
CONTINUOUS DYNAMICAL SYSTEMS
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1 2( , ,..., )nf f f f= Vector field of the system 

ODEs

Solution
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AUTONOMOUS SYSTEMS
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The vector field of an autonomous system is 

constant in time

ODEs Initial conditions
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Vector f is tangent to the trajectory
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Trajectories follows tangentially the vector field

Vector field



AUTONOMOUS SYSTEMS

• Any point of the phase space Ε belongs to a 

unique trajectory. Trajectories do not intersect 

transversally their self or other trajectories.

• Independently of the initial time value to, from a 

particular point in phase space Ε is defined only 

one solution (one trajectory passes).  The

dynamical system is invariant in time translation.

So we can set always t0=0.

• The vector field flow has the same direction 

along the orbit. 

• Trajectories are continuous and differentiable 

curves in phase space for any time  (smooth curves)

>> Consequences due to the continuity 

of the vector field and Cauchy Theorem.
conventional and non-conventional 

trajectories



Autonomous systems – Special solutions

Α. Equilibrium points: The singular (critical) points of the vector  field

10 20 0 10 20 0( , ,..., ) 0, ( , ,..., ) :i n nf x x x x x x= equilibrium point

00 ( ) (const)i i ix x t x =  =

Stability (draft definition) : If there exist initial conditions in the neighborhood of an equilibrium 

point providing orbits which diverge from the equilibrium point as t→ , then the equilibrium point 

is called unstable otherwise is called stable.

cmath22

• Equilibrium solutions are found by solving algebraic and not differential equations. 

Β. Periodic Solutions: Trajectories which are repeated per equal time intervals

•  If an orbit with initial state {xio} after time T is found again at the same state {xio} in phase space, 

afterwards it will evolve exactly the same as in the beginning. This is because the initial conditions 

and the vector field will be the same.

•  A periodic trajectory is represented by a “closed” curve in phase space.

( ) ( ), 1,.., , ( : period)i ix t T x t i n t R T+ =  =  

➢ A periodic solution is an invariant set in phase space
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NON-AUTONOMOUS SYSTEMS
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ODEs Initial  Conditions
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• The vector field varies in time.

• If  f =0 at the point x* at time t=t* then, genericly,  f 0 for t  t* and thus x* is not an equilibrium point.

• If a trajectory returns to its initial point x0=(x10, x20, …, xn0) at a time t=t0+τ, the evolution will be different 

because, genericly,   f (x0 , t0)  f (x0 , t0+τ).  Thus, the orbit is not periodic in general.

• The trajectories maybe intersect in phase space. They do not intersect in the extended phase space RxRn

• If the variation of the vector field is periodic, with period Τf then the periodic orbits of the system, if they exist, 

should have period equal to k Τf , k=1,2,… This is proved by the fact that the trajectory is found at the same point 

x0 at time t=t0+ k Τf when the vector field is the same with its initial state at t0.  
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Qualitative classification of trajectories

0 0 0( , ), (0) ( ; , ) 1,..,( )i i j i i i ji ix xx f x t x x t xt x t i n= =  == =

trajectory : Oriented parametric curve in phase space, with parameter the time t, 

which starts from the point of  initial conditions and evolves either for increasing 

time (future) or decreasing time (past).

• Periodic trajectory (Cycle): 0 0 0 0( ; , ) ( ; , ) 1,.., ,i j i jx t kT x t x t x t i n k N+ =  =  

0 0 0 0| ( ; , ) | 1,.., ,i j ix t x t x M i n t t−   =  • Bounded trajectory:

• Unbounded trajectory : 0 0[1,.., ], ( ; , ) γιαi ji n x t x t t  →  →

*

0 01,.. , ( ; , )lim i j i

t

i n x t x t x
→+

 = =• Asymptotic trajectory towards a 

point :

• Asymptotic trajectories towards to a phase 

space subset U*Rn-l, 0<l<n :

For any neighborhood V of the subset U* 

in phase space, there exists t* such that

1 2( ( ), ( ),..., ( )) , *nx t x t x t V t t  



Periodic trajectory



bounded trajectory but not periodic



Unbounded trajectory



Asymptotic orbit to a point



Asymptotic orbit to a cycle



Chaotic trajectory towards an attractor



Chaotic trajectory



AREA PRESERVING – NON AREA-PRESERVING 

SYSTEMS

• area preserving (conservative)

• dissipative

• Explosive

• “area dependent preservation” (dissipative)
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 + = Phase  Space = flow

(Continuity equation)
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