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5.7.2 Poincaré Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
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Preface

The in situ exploration of small bodies, most typically asteroids and comets but
also including planetary satellites, is an exciting endeavor currently at the forefront
of planetary science. The science one can do at such bodies is as fundamental as it
is important, as these bodies provide windows into the past of the Solar System.
Found within the asteroid population are various stages of planetary formation,
albeit in shards and tumbled with each other. Found within the comet popula-
tion are the pristine chemicals that dominated the proto-planetary disk prior to
the formation of the modern Solar System. Found within planetary satellites are
whole snapshots of the formational epoch of the Solar System, and also miniature
worlds that have evolved towards their own unique ends. Thus, justification for the
exploration of these bodies is well-founded and has motivated large portions of the
planetary science community over the last decades.

More recently, these small bodies, especially Near-Earth asteroids, have also
become of interest for human exploration of the Solar System. Motivated by an
eventual human mission to Mars, much debate and discussion in the space explo-
ration community has swirled around what the appropriate pathway towards this
eventual goal may be. As of this writing, the current pathway towards Mars is
seen to lie through an initial human exploration mission to a Near-Earth asteroid.
The topics covered in this book are fundamental for the design, evaluation and
navigation of such missions. Human exploration of asteroids can also be envisioned
as a useful endeavor for the identification and exploitation of extra-terrestrial re-
sources. Indeed, there has been much serious scholarship focused on how asteroid
materials can be utilized for sustaining human presence in outer space. Finally, the
mitigation of hazardous asteroids and comets on potential impact trajectories with
the Earth relies fundamentally on our exploration and understanding of spacecraft
mechanics at these bodies.

Thus there is a cornucopia of well-motivated scientific and exploration activi-
ties at asteroids, comets and planetary satellites. While there have been countless
studies, proposals and papers describing these activities, there has not been such a
clear focus on the practicalities of what one can do with space vehicles when they
arrive at these bodies. It is surprising to note that there are many more studies of

 XV
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how to plan a spacecraft’s path to such small bodies than there are what should
be done once one arrives. Whereas the theory for plotting a course to an asteroid,
comet or planetary satellite is well understood and has been implemented many
times in recent decades, the fundamental mechanics of motion in the vicinity of
a small body is not fully understood and cannot be understood based solely on
a simple application of Kepler’s laws. Thus, the opinion is frequently expressed
that it is impossible for a spacecraft to orbit an asteroid smaller than, say, a few
tens of meters in size. But, on closer inspection, this turns out to be fully feasible
in many circumstances. Similar examples abound and, while not always discussed
specifically, will be addressed through the content of this book.

The goal of this book is to remove some of this mystery, and to lay out the
fundamental mechanics of what one could do with a spacecraft when visiting a
small body. While this book is not the definitive summation of all the work that
has been done on this subject, it can at least serve as a background for further
study and analysis.

The text is divided into three parts. Part I reviews the basics of small bodies
in the Solar System, their orbits, their spin states, their sizes, their morphological
properties, and the force environment about them. The emphasis is on describ-
ing those features of these bodies that are important for understanding orbital
mechanics about them. Accordingly, the book does not discuss the many inter-
esting scientific aspects of these bodies nor does it discuss motivations for their
explorations – such motivations are taken as fact. Part II presents the background
dynamical theory that is necessary if one wishes to fully explore the dynamics of
motion about these bodies. For an expert in dynamical systems, these chapters
may seem a bit naive, while to a novice in astrodynamics they may seem relatively
advanced. The material presented in these chapters is there mainly because I have
found these results useful in my own research on this problem, and thus feel that
they must be presented. Part III applies and analyzes a range of different types and
situations that may exist at a variety of small bodies of the Solar System. The list
is certainly not exhaustive, as small bodies have a penchant for presenting hitherto
unforeseen dynamical situations. Indeed, this is what makes them so exciting. The
intent of these chapters is to provide case studies that can be used as a reference
for other small bodies considered for exploration, and to serve as a springboard for
investigating new situations or configurations that may arise.

There are many people to whom I owe a debt of gratitude for the development
of this book and the topics covered herein. First, I must acknowledge the many
students who have worked with me on these topics. In a very real sense, all of
the students I have worked with on research have shaped me and my approach to
these topics – oftentimes the connections between their research and how it impacts
topics in this book are not clear, yet they exist nonetheless. Of special note are
several students whose thesis research is clearly and explicitly called out in this
book. I list them here in order of their graduation: Weiduo Hu, Benjamin Villac,
Marci Possner (nee Paskowitz), Stephen Broschart, Ryan Park, Julie Bellerose,
Eugene Fahnestock and Oier Peñagaricano-Muñoa. A special thank you is given to
Aaron Rosengren for help in proof-reading the book.



Preface XVII

Second, I must acknowledge my many colleagues from the scientific and engi-
neering communities that have encouraged my research and continually asked the
probing questions that force one to further refine and dig into this research. Primary
among these is Steven Ostro, to whom I dedicate this book. It is not an under-
statement to say that Steve’s enthusiasm for my research on these problems, his
probing questions that went far beyond science, and his continual encouragement
have served as the foundations of my success in my professional life. Many others
have also encouraged or enabled my research on these problems. Two who have
provided such support during crucial periods of my career are Bobby G. Williams
and Donald K. Yeomans.

Finally, and most importantly, I must acknowledge my wife, Susan Postema
Scheeres, my children Annaka, Samuel and Eleanor, and my parents, Jacob and
Ann, for their continual encouragement, support and confidence in me.

Boulder, Colorado, August 2011 Daniel J. Scheeres



    



Part I

Modeling



1. Introduction and Background

1.1 Background

When studying motion in the vicinity of small bodies one must be cautious re-
garding what assumptions can be made, due to the variety and diversity of shapes,
sizes and morphologies that these bodies present. One reliable assumption is that
the total mass of these bodies is tiny as compared to planetary bodies, but huge
as compared to visiting spacecraft. For an extreme example, even a boulder of size
1 meter with a density of 3.5 grams per cubic centimeter will still be an order of
magnitude more massive than a typical interplanetary spacecraft, with the mass
of the “asteroid” increasing by an order of magnitude with every doubling of the
body’s size. Thus, just as one can neglect the effect of small bodies on the planets
and sun that they live near, in turn one can neglect the effect of a spacecraft when
it orbits about these small bodies.

It is an understatement to say that all other physical assumptions are suspect
and must be considered on a case-by-case basis. Almost all other overriding physical
assumptions about these bodies could be violated, such is their diversity. Examples
are easy to find, and include the assumption (prior to 1993) that asteroids were
overwhelmingly single bodies whereas now it is known that large fractions of them
are binaries and can even form stable triple systems. Previous to high-resolution
imaging of asteroids, it was thought that small asteroids were monolithic bodies
without any surface covering (called regolith), yet now every asteroid observed at
high-resolution proves to be covered with pebbles, rocks and boulders. Recent pho-
tometric observations and surveys of asteroids have also overturned our conception
of their spin states, and revealed interesting relationships between the sizes of as-
teroids and their spin rates, with small asteroids less than 100 meters in size able to
spin with rotation periods on the order of minutes [133]. In contrast with our previ-
ous understanding, it may even be feasible that some of these fast-rotating bodies
are in complex spin rates as well [134]. Driven by these realities, we will strive to
make as few assumptions as possible in laying out our theory and applications.

It must also be admitted that the study of dynamics about small bodies requires
a knowledge and understanding of higher-order theories of celestial mechanics ap-
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4 1. Introduction and Background

plied to space vehicles, a field frequently called “astrodynamics”. Thus, a substan-
tial portion of this book provides a review of fundamental theories and facts of
astrodynamical systems, and strives to present them in a practical manner which
facilitates their application to the real problems one encounters when planning and
navigating space vehicles to visit small bodies.

1.2 A Brief History of Asteroid Exploration

We first present a brief review of the ways in which asteroids have been explored,
remotely and in situ, since their discovery.

1.2.1 Optical Observations

The first asteroid discovered, Ceres, was observed by Giuseppe Piazzi on January 1,
1801, from the Palermo Observatory in Sicily. Since that time optical observation
has been the primary, if not only, method of discovery for these bodies. In recent
years the discovery rates of asteroids has surged, given the introduction of targeted
surveys for Near-Earth asteroids (asteroids with a perihelion less than 1.3 AU) and
general surveys in the Main Belt. To date the total number of asteroids detected
ranges above 300,000, while only approximately half of these have precise orbits
determined.

The vast majority of these observations only detect asteroids as points of light.
The recent introduction of a new class of precision telescopes in orbit and on Earth
have enabled the larger asteroids to be imaged and has led to the discovery of a
number of binary asteroids [105]. In addition to detection, there are a few limited
physical characteristics that can be deduced from these observations. The magni-
tude, or brightness, of an observed asteroid, once its orbit has been determined,
can be used to estimate the body’s total size (once an albedo is assumed). Also, the
fluctuation of the reflected light, called a light curve, can enable the asteroid’s shape
to be constrained and its spin period to be estimated. Multiple observations of light
curves can even determine the spin pole orientation of the asteroid. Light curves
can also be used to detect binary asteroids, based on observing abrupt changes in
reflected light when the bodies eclipse each other. Finally, observations of asteroids
at precise wavelengths from optical into the infra-red allows their spectra and tem-
perature to be determined. These measurements provide additional insight into the
compositional properties of these bodies and their size. A complete introduction to
asteroids and historical measurements that have been made of them can be found
in the Asteroids, Asteroids II and Asteroids III texts [48, 102, 14].

Despite the importance of remote optical observations of asteroids, they can
only provide limited detail on the specific bodies at hand. The best determinations
possible usually occur for binary asteroids, where it is possible to measure the total
system mass and infer mass distributions between the two bodies [135]. These
observations provide tantalizing clues to the natures of these bodies, but cannot
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answer fundamental questions about them. For that one needs to turn to other
observation methodologies.

1.2.2 Radar Observations

Range-Doppler radar observations of asteroids is a powerful observation technique
that has been used to open new windows on our understanding of asteroids [120].
These observation techniques allow for precise determination of an asteroid’s orbit
and provide measurement data from which the shape and spin state of the body
can often be derived. Typical shape model reconstruction accuracies on the order
of 10 meters are possible, enabling a relatively precise level of insight into the shape
of these bodies. Such models were not available previously to the first shape model
determined for the asteroid Castalia [75], which is notable for being a clearly defined
contact binary asteroid (Fig. 1.1). Since that time many additional asteroid shape
models have been determined, and some of them, such as the binary asteroid 1999
KW4 [121, 165], have been used to greatly advance our understanding of asteroids
(Fig. 1.2).

Fig. 1.1 Shape model of Castalia based on radar observations. Credit: JPL/CALTECH.

There are only two radio telescopes that can currently generate observations that
can lead to the shape and spin models. These are the Arecibo Observatory in Puerto
Rico and the Deep Space Network’s 70-meter dish at Goldstone, California. These
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Fig. 1.2 Shape models and relative orbit of binary asteroid 1999 KW4 based on radar observa-
tions. Credit: DIAL/JPL/CALTECH.

observatories do not carry out discovery observations of asteroids, but are used to
follow up discovered asteroids if they happen to pass close enough to the Earth to
enable detection and observation. Perhaps the main drawback of radar observations
is that they require the target bodies to have relatively close flybys to Earth for
the observations to have sufficient signal-to-noise ratios for these detailed shapes
to be determined. Despite this, radar observations of asteroids have revolutionized
our understanding of these bodies.

1.2.3 Distant Flybys

Moving beyond ground-based observations can yield significant scientific returns
through the use of instrumented spacecraft. The Galileo mission to Jupiter took
advantage of its multi-year trajectory to that planet to carry out two flybys of Main
Belt asteroids, obtaining the first high-resolution optical images of asteroids. The
first flyby was of the asteroid Gaspra on October 29, 1991. The second flyby was
of the asteroid Ida on August 28, 1993. It is significant that the second asteroid
ever imaged at close range, Ida, was found to have a moon captured in orbit about
it, Dactyl, shown in Fig. 1.3. Thus, the second asteroid observed at high-resolution
was found to be a binary, presaging the many discoveries since that time. The Ida
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Fig. 1.3 Galileo spacecraft image of the Ida–Dactyl asteroid system. Credit: NASA.

flyby enabled the density of that asteroid to be constrained to lie between 1.4 to
4 grams per cubic centimeter [11]. The large uncertainties arose as the orbit of
Dactyl could not be pinned down very precisely.

Since that time there have been additional flybys of asteroids by spacecraft on
their way to other solar system destinations. Figure 1.4 shows a compilation of all
spacecraft-imaged small bodies. Despite such flybys being relatively inexpensive in
terms of propellant, there are operational costs associated with such flybys which
often make missions reluctant to incorporate them into their plans. Thus, there
have been only 4 asteroid flybys of note since the initial Galileo flybys: the New
Millennium DeepSpace 1 Spacecraft flyby of asteroid Braille, the NEAR-Shoemaker
Spacecraft flyby of asteroid Mathilde, and the recent flybys of the Rosetta Space-
craft of asteroids Steins and Lutetia. Of these flybys, the most notable are the
NEAR flyby of Mathilde and the Rosetta flyby of Lutetia, as the total mass of these
asteroids were determined [199, 164, 122], although only a partial shape/volume of
these asteroids were found. The total density of Mathilde was bounded and found
to be on the order of 1.3 g/cm3 [199], a surprisingly low value, indicating for the
first time that asteroids can have a high level of porosity – a fact that has been
repeatedly reconfirmed.
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Fig. 1.4 Compilation of asteroids and comets imaged by spacecraft. Credits: Montage by Emily
Lakdawalla. Ida, Dactyl, Braille, Annefrank, Gaspra, Borrelly: NASA/JPL/Ted Stryk. Steins:
ESA/OSIRIS team. Eros: NASA/JHUAPL. Itokawa: ISAS/JAXA/Emily Lakdawalla. Mathilde:
NASA/JHUAPL/Ted Stryk. Lutetia: ESA/OSIRIS team/Emily Lakdawalla. Halley:: Russian
Academy of Sciences/Ted Stryk. Tempel 1: NASA/JPL/UMD. Wild 2: NASA/JPL.

1.2.4 Rendezvous

To date there have only been three spacecraft rendezvous missions to asteroids,
the National Aeronautics and Astronautics Administration’s (NASA’s) Near Earth
Asteroid Rendezvous (NEAR) mission to asteroid Eros, the Japanese Exploration
Agency’s (JAXA) Hayabusa mission to asteroid Itokawa, and most recently NASA’s
DAWN mission to asteroids Vesta and Ceres. Both the NEAR and Hayabusa mis-
sions successfully characterized the external morphology of their asteroids and mea-
sured some element of their mass and gravity field. The DAWN mission is just
achieving its rendezvous with Vesta as of this writing, and will provide significant
scientific returns on that asteroid’s mass, gravity and morphology. Following the
Vesta phase of the mission, the spacecraft will go on to explore the asteroid Ceres.

The NEAR Mission

The NEAR mission was launched in 1996 and achieved rendezvous with Eros on
February 14, 2000. Its subsequent mission lasted for over one year, during which



1.2 A Brief History of Asteroid Exploration 9

time it remained in a bound orbit about the asteroid, seen in Fig. 1.5. During
this period high-resolution images of the surface were obtained, a shape model
created, and its gravity field and spin estimated, among other measurements. The
total density for this body was determined to be 2.4 g/cm3, and its internal mass
distribution was found to be nearly homogeneous. At the end of its mission, the
spacecraft was landed on the surface of the body, where it remained in contact with
the Earth for a few weeks before it was no longer observable and contact was lost.
At its next apparition an unsuccessful attempt was made to contact the spacecraft.
The entire mission design for the NEAR spacecraft at Eros involved novel elements
of mission design not needed for any previous orbital mission, due to the asteroid’s
highly irregular shape, rapid rotation period of 5.27 hours and obliquity near 90◦.
Although Eros is a Near-Earth asteroid, it is uncharacteristic of this population
due to its large size, with its mean diameter being greater than 15 km.

Fig. 1.5 NEAR spacecraft image of asteroid Eros. Credit: NASA/JHU-APL.

The Hayabusa Mission

The Hayabusa mission was launched in 2003 and achieved rendezvous with Itokawa
in mid-September 2005, shown in Fig. 1.6. Its subsequent mission at that asteroid
lasted until November 25, at which time the spacecraft was subject to an anomaly
and left the vicinity of Itokawa. During its short stay at the asteroid, Hayabusa was
able to characterize the asteroid surface in detail, leading to a precise shape model
being developed. The total mass of the asteroid was estimated, leading to a density



10 1. Introduction and Background

estimate of approximately 2 g/cm3. Higher order gravity field estimations have not
been carried out for this body as of yet, although relevant data for such determi-
nations is in existence. The spacecraft achieved touchdown on the surface of the
asteroid twice, and collected samples of regolith in its sample chamber. Following
the anomaly of November 25, 2005, the spacecraft was brought back under control
and navigated back to the Earth where it had a successful re-entry into the Earth’s
atmosphere over Australia in June 2010, at which time the sample container was
retrieved. During its close proximity phase at the asteroid, the spacecraft achieved
a bound orbit about the asteroid only a few times for only brief periods of time.
The majority of the time the spacecraft “hovered” over the asteroid surface, mean-
ing that it used its thrusters to actively maintain its location a distance of several
kilometers from the surface of the asteroid. Only for the trial and actual descents to
the surface did the spacecraft come close enough to the asteroid to actually achieve
orbit for brief periods.

Fig. 1.6 Hayabusa spacecraft images of asteroid Itokawa. Credit: JAXA/ISAS.

1.2.5 Future Missions

Beyond the current DAWN mission there are future asteroid exploration missions
still being developed and planned. Most recently NASA has selected the OSIRIS-
REx asteroid sample return mission as the next New Frontiers mission. This mission
will visit the asteroid 1999 RQ36 in 2020, characterize and sample its surface, and
return its sample to Earth in 2022. This target asteroid is relatively small and ap-
pears to be similar to the class of binary asteroid primaries, with a relatively rapid
rotation rate and a strongly oblate shape. The body has a total extent of ∼500 me-
ters, and its exploration will represent an important next-step in the understanding
of asteroids in general.
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Other space exploration agencies also have plans for future missions to asteroids.
Perhaps the most highly developed proposal is JAXA’s Hayabusa 2 mission to
asteroid 1999 JU3. This mission has been approved and is scheduled for launch
in July 2014. It is a sample return mission but will spend an extended period of
time at the asteroid (approximately 1.5 years). It will return to Earth in December
2020, and thus would bring its sample home prior to the return of the OSIRIS-
REx sample. Also being proposed to the European Space Agency (ESA) is the
Marco Polo-R mission, which is a sample return mission to a binary asteroid. This
proposal is currently in assessment, with a decision for funding to be announced
in the future. In addition to these specific plans, there are always several other
compelling missions to asteroids being proposed to various space agencies. This is
driven, in part, by the accessibility of the NEO population to spacecraft.

