentiable curves in phase space for any time (smooth curves)

• Any point of the phase space *E* belongs to a unique trajectory. Trajectories do not intersect transversally their self or other trajectories.

• Independently of the initial time value t_o , from a particular point in phase space E is defined only one solution (one trajectory passes). The dynamical system is **invariant in time translation**. So we can set always $t_0 = 0$.

conventional and non-conventional trajectories



Autonomous systems – Special solutions

A. Equilibrium points: The singular (critical) points of the vector field $f_i(x_{10}, x_{20}, ..., x_{n0}) = 0, \quad (x_{10}, x_{20}, ..., x_{n0}):$ equilibrium point $\Leftrightarrow \dot{x}_i = 0 \iff x_i(t) = x_{i0} \text{ (const)}$

• Equilibrium solutions are found by solving algebraic and not differential equations.

Stability (draft definition) : If there exist initial conditions in the neighborhood of an equilibrium point providing orbits which diverge from the equilibrium point as $t \rightarrow \infty$, then the equilibrium point is called **unstable** otherwise is called **stable**.

<u>cmath22</u>

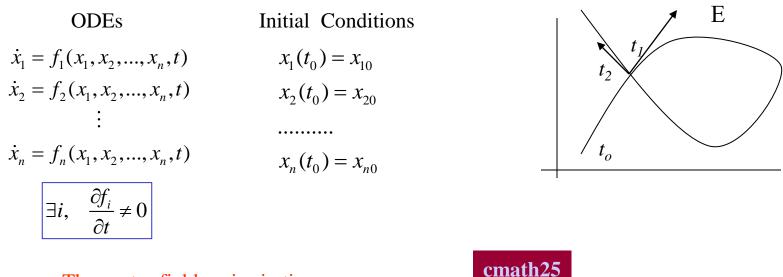
B. Periodic Solutions: Trajectories which are repeated per equal time intervals $x_i(t+T) = x_i(t), \quad \forall i = 1, ..., n, \quad \forall t \in R \quad (T : period)$

• If an orbit with initial state $\{x_{io}\}$ after time *T* is found again at the same state $\{x_{io}\}$ in phase space, afterwards it will evolve exactly the same as in the beginning. This is because the initial conditions and the vector field will be the same.

• A periodic trajectory is represented by a "closed" curve in phase space.

A periodic solution is an **invariant set** in phase space

NON-AUTONOMOUS SYSTEMS



• The vector field varies in time.

• The trajectories maybe intersect in phase space. They do not intersect in the extended phase space $R \times R^n$

• If f=0 at the point \mathbf{x}^* at time $t=t^*$ then, genericly, $f \neq 0$ for $t \neq t^*$ and thus \mathbf{x}^* is not an equilibrium point.

• If a trajectory returns to its initial point $\mathbf{x}_0 = (x_{10}, x_{20}, ..., x_{n0})$ at a time $t = t_0 + \tau$, the evolution will be different because, genericly, $f(\mathbf{x}_0, t_0) \neq f(\mathbf{x}_0, t_0 + \tau)$. Thus, the orbit is not periodic in general.

• If the variation of the vector field is periodic, with period T_f then the periodic orbits of the system, if they exist, should have period equal to $k T_f$, k=1,2,... This is proved by the fact that the trajectory is found at the same point \mathbf{x}_0 at time $t=t_0+k T_f$ when the vector field is the same with its initial state at t_0 .