1.3 A Brief History of Comet Exploration

The history of comet observations predates that of asteroids for naked-eye and
telescopic observations, yet has lagged behind asteroid exploration in terms of ren-
dezvous. The lack of rendezvous explorations will soon be remedied by the Rosetta
mission to comet Churyumov-Gerasimenko. Rosetta is scheduled to enter orbit
about the comet in May 2014, and will have a 2-year mission of exploration. This
will include observations from the spacecraft and the deployment of a lander to the
comet surface.

1.3.1 Ground-Based Observations

Due to the observability of comets with the naked eye from the ground, the record
of their observations goes back to the earliest recorded histories. The societal im-
pacts of comets have been extremely significant, and have often been correlated
with social upheavals and natural catastrophes by active imaginations due to their
spectacular presentation in the sky. Thus, to provide a review of observations goes
well beyond the scope of the current book, but has been considered from a scientific
perspective in earlier texts such as the book by D.K. Yeomans [198]. Ground-based
observations of comets continue to play a key role in their scientific understanding,
yet such observations usually provide few clues to even the most simple physical
aspects of comets such as their shape, size and rotation state. Exceptions occur
for particularly well-studied comets such as Tempel 1 [183]. Further, radar obser-
vations of comets have provided some important information on their environment
and other physical properties. Two specific examples are the radar observations of
comet Hyakutake, which was the first to observe clouds of centimeter-sized particles
in orbit about that body (recently seen optically by the Deep Impact spacecraft’s
flyby of comet Hartley 2). Observations of comet Tuttle [62] provided the first
detailed shape model of a comet, showing a strongly bifurcated shape.
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1.3.2 Spacecraft Observations

On the other hand, the history to date of spacecraft exploration of comets is much
shorter and, until the Rosetta spacecraft has its rendezvous, will consist only of
flyby missions. The first series of spacecraft observations of a comet were the Hal-
ley flotilla in 1986. This international group of spacecraft included craft from the
European Space Agency, the Japanese space agency, and the then-Soviet Union’s
space agency. These flybys provided significant details about that comet’s rotation
state, composition, and shape, but could not provide mass estimates or even a fully
three-dimensional shape and uncontroversial spin state estimate.

Following these observations the next significant comet observations from a
spacecraft was the comet Borrelly flyby by the DeepSpace 1 spacecraft in 2001,
which provided the first evidence that comet shapes could be strongly bifurcated.
Following this was the Stardust flyby of comet Wild 2 in 2004, which showed a
comet with a much different surface morphology than comet Borrelly and eventu-
ally provided the first direct sample return from a comet’s coma.

In 2005 the Deep Impact spacecraft had its interaction with comet Tempel 1,
impacting it with a 370-kg impactor designed to form a crater on that body to de-
termine the overall strength of a cometary surface. Due to the unforeseen optically
dense ejecta field raised by that impact, that mission was not able to directly image
the crater formed on the surface. The mission also provided the highest-resolution
imaging, to date, of a comet surface, raising a host of interesting scientific questions
about the nature of comets. The recent flyby of the Stardust spacecraft of Tempel
1 in February 2011 was able to image the impact site of the original Deep Impact
mission, although at a lower resolution than the initial mission, and identified the
crater made by the Deep Impact impactor.

Finally, the Deep Impact spacecraft carried out a flyby of comet Hartley 2 in
November 2010, obtaining images of that body and confirming the presence of
significant amounts of “snow” in orbit about that nucleus. Figure 1.7 shows pro-
portionate images of comets Tempel 1 and Hartley 2. The next significant advance
in our understanding of comets will occur when the Rosetta spacecraft has its
rendezvous with comet Churyumov-Gerasimenko in 2014. Although low-resolution
shape models of this comet are available and preliminary orbit analyses have been
performed, these analyses will be supplanted by the actual data after rendezvous.

It is relevant to ask what the difference between comets and asteroids are in
terms of spacecraft and particle motion in their vicinity. There are three differences
expected, although two of them are more minor. The first of the minor differences
is that comets are expected to be less dense than asteroids by a factor of 2 or
more, due to their high content of volatile ices and presumed porous structure.
Estimates of comet densities have been estimated to be as low as 0.3 grams per
cubic centimeter [138]. The second minor detail is that comets are expected to more
commonly lie in excited rotation states, although there are known asteroids that
are also in such states. The major difference between asteroids and comets is the
outgassing present at comets, creating a gaseous environment that will potentially
provide significant non-gravitational forces acting on the spacecraft. There has been
some disagreement over the nature of these outgassing fields, and thus, while they
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Fig. 1.7 Comparison image of the nuclei of comets Tempel 1 and Hartley 2. Credit: NASA.

are discussed in this book, the models that are used are likely to be significantly
updated by results from the Rosetta mission to comet Churyumov-Gerasimenko.

1.4 A Brief History of Planetary Satellite Exploration

1.4.1 Early Ground-Based Observations

The history of planetary satellite observations extend to primeval times, given
the close proximity and stark observability of the Earth’s planetary satellite, the
Moon. However, as will become clear when the dynamical environment of planetary
satellite orbiters are discussed later, the Earth’s moon is unique among planetary
satellites due to its large mass relative to the Earth, and is rightly treated as a
problem in its own right (see [179]).

Besides the Moon, the start of planetary satellite exploration occurs with
Galileo’s discovery of the four largest Jovian satellites in 1610: Io, Europa, Ganymede
and Callisto. The discovery of Saturn’s largest moon, Titan, followed in 1655 by
Huygens. In the subsequent few centuries all of the major moons of the large outer
planets were observed and cataloged. The Martian moons, Phobos and Deimos,
were discovered by Hall in 1877, and represented a new class of objects, small
planetary satellites. Whereas the major planetary satellites of the gas giant planets
are all spheroidal in shape, the Martian moons have quite strongly non-spherical
shapes reminiscent of asteroids. Indeed, current speculation is that these moons
are a captured asteroid in orbit about Mars, although the detailed mechanics of
how such an event could have occurred is not understood.
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1.4.2 Flyby Spacecraft Observations

The largest advance in our knowledge of planetary satellites in the solar system
occurred with the Pioneer and Voyager spacecraft flybys of the outer planets. These
missions allowed, for the first time, the masses of the larger satellites to be deter-
mined and provided the first detailed, high-resolution observations of the surfaces
of these bodies. They also led to the discovery of additional, small planetary moons.
Perhaps the most significant realizations from these missions were that these plane-
tary satellites exhibited a wide range of surface morphologies and levels of activity.
From the active volcanism on Io to the significant differences between the smooth
surface of Europa, battered surface of Callisto and the dense atmosphere of Titan.

1.4.3 Spacecraft Rendezvous Observations

On the heels of the successful flybys of the Jovian and Saturnian systems, NASA
enacted plans to visit Jupiter and Saturn with dedicated rendezvous spacecraft.
The Galileo spacecraft visited Jupiter and was in orbit in this system from 1995
until 2003 when it was sent on an impact trajectory with Jupiter. Recall that it
was the Galileo spacecraft that also carried out the first high-resolution imaging
observations of asteroids during its flight to Jupiter. Throughout its mission in the
Jovian system the spacecraft provided significant insights into the diverse popula-
tion of Jovian moons, and has fundamentally altered and shaped current scientific
thinking on the formation and evolution of this system.

The counterpart of the Galileo spacecraft at Saturn is the Cassini spacecraft,
part of the Cassini-Huygens mission. This craft entered orbit about the Saturnian
system in 2004, and is still actively exploring this system. Current plans have the
mission extending through 2017. One of the main focuses of this mission was ESA’s
Huygens probe sent to the surface of the largest Saturnian satellite, Titan. From its
observations, combined with Cassini radar observations of the moon, it was deter-
mined that the surface and atmosphere of Titan is active with lakes, precipitation
and varying winds. The Cassini spacecraft has also made detailed studies of many
of the other moons of Saturn, with some of the most fascinating being the small
satellites embedded in or shepherding the rings, the satellite Hyperion which is
known to be in a chaotic rotation state, and the larger satellite Enceladus which is
now speculated to harbor an ocean under its surface.

In addition to the satellites of the outer planets, many spacecraft have also
observed the Martian moons of Phobos and Deimos. Most recently, NASA’s Mars
Reconnaissance Observer mission and ESA’s Mars Express missions have both
imaged these satellites and further constrained their mass. The history of such
observations traces back to NASA’s Viking mission, which produced the first high-
resolution images of these moons.

Shown in Figs. 1.8 and 1.9 are images of several planetary satellites taken from
spacecraft rendezvous missions. Figure 1.8 shows a number of smaller satellites,
specifically bodies that have non-spheroidal shapes. Figure 1.9 shows a number of
larger satellites, specifically those that have a more spheroidal shape.
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Fig. 1.8 Small and irregularly shaped planetary satellites (not shown to scale). Phobos and

Deimos are moons of Mars. Phoebe and Hyperion are both satellites of Saturn. Phoebe is the
largest irregular satellite of Saturn and Hyperion is in a non-uniform rotation state. Credit:
NASA/JPL-Caltech.

Fig. 1.9 Large and spheroidally shaped planetary satellites (not shown to scale). Europa and
Callisto are Jovian satellites. Europa has an ice-covered surface which resurfaces itself frequently
while Callisto’s surface is extremely old and covered with craters. Titan and Enceladus are Sat-
urnian satellites. Titan has a complex atmosphere that shrouds its surface while Enceladus has
complex surface features. Credit: NASA/JPL-Caltech.
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1.4.4 Modern Ground-Based Observations

In tandem with the spacecraft exploration of the satellite systems of the gas giant
planets, there has been continued ground-based observation activities. The most
significant observations have been of the so-called irregular satellites of the outer
planets. These are small bodies that have been captured into relatively loosely
bound orbits about the planets. These objects often have high inclinations (in-
cluding retrograde) and eccentricities. They are currently thought to be primitive
bodies captured during an early stage of planetary formation, with a presumed
diffuse and gaseous disk around the planets aiding in their capture. Nearly one
hundred of these satellites have been discovered since the late 1990s, with all four
of the outer planets having at least some irregulars in orbit about them.

In addition to optical observations, radar observations of the Galilean planetary
satellites have also been carried out in recent decades. These observations pri-
marily use the NASA Deep Space Network’s Goldstone Planetary Science Radar
instrument, a 70-meter antenna at the Goldstone complex, and the Arecibo ra-
dio antenna. Unlike the asteroid observations made with these same instruments,
which can produce global shape models and spin states, the radar observations of
planetary satellites are used primarily to determine surface reflectance properties
to understand the structure of the surface.

1.4.5 Future Spacecraft Missions

Finally, it is significant to discuss the possible future exploration of planetary satel-
lites. There has been perennial interest in sending spacecraft to select moons of
Jupiter and Saturn to study and determine the interior geophysical structure of
these satellites. The Jovian moon Europa has been considered a high priority tar-
get since the late 1990s, and has seen several different mission proposals go through
different stages of advancement. Unfortunately, all of these proposals have, to date,
been stopped. The scientific priority of a Europa mission is still high, although it
competes with many other worthy scientific endeavors. Also, the technical complex-
ity and cost of a Europa orbiter mission has been long recognized as a significant
issue. The orbital dynamics complexity of such missions, discussed later in this
book in Chapters 16 and 17, are but one of the challenges such a mission must
address.

More recently, with the discovery of cryovolcanism on Enceladus, that moon
has also been proposed as a target for space missions. As will be shown later in
the text, the orbital dynamics challenges at Enceladus are even greater than those
faced by a Europa orbiter. However, the ultimate decision on any specific mission
target should also be based on a mix of the science and engineering. These debates
have yet to take place.

In addition to these two mission ideas, there are perennially many proposals
that focus on different aspects of planetary satellites. Of most significance is the
Russian Phobos-Grunt mission which was launched in November 2011, although it
has had subsequent issues that remain to be resolved. This mission will visit and
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perform close proximity operations in the vicinity of the Martian moon Phobos,
also placing a lander on the surface of that moon. The discussion in Chapter 18
is specifically relevant for such a mission. In addition to this currently planned
mission, missions to the Martian moons have been frequently proposed and will
likely continue to be proposed in the future.

1.5 Notation and Definitions

This is a technically oriented book, and thus it is necessary to introduce the math-
ematical terminology and notation necessary for the following the discussions. As
the theory is focused on relatively specific types of dynamical systems, our basic
mathematical terminology and notation can be introduced here and used through-
out the book. Due to the variety of systems discussed, we do not try to define a
completely uniform notation and reserve the right to introduce specific details and
updates as necessary. The following discussion is more focused on the overriding
generalities.

1.5.1 Vectors, Dyadics and Higher-Order Tensors

In this text a tensor is always a Cartesian tensor, meaning that it is defined and
specified with respect to an orthogonal set of coordinates. Tensors are denoted as
upper- or lower-case latin letters with subscripts to denote the rank and different
entries. A tensor’s dimension is the number of dimensions each entry contains while
its rank is the number of entries that it has. The traditional notation of subscripts
will be used to denote a tensor. Thus, an n-dimensional tensor of rank m will be
denoted as Ai1i2...im

∈ Rn×m where ij = 1, 2, . . . , n and j = 1, 2, . . . , m. Note that
a tensor can be a function of additional items, such as location relative to some
object. Tensors of like dimension and rank can be added and subtracted, term
by term, but the rules for multiplication are more involved. The main operation
needed in this text is a generalization of the dot product (also called contraction)
which allows two tensors of the same dimension but potentially different rank to
be multiplied together.

Consider two tensors, Aijk and Blm. A new tensor can be defined with the
operation

Cijm =
∑

k=1,n

AijkBkm (1.1)

= AijkBkm (1.2)

Note that two of the entries in the above equations have the same index, meaning
that these terms are multiplied by each other and summed. In the second line
this tensor product is restated using the Einstein summation convention, which
automatically sums the terms with a similar index. Which index multiplies which
is defined by the physics and mathematics of the operation where this occurs. The
most common occurrence of this notation is when a number of rank-1 tensors are
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multiplied with a tensor of higher rank. Now consider Aijk again and a rank-1
tensor al. Then the following tensors have the denoted ranks:

Bij = Aijkak Rank 2 (1.3)
Bi = Aijkajak Rank 1 (1.4)
B = Aijkaiajak Rank 0 (1.5)

where a rank-0 tensor is a real number. In this text tensors of rank higher than 2
are only used for higher-order Taylor series expansions. Finally, note that tensors
can be defined independent of any specific coordinate frame, although when they
are to be realized in terms of specific numbers a frame must be specified.

Tensors of rank 1 and 2 play a special role in mechanics and are called vectors
and dyadics, respectively. Using our tensor notation, a vector is ai while a dyadic is
Aij . Special notation is used to denote these quantities along with some special op-
erations. Vectors will generally be represented as lower-case, bold-faced letters and
dyadics as upper-case, bold-faced letters and symbols. Thus, equivalent notations
for vectors are ai and a and for dyadics Aij and A. Exceptions to this notation as
written here do occur.

Vector Operations

The tensor contraction operation plays an important role for vectors. When applied
to a vector itself it defines the length-squared of a vector, which is a scalar quantity.
Denote this as a2 = aiai = a · a, and thus the tensor contraction applied to
vectors is equivalent to the dot product. This operation is used to define the vector
magnitude, or vector length, operation

|a| =
√

a · a (1.6)

where a non-bolded letter will be used to denote the magnitude of a vector, a = |a|.
Vectors that have a length equal to unity are called unit vectors and usually

denoted as a lower-case bold-faced letters with a caret on top, or û, defined such
that |û| = 1. Any vector with non-zero length can be transformed into a unit vector
as â = a/|a|. The dot product is also defined for different pairs of vectors, with
equivalent expressions aibi and a · b. If the dot product of two vectors is equal to
zero, this means that these vectors are orthogonal to each other, i.e., that they
have zero projections onto each other.

If a set of unit vectors are chosen such that they are all mutually orthogonal
and their number equals the dimension of the vector space, then any vector can
be represented as a linear combination of these unit vectors. A common set are
the orthogonal unit vectors in a 3-D space denoted as x̂, ŷ and ẑ, where each
of these unit vectors lives in R3. Then, given an arbitrary vector a ∈ R3, this
vector can always be expressed relative to an orthogonal set of unit vectors as
a = axx̂ + ayŷ + azẑ, where ax = (a · x̂), etc. If an implied set of coordinates
is used the vector can be written as a column or row vector of the general form
[ax, ay, az], where the unit vectors are implied.
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Dyadic Operations

Dyadics can also be described using a set of unit vectors. Assume a general dyadic
A ∈ R3×3, then its general form as expressed with respect to our orthogonal basis is
A = Axxx̂x̂+Axyx̂ŷ+Axzx̂ẑ+Ayxŷx̂+Ayyŷŷ+Ayzŷẑ+Azxẑx̂+Azyẑŷ+Azzẑẑ.
The “product” of two unit vectors, x̂ŷ, is called a dyad and, in column and row
vector notation is equivalent to the outer product of two vectors (i.e., a row times a
column). A dyadic can be written with an implied basis as a matrix, for the above
example as a 3 × 3 matrix

[A] =

⎡⎣Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

⎤⎦ (1.7)

Similar to matrices, dyadics can have their transpose taken, which consists of
swapping the order of all the dyads while keeping the coefficients fixed. Thus,
if A = Axyx̂ŷ, then AT = Axyŷx̂, etc. There is also a unity dyadic corresponding
to the identity matrix, expressed as U = x̂x̂+ ŷŷ+ ẑẑ. This dyadic plays the same
role as the identity matrix with the general property U · a = a · U = a. Finally,
the determinant operator can also be applied to dyadics, where the notation ‖A‖
denotes the determinant of a dyadic or its equivalent matrix.

The dot product, or contraction, operator can be applied to dyadics as well. If
the product is between two dyadics a new dyadic is formed, while if the operation
is between a dyadic and a vector a new vector is formed. In tensor notation, given
Aij and Bkl these can be combined to form Cik = AijBjk. The equivalent dyadic
operation is C = A ·B, and if using an implied basis this can also be expressed as
a matrix multiplication, [C] = [A][B]. For products between dyadics and vectors,
the same set of examples yields the equivalent statements ci = Aijbj , c = A · b,
and [c] = [A][b].

Dyadics can also be used to define the other important vector operation, the
cross product. It can be shown that the cross product between two vectors, a and
b in R3, can be expressed using the dot product between a certain dyadic and one
of the vectors. Notationally this is denoted as a × b = ã · b = a · b̃. Assuming
that the vector has been expressed relative to a basis x̂, ŷ, ẑ, the cross product
operation is

ã = ax (ẑŷ − ŷẑ) + ay (x̂ẑ − ẑx̂) + az (ŷx̂ − x̂ŷ) (1.8)

Note that the cross product dyadic is skew-symmetric, as is expected for the cross
product. Thus ãT = −ã, and the additional equivalent statements of the cross
product follow: a × b = −b̃ · a = −b · ã. The cross product dyadic has a few
additional, special properties stated below

ã · b̃ = ba − (a · b)U (1.9)

˜ã × b = ba − ab (1.10)
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At a deeper level, the cross product can actually be shown to arise from a rank-3
skew-symmetric tensor, but the above definition suffices for our purposes.

Scalars

Finally, a scalar is a rank 0 tensor, meaning that it has a dimensionality of 1,
although it can still be a function of other quantities, such as position, but does
not require a coordinate frame to specify its value. Examples of scalars include the
energy integral, the Lagrangian function, the Hamiltonian function, and the poten-
tial function to name a few. Scalars are usually denoted as unbolded capital letters
and indicate the terms of which they are functions. For example, the gravitational
potential function of a spherical body is expressed as U(r) = μ/|r|, where U is a
scalar quantity, even though its value is a function of a position vector.

Gradient Operators

The gradient operator will raise the rank of a scalar, vector or tensor in general.
Assume a tensor of some rank that is a function of another tensor (in particular,
a vector). Then the term-by-term partial derivative of that tensor with respect to
the vector will result in a tensor of a higher rank. Specifically, assume Aij(r) is a
rank-2 tensor that is a function of a rank-1 vector. Then the rank-3 tensor gradient
is defined as Aij,k = ∂Aij/∂rk. For a second example consider the gradient of a
scalar with respect to a vector using our other notation. Let U(r) = μ/|r|. Then
the gradient of U with respect to r will define a vector. To carry this out note that
|r| =

√
r · r, that the chain rule should be used, and that the partial of a vector

with respect to itself equals the unity dyadic.

∂U

∂r
= −1

2
μ

|r|3
∂r · r
∂r

(1.11)

= −1
2

μ

|r|3 (U · r + r · U) (1.12)

= − μ

|r|3 r (1.13)

Time Derivatives of Vectors

Let r denote a three-dimensional position vector with general entries rj defined in
an orthogonal reference frame. The expression ṙ denotes the time derivative of the
vector r, or dr/dt = ṙ. When taking the time derivative of a vector, it is important
to note whether the vector is expressed relative to an inertially fixed frame or
relative to a frame which rotates relative to inertial space. The general assumption
is that all time derivatives take place relative to an inertially oriented frame unless
otherwise stated. If the frame is rotating with respect to an inertial frame, say
with an angular velocity Ω ∈ R3, then the time derivative of the quantity with
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respect to an inertial (non-rotating) frame can be related to the time derivative in
the rotating frame via the transport equation

ṙI = ṙR + Ω̃ · r (1.14)

where the subscripts I and R denote time derivatives with respect to inertial and ro-
tating frames, respectively. The angular velocity and the position can be expressed
with respect to either frame, which frame the time derivative is being taken with
respect to will generally be clear from the context. Applying the formula a second
time yields a formula relating the acceleration vector in an inertial and a rotating
frame

r̈I = r̈R + ˙̃
Ω · r + 2Ω̃ · ṙ + Ω̃ · Ω̃ · r (1.15)

1.5.2 Functions

Finally, some of our functional notation and assumptions must be defined. Unless
otherwise stated, the uniform assumption is that all of the functions encountered in
our analysis are analytic in all of their arguments, meaning that their higher-order
partial and time derivatives are well-defined. Exceptions to these assumptions arise
when spacecraft controls are considered, but these are only dealt with in isolated
portions of the book. Thus, besides these few exceptions, the functions considered
in this book are C∞ in their arguments.

Functions can be scalars, vectors, or higher-order tensors, depending on the
application. A general format for our most common example, a vector function, is

f(x, t) = {x × t ∈ Rn × R → f ∈ Rm} (1.16)

where x is n-dimensional, t is a scalar quantity, and f is m-dimensional. In general
the dimension of the arguments and the function will be evident from the context.

1.5.3 Differential Equations and Solutions

Of particular interest to us are ordinary differential equations that are derived from
physical principles. These can generally be placed into the form

ẋ = f(x, t) (1.17)

where the dot signifies a total time derivative and f has the same dimension as x
and is C∞ in its arguments. The general assumption is that the ordinary differ-
ential equations encountered are well-defined and have unique solutions (i.e., are
Lipschitz).
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A solution to a set of ordinary differential equations is a function x(t) =
φ(t; xo, to) defined such that

∂φ

∂t
= f(φ(t), t) (1.18)

xo = φ(to; xo, to) (1.19)

Note that the dependency of the solution on the so-called “epoch state” xo is
explicitly called out, as this state can be used to define the solution. This is done
as one of the most important quantities associated with a solution is its gradient
with respect to this epoch state, ∂φ/∂xo, which forms the “state transition” matrix
or dyadic.



2. Modeling Small Body Environments

Before motion in the small body environment is studied it is first necessary to define
this environment. There exist many different scientific taxonomies for asteroids and
comets, and we refer the interested reader to the “Asteroids and Comets” series of
texts for a larger view of these bodies [48, 102, 14, 197, 41]. As our focus is on the
dynamics of vehicles at these bodies, only a sub-set of all the properties of these
bodies needs to be specified. Thus in the following we describe the orbits of small
bodies in the solar system, the rotations of these bodies, their gravitational fields
and shapes, and the forces that act on a spacecraft or particle in their vicinity.

2.1 Heliocentric and Planetocentric Orbits

Small bodies orbit the sun on trajectories that are dominated by the solar grav-
itational attraction. The implicit assumption we make in this book is that the
orbital motion of a small body can be described accurately by the two-body prob-
lem solution. This is an assumption, and is technically not correct as small bodies
are subject to additional perturbations that can have significant effects on their
motion. These additional perturbations arise from the gravitational attraction of
the planets, Jupiter in particular, and from non-gravitational forces acting on the
bodies, usually driven by solar irradiation. However, except for some exceptional
cases, the assumption that a small body follows an essentially two-body orbit over
a timespan of a few orbit periods about the Sun is a good one.

In other situations, when a small body has a close approach to a planet, the
interaction between the small body and the planet during the time when they are
close to each other can generally be modeled as a hyperbolic orbit. These situations
are also important for understanding the effect of a close planetary passage on
orbiting particles about a small body. The “interpolation” between these extremes
would have the small body subject to two gravitational attractions simultaneously,
such as the Trojan asteroids which are attracted by the Sun and Jupiter.

Finally, we make similar assumptions when considering the motion of planetary
satellites. For detailed models it is necessary to incorporate perturbations from the
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Sun and, in some cases, other satellites about the planet. However, for the general
description of their environments over the relatively short time scale considered
here the use of a two-body orbital motion suffices.

The initial classifications we focus on are based on the orbits of these bod-
ies. Figures 2.1 and 2.2 graphically display the range of asteroid and comet or-
bits, and a snapshot of their location in the solar system. The main message from
these representations is that the small bodies of the solar system are distributed
throughout the solar system, with specific areas of concentration but almost no
regions completely devoid of small bodies. Those few that exist arise due to spe-
cific perturbations of Jupiter on their orbits, with the best-known regions being
the Kirkwood gaps. Figure 2.3 shows a population distribution of asteroids in the
Main Belt, clearly indicating the lack of asteroids in regions that are in resonance
with Jupiter.

Fig. 2.1 Distribution of semi-major axis and eccentricity for asteroids and comets in the inner
Solar System. Credit: Alan Chamberlin, NASA/JPL-Caltech.

2.1.1 Asteroids

Asteroids are found throughout the Solar System and are often discriminated ac-
cording to their heliocentric orbits. The technical classification of an asteroid is that
it is a minor planet and does not exhibit a visible coma or outgassing. This clas-
sification can be somewhat ambiguous, with recent controversies over the proper
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Fig. 2.2 A snapshot of asteroid and comet locations in the inner Solar System. Credit: Alan
Chamberlin, NASA/JPL-Caltech.

Fig. 2.3 Semi-major axis vs. asteroid population in the Main Belt, clearly showing the Kirkwood
gaps. Credit: Alan Chamberlin, NASA/JPL-Caltech.
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definition of a planet or dwarf planet, the discovery of some asteroids that seem
to undergo periods of outgassing, and a growing realization that there may be a
continuum of body types instead of distinct classifications of asteroids and comets.
These issues are not of major concern to us here, however.

Near-Earth Objects

The Near-Earth asteroids (NEA) are often classified more generally as Near-Earth
Objects (NEO) due to the presence of comet-like bodies that fit into the follow-
ing orbital definitions. These bodies are clearly distinguished by their heliocentric
orbits, as summarized in Table 2.1. NEOs are the most inexpensive bodies to ren-
dezvous with as a class, due to their proximity to the Earth. Certain sub-sets of
these bodies have been flagged as potential targets for future human exploration.
NEOs are also the bodies with the highest probability of impact with the Earth,
and are considered to be objects of interest due to this fact alone.

The lifetime of an NEO has been estimated to be on the order of 10 million
years [49], and is limited by their chaotic interactions with the inner planets. These
bodies can impact with the terrestrial planets, be ejected from the Solar System,
or, most commonly, impact with the Sun. Due to their limited lifetime, there must
be a source for these bodies. This source is now known to be the Main Belt, and is
described in the following subsection.

Table 2.1 Definitions of Near-Earth Objects from the Near Earth Object Program Office at
JPL’s website [178]. q represents perihelion radius, Q represents aphelion radius, P represents
orbit period.

Group Description Definition

NECs Near-Earth Comets q < 1.3 AU
P < 200 years

NEAs Near-Earth Asteroids q < 1.3 AU

Atiras NEAs whose orbits are contained a < 1.0 AU
entirely with the orbit of the Earth Q < 0.983 AU
(named after asteroid 163693 Atira).

Atens Earth-crossing NEAs with semi-major a < 1.0 AU
axes smaller than Earth’s (named after Q > 0.983 AU
asteroid 2062 Aten).

Apollos Earth-crossing NEAs with semi-major a > 1.0 AU
axes larger than Earth’s (named after q < 1.017 AU
asteroid 1862 Apollo).

Amors Earth-approaching NEAs with orbits a > 1.0 AU
exterior to Earth’s but interior to Mars’ 1.017 < q < 1.3 AU
(named after asteroid 1221 Amor).

PHAs Potentially Hazardous Asteriods:
NEAs whose Minimum Orbit Intersection MOID ≤ 0.05 AU
Distance (MOID) with the Earth is 0.05 AU H ≤ 22.0
or less and whose absolute magnitude (H)
is 22.0 or brighter.
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Main Belt Asteroids

Main Belt asteroids are minor planets primarily found in orbit between Jupiter
and Mars. Those observed range in diameter from 948 km (1 Ceres) down to dust
detected by interplanetary spacecraft. They are characterized by a strong structure
in their semi-major axis distribution, with clear gaps in the population at low-order
resonances with Jupiter. The Main Belt is also dominated by families, which are
collections of asteroids formed by the impact and break-up of larger bodies. In
this sense, the main belt is continually eroding with larger bodies being broken
up into cascades of smaller bodies, which themselves impact and continue this
fractionation. Due to this the sizes of bodies in the Main Belt are in a collisional
distribution, with the number of smaller bodies increasing with a power law with
a size dependence on the order of 1/d2.3. This size distribution is relatively stable,
with the largest few asteroids that have survived this process now isolated from
other asteroids that could disrupt them, but with impacts continuing among the
smaller members. The frequency of family formation is not that rapid, although
dynamical astronomers have been able to identify several families that were formed
relatively recently in the Main Belt (less than 10 million years ago in one case).
Figure 2.4 shows the main groupings within the Main Belt, which to some extent
are arranged along major family membership.

Fig. 2.4 Main asteroid groupings in the inner Solar System. Credit: Alan Chamberlin, NASA/
JPL-Caltech.

Collisions between Main Belt asteroids is the main process that modifies and
changes these bodies over time, although when one goes to smaller sizes, below
10 km in general, other processes become important and actually serve to migrate
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these bodies through the solar system, serving as a source for the NEA. As has
been established relatively recently, perturbations from Jupiter can cause asteroids
to undergo unstable migrations within the Main Belt and be ejected from the Main
Belt. Some of these bodies will scatter into the outer Solar System where interac-
tions with the larger planets can cause these bodies to escape. Others will scatter
down into the inner Solar System where they become NEA. A non-gravitational
force known as the Yarkovsky effect [144, 25] has been identified as the dominant
perturbation on small asteroids in the Main Belt. This effect causes a secular drift
in their semi-major axes, allowing them to drift into destabilizing interactions with
Jupiter. The Yarkovsky effect arises due to a combination of solar heating of as-
teroids, thermal inertia of these bodies (which delays the re-emission of absorbed
solar photons), and their rotation which ensures that the re-radiated photons have
a component that acts normal to the Sun-line. This net component causes a slow
drift either towards or away from the Sun depending on the asteroid’s obliquity.
As it is a non-gravitational effect it preferentially acts on smaller bodies, which is
consistent with the small sizes of NEA in general.

Trojans, Centaurs and Beyond

Traditional terminology defines asteroids to include Trojans (bodies captured in
Jupiter’s 4th and 5th Lagrange points), Centaurs (bodies in orbit between Jupiter
and Neptune), and Trans-Neptunian objects (orbiting beyond Neptune). Many of
these bodies are expected to be volatile-rich, however, and would likely outgas
if they were in closer proximity to the sun. Among these bodies are objects sig-
nificantly larger than the largest Main Belt asteroid, including the Pluto–Charon
system, and thus are more correctly called “minor planets.” The largest Trans-
Neptunian objects are over 2,000 km in diameter and have been found to have
multiple companions. These minor planets tend to be less rocky and more icy in
composition since they formed farther from the Sun. In fact, a group of these objects
known as the Kuiper Belt is thought to be the reservoir for short-period comets.
The distinction between asteroid and comet has become increasingly difficult to
characterize as we learn more about these primordial building blocks of our Solar
System. Due to the lack of active outgassing of these bodies, however, a spacecraft
in their vicinity would be subject to similar forces as from an asteroid. The major
difference arises due to their distance from the Sun and their lower densities.

2.1.2 Comets

Comets are small bodies from the outer Solar System that migrate into orbits which
bring them close enough to the Sun so that the volatiles on their surfaces and in
their interiors begin to sublimate, causing them to outgas. This causes comets to
take on a distinctly different appearance as seen from the Earth, forming large
gaseous clouds in their vicinity which are affected by solar photon pressure and
form their characteristic tails. The presence of volatiles on comets indicates that
they are a pristine reservoir of chemicals and compounds from the formational
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epoch of the Solar System. Due to this comets are currently a high scientific pri-
ority for both rendezvous missions and eventual sample return missions. The sizes
of comets mirror that of asteroids and range from quite small – on the order of
kilometers or less – to relatively large bodies up to 100 kilometers. Although comets
primarily come from the outer Solar System, the designation of comet is only used
for those bodies whose orbits are subsequently perturbed to the extent that their
perihelion come close enough to the Sun for visible outgassing. Once such close
interactions start, comets have substantial migration of their orbits over their life-
times. The main force behind their migration is Jupiter, through its gravitational
perturbations, and the Sun, through heating and generation of outgassing across
their surface. The combination of these gravitational and non-gravitational forces
makes it difficult to precisely predict comet orbits and can cause substantial migra-
tion over their lifetime. The time scales of these migrations, however, are measured
in multiple years whereas the time scales of interest to us are on the order of days
and years at most. Thus, it is reasonable for us to neglect changes in the orbits of
the bodies studied here.

The primary differences between comets and asteroids are a much lower density
for comets and the presence of a gaseous envelope that surrounds these bodies.
This envelope is characteristically diffuse when far from the body and is only of
dynamical interest when a spacecraft comes into close proximity to the nucleus. A
simplistic model for a spacecraft interaction with a cometary jet is presented later
in this chapter. The presence of these outgassing jets also perturb comet rotation
states, with many of these bodies expected to be in an excited rotation mode.
Again, as these are still relatively weak torques the rotational dynamics of these
bodies can be modeled as following torque-free excited rotation states, discussed
later. Finally, due to their source regions being in the outer Solar System, comet
orbits tend to be highly eccentric, as can be seen in Fig. 2.1. This means that solar
perturbations acting on orbiters in their vicinity can vary strongly over one orbit
period, a consideration explicitly taken into account in our analysis.

For purposes of mission design and spacecraft dynamics, comets can be classified
into two main types, short- and long-period comets.

Short-Period Comets

Short-period comets, or more generally periodic comets, are comets that have orbits
which repeat in timespans on the order of 200 years or less, or which have been
viewed multiple times. The comet Halley is the most famous of this set, and was
actually the first comet to be imaged at close range. This class of comets are
the usual targets for rendezvous or flyby missions, as their motion is relatively
predictable – a crucial aspect for planning space missions.

What is particularly striking about these bodies is that they are transient and
change their nature over time. Many comets are expected to eventually go dormant
or become extinct, meaning that they no longer show outgassing effects. This can
be caused by the depletion of volatiles on or near their surface – the fraction
of asteroids that fall into this class is currently unknown. At the other end of the
spectrum, they are also sometimes seen to undergo “bursting” following a perihelion
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passage, indicating that the outgassing activities on these bodies are substantial
enough to erode them and cause them to break apart. Another class of comets have
been found that have perihelion extremely close to the Sun, called Kreutz or Sun-
grazing comets. This class of comets have been discovered by spacecraft that image
the Sun. A common end-state of a body undergoing frequent planetary flybys in
the Solar System is that they impact with the Sun. Thus, it is not surprising to find
comets with orbits in this state. Due to these different processes all comets currently
visible are expected to have finite lifetimes in terms of their visible outgassing
activity. This implies that they are replenished from source regions in the outer
Solar System.

Within the short-period comets are several sub-classifications. Those specifically
mentioned so far include extinct comets, dormant comets, and Kreutz comets.
Another classification used is Main Belt comets, which are defined as comets with
perihelion within the main asteroid belt. Similary, Near-Earth comets are comets
that satisfy the Near-Earth definitions. Along with these diversity of names are
included a diversity of properties, activity levels and even surface morphology.

Long-Period Comets

The other main class of comets are the long-period comets. These are comets that
have only been viewed at one apparition. They are on orbits with extremely long
periods (technically greater than 200 years but with effective periods up to millions
of years), implying that they are on weakly bound, near-parabolic orbits about the
Sun and emanate from the Oort Cloud. They can also be classified as inter-stellar
comets, meaning that they are not gravitationally bound to the Sun and only have
a single apparition before they leave the solar vicinity. These comets are typically
found to be quite active and can be very large. Once observed, however, there is
generally only a year or two at most until they have their perihelion passage and
subsequently go far from the Sun again. Due to this, it is very difficult to plan for
a rendezvous mission to such a body. At best, one could implement a flyby mission
to such a comet, although the engineering development and approach to such a
mission would have to be highly non-standard due to the tight time constraints.

2.1.3 Planetary Satellites

The final class of body considered in this text are planetary satellites. Planetary
satellites are found around the majority of planets, only Mercury and Venus have
none. Their orbits are generally near-circular, with some notable exceptions, and
their orbit planes generally have small obliquities with respect to the heliocentric
orbits of their primaries. These bodies are of great scientific interest for a variety
of reasons. At one end of the spectrum, the larger planetary satellites – especially
those about the gas giants – are thought to have formed via mechanisms similar
to the formation of the Solar System’s planets. Thus, their exploration would open
new understandings of how these formation processes work. At the other end of the
spectrum, some smaller planetary satellites, such as the irregular satellites about
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Jupiter and Saturn, are thought to be captured bodies from early in the Solar Sys-
tem’s formational process. As such, they may also retain early records of material
properties and compositions from the formational epoch of the solar system. Other
planetary satellites present challenges for understanding, such as the history of the
Martian moons Phobos and Deimos, and the formation of the Moon, which now
seems likely to have been formed in a large collision between a Mars-sized proto-
planet and the early Earth. Perhaps most intriguing among the planetary satellites
are the Jovian moon Europa and the Saturnian moons Titan and Enceladus. Eu-
ropa and Enceladus are suspected of having liquid oceans trapped beneath their
ice-covered shells, and have been identified as potential locations in the solar sys-
tem where life could have emerged. Titan is now known to have a complex weather
system that include methane precipitation and hydrocarbon lakes across its surface.

As a population, the size of planetary satellites range from a few kilometers
across to objects larger than the planet Mercury. With only a few exceptions (no-
tably the Martian moons of Phobos and Deimos and some of the smaller satellites of
the gas giants) planetary satellites have shapes that are spheroidal, and thus satel-
lite dynamics about these bodies are not affected by their gravity field distributions
to the same extent as asteroid orbiters. What makes these strongly perturbed sys-
tems are their close proximity to their planets, resulting in significant perturbations
from the combined gravitational attraction and centripetal accelerations that they
experience due to their orbital motion. Due to these perturbations, whole classes
of scientifically attractive orbits about these bodies such as polar orbits can be
strongly unstable and present challenges for any space science mission. For a par-
ticular example, low-altitude circular polar orbits about Europa can impact with
the satellite’s surface within a few weeks if not properly designed or controlled. For
these reasons a discussion of planetary satellites is included within this book, and
the last three chapters are devoted to describing methods for characterizing orbital
motion about these bodies.

2.2 Mass and Density of Small Bodies

A fundamental property of a small body is its total mass, as this ultimately controls
the gravitational attraction it exerts on a spacecraft. Despite this, once the details
of motion around these bodies are explored the total mass of a body is not as
crucial of a parameter as its density. The mean density of a body can be computed
if the volume and mass is known from ρ = M/V , where M is the body mass,
ρ is its mean density, and V is its total volume. Another important concept for
any body is its mean radius, which is defined as the radius of the sphere of equal
volume, or R = (3V /4π)1/3. By definition, the mean radius is essentially equivalent
to the geometric mean of the body’s size with the mean radius lying between the
maximum and minimum radii of the body. As such, the mean radius is a reasonable
measure of how close a spacecraft can come to a given body.



32 2. Modeling Small Body Environments

The importance of the density is exemplified if we consider the simple orbit
period equation defined by Kepler’s 3rd Law

T =
2πa3/2

√GM
(2.1)

where T is the orbit period, G is the gravitational constant, M the body mass,
and a the semi-major axis (or orbit radius for a circular orbit). Replacing the total
mass using the mean density and mean radius the expression reduces to

T =
√

3π

Gρ

( a

R

)3/2

(2.2)

This shows the well-known result that an orbit period about a body, when specified
in terms of body radii, is independent of the body size and only a function of
its density. Thus, noting that the Earth’s mean density is 5.5 grams per cubic
centimeter, an orbit period at the surface of the Earth is 1.4 hours and at one
radius altitude is 4 hours. Thus the orbit period about an asteroid of similar density
will precisely mirror these periods. This is an important point as it means that the
time scale of motion about small asteroids is similar to the same orbit time scales
encountered at the Earth, albeit most asteroids have densities on the order of one-
half that of the Earth with a commensurate increase of

√
2 in the orbit periods.

It is also instructive to consider the mass scales encountered at asteroids, as
these can be directly compared with the spacecraft that visit them. A boulder with
mean radius of 1 meter and mean density of 3.5 g/cm3 will have a total mass of
approximately 15 metric tons. For comparison, the mass of the NEAR-Shoemaker
spacecraft when it was at the asteroid Eros was approximately 0.5 metric tons, or
equivalent to a boulder of mean radius 30 centimeters (assuming a mean density of
3.5 g/cm3). Thus, although it is true that small body masses are inconsequential
as compared to planetary masses, spacecraft masses are similarly inconsequential
as compared to asteroids even a few meters across.

Now consider the measured values of small body density. These are generally
difficult measurements to make and require that the body either be a binary sys-
tem – allowing the total mass to be estimated from Kepler’s 3rd Law – or that
perturbations to a spacecraft trajectory be measured when in close proximity to
the body. As regards to planetary satellites or small binary asteroid secondaries,
these can only be estimated if their mass is large enough to cause a measurable
reflex motion in the primary. Even the large satellites of Jupiter and Saturn have
only been precisely weighed by measuring the deflection of a spacecraft trajectory
during close approaches, or by computing their mutual attractions. Comet densities
have not been directly measured to date, although they have been estimated to be
as low as 0.3 g/cm3. A consistent theme for the estimated densities of asteroids
and comets are that measurements have generally found these bodies to have a
density significantly less than the density of material they are comprised of. Thus,
although the expected grain density of asteroids Eros and Itokawa was on the order
of 3.5 g/cm3, the measured bulk densities of these bodies were 2.7 and 2.0 g/cm3,
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respectively. Similar results have been found for almost all precisely measured bulk
densities, indicating that the internal structure of asteroids has high porosity in
general. Based on these measured values, reviewed in [15], it is reasonable to as-
sume bulk densities of between 0.3 and 1 g/cm3 for comets and ranging from 1 to
5 g/cm3 for asteroids. The densities of planetary satellites are not as important,
as the perturbations in their vicinity are controlled by several additional factors
beyond their mass density, including the mass of their planet and their orbit about
the planet.

2.3 Spin States of Small Bodies

Spins are a crucial property of our target bodies as they define how the mass distri-
butions of these bodies vary in inertial space, which controls how they will interact
with an orbiting particle. Spin dynamics are easily divided into three classes: uni-
formly rotating, complex rotation, and synchronized rotation. Asteroids and comets
inhabit the first two classes, and planetary satellites almost uniformly inhabit the
last. Systems such as binary asteroids can exhibit several types of rotational mo-
tion, usually the uniform rotation of the primary and the synchronous rotation of
the secondary. Spin states can be determined for asteroids and planetary satellites
by observing time variations in the intensity of light scattered from their surface.
However, the spin states of comets are not as well known or understood, arising
from the difficulty of discriminating between internal light reflection within their
comas and variations in reflected light from their surfaces. Still, some comets have
had their spin states accurately determined, and we discuss them briefly where
appropriate.

Each spin state has unique quantities that will define the body’s rotational mo-
tion. An important specification shared by all of these spin types is the orientation
of their total rotational angular momentum. For the analysis presented in this text
a reasonable approximation will be that the bodies conserve their rotational angu-
lar momentum. Some exceptions to this occur for planetary satellites and binary
asteroid systems, but these will be discussed as appropriate. The usual designation
of a body’s rotational angular momentum is relative to an inertially fixed frame.
Such designations are important for providing a unique classification of a body’s
rotation; however, for our focus on motion close to these bodies, these inertial coor-
dinates do not provide useful information by themselves. What is more dynamically
relevant for our study is the orientation of the body’s rotational angular momentum
relative to the body’s heliocentric (or planetocentric) orbit.

Of prime interest is the orientation of the rotational angular momentum vector,
described as a unit vector with two angles relative to the body’s orbit. First, define
the obliquity of the body as the angle between the heliocentric or planetocentric
orbit angular momentum and the rotation angular momentum vectors, denoted
as β. Second, denote the right ascension of the body as the orientation of the
rotation pole projected into the orbit plane, plus 90◦, or geometrically as the planar
orientation of the cross product between the orbit normal and the body’s angular
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momentum vector, denoted as α. As a reference direction in the orbit plane choose
the periapsis, denoted as Ê, and the orbit normal, denoted as Ĥ. The cross product
of these defines the triad, Ê⊥ = Ĥ × Ê. With these definitions, the direction of
the body’s rotational angular momentum is

p̂ = sin β sinαÊ − sinβ cos αÊ⊥ + cos βĤ (2.3)

2.3.1 Uniform Rotators

The vast majority of asteroids are found to be in a uniform rotation state about
their maximum moment of inertia. This is the expected spin state as, under energy
dissipation caused by tides raised by complex rotation, it is the minimum energy
rotation state of a body [20]. Figure 2.5 shows the size/spin distribution of all
asteroids with estimated spin rates and states. Spin rates among uniform rotators
range from extremely fast to extremely slow. There is a clear maximum spin rate for
larger bodies, equivalent to a spin period on the order of 2.4 hours, evident in Fig.
2.5. This observation has led to the overall realization that larger asteroids are most
probably rubble pile bodies, as this limiting spin period equals the spin period when
material on the surface of a body with mean density of ∼2.1 g/cm3 enter orbit. This
maximum spin rate clearly increases for smaller-sized bodies. Current hypotheses
that attempt to explain this are either that smaller bodies are monolithic rocks
or that these smaller bodies may still be rubble piles but are bound together with
cohesive bonds [133, 69, 169].

Uniform rotators can be specified with a given rotation period or rotation rate
and their rotation pole, which is coincident with their rotational angular momen-
tum. Given this, the attitude of a uniformly rotating body can be found by a simple
integration of the constant rotation rate. The spin rates and spin poles of asteroids
and comets are known to change over time. For asteroids the culprit is the YORP
effect [145] while for comets it is torques due to outgassing [150]. The study and
analysis of these longer-term dynamics are of interest, but are not relevant over the
shorter timespans of interest for spacecraft missions design.

2.3.2 Complex Rotators

There is also a sizable population of asteroids and comets in non-uniform rotation,
often referred to as “tumbling” or “complex rotation”. Despite the frequent percep-
tion that such bodies are chaotically spinning, they actually follow a well-defined
quasi-periodic rotational motion which is described in the next chapter. Larger
bodies that are in a complex rotation state generally have a low overall spin rate.
This has been clearly related to their relaxation time [63], with estimates for these
bodies to relax to uniform rotation about their maximum moment of inertia shown
in Fig. 2.5. At the small size scale there is a more puzzling set of tumbling bodies:
fast spinners which are in complex spin states. A clear theoretical explanation for
the existence or persistence of these bodies has not been fully worked out as of
yet, but would present a unique challenge to a rendezvous mission to one of these
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Fig. 2.5 Size–spin period distribution for asteroids. The smaller bodies are almost all in the NEO
population with the larger bodies almost all in the Main Belt population. The dashed lines are
the expected relaxation times for asteroids in non-principal-axis rotation. Credit: A.W. Harris,
personal communication.

bodies. While the number of verified asteroids in non-principal-axis rotation are
somewhat modest, the actual population of bodies in complex rotation states may
be much larger due to the difficulty in detecting and confirming a non-principal-axis
spin state based on light curve observations.

The spin state of a complex rotator is more difficult to specify. There are two
fundamental frequencies that appear in their rotational motion, related to their
nutation and to the spin rate of the body. Specifying these two quantities is not
enough to provide a detailed description of the spin state in time, however. For
that the moments of inertia of the body need to be specified as well (or at least the
ratios of the moments of inertia). The detailed formula relating spin rates, attitudes
and moments of inertia are provided in the next chapter.

2.3.3 Synchronous Rotators

The third distinct class of rotation states are those that are synchronous rela-
tive to their mutual orbit with their parent body. For asteroids this class is often
found among binary asteroids, where the smaller member is frequently found in a
synchronous rotation. In a fraction of binary asteroids synchronicity is also found
between both bodies. Planetary satellites are almost all uniformly found in syn-
chronous spin states. The most notable exception to this is the Saturnian moon
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Hyperion, which is known to be in chaotic rotation. In a few larger systems, such
as Pluto–Charon, the entire system is also doubly synchronous.

Such synchronicity is an expected dynamical state for bodies in orbit about each
other. When they are non-synchronous, tides are raised on either body and act to
de-spin the smaller body (or both bodies if they have relatively equal size). Even-
tually this leads them to be trapped into a 1:1 spin–orbit resonance, possibly with
some libration. The continued dissipation of energy due to relative motion should
eventually damp out this libration, or reduce it to a small value. The one binary as-
teroid imaged at high resolution, 1999 KW4, showed evidence that the secondary
was librating, and thus these bodies are not necessarily completely relaxed to a
synchronous state. On the other hand, capture into a synchronous rotation state
is presumed to be the fastest tidal dissipation process in binary systems [50], and
thus is the expected rotation state of asteroid binary secondaries.

The spin state of a synchronous rotator is specified by the orbit period of the
system. If the body is in libration, the maximum libration angle of the satellite
relative to the line connecting the two bodies should also be given. Alternatively,
the orbit of the system may also be elliptic, which then creates a libration between
the satellite and the body centers, even if the satellite spins at a constant rate.
The detailed dynamics of interaction of a librating synchronous satellite can be
relatively complex, involving interactions between the orbit eccentricity and the
forced and free libration of the satellite.

2.4 Size, Shape and Morphology

Asteroids and comets are frequently defined by their shapes, whereas larger plane-
tary satellites generally have shapes that only deviate slightly from spheroids. Thus,
our focus is mainly on asteroids and comets in this section. As will be seen later,
the detailed surface structure of these bodies is complex with unresolved variations
down to the highest resolution at which they have been imaged. This level of fine
detail is only needed if the surface motion of a vehicle is modeled. For gravitational
and orbital studies, it is sufficient to have lower resolution models that capture
the global morphology of a body’s shape without providing the fine details of its
surface. Such models are available from NASA’s Planetary Data Systems-Small
Bodies Node (PDS-SBN) [117].

2.4.1 Shape Model Formats

There are three fundamental formats that can be found at the PDS-SBN for de-
scribing specific shape models. Historically, use was made of a simple tabulation
of radius, latitude and longitude, usually with equally space longitudes leading to
oversampling of the polar regions. Such model formats are still available for some
shapes, but this description is not amenable to our work and is not discussed any
further. The most versatile shape models are specified as general polyhedra with
triangular facets at the surface defined by vertices specified as vectors from a cen-
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tral origin. Each facet of the surface can be uniquely modeled as a flat plate for a
triangular facet. These shapes can be specified with two lists, one an ordered list
of all vertices of the body expressed as vectors in a body-fixed frame, the other be-
ing vertex number triples that define the vertices involved with each surface facet.
The defining vertices for a facet are generally given in counter-clockwise direc-
tion so that the resulting normal defined by the right-hand rule points away from
the surface. From Euler’s formula there is a simple relation between the number
of faces for a triangular facet polygon, f , and the number of vertices, v, where
f = 2(v− 2). Thus, to specify a shape model with f triangular facets fully requires
3v = 3(f/2 + 2) real numbers and 3f integers, or 9f/2 + 6 total numbers. Due to
this, storage requirements for high-resolution shape models can become onerous.
Figure 2.6 shows an example model with surface faceting clearly shown.

Fig. 2.6 Three views of asteroid Kleopatra in the polygon shape model format, with triangular
surface facets.

The third format is the quadrilateral-implied format developed by R.W. Gaskell
and also stored in the PDS-SBN for some models. This format describes each surface
element of a shape by four vertices. Due to this, the surface cannot be modeled as
a flat plate and, indeed, there is some ambiguity in the surface orientation. As the
finest surface element is always at or beyond the limit of modeling resolution, it is
appropriate to choose some reasonable rule for the surface orientations. Common
choices are to define a diagonal between two vertices, splitting the quadrilateral
into two triangular segments, or implementing an interpolation routine for the
orientation of the surface normal across the body. The model format can be best
envisioned as a parallelepiped drawn to enclose the body with the surface of each
discretized into n squares on a side, creating f = 6n2 facets. The shape can then
be defined by conforming this structure onto the true surface, distorting the grid
as necessary in 3-D space to make it cover the surface and account for non-convex
surface features (see Fig. 2.7). Since the topology of the surface is fixed, to define
the shape one only needs to know the vertices listed in the appropriate order, and
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the total number of faces on an edge. Thus, to fully specify a Gaskell shape model
one needs a total of 6n2 + 2 vertices. Since the shape format is defined implicitly,
it is necessary to only have one file listing the vertices in the appropriate order
with a header given the number of sides n. Thus, a shape model with a total of
f surface facets requires storage of 18f + 12 real numbers, a factor of four times
more than the triangle plate format. However, there are still significant advantages
to this form as it is not necessary to search through lists to find facets due to their
implied storage. Due to this, it is possible to practically develop shape models of
much higher resolution using this approach.

2.4.2 Shapes Based on High-Resolution Imagery

These are the most accurately determined shapes, as they are constructed from
combining visual imagery taken at different viewing geometries and phase angles.
The best shape models are those constructed from an orbiting spacecraft, as full
coverage of the body at a uniform resolution is possible. Only asteroids Eros and
Itokawa have shapes with uniformly high resolution as only these two asteroids have
been visited by a rendezvous spacecraft to date. The two Mars satellites, Phobos
and Deimos, have global shape models but have non-uniform surface resolution,
due to flyby constraints for Mars orbiters. Flyby targets can sometimes have global

Fig. 2.7 Transitional and final shape model construction for the asteroid Itokawa based on

Hayabusa imaging data [44].
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shapes, but they are always non-uniform in resolution due to the rapid speeds at
which flybys occur. Figure 2.7 graphically shows an intermediate step in the process
of shape reconstruction based on asteroid imaging, in this case for asteroid Itokawa.

Shape models for specific bodies imaged by spacecraft are available at the PDS-
SBN. These currently include full and partial shapes of asteroids and planetary
satellites Phobos, Deimos, Gaspra, Ida, Eros, Mathilde, Itokawa, Lutetia, and
Steins. Shape models of Vesta and Ceres will become available as the DAWN mis-
sion progresses. Partial comet shape models are also available, or will be soon, for
comets Borrelly, Wild 2, Tempel 1 and Hartley 2.

2.4.3 Shapes Based on Radar Range-Doppler Imaging

Based on the pioneering work of Steve Ostro and Scott Hudson, small bodies that
pass close enough to the Earth (generally much less than 0.1 AU) and with the
proper trajectory can be imaged by the Arecibo or Goldstone radio antenna. During
flyby range-Doppler imaging of asteroids can be obtained, and in a complex process
the shape and spin state of that body can be estimated [120]. Shape models with
surface resolution of less than ten meters have been obtained by this approach, al-
though more typical resolutions are on the order of several tens of meters or larger.
The best results also rely on the presence of light curve data for precise determina-
tion of the spin period. Shape models for these bodies have usually been produced
in the triangular facet model format. Again, shape models for these asteroids are
available at the PDS-SBN and currently include Castalia, Toutatis, Kleopatra, Be-
tulia, 1999 KW4 Alpha and Beta, plus several additional ones. Figure 2.8 shows

Fig. 2.8 High-resolution shape model of asteroid Toutatis based on its 1996 apparition [77].
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the highest global resolution shape model estimated for an asteroid to date using
this methodology, with surface resolution at the order of six meters.

2.4.4 Shapes Based on Light Curve Analysis

The simplest manner in which to estimate an asteroid or comet shape is by observ-
ing their light curves. These are photometric observations of a body sampled over
extended observing periods. This allows the observer to measure the variation in
the reflected light. Given an assumed albedo (i.e., reflectance) these measurements
also allow the total projected area of the body to be tracked as a function of time.
The simplest approach is to map the total variation in reflected light to an upper
bound on the ratio between maximum and minimum ellipsoidal axes of the body.
Newly developed techniques also enable a convex hull shape to be estimated [78, 79].
Although the resulting information does not provide great detail, it is sufficient to
construct an estimate of the asteroid’s second degree and order gravitational field,
which plays the most significant role in controlling the dynamical evolution of a
particle in orbit about the body.

2.4.5 Surface Characteristics

Precision observations of asteroid and comet surfaces are limited. Rendezvous mis-
sions have provided local observations of surfaces down to the centimeter scale over
specific regions of the bodies, and globally to decimeter scale at Itokawa and meter
scale at Eros. These are the highest-quality observations, as the surfaces are gen-
erally observed from multiple phase angles, which allow for stereo photoclinometry
techniques [46] to determine albedo and surface topography simultaneously. Flyby
observations have much lower resolution and generally only one view of the surface.
Radar observations provide global surface features at the decameter scale. Result-
ing from these observations are a few important facts. First, most asteroids and
comets have relatively relaxed surfaces, meaning that the vast majority of their sur-
faces are below the typical angle of repose for granular material, approximately 40
degrees, with many of these bodies having most of their surfaces significantly below
slopes of 30 degrees. This relative smoothness does not extend down to small scales,
however, as surfaces have strong segregation of surface morphology, with boulders
dominating in some regions and others covered with apparent smooth pebbles or
dust (in the case of Eros). The boulder terrains are rugged with steep small-scale
slopes, while the covered regions generally have low slopes. On Itokawa there is
evidence that the smooth regions migrated to their current locations, indicating
that the surface of that body may be geologically active [108]. The distribution of
material across asteroid surfaces seems to be controlled by the body’s geopotential
including gravity and rotation effects. Spin rates on some bodies can be fast enough
to reverse the usual geopotential lows (which lie at the short axes of a non-rotating
ellipsoid) and cause the long axes or equators of the bodies to be the potential low
[57].
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Comet surfaces have been viewed from a number of flyby missions, and will
be investigated in situ once the Rosetta spacecraft has its rendezvous with comet
Churyumov-Gerasimenko. The hallmark of comet surfaces are that each seems to
be different from the last. Some surfaces, such as for comet Wild 2, have extremely
rugged terrain while others, such as comet Tempel 1, have large regions of their sur-
face apparently covered with smooth material. Our understanding of these bodies
is still advancing and is likely to change in the future.

2.4.6 Mass Distribution Morphology

A significant and frequent morphology found among asteroids is that they form bi-
nary, or in some cases tertiary or higher, systems. Based on measurement statistics
it is believed that at least 15% of NEOs are binary objects, with similar percent-
ages being found in the small Main Belt population [135]. Binary asteroids are also
very common among larger asteroids and are ubiquitous in the Kuiper Belt. The
formation circumstances of binaries are believed to be quite different across the en-
tire range of these bodies and is an active area of research. The modeling of these
bodies can also be rather complex depending on the body’s detailed circumstances
[38], although this text adopts a relatively simple approach to their modeling that
captures the main aspects of these bodies of relevance to spacecraft visits.

A different aspect of mass distribution morphology is in regard to the internal
density distribution of an asteroid. The one asteroid whose shape and gravity field
have been precisely measured to date, Eros, was found to have a large degree of
homogeneity in its internal density distribution, with no detectable mass concen-
trations [107, 83]. This was a somewhat surprising result, and may not be true of
all small bodies. In particular, the binary asteroid 1999 KW4 had a statistically
significant difference in the density of the smaller and larger components, with
the smaller component approximately 40% more dense. A key question for future
missions to small asteroids will be to precisely determine the internal density dis-
tribution. Unfortunately the gravity field measurements of Itokawa were not of
sufficient accuracy to provide strong constraints for that body.

2.5 Gravitational Potentials

The key distinguishing features of small bodies are their irregular shapes, as noted
above, and hence their strongly non-spherical mass distributions. This feature
drives many of the interesting dynamics when close to these bodies.

The following derivation and discussion assumes that the attraction is between
a massless particle and an arbitrary mass distribution. To set up the potential for
this situation, we integrate the potential of a differential mass element over the
entire body

U(r) = G
∫
B

dm(ρ)
|r − ρ| (2.4)
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where ρ is the position vector of the differential mass element dm, B is the collection
of all mass elements, and G is the gravitational constant, taken to equal 6.673×10−8

cm3 g−1 s−2. Figure 2.9 shows the geometry of the mass distribution. It can be
shown that the gravitational potential satisfies Laplace’s equation outside of the
body, ∇2U = 0, and Poisson’s equation inside the body, ∇2U = −4πGσ where σ
represents the local density. For a sphere with constant density, total mass M , and
radius R, integration of this potential yields:

U =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
GM

|r| r > R

GM

2R3

(
3R2 − r2

)
r ≤ R

(2.5)

Fig. 2.9 Mass distribution geometry.

2.5.1 Spherical Harmonics Models

There are several approaches to specify the gravitational potential for a non-
spherical body. Mathematically, any solution to Laplace’s equation which corre-
sponds to the physical mass distribution will work. This fact can be used to great
benefit by constructing a set of orthogonal solutions to Laplace’s equation and
choosing the coefficients of these expansions to match with the actual potential
function.
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Specifically, Laplace’s equation can be solved by separation of variables in terms
of spherical coordinates [80]. Denote the spherical coordinates corresponding to a
position vector r = xx̂ + yŷ + zẑ as

r =
√

x2 + y2 + z2 (2.6)

sin δ =
z

r
(2.7)

tanλ =
y

x
(2.8)

where δ is the latitude and λ is the longitude. The general form for the spherical
harmonic potential for a gravity field is then:

U(r, δ, λ) =
μ

r

∞∑
l=0

l∑
m=0

(ro

r

)l

Plm(sin δ) [Clm cos mλ + Slm sinmλ] (2.9)

where μ = GM , the gravitational parameter of the body, ro is the normalizing
radius (often chosen as either the maximum radius or mean radius of the body),
Plm are the Associated Legendre Functions, and Clm and Slm are called the grav-
ity field harmonic coefficients (or Stokes coefficients). Specification of these coeffi-
cients is analogous to defining the mass distribution and the potential of the body.
The Associated Legendre Functions can be defined by the closed-form relationship
[80]

Plm(sin δ) = cosm δ

int[(l−m/2]∑
i=0

Tlmi sinl−m−2i δ (2.10)

Tlmi =
(−1)i(2l − 2i)!

2li!(l − i)!(l − m − 2i)!
(2.11)

where the int[x] function returns the integer part of x (see Appendix E for a partial
list of these functions).

Functional orthogonality is an important property of the spherical harmonic
expansion. Define the quantity Slmi for i = 0, 1 as

Slm0 = ClmPlm(sin δ) cos(mλ) (2.12)
Slm1 = SlmPlm(sin δ) sin(mλ) (2.13)

Then the orthogonality property is most easily stated as∫ π/2

δ=−π/2

∫ 2π

λ=0

SlmiShkj cos δ dδ dλ =
4π(l + m)!δj

i δ
k
mδl

h

(l − m)!(2l + 1)(2 − δ0
m)

(2.14)

where δj
i is the Kronecker delta function and equals 0 if i 	= j and equals 1 if i = j.

Thus, the integral is only non-zero if all three of the indices match with each other.
If a mass distribution is given, the gravity coefficients Clm and Slm can be

directly computed using the orthogonality relations. Specifically, assume that the
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density of the body is specified at each point as σ(ρ). Then the gravity coefficients
can be found from the integrals [110]:

(C, S)lm =
(2 − δ0

m)
M

(l − m)!
(n + m)!

∫
B

(
r

ro

)l

Plm(sin δ) cs(mλ)σ dV (2.15)

σ dV = σ(r, δ, λ)r2 cos δ dr dδ dλ (2.16)

where ro is an arbitrary reference radius often taken to equal the maximum radius
of the body or the mean radius of the body, and cs denotes the cosine or sine
function for computation of the Clm or Slm gravity coefficient, respectively. The
reference radius ro ensures that the gravity coefficients are dimensionless numbers,
otherwise they would have units of length to the lth power.

For a constant density body one integration can be performed over the radius
and the formula can be reduced to:

(C, S)lm =
σ(2 − δ0

m)
M

(l − m)!
(n + m)!∫

S

R3(δ, λ)
l + 3

(
R(δ, λ)

ro

)l

Plm(sin δ) cs(mλ) cos δ dδ dλ (2.17)

where the radius R(δ, λ) is now a function of the latitude and longitude and defines
the shape of the body.

Gravity Coefficients and Mass Moments

There is a well-known relationship between the gravity coefficients of all degrees
and orders and the high-order mass distribution moments of an arbitrary body [95].
Of most interest are these relationships up to degree and order 2. First note that
C00 = 1, from the above relationships. Next, note that the first degree and order
gravity coefficients are related to the center of mass of the body. Specifically, in
the Cartesian coordinates defined by the spherical coordinate system the following
relations hold

xCM = C11ro (2.18)
yCM = S11ro (2.19)
zCM = C10ro (2.20)

where xCM , etc. denote the center of mass of the body in the chosen body-fixed
coordinate system. It is always possible to redefine the origin of the body-fixed co-
ordinate system to coincide with the center of mass of the body, and thus render the
first degree and order terms identically zero, C11 = S11 = C10 = 0. For a specified
gravity field this is usually done, meaning that the first term beyond the spherical
attraction of the body arise at the second degree and order. It is important to note
that the center of mass and center of figure of a body will coincide if the body has
a constant density distribution. For space missions to small bodies this assumption
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is usually made initially; however, subsequent tracking of a spacecraft close to the
body can determine whether any first degree and order gravity coefficients exist. If
they do, they are evidence of internal density heterogeneity [107, 83].

The second degree and order gravity coefficients are related to the moments of
inertia of the body.

Ixx − Iyy = −4Mr2
oC22 (2.21)

Iyy − Izz = Mr2
o (C20 + 2C22) (2.22)

Izz − Ixx = −Mr2
o (C20 − 2C22) (2.23)

Ixy = −2Mr2
oS22 (2.24)

Iyz = −Mr2
oS21 (2.25)

Izx = −Mr2
oC21 (2.26)

These results hold independent of internal density heterogeneity. There are a few
important observations that can be drawn from these relations. First, it is not
possible to uniquely specify the moments of inertia given the second degree and
order gravity coefficients, at best one can only solve for the differences between
them. This is an important limitation, as it is often possible to measure the gravity
field of an object by tracking its motion, but it is not possible to determine its
full moments of inertia from this information. In general, to determine the full
moment of inertia the body must also have non-trivial rotational dynamics (i.e.,
non-principal-axis rotation). The second observation is that for any given mass
distribution it is always possible to define a set of coordinates such that the products
of inertia, i.e., Ixy, Iyz, and Izx, are zero. Thus, it is always possible to define a
coordinate frame where the second degree and order gravity coefficients C21 =
S21 = S22 = 0, or that the second degree and order gravity field can be reduced
to the two gravity coefficients C20 and C22. Again, for a space mission where the
gravity field is to be estimated, a usual initial assumption is to choose the coordinate
frame fixed in the small body to be nominally aligned with the constant density
principal axes. Then, estimation of any non-zero values for the gravity coefficients
C21, S21 or S22 is again evidence of density heterogeneity.

Thus the simplest form of the gravitational potential begins at the second de-
gree and order with only the coefficients C20 and C22. Note that in the literature
the gravity field coefficient C20 is often equivalently specified as the “J2” gravity
coefficient, with the relationship C20 = −J2. Then, the simplest, non-trivial gravity
field for studying dynamics in the vicinity of a body is:

U =
μ

r

[
1 +

(ro

r

)2
{

C20

(
1 − 3

2
cos2 δ

)
+ 3C22 cos2 δ cos(2λ)

}]
(2.27)

It has also been found in previous studies that the second degree and order gravity
field accounts for the majority of the perturbations on the dynamical system, and
thus this model can be taken as a simple stand-in for a more general system.
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Limitations of the Spherical Harmonics Approach

The spherical harmonics approach to modeling an arbitrary gravitational field does
not work in all situations. A fundamental assumption for the use of this modeling
approach are that the series converge to the true gravity field. This assumption
appears nowhere in the above statements, but can be identified when one derives
the explicit expansion for the gravity field. Consider the general statement of the
gravity field again, making a constant density assumption for convenience:

U =
μ

V

∫
B

dV

|r − ρ| (2.28)

To place this function into the form of the spherical harmonic expansion make
the assumption that |r| > maxB |ρ|, meaning that the potential at the point in
question lies completely outside the maximum radius of the mass distribution being
considered. Under this assumption the integrand can be expanded into the classical
Laplace series form

1
|r − ρ| =

1
r

∞∑
i=0

(ρ

r

)i

Pi0

(
r · ρ
rρ

)
(2.29)

where the Pi0 are known as the Legendre polynomials (see Appendix E). As detailed
in [95] there is a one-to-one correspondence between the integral

1
V

∫
B

(ρ

r

)i

Pi0

(
r · ρ
rρ

)
dV (2.30)

and the ith degree and order spherical harmonic gravity field. If the point in ques-
tion lies at a radius less than the maximum radius of the mass distribution the
Laplace series is not defined when integrating at radii |ρ| = r and diverges when
|ρ| > r.

A direct remedy for this situation is to define two different expansions, one valid
for the usual case when |ρ| < r and the following expansion when |ρ| > r:

1
|r − ρ| =

1
ρ

∞∑
i=0

(
r

ρ

)i

Pi0

(
r · ρ
rρ

)
(2.31)

If a finite density is assumed, then the contribution of the gravity field at precisely
r = |ρ| vanishes. If this expansion is integrated over the mass distribution outside
of radius r another solution of Laplace’s equation can be found as a polynomial in
r. Generally the coefficients of this external expansion are not used as when the test
point radius moves within the maximum radius of the mass distribution, the gravity
coefficients of each expansion become a function of the radius r, meaning that they
must be recomputed as r changes as the mass distributions being integrated over
change. This functional relationship means that the gravity coefficients must then
be computed and tabulated at each radius. Recent work has been performed on
such interior expansions, reported in [192].
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These limitations mean that the usual spherical harmonic expansion cannot
be used when considering the gravitational potential close to a small body with
irregular shape. It is interesting to note that for an ellipsoid with eccentricities
limited to less than 1/

√
2, the external gravitational potential will converge [8].

This convergence is fragile and does not survive if the shape is distended sufficiently
from a sphere or ellipsoid, and is discussed in more detail in [193]. For a general
body the divergence is severe once one comes within the circumscribing sphere
of the body (sometimes called the Brillouin sphere, see Fig. 2.10) and makes the
gravitational potential essentially worthless for dynamical computations.

Fig. 2.10 Illustration of the circumscribing sphere about a body, otherwise known as the Brillouin
sphere.