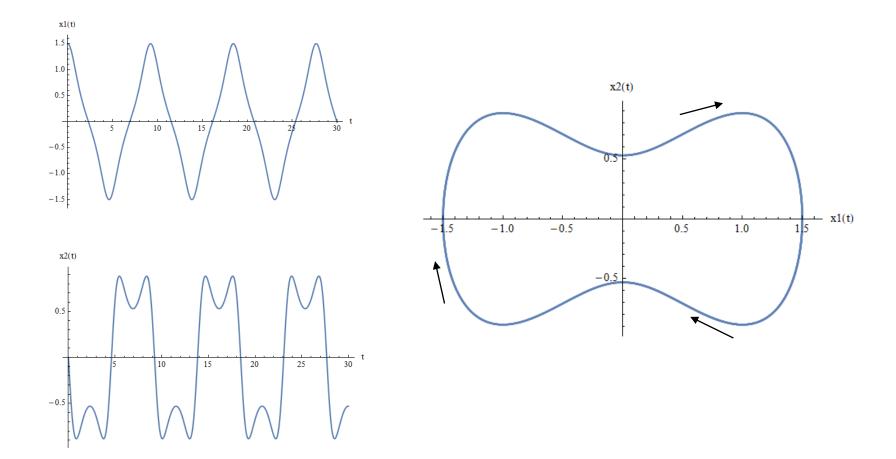
Qualitative classification of trajectories

$$\dot{x}_i = f_i(x_j, t), \quad x_i(0) = x_{i0} \implies x_i = x_i(t) = x_i(t; x_{j0}, t_0) \quad i = 1, ..., n$$

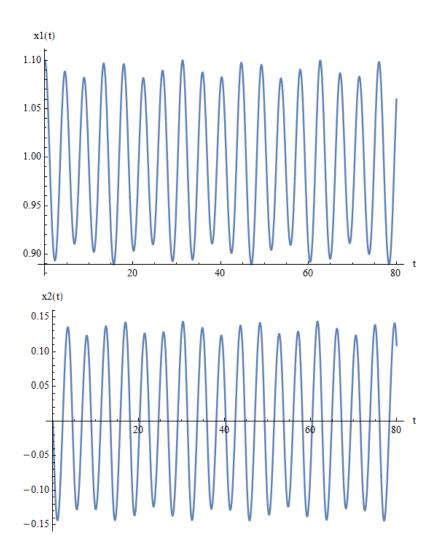
trajectory : Oriented parametric curve in phase space, with parameter the time *t*, which starts from the point of initial conditions and evolves either **for increasing time** (future) or decreasing time (past).

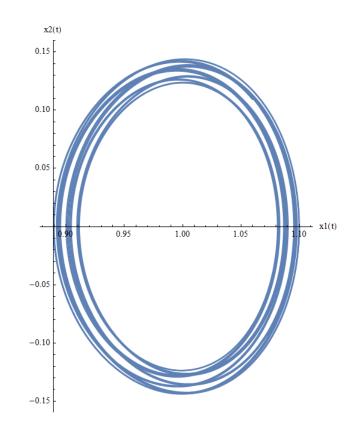
- **Periodic trajectory** (Cycle): $x_i(t+kT; x_{j0}, t_0) = x_i(t; x_{j0}, t_0) \quad \forall i = 1, ..., n, \quad \forall k \in N$
- **Bounded trajectory**: $|x_i(t;x_{j0},t_0) x_{i0}| < M \quad \forall i = 1,..,n, \quad \forall t > t_0$
- **Unbounded trajectory** : $\exists i \in [1,..,n], x_i(t;x_{j0},t_0) \rightarrow \pm \infty \quad \gamma \iota \alpha \ t \rightarrow \infty$
- Asymptotic trajectory towards a $\forall i = 1, ..n,]$ point :
- Asymptotic trajectories towards to a phase space subset $U^* \in R^{n-l}$, 0 < l < n:
- $\forall i = 1, \dots, \quad \lim_{t \to +\infty} x_i(t; x_{j0}, t_0) = x_i^*$
 - For any neighborhood V of the subset U^* in phase space, there exists t^* such that $(x_1(t), x_2(t), ..., x_n(t)) \in V, \quad \forall t > t^*$