One innovative approach to remedying this situation while still using an ex-
pansion is the use of ellipsoid harmonic expansions to model the gravitational
field, studied and applied to the small body gravitational potential problem in
[43]. While ellipsoidal harmonic expansions suffer the same convergence problems,
they are mitigated to some degree by having the circumscribing ellipsoid define the
boundary between convergence and divergence of the external series. When on or
close to the surface there are still divergence issues, but the potential can in general
be used much closer to the surface. The cost of this approach is the complexity
involved with the computation of the ellipsoidal harmonics orthogonal functions.
Ultimately, if one wishes to describe the environment on the surface of a small body
this approach also fails.
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2.5.2 Closed-Form Gravitational Potentials

To circumvent this limitation there are a number of approaches that rely on the
existence of a specified shape for the body in question and strong assumptions on
density distribution. The ideal approach to this problem is to find a closed-form
solution to Laplace’s equation. There are several classical solutions to this problem
that can be applied to the gravitational potential problem. At simplest, the sphere
with a radially-varying density distribution has a known solution, similar in form
to the point mass potential. Of more interest are the closed-form solutions for the
constant density ellipsoid and the constant density polyhedron. These have been
used in the majority of studies of motion close to and on the surface of small bodies.
As exact solutions, they are valid up to and on the surface of the shape in question.
They also satisfy Poisson’s equation inside of the bodies, which is the analog to
the gravitational potential inside of a mass distribution. The definition of these
potentials is given in the following.

Constant Density Ellipsoid

Consider a constant density ellipsoid with semi-major axes γ ≤ β ≤ α. Then
the shape of this body is defined by the equation (x/α)2 + (y/β)2 + (z/γ)2 ≤ 1
(Fig. 2.11). The total mass of a constant density ellipsoid is M = 4π/3σαβγ and
μ = GM .

Fig. 2.11 Tri-axial ellipsoid.

The gravitational potential of the exterior region can be found by an application
of Ivory’s Theorem [112]. Without derivation the ellipsoidal gravitational potential
is defined as

U(r) = −3μ

4

∫ ∞

λ(r)

φ(r, u)
du

Δ(u)
(2.32)

φ(r, u) =
x2

α2 + u
+

y2

β2 + u
+

z2

γ2 + u
− 1 (2.33)

Δ(u) =
√

(α2 + u)(β2 + u)(γ2 + u) (2.34)
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where the parameter λ(r) is defined by the equation φ(r, λ) = 0. This equation is
equivalent to a cubic polynomial and λ is defined to be the maximum real root,
which will always exist. The position vector r is specified in the principal axis
frame with the x-axis along the long axis α, y along the intermediate axis β, and z
along the short axis γ. The partial derivatives of this potential with respect to the
coordinates can be computed by applying Leibniz’s rule:

Ux = −3μx

2

∫ ∞

λ(r)

du

(α2 + u)Δ(u)
(2.35)

Uy = −3μy

2

∫ ∞

λ(r)

du

(β2 + u)Δ(u)
(2.36)

Uz = −3μz

2

∫ ∞

λ(r)

du

(γ2 + u)Δ(u)
(2.37)

The term λx does not appear as the integrand is, by definition, zero when evaluated
at λ. These terms can no longer be ignored when computing the second partials of
the potential. Doing so yields

Uxx = −3μ

2

∫ ∞

λ(r)

du

(α2 + u)Δ(u)

+
3μx2

(α2 + λ)2Δ(λ)
1[

x2

(α2+λ)2 + y2

(β2+λ)2 + z2

(γ2+λ)2

] (2.38)

Uyy = −3μ

2

∫ ∞

λ(r)

du

(β2 + u)Δ(u)

+
3μy2

(β2 + λ)2Δ(λ)
1[

x2

(α2+λ)2 + y2

(β2+λ)2 + z2

(γ2+λ)2

] (2.39)

Uzz = −3μ

2

∫ ∞

λ(r)

du

(γ2 + u)Δ(u)

+
3μz2

(γ2 + λ)2Δ(λ)
1[

x2

(α2+λ)2 + y2

(β2+λ)2 + z2

(γ2+λ)2

] (2.40)

Uxy =
3μxy

(α2 + λ)(β2 + λ)Δ(λ)
1[

x2

(α2+λ)2 + y2

(β2+λ)2 + z2

(γ2+λ)2

] (2.41)

Uxz =
3μxz

(α2 + λ)(γ2 + λ)Δ(λ)
1[

x2

(α2+λ)2 + y2

(β2+λ)2 + z2

(γ2+λ)2

] (2.42)

Uyz =
3μyz

(β2 + λ)(γ2 + λ)Δ(λ)
1[

x2

(α2+λ)2 + y2

(β2+λ)2 + z2

(γ2+λ)2

] (2.43)

The parameter λ = λ(r) is always a function of the position vector, this dependency
has been suppressed for conciseness in the above.
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The computation of the ellipsoidal gravity field appears to be somewhat chal-
lenging, given its general formulation as an integral. However, the necessary terms
to be computed uniformly fall into the general form of functions known as Carl-
son’s Elliptic Integrals, as summarized (with associated computational algorithms)
in [136]. Further, these can be re-expressed in terms of the Jacobi elliptic integrals
of the first and second kind. In practice, computation as Carlson’s Elliptic Integrals
is numerically the most robust approach and can be rapidly evaluated to specified
degrees of precision.

Due to the symmetry in an ellipsoid’s shape, the gravitational coefficients of
its spherical harmonic expansion taken about its center of mass have a relatively
simple form. First, all Slm coefficients are identically equal to zero. Second, all
coefficients Clm such that either l or m are odd are equal to zero as well. Thus, the
only non-zero gravity coefficients are those of the form C2l,2m, l,m = 0, 1, 2, . . ..
In [8] an explicit formula for the ellipsoid’s gravity field coefficients are given, with
the first few terms specified as:

C20 =
1

5r2
o

(
γ2 − α2 + β2

2

)
(2.44)

C22 =
1

20r2
o

(
α2 − β2

)
(2.45)

C40 =
15
7
(
C2

20 + 2C2
22

)
(2.46)

C42 =
5
7
C20C22 (2.47)

C44 =
5
28

C2
22 (2.48)

Constant Density Polyhedron

In a series of papers Werner detailed closed-form solutions for arbitrary constant
density polyhedra [190, 193, 191]. Although the potential is given in closed form, the
specific computations necessary to implement this potential are complex enough
to require computer code to be written. This particular formulation of the gravity
potential was used operationally for the NEAR mission, and has been used in a
number of studies of the dynamical environment about asteroids. If local density
variations are present or specified, it is possible to add additional potential terms
to model such density heterogeneity [170].

The following summarizes the results in [193] for an arbitrary polyhedron with
triangular faces. Assume such a body is specified, then from the Euler–Descartes
formula for a polyhedron with triangular faces specified by v vectors there must be
f = 2v−4 faces and e = 3(v−2) edges. In Werner’s approach the polyhedron is split
into its edges and faces. Each face is associated with a set of three vertex vectors
rf

i , i = 1, 2, 3, such that the three vertices taken in order are counter-clockwise
about the normal to the face, n̂f . Associated with each edge e are two vertices re

i ,
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i = 1, 2, and two faces, f and f ′, which join at the edge. Denote the edge normal
corresponding to face f as the unit vector n̂f

e perpendicular to the edge and to n̂f

and pointing away from the face center. Thus the edge normals n̂f
e and n̂f ′

e point
in different directions and are not parallel to each other in general. Given these
definitions the general formula for the potential of a polyhedron can be stated as
[193]

U(r) =
Gσ

2

⎡⎣ ∑
e∈edges

re · Ee · reLe −
∑

f∈faces

rf · F f · rfωf

⎤⎦ (2.49)

∂U

∂r
= −Gσ

⎡⎣ ∑
e∈edges

Ee · reLe −
∑

f∈faces

F f · rfωf

⎤⎦ (2.50)

∂2U

∂r2
= Gσ

⎡⎣ ∑
e∈edges

EeLe −
∑

f∈faces

F fωf

⎤⎦ (2.51)

where re denotes the vector from any point in the edge e to r and similarly rf

denotes the vector from any point in the face f to r. The following terms are
defined as

Ee = n̂f n̂f
e + n̂f ′n̂f ′

e (2.52)
F f = n̂f n̂f (2.53)

Le = ln
re
1 + r2

2 + ee

re
1 + r2

2 − ee
(2.54)

ωf = 2 arctan
rf

1 · r̃f
2 · rf

3

rf
1 rf

2 rf
3 + rf

1rf
2 · rf

3 + rf
2rf

3 · rf
1 + rf

3rf
1 · rf

2

(2.55)

where ee denotes the actual length of the edge, or |re
1 − re

2|.

Fig. 2.12 Three vertices, three edges and one surface normal associated with a single facet.



52 2. Modeling Small Body Environments

The Laplacian of the potential can be shown to be

∇2U = −Gσ
∑

f∈faces
ωf (2.56)

The term ωf denotes the signed area of the face f projected onto the unit sphere
centered at the point r. Thus, when the point is outside of the body the total signed
projection equals 0, and when inside the body it equals 4π and thus the polyhedron
potential satisfies Laplace’s and Poisson’s equations. Due to this, the potential and
partials can be used to compute the gravitational field down to and on the surface
of an arbitrary body. Note that, due to this property of the Laplacian of U it is
also possible to determine whether a material point is outside or inside of a body
by evaluating the Laplacian, thus providing a rigorous manner to determine when
impact with a body has occurred.

It is significant to note that closed-form expressions for the spherical harmonic
gravity coefficients can be computed given a polyhedron shape model. The pro-
cedure and code for performing these computations is detailed in [191]. As the
computation of the polyhedron gravity field can be computationally expensive, the
use of a spherical harmonic expansion of this field when outside of the circumscrib-
ing radius of the body can yield significant computational speed increases. As the
harmonic series becomes divergent at the circumscribing sphere, usual practice is
to make the transition between polyhedron and spherical harmonic field at a radius
larger than the circumscribing sphere.

2.5.3 Other Gravity Field Representations

There are a number of other approximation approaches for the gravitational po-
tential of an arbitrary body that have been used. Most of these use a collection of
simple closed-form potential solutions combined in a manner that mimics the grav-
ity field of an actual body. There is scientific heritage for this approach, dating to
the use of “mascons” to estimate density inhomogeneities within the lunar gravity
field [114]. The most common approach to this problem is to approximate the mass
distribution by a collection of point masses. Some past research has taken an exist-
ing shape model and filled it with a collection of point masses to mimic the total
gravity field. This approach is considered in [193] but shown to be computationally
inefficient as compared to the polyhedron model and to provide relatively poor
modeling accuracy at the surface of the asteroid. One problem with this approach
is that the gravity field of a “cube” of material is modeled as a “sphere”. These two
objects have demonstrably different gravity fields when in close proximity leading
to systematic errors. The approach was also used by the navigation team for the
Hayabusa mission to asteroid Itokawa [101] to approximate the irregular gravity
field of that object. The precision of such models are low, however, and it is difficult
to uniquely estimate the location and masses of these particles while at the same
time finding a robust fit for the true gravity field of an object.
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A second approach developed recently is to use the logarithmic potential, which
is the gravitational potential of a line element with linear density. There is a simple
closed form for these potentials which only involves the use of natural logarithms.
By constructing a collection of these it is possible to mimic other gravity fields,
especially when point masses are also incorporated. Some relevant research on this
topic is reported in [9]. While this can be used to approximately represent a gravity
field, no systematic estimation procedure for their placement has been developed
as of yet. Thus, their use in practical navigation scenarios is very limited. They
are useful for constructing simple systems with which to simulate the dynamical
evolution of bodies in non-point-mass potentials.

2.6 Other Forces and Perturbations

When dealing with the orbital motion of a particle in the small body environment
the dominant force is usually from the small body gravitational field. Significant
perturbations also arise from other gravitational and non-gravitational sources,
however. The prime source of these perturbations are the Sun, both gravitational
and non-gravitational. Additional sources of perturbation include planetary gravi-
tational perturbations, which could become significant when the small body has a
close passage by a planet.

2.6.1 Third-Body Gravitational Perturbations

Solar and planetary gravitational perturbations are simple to specify, if one assumes
the small body, or small body system center of mass, lies in a two-body orbit relative
to the sun or planet. This is a reasonable approximation, although it tacitly assumes
that we will not deal with more complex situations where both planetary and
solar gravitational perturbations become significant (which would be a 4+ body
problem). The absolute gravitational attraction that a particle would experience is
simply −[(GMp)/(|r − d|3](r − d) where Mp is the mass of the perturbing body,
r is the vector from the small body center of mass to the particle, and d is the
position vector from the small body center of mass to the perturbing body. In
this formulation the sun/perturber is viewed as orbiting the small body, which
is only a change of perspective and just implies that the relative position vector
goes from the small body to the perturber. The absolute acceleration is not the
relevant acceleration to consider for finding the motion of the particle relative to
the small body. For that situation the relative or perturbing acceleration is needed,
which is just the difference between the absolute acceleration that the particle feels
and the absolute acceleration which the small body feels, +

[
(GMp)/|d|3

]
d, where

d is the position vector of the perturbing body relative to the central body. The
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difference of these forms the perturbation gravitational acceleration from a body
with mass Mp:

ap = −GMp

[
(r − d)
|r − d|3 +

d

|d|3
]

(2.57)

For use in perturbation analysis it is convenient to recast this in terms of a per-
turbing acceleration potential

Rp = GMp

[
1

|r − d| −
d · r
|d|3

]
(2.58)

where

ap =
∂Rp

∂r
(2.59)

Of particular note, if the distance between the central body and the perturbing
body, d, is much larger than the distance of the particle from the central body, or
d 
 r, the perturbing potential can be expanded using the Legendre expansion:

Rp =
μp

d

[ ∞∑
i=0

( r

d

)i

Pi,0(r · d/rd) − d · r
|d|2

]
(2.60)

From Appendix E the Legendre Polynomial P1,0(x) = x, which leads to a can-
cellation between the i = 1 term and the second term in the summation. Also,
P0,0(x) = 1, and thus the first term of the summation has only a constant contri-
bution. Thus, the perturbation terms that matter do not start until i = 2, resulting
in the perturbation acceleration:

Rp =
μp

d

∞∑
i=2

( r

d

)i

Pi,0(r · d/rd) (2.61)

When this expansion is used, usually only the first term is kept. Evaluating this
term explicitly, with the Legendre polynomial P2,0(x) = 1

2

(
3x2 − 1

)
, yields

Rp =
1
2

μp

d3

[
3(r · d̂)2 − r2

]
(2.62)

This expansion is the fundamental approximation made in the Hill problem, and
will be applied later in this book. It should be noted that the definition of whether
d points from the central body to the perturber or from the perturber to the central
body makes no difference in this form of the perturbation. This perturbation, when
combined with a rotating reference frame, creates the tidal acceleration discussed
in Chapters 12, 17, 18.

If multiple bodies are attracting the spacecraft, a different perturbation potential
can be specified for each one, and they can be summed together to create the full
potential. It is important to note that the perturbation potential is time-varying
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in general, as the position d varies with time. In this formulation the motion of d
with time can either be supplied from theory, i.e. the two-body solution, or can be
provided by an ephemeris.

2.6.2 Solar Photon Perturbation

Also associated with the sun and the heliocentric orbit are non-gravitational per-
turbations due to momentum transfer from solar photons striking and recoiling
off the orbiting body. These non-gravitational forces also act on the small body
orbit through the Yarkovsky effect [144], although the relevant timespan involved
is many orders of magnitude longer than what interests us here. These same non-
gravitational forces also induce a torque on the small body and can modify its
rotation state over time, called the YORP effect [145]. Again, the time scale for
these are usually much longer than orbital time scales about the small body. If it
is desired to incorporate these effects, it is in general sufficient to allow the orbit or
rotation state of the small body to change slowly over time without accounting for
the rates of change of these quantities in the equations of motion for the orbiting
body.

With regard to the spacecraft, the most general and relevant description of these
solar forces come from the solar sail literature [103, 140]. From a momentum bud-
get point of view, there are four main contributors to the total force acting on a
spacecraft or particle from the incident solar photons. First is the momentum of
the impinging photons on the surface. This component acts in the direction of the
traveling photons, i.e., along the line from the sun to the particle. Next is the recoil
momentum of those photons specularly reflected from the surface. This fraction is
found by multiplying the incident radiation by two terms. The first is ρ which is the
total reflectance or albedo of the body in question. The next is a factor s which is
the fraction of specularly reflected light (i.e., the portion that is like a mirror). Thus
the total multiplier is ρs. The direction of the reflected light depends on the local
orientation of the surface, with the surface normal bisecting the angle between the
incident and specularly reflected light. Third is the recoil momentum of the pho-
tons diffusely scattered from the surface. There are two factors involved here, the
first being the complement of the specularly reflected light, ρ(1 − s). The second
is a scattering coefficient B that describes the fraction of light scattered normal to
the surface. For an ideal Lambertian surface this factor is 2/3, although for a real
body this scattering factor will deviate from this ideal value. This reflected light
leaves perpendicular to the surface on average, providing an additional momentum
transfer against this direction. The final contribution arises from thermal consid-
erations. Of the incident photons, a fraction (1− ρ) are absorbed by the body and
raise its temperature. The body subsequently re-radiates these photons, on average
a balance existing between the influx of photons, the temperature of the body, and
the outflow of re-emitted photons. For a thin surface the relative emittance of the
forward and back surfaces must also be accounted for. The direction of this net
momentum transfer is also along the local normal to the surface with its magni-
tude again decreased by the factor 2/3 for a Lambertian surface. Finally, the total
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radiation pressure of the incident sunlight must be modeled. A typical model is to
assume the sun acts as a point source, leading to a simple total pressure:

P (d) =
P0

d2
(2.63)

where P0 is a solar constant approximately equal to 1 × 108 kg km3/s2/m2. Com-
bined together, the solar radiation force acting on a unit area A is then

F = −P (d)
[{

ρs(2n̂n̂ − U) + U
} · ûû · n̂

+
{
B(1 − s)ρ + (1 − ρ)B

}
n̂n̂ · û]H(û)A (2.64)

where n̂ is the unit normal to the surface, û is the unit vector from the surface to
the sun, and H(û) is the visibility function for the surface and is equal to 1 when
the sun is in view and 0 otherwise. When summed over all surface elements of the
spacecraft and divided by the total mass this yields the net acceleration due to the
solar photons.

As opposed to this more complex model, the simplest model for computing solar
radiation accelerations is to assume that the spacecraft presents a constant area
perpendicular to the sun-line, and that the total momentum transfer is modeled as
insolation plus reflection. Then the net acceleration will act away from the sun-line
and have the general form

aSRP = − (1 + ρ)P0ASC

MSC

(d − r)
|d − r|3 (2.65)

where again d is the vector from the small body to the sun. An important parameter
is the mass to area ratio, denoted here as BSC = MSC/ASC , as it controls the
relative strength of this perturbation. A typical range of values of BSC for spacecraft
is tabulated in [171] and ranges between 20 and 40 kg/m2. Spacecraft with large
solar arrays will have smaller values of B, and will be more susceptible to these
perturbations, which can often be the dominant perturbation for an orbiter.

This simple form of the solar radiation pressure model can be rewritten as a
potential

RSRP = − (1 + ρ)P0

BSC

1
|d − r| (2.66)

with aSRP = ∂RSRP /∂r. If the spacecraft is close to the small body, or r � d,
the potential can be further simplified by expanding 1/|d−r| and keeping the first
term that contains the position vector r.

RSRP = − (1 + ρ)P0

BSC

r · d
d3

(2.67)
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with the gradient giving a solar radiation pressure acceleration independent of the
spacecraft’s position relative to the small body

aSRP ∼ − (1 + ρ)P0

BSCd3
d (2.68)

which is often an acceptable approximation for our applications. The magnitude of
the solar radiation pressure acceleration is then equal to

aSRP =
(1 + ρ)P0

BSCd2
(2.69)

This model is approximate, but is commonly used to model the non-gravitational
accelerations acting on satellites. Higher-precision developments of spacecraft solar
radiation pressure or non-gravitational models have been developed [202, 140, 104],
and are appropriate for use at a small body. Even with these more general formu-
lations, however, a spacecraft in the vicinity of a small body will frequently be
oriented to keep a constant projected area towards the sun to minimize deviations
in the non-gravitational perturbations. Thus, in this case it is appropriate to still
model the solar radiation pressure as a constant force, perhaps generalized so that
the acceleration vector does not necessarily lie along the sun-line.

2.6.3 Comet Outgassing Pressure Models

Finally, a simple model that accounts for the effect of outgassing pressure from
a comet acting on an orbiting body is presented. It must be stressed that the
detailed modeling and physics of the flow of gases sublimated from the surface
of a comet is still an active area of research, and thus the models presented here
are simplistic and not grounded in any in situ measured comet models. A general
description for the construction of comet outgassing models is given in [23], and
is summarized here. This model assumes that the outgassing jet emanates from
the rotating comet surface and travels radially outwards and expands. Further, the
strength of the outgassing jet is a function of the distance of the comet from the
sun (which accounts for the total solar insolation on the comet surface) and the
relative orientation of the jet site from the sun (which accounts for the relative
solar insolation).

The total acceleration felt by an orbiting spacecraft is expressed as

aJ =
p0(rSJ)

BSC

(ro

r

)2

(2.70)

where p0 is the pressure field and direction at the comet surface, rSJ is the position
vector of the spacecraft relative to the center of the jet on the comet surface and
ro is the reference radius of the comet. The parameter BSC is again the spacecraft
mass to area ratio, now computed for the spacecraft area exposed to the outgassing
jet. This model assumes that the jet strength varies as 1/r2 from the comet surface,
which may not be particularly valid yet provides a tractable and conservative model
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as in reality the drop off may be significantly faster. In the detailed model the
pressure field p0 spans a cone about the center of the jet; however, for practical
computations it often suffices to treat the pressure field as concentrated along a
line in space.

A practical implementation of the model specified in [23] is

p0 = QJVogh(êJ · r̂J)r̂J (2.71)

h(êJ · r̂SJ) =

{
1 êJ · r̂J > cos(δJ)

0 êJ · r̂J < cos(δJ)
(2.72)

The angle δJ is the half-angle of the outgassing jet, as measured from a point on
the surface, eJ is the unit vector defining the direction of the jet relative to the
comet surface, rSJ = r − rJ is the relative vector between the spacecraft and the
jet’s location on the surface of the comet, Vog is the speed of the gas as it leaves
the surface, and QJ is a combination of parameters

QJ = Sf(θS)g(d)Q∗ (2.73)

Here Q∗ is the mass ejection rate of the comet surface at 1 AU, S is the relative
intensity of the comet surface at the jet site, g(d) is a complex function that models
the outgassing strength as a function of distance to the sun, and f(θS) computes
the relative insolation of the jet site as a function of θS , the angle between the jet
surface normal and the sun direction. The function form of g(dAU ) is an empirically
derived function taken from [99]

g(dAU ) = g0

(
dAU

d0

)−c1
[
1 +

(
dAU

d0

)c2
]−c3

(2.74)

where c1 = 2.15, c2 = 5.093, c3 = 4.6142, d0 = 2.808 and g0 = 0.111262, and dAU is
measured in astronomical units. For the insolation function f(θS) a simple formula
can be used

f(θS) = max

⎧⎨⎩
0

1 − αJ (1 − θS)
(2.75)

Here αJ is a parameter between 0 and 1 that controls the outgassing strength as a
function of solar insolation, and cos(θS) = eJ · d̂ is the cosine of the angle between
the jet surface normal and the sun. The values for the outgassing parameters vary
widely from reference to reference. In [23] the following values are used, Vog =
0.35 → 0.95 km/s and Q∗ = 3.4 × 106 kg/h, this value varying strongly with the
comet in general.

The model presented here is wholly based on a heuristic understanding of comet
outgassing jets. It also assumes that the gas velocity is large relative to the speed
of the spacecraft relative to the comet, and that the spacecraft is relatively close
to the comet. If these are not true, then it is necessary to model the time between
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gas ejection and the spacecraft crossing into the jet stream, detailed in [23]. It
also assumes that the comet rotation is being modeled, meaning that the inertial
location of the vectors rJ and êJ varies in time with the rotation of the comet.

A simplified form of this model, for use in analytical evaluation, assumes that
the jet normal points radially outwards from the center of the comet (modeled as
a sphere) and that the crossing of the jet occurs impulsively. Under these approxi-
mations the outgassing jet model simplifies to

aJ =
QJVog

BSC
δ(1 − r̂J · r̂)

r

r3
(2.76)

where δ(x) is the Dirac delta function.
Improved models of comet outgassing are currently under development and will

be tested and refined once the Rosetta spacecraft arrives at comet Churyumov-
Gerasimenko. A current description of some of these modeling developments can
be found in [115]. The main advance in these models is the inclusion of non-radial
components of the gas drag, based on sophisticated models of the cometary out-
gassing process.



Part II

Dynamics



3. Non-Perturbed Solutions

At the heart of our dynamical analyses are known solutions to fundamental dy-
namical problems of orbital and rotational motion. In this chapter we present the
two core solutions necessary for more in-depth study of the problem: the two-body
problem under mutual gravitation and the rotational dynamics of a torque-free
rigid body. These are both classical solutions, but we detail their derivation here
for completeness and to introduce specific concepts and notations used in this book.

3.1 The Two-Body Problem

An understanding of the two-body problem is required to motivate our dynamical
understanding of motion about small bodies, as this solution serves as the starting
point for many theories of motion. Thus, instead of providing a description of the
solution we provide a brief but thorough derivation of the two-body problem.

3.1.1 The Two-Body Problem Statement

Assume that two bodies P1 and P2, with mass M1 and M2 and position vectors
r1 and r2, respectively, are attracting each other according to Newton’s law of
gravitation. If the mutual gravitational potential between these bodies is derived
assuming both bodies have spherical mass distributions we find the following dy-
namical system:

Mir̈i =
∂U
∂ri

(3.1)

i = 1, 2

U =
GM1M2

|r2 − r1| (3.2)

where U is the gravitational force potential (opposite in sign to the potential en-
ergy).
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3.1.2 Classical Integrals of Motion

The system conserves translational and angular momentum, as well as energy.
Conservation of translational momentum allows us to reduce the problem by three
degrees of freedom by recasting it in terms of its center of mass and the relative
motion between the two bodies. Specifically, by choosing new coordinates:

rC =
1

M1 + M2
(M1r1 + M2r2) (3.3)

r = r2 − r1 (3.4)

it is easy to show that the new equations of motion for these variables becomes

r̈C = 0 (3.5)

r̈ =
M1 + M2

M1M2

∂U
∂r

(3.6)

Define the relative potential for the system as:

U =
M1 + M2

M1M2
U (3.7)

=
G(M1 + M2)

|r| (3.8)

which leads to the usual statement of the two-body problem in relative form:

r̈ =
∂U

∂r
(3.9)

The resulting system still conserves energy and angular momentum

E =
1
2

M1M2

M1 + M2
ṙ · ṙ − U(r) (3.10)

H =
M1M2

M1 + M2
r × ṙ (3.11)

More commonly used are the specific energy and angular momentum of the system,
found by dividing through by the effective mass M1M2/(M1 + M2),

E =
1
2
v · v − U(r) (3.12)

H = r × v (3.13)

where v = ṙ. Conservation of energy E relies on the potential U not being a
function of time, while conservation of the angular momentum H relies on U
corresponding to a central field, i.e., only a function of the distance between the
two bodies. The simple two-body potential satisfies both of these conditions, as
can be verified.
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The geometrical interpretation of the angular momentum integral can be split
into two pieces, and is most easily noted by rewriting it as H = HĤ, the product
of the magnitude and the unit vector in which it points, both of which must be
constant. Constancy of Ĥ implies that the solution to the two-body problem lies
on a fixed plane perpendicular to Ĥ. This plane can be oriented relative to an
inertial coordinate system by two angles, traditionally chosen as the inclination,
i, which is the angle between Ĥ and the ẑ-axis of the coordinate frame, and the
longitude of the ascending node Ω, which is the angle from the x̂-axis to the vector
ẑ × Ĥ, which lies in the x̂ − ŷ plane. The angular momentum unit vector can be
specified using these two angles as:

Ĥ = sin i sinΩx̂ − sin i cos Ωŷ + cos iẑ (3.14)

The angular momentum being a constant of the motion, these two “orbital ele-
ments” are also constants.

The constancy of the orbit energy and angular momentum magnitude provide
explicit relationships between the velocity and the position of the relative solution
in the plane defined by Ĥ. If we define the angle between the position and velocity
vector as π/2−γ, where γ is commonly termed the flight path angle (see Fig. 3.1),
then H = rv cos γ. It is interesting to consider the projection of the velocity vector
along the radius vector and perpendicular to it:

vr = v · r̂ (3.15)
= v sin γ (3.16)

vh = v cos γ (3.17)
= H/r (3.18)

where vr stands for radial and vh stands for horizontal. If we introduce the angular
rotation rate θ̇ of the position vector relative to inertial space, using an implied
polar coordinate system in the orbit plane with center at body P1, and note the
familiar kinematic relationship vh = rθ̇, we find

H = r2θ̇ (3.19)

Next consider the orbit energy, E, and what constraints it places on the motion.
For natural systems there is a strong distinction between positive and negative
energy solutions, with fundamentally different behavior resulting between the two
cases. Consider a system with total negative energy, E < 0. Then from the energy
equation it is simple to derive an upper bound on the distance between the two
bodies. For the two-body problem our specific argument rests on the fact that
limr→∞ U(r) = 0, ∂U/∂r < 0 for all r, and limr→0 U(r) → ∞. Then, there exists
a radius Rmax such that U(R) + E ≤ 0 for R ≥ Rmax. But U(r) + E = 1

2v2 ≥ 0.
Thus, U(r) ≥ U(R) which leads to r ≤ Rmax, an upper bound on the distance
between the two bodies. When the system reaches this upper bound, the kinetic
energy of the system is zero and the energy is completely contained in the potential
energy of the system. For the case of positive energy there are no upper bounds
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on the motion, and for the two-body problem all solutions will eventually travel to
arbitrarily large separations between the bodies.

Combining the angular momentum magnitude and the energy integrals we can
establish a lower bound on the energy for a given angular momentum. Specifically
we find that for a given angular momentum H, the energy must be greater than or
equal to Emin = − μ2

2H2 . To show this start with the supposition

E =
1
2
v2 − μ

r
≥ − μ2

2H2
(3.20)

Removing the speed v from the above inequality with the substitution v =
H/(r cos γ), we can find the quadratic equation

r2 − 2H2

μ
r +

H4

μ2 cos2 γ
≥ 0 (3.21)

and its factorization

r =
H2

μ

[
1 ±

√
1 − 1

cos2 γ

]
(3.22)

Note that the radicand is less than or equal to 0, and thus that a physical value of
radius r can never equal its root except when γ = 0 and r = H2/μ. At this value
of γ and r, however, the energy is identically equal to Emin. For any other value
of γ the energy is greater than Emin, establishing the result.

Continuing with the angular momentum and energy we can also find a lower
bound on the radius. First, we note that H > 0 and that a minimum separation
distance between the bodies exists. Then, at a minimum distance we must have
d(r · r)/dt = 0, or r · v = 0, and thus the flight path angle γ = 0 at a minimum
of the separation radius leading to H = rpvp. Eliminating vp from the energy and
angular momentum then provides the result:

E =
H2

2r2
p

− μ

rp
(3.23)

which can be changed into the quadratic equation and its solution

r2
p +

μ

E
rp − H2

2E
= 0 (3.24)

rp =
−μ

2E

[
1 ±

√
1 +

2EH2

μ2

]
(3.25)

For a physical orbit the radicand must always be greater or equal to zero, given
the lower limit on energy. Thus the solution always has at least one physical (i.e.,
real) root. If E > 0, then the radicand is always real and greater than 1, and the
minus sign has a positive separation between the two bodies. If E < 0 we note that
E ≥ Emin and the radicand is positive and less than 1. Thus in this case there are
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two real solutions; inspection indicates that one is a minimum and one a maximum.
Thus the minimum radius of the system can be denoted as:

r ≥ rp (3.26)

rp =
μ

2E

[√
1 +

2EH2

μ2
− 1

]
(3.27)

Conversely, whether there is a maximum radius depends on the energy of the
system, leading to the result r ≤ ra with

ra =

⎧⎪⎨⎪⎩
−μ
2E

[
1 +

√
1 + 2EH2

μ2

]
E < 0

∞ E ≥ 0
(3.28)

3.1.3 Additional Integrals and the Orbit Trajectory

While strong constraints can be placed on the planar motion for the two-body
motion, the solution is not completely described as of yet. The general n-body
problem has the same integrals of motion discussed to this point, translational
momentum, angular momentum, and energy, resulting in 10 separate integrals of
motion that can be used to reduce the dimension of the system and place constraints
on its motion. In the two-body problem we note that the system can be reduced
to a one-degree-of-freedom system by use of the Clairaut solution substitution [6].
We will proceed in a different direction. First note the existence of an additional
integral of motion which is only defined for the two-body problem, the Laplace
vector or equivalently the eccentricity vector. Second note Jacobi’s final integral
theorem, which states that any system that has been reduced to a one-dimensional
dynamical system can always be solved by quadratures.

The Laplace vector can be formed by the combination:

b = v × H − μr̂ (3.29)

while the eccentricity vector is just:

e =
b

μ
(3.30)

=
1
μ

v × H − r̂ (3.31)

It can be shown that ė = 0 by direct substitution of the previous integrals of motion
and the equations of motion. Specifically,

ė = − 1
r3

r × H − 1
r

[U − r̂r̂] · v (3.32)



68 3. Non-Perturbed Solutions

Note that r × H = r̃ · r̃ · v = r2 [r̂r̂ − U ] · v, showing that these terms are equal
and opposite, leading to ė = 0.

The eccentricity vector only has one additional item of information apart from
the classical integrals. As a vector, it lies in the orbit plane of motion and its
magnitude equals e2 = 1 + 2H2E/μ2, neither of which provides new information.
The additional information that e provides is related to its orientation in the plane
of motion, which provides an inertially fixed reference point for the relative motion
between the bodies. Denote the angle between e and the node vector defined by the
unitized vector ẑ ×H as ω, this is called the argument of periapsis and is another
orbital element.

To solve for the trajectory of the bodies, take the dot product of the constant
vector e with the radius vector r to find:

r · e =
H2

μ
− r (3.33)

re cos f =
H2

μ
− r (3.34)

and where the angle between r and e is denoted as f and called the true anomaly.
This equation can be explicitly solved for the distance between the two bodies to
find:

r =
H2/μ

1 + e cos f
(3.35)

which gives us the relative distance between the two bodies as a function of the
angle f measured from the e vector, which in turn is specified by the angle ω
measured in the orbital plane from the node crossing (see Fig. 3.1 for a description
of the geometry). This simple relationship captures Kepler’s first law of planetary
motion.

Fig. 3.1 Geometric definition of the orbit elements.

The eccentricity, e, equals
√

1 + 2H2E/μ2. Due to the minimum energy value
constraint e ≥ 0, with e = 0 occurring at the minimum energy for a given angular
momentum. Thus, the eccentricity is a measure of the excess energy that an orbit
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has. If E ≥ 0 then e ≥ 1, which yields a fundamental change in the radius formula
as now the denominator can disappear and, apparently r → ∞. Denote the value
H2/μ as the orbit parameter, p, a sole function of the angular momentum of the
orbit with units of length. With this new notation the trajectory solution for the
two-body problem takes on its standard form:

r =
p

1 + e cos f
(3.36)

Using this relation it is now possible to relate the speed and flight path angle
as functions of the true anomaly f . From the energy equation the speed can be
evaluated, and from the angular momentum the flight-path angle can be evaluated

v =
√

μ

p
(1 + 2e cos f + e2) (3.37)

tan γ =
e sin f

1 + e cos f
(3.38)

Again, these formula are valid for all energy and angular momentum. The only
constraint which occurs is when e ≥ 1, as then 1 + e cos f = 0 can occur at
two particular values of true anomaly, f = ±f∞ where f∞ = arccos(−1/e), at
which point the radius formula is undefined. Thus f ∈ (−f∞, f∞). The additional
quantities p, e and ω are all considered to be “classical” orbital elements in addition
to the previously defined inclination i and longitude of the ascending node Ω. Note
that another, alternate, orbit element is usually used known as the semi-major axis,
a. This is a direct function of the energy only and can be computed as a = − μ

2E , or
alternately a = p/(1 − e2). Thus when E < 0, a > 0 and vice versa. When E = 0
the quantity a is undefined.

For an orbit with zero energy, a parabolic orbit, f∞ = π. The radius, velocity and
flight path angle all take on special forms, arising from trigonometric reductions of
the formula:

r =
p

2 cos2(f/2)
(3.39)

v = 2
√

μ

p
cos(f/2) (3.40)

tan γ = tan(f/2) (3.41)

In this case as the true anomaly approaches ±f∞ the speed approaches zero and
the flight path angle approaches π/2.

For an orbit with positive energy, a hyperbolic orbit, f∞ lies in the interval
(π, π/2), with its value approaching π as e → 1 and π/2 as e → ∞. The latter
situation occurs when μ → 0, which in fact mimics the situation when a spacecraft
has a flyby of a small asteroid. While the form of the radius, speed and flight
path angle formulae do not change for this case, their limiting values do. Now as
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true anomaly approaches ±f∞ the following limits occur, v → v∞ and γ → γ∞,
where

v∞ =

√
μ(e2 − 1)

p
(3.42)

=
√

μ

−a
(3.43)

γ∞ =
π

2
(3.44)

For E > 0 recall that e > 1 and a < 0, thus yielding positive quantities within all
of the relevant square roots.

With the results found to this point it is possible to define the three-dimensional
motion of the two-body solution. Using the derived directions of Ĥ and ê the vector
ê⊥ = Ĥ × ê can be defined, and using r̂ can also define θ̂ = Ĥ × r̂. Then, by
applying these definitions the full position and velocity vector describing the orbit
is:

r = r [cos f ê + sin f ê⊥] (3.45)

v =
H

r

[
θ̂ + tan γr̂

]
(3.46)

In these expressions r, v, γ, r̂, and θ̂ all vary with true anomaly, with the appro-
priate limits for the cases of E ≥ 0.

3.1.4 Motion in Time

What has been defined is the path, or trajectory, that a solution to the two-body
problem takes in position and velocity space, also called phase space. The link
between the true anomaly and time has not been developed yet. Also, the reader
can note that we have only defined 5 independent integrals to this point. These
are the angular momentum H, energy E, and eccentricity vector e, which have
5 independent quantities that can be expressed in terms of the classical orbital
elements. These are the orientation of the orbit plane, inclination i and longitude
of ascending node Ω, orientation of the trajectory in the orbit plane, the argument
of periapsis ω, and the shape and size of the orbit, the eccentricity e and either the
semi-major axis a or the orbit parameter p.

What is lacking is the integral that locates where the solution is located within
the trajectory at a given time. This final integral always exists due to a theorem by
Jacobi. This theorem states that a one-dimensional ordinary differential equation
ẋ = f(x) can always be solved by quadratures as

t − τo =
∫ x

xo

dx′

f(x′)
(3.47)
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with the epoch time τo serving as the final integral of motion. This result can either
hold globally or locally between zeros of f(x). In the two-body problem it is easiest
to find it by noting a simple relationship between the time rate of change of the
true anomaly and the angular momentum magnitude.

Recall the angular momentum magnitude formula, H = rv cos γ, and its alter-
nate statement H = r2θ̇, where θ̇ is the time rate of change of the angular location
of the solution. For the two-body problem this will equal the time rate of change
of the true anomaly, ḟ . The quantity r2θ̇ equals twice the rate at which the radius
vector sweeps out area, which is the classical statement of Kepler’s Second Law.
Solving for ḟ and evaluating r yields

ḟ =
√

μ

p3
(1 + e cos f)2 (3.48)

This differential equation can be solved by separation of variables, putting it into
the form √

μ

p3
(t − τo) =

∫ f

fo

df ′

(1 + e cos f ′)2
(3.49)

We have the freedom to choose one of the initial conditions τo or fo, and following
convention choose fo = 0, at periapsis, with τo then signifying the time at which
the orbit was at periapsis, which then becomes the final integral of motion.

First consider the case E < 0 and 0 < e < 1. The quadrature can be carried out
for this case, yielding√

μ

p3
(t − τo) =

−e

1 − e2

sin f ′

1 + e cos f ′

∣∣∣∣f
fo

+
2

(1 − e2)3/2
arctan

{√
1 − e

1 + e
tan

1
2
f ′
}∣∣∣∣∣

f

fo

(3.50)

Evaluating this integral from f = 0 to 2π defines the period of the orbit, T , which
takes on a particularly simple form when stated in terms of the semi-major axis:

T =
2πa3/2

√
μ

(3.51)

and is Kepler’s Third Law. Thus the period is only a function of the orbit energy.
From this the mean motion can be defined as n =

√
μ/a3 = 2π/T , as this is by

definition the average rate at which the orbit is traversed.
The expression in Eq. 3.50 is not convenient to work with, leading to the defi-

nition of the eccentric anomaly, E. The arc-tangent function will define an angle,
leading to the natural definition

tanE/2 =

√
1 − e

1 + e
tan f/2 (3.52)
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Since this is a half-angle formula it yields angles resolved over the full interval
[0, 2π). Corresponding formulae, and their inverses, for cosE and sinE in terms
of cos f and sin f are stated in Appendix A. Using these definitions gives us the
standard form of Eq. 3.50, which is usually called Kepler’s equation:

n(t − τo) = E − e sinE (3.53)

The mean anomaly is defined as M = nt, an additional angle. Then the final
integral of motion can also be restated as Mo = nτo. This gives the usual definition
of Kepler’s equation

M − Mo = E − e sinE (3.54)

Given a true anomaly the mean anomaly can be directly computed, first trans-
forming into the eccentric anomaly and then using Kepler’s equation. Evaluation
of the true anomaly given a mean anomaly is not as straightforward, as Kepler’s
equation must be solved to find the eccentric anomaly that corresponds to a given
mean anomaly. Despite the simplicity of this equation, it cannot be solved in closed
form given its transcendental nature. Significant research and analysis of this equa-
tion has occurred historically, and indeed still occurs today. See [26] for a detailed
history of this equation and methods for its inversion.

Equivalent quadratures and definitions can be carried out for the case e = 1
and e > 1, for parabolic and hyperbolic orbits. These relations are needed when
modeling the flyby of a small body relative to a planet or of a spacecraft relative
to a small body. As mentioned above, the other trajectory relations still hold, the
only modification needed is to Kepler’s equation. Going back to the fundamental
quadrature, √

μ

p3
(t − τo) =

∫ f

0

df

(1 + e cos f)2

when e > 1 the result is√
μ

p3
(t − τo) =

e

e2 − 1
sin f ′

1 + e cos f ′

∣∣∣∣f
fo

− 2
(e2 − 1)3/2

arctanh

{√
e − 1
e + 1

tan
1
2
f ′
}∣∣∣∣∣

f

fo

(3.55)

Following the same approach for the elliptic case, define the Hyperbolic Anomaly,
F , as

tanhF/2 =

√
e − 1
e + 1

tan f/2 (3.56)

with similar relationships between cos f and sin f and coshF and sinhF . Applying
these substitutions yields the hyperbolic version of Kepler’s equation:√

μ

|a|3 (t − τo) = e sinhF − F (3.57)
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For parabolic orbits, the quadrature takes on a simpler form and yields a direct
relationship between time and true anomaly:√

μ

p3
(t − τo) =

1
2

tan
(

f

2

)[
1 +

1
3

tan2

(
f

2

)]
(3.58)

where p is generally well defined (as it is computed from the angular momentum)
even if e = 1.

Finally, note that for orbits with zero angular momentum, p = 0, the entire
analysis must be redone given the singular definition of the true anomaly in this
case. Such a derivation is not performed here, however, as it is not needed in the
following. We only note that the eccentric anomaly remains well-defined and can
be used to describe the geometry of motion in this case.

3.2 Rotational Dynamics of Small Bodies

For many applications it is of interest to have a compact, analytical description of
rotational motion which closely matches the expected motion of a body rotating in
space. For precision modeling and estimation the rotational dynamics will usually
be modeled using numerical integration incorporating all relevant torques acting on
the body [107]. However, the torques acting on a rotating body will often be small
in magnitude, meaning that over reasonable lengths of time it may be feasible to
use the Euler solution for the torque-free rotation of a rigid body to describe rigid
body rotation. Such an analytical solution is of interest as it allows the body’s ori-
entation to be specified at arbitrary epochs without requiring numerical integration
of Euler’s equations from an initial epoch. In this section the classical solution for
all possible cases of rotational motion is restated – generalizing the analysis given
by MacMillan [94]. The solution is not derived in as much detail as for the two-body
problem, as the remainder of the text only deals with orbital motion, and introduc-
ing a detailed discussion of the solution of the rotational equations of motion would
take us a bit far afield. Closed-form solutions for the orientation of the rigid body
are also provided in the form of Euler angles as a function of time. The solutions
are stated in terms of elliptic integrals and functions, which are usually available
from standard mathematical libraries. The following derivation avoids the use of
theta functions to express the Euler angles of the body (which the classical solution
relies on, [195]). The qualitative specification of a small body’s rigid body rotation
state is shown to be given by only two numbers once the moments of inertia are
defined for the body.

3.2.1 The Inertia Dyadic

First define the mass moments and products of inertia of a general body. These
arise from the fundamental definition of the rotational angular momentum of a
body. Consider a collection of mass elements dm(ρ) located by position vectors ρ
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and rigidly connected to each other. Assume these elements are all rotating about
the center of mass of this rigid body collection with an instantaneous rotation rate
ω. Then the velocity of each mass element equals ω × ρ = ω̃ · ρ and enables us to
define the rotational angular momentum of the body as an integral over the mass
distribution denoted by β

H =
∫

β

ρ × v dm (3.59)

= −
∫

β

ρ̃ · ρ̃ dm · ω (3.60)

where the angular velocity vector can be pulled out of the integral as it is constant
throughout the body. The integral in front of the angular velocity is then defined
as the inertia dyadic, or if resolved into a specific basis the inertia matrix where
the diagonal elements are the moments of inertia and the off-diagonal elements are
the products of inertia. The inertia dyadic I can then be defined as

I =
∫

β

[
ρ2U − ρρ

]
dm(ρ) (3.61)

where U is the unity dyadic and the second term is a dyad. Using this notation
the angular momentum vector of the body is then H = I · ω. A frame for the
inertia dyadic has not been defined as of yet, but it is convenient to fix it in the
body-frame, as then the integral quantities are all constant.

3.2.2 Orientation of the Rigid Body

A second crucial definition is the orientation of the rigid body relative to inertial
space. The rotation dyadic (or equivalently matrix), denoted as C, represents a
linear operator that takes a vector from a body-fixed frame and expresses it in
inertial space. The specification of the rotation dyadic as a function of time is the
ultimate goal for describing the attitude motion of a body. To carry this out the
relevant differential equations must be posed and integrated.

Consider the operation of C taking a vector specified in a body-fixed frame, ρB ,
into a vector specified in an inertial frame, ρI = C·ρB . Taking the time derivative of
this expression and recalling the transport theorem on time derivatives in a rotating
frame, the equivalence C · [ω × ρB + ρ̇B ] = Ċ ·ρB +C · ρ̇B can be established. As
this relation must hold for arbitrary vector ρB , the relevant differential equation
can be extracted

Ċ = C · ω̃ (3.62)
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3.2.3 Euler’s Equations

Now consider the derivation of Euler’s equations for the rigid body. It can be as-
sumed that there are no external torques operating on the body, and thus the total
rotational angular momentum must be conserved in inertial space. This conserved
vector is specified, using the above notations and definitions, as

H = C · I · ω (3.63)

Noting that Ḣ = 0 yields

0 = Ċ · I · ω + C · İ · ω + C · I · ω̇ (3.64)

but İ = 0 in a body-fixed frame, and substituting the differential equation for C
yields C · [I · ω̇ + ω̃ · I · ω] = 0. This must hold for any rotation dyadic and thus
defines the general statement of Euler’s equations in the body-fixed frame

I · ω̇ + ω̃ · I · ω = 0 (3.65)

3.2.4 Conserved Quantities

The fundamental conserved quantities that are defined for the torque-free rotation
of a body are its rotational angular momentum and kinetic energy. The rotational
kinetic energy is defined as

T =
1
2
ω · I · ω (3.66)

Taking its time derivative yields Ṫ = ω · I · ω̇, and substituting Euler’s equation
from above immediately verifies that Ṫ ≡ 0.

It is more instructive, for the moment, to consider the magnitude of the angular
momentum vector, or H2 = H · H, which is naturally conserved, even in the
body-fixed frame. Assume that the inertia dyadic is diagonal and is aligned along
the principal moments of inertia with axes x, y and z following the convention
Ix ≤ Iy ≤ Iz. Then when written in expanded form both the kinetic energy and
the angular momentum each constrain the angular velocity vector (in the body-
fixed frame) to lie on an ellipsoid

H2 = I2
xω2

x + I2
yω2

y + I2
z ω2

z (3.67)

2T = Ixω2
x + Iyω2

y + Izω
2
z (3.68)

For these two ellipsoids to be consistent with each other, the following condition
must hold

ω · I ·
[
U − H2

2T
I−1

]
· I · ω = 0 (3.69)
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where the inertia dyadic always has an inverse for finite density distributions. To
simplify the discussion, define the ratio H2/(2T ) to be the “dynamic inertia” ID,
which turns out to be a fundamental quantity. Then for the equality to hold the
dyadic U − IDI−1 must be negative semi-definite. Since the inertia dyadic is di-
agonal, this reduces to the condition that the determinant be ≤ 0, which can be
modified to

(Ix − ID)(Iy − ID)(Iz − ID) ≤ 0 (3.70)

The condition is identically equal to zero if ID equals any of the principal moments
of inertia. Also if ID < Ix or ID > Iz then the inequality is violated. Thus the
dynamic inertia must satisfy (with the usual order of moments of inertia)

Ix ≤ ID ≤ Iz (3.71)

From this fundamental inequality a restriction on the possible values of kinetic
energy for a given angular momentum can be inferred.

1
2

H2

Ix
≥ T ≥ 1

2
H2

Iz
(3.72)

The lower bound on T corresponds to the body rotating about its maximum mo-
ment of inertia, which is the minimum energy state and is the stable final rotational
state in the presence of energy dissipation. Conversely, the upper bound corresponds
to rotation about the minimum moment of inertia, which is the maximum energy
state for a given angular momentum and which is unstable in the presence of energy
dissipation.

To finish, define the effective spin rate of the body

ωl =
2T√
H2

(3.73)

The effective spin rate can, in combination with the dynamic inertia, be used as
an alternate statement of energy and angular momentum

H =
√

ω · I · I · ω = IDωl (3.74)

T =
1
2
ω · I · ω =

1
2
IDω2

l (3.75)

Both of these parameters figure prominently in our analytic solution and represent
the rotation rate and moment of inertia of a “sphere” with the given angular
momentum and kinetic energy.

3.2.5 Problem Statement and Parameter Definitions

There are five special solution cases to be considered depending on the value of ID

relative to the principal moments of inertia.
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1. If ID = Iz then the small body is in principal axis rotation about the z-axis,
the largest moment of inertia, and is in its minimum energy state for a given
angular momentum.

2. If Iy < ID < Iz then the small body has a non-zero nutation and precesses
about the z-axis, commonly termed a short-axis rotation mode (SAM), as the
maximum moment of inertia axis z is generally the shortest axis of a constant
density body.

3. If Iy = ID then the small body is in principal axis rotation about the y-axis,
or its angular velocity moves along a heteroclinic connection between rotations
about the y-axis in opposite directions.

4. If Ix < ID < Iy then the small body has a non-zero nutation and precesses
about the x-axis, commonly termed a long-axis rotation mode (LAM), as the
minimum moment of inertia axis x is generally the longest axis of a constant
density body.

5. If Ix = ID then the small body in in principal axis rotation about the x-axis,
which is the smallest moment of inertia, and is in its maximum energy state for
a given angular momentum.

The solution for cases 1 and 5 are trivial and just give uniform rotation about a
principal axis of the body, that axis being fixed in inertial space. For cases 2 and 4
the motion becomes more complex and explicit solutions are needed and given here.
For case 3 the uniform rotation case is also trivial, although the case for motion
on the heteroclinic orbit has added complication. This solution is a special case of
2 or 4 and is discussed for completeness.

3.2.6 Angular Velocity in the Body-Fixed Frame

Solutions for Short-Axis Mode (SAM) and Long-Axis Mode (LAM)

If the dynamic inertia lies in the interval Iy < ID < Iz the body is in a short-axis
rotation mode and the angular velocity vector will circulate about the z-axis of
the body. This is thought to be the usual case for Solar System objects, as any
body dissipating energy eventually enters this rotation mode on its way to uniform
rotation about its maximum moment of inertia. If instead the dynamic inertia lies
in the interval Ix < ID < Iy the angular velocity vector will circulate about the
x-axis. Under energy dissipation this mode will asymptotically transition to a SAM
mode of rotation and finally to uniform rotation about the z-axis [20]. Despite this,
it is important to note that at least some asteroids reside in a LAM rotation state
([76], [63]).

The angular velocity vector of the body can be expressed in the principal axis,
body-fixed frame in terms of elliptic functions:
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ωx = ωl

√
ID (Iz − ID)
Ix (Iz − Ix)

√
1 − σ2 sn(τ)2 (3.76)

ωy = ωlσ

√
ID (Iz − ID)
Iy (Iz − Iy)

sn(τ) (3.77)

ωz = ωl

√
ID (ID − Ix)
Iz (Iz − Ix)

√
1 − γ2 sn(τ)2 (3.78)

where

σ =
{

1 Iy < ID < Iz

k Ix < ID < Iy
(3.79)

γ =
{

k Iy < ID < Iz

1 Ix < ID < Iy
(3.80)

k2 =

⎧⎪⎨⎪⎩
(Iy−Ix)(Iz−ID)
(ID−Ix)(Iz−Iy) Iy < ID < Iz

(ID−Ix)(Iz−Iy)
(Iy−Ix)(Iz−ID) Ix < ID < Iy

(3.81)

The parameter k is the usual “parameter” used in the computation and definition
of the elliptic sine function sn. See Appendix F for a brief discussion and definition
of elliptic functions and integrals. Note that sn(τ) is periodic in τ with a period
of 4K(k), where K(k) is the complete elliptic integral of the first kind and k is its
parameter. It should be noted that kLAM = 1/kSAM and that for the general case
k < 1.

The relation of the time parameter τ to the “real time” t is:

τ − τo =

√
ID (Iz − Iy) (ID − Ix)

IxIyIz

ωl (t − to)
σ

(3.82)

where to is the initial epoch. The period of the vector ω in the body-fixed frame is
thus

P =

√
IxIyIz