Periodic trajectory

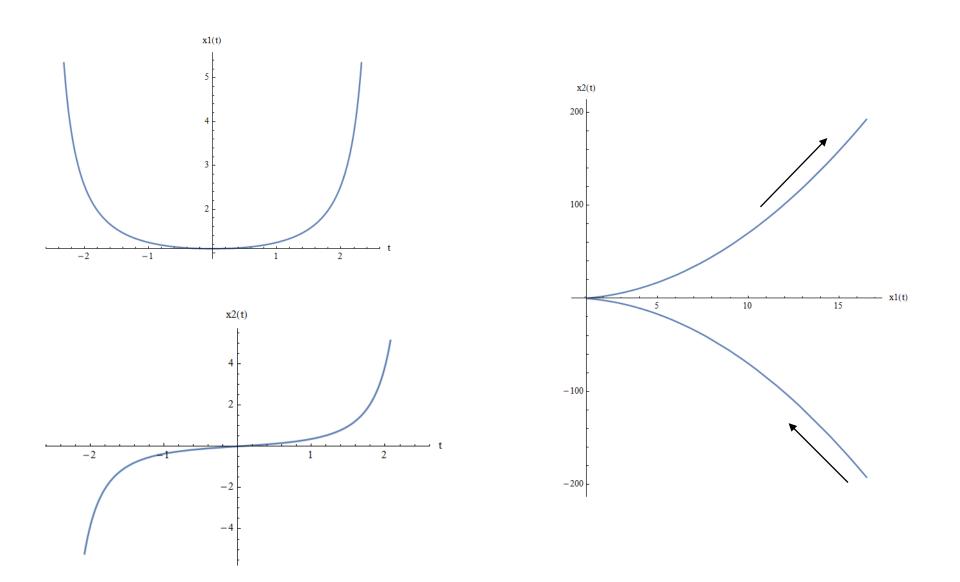


bounded trajectory but not periodic

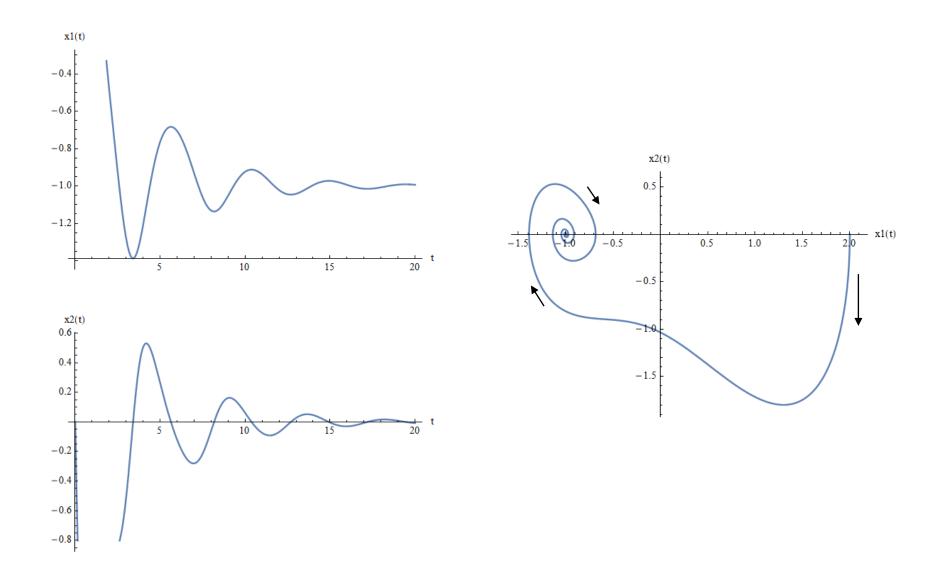




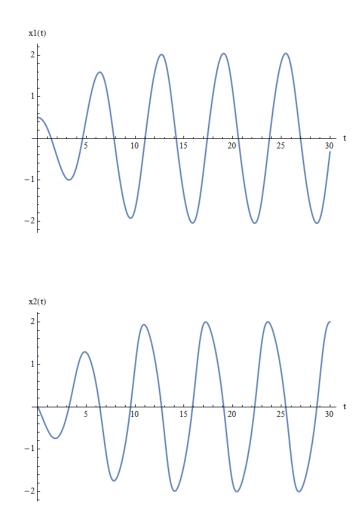
Unbounded trajectory

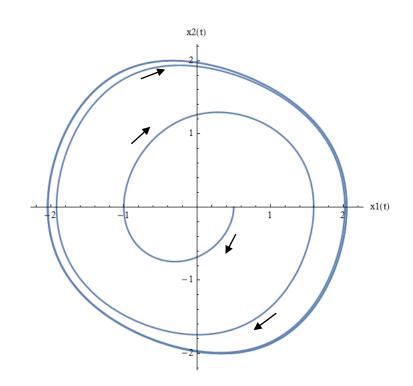


Asymptotic orbit to a point

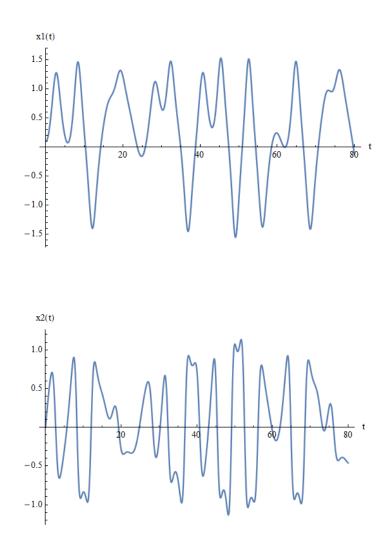


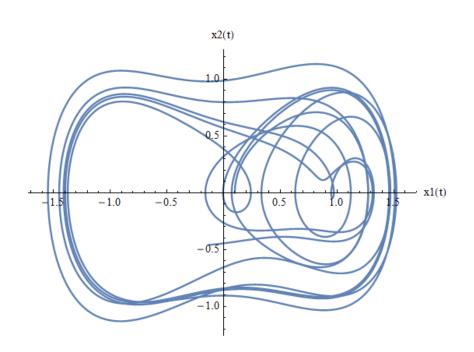
Asymptotic orbit to a cycle



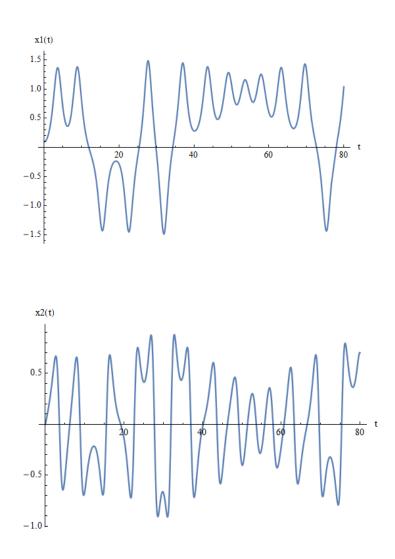


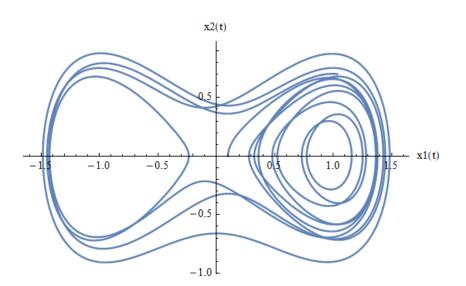
Chaotic trajectory towards an attractor





Chaotic trajectory





AREA PRESERVING – NON AREA-PRESERVING SYSTEMS

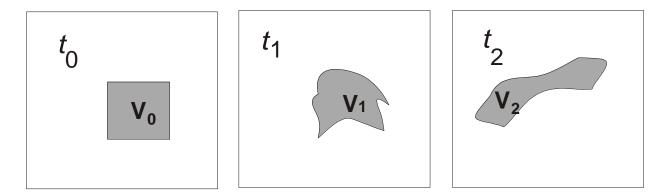
Phase Space = flow

 $\frac{d\rho}{dt} + \rho div\vec{\upsilon} = 0, \quad \vec{\upsilon} \equiv \vec{f}$

(Continuity equation)

- area preserving (conservative)
- dissipative
- Explosive
- "area dependent preservation" (*dissipative*)

$$div \vec{f} = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \dots + \frac{\partial f_n}{\partial x_n} = \begin{cases} = 0 \\ < 0 \\ > 0 \\ a(x_i) \end{cases}$$



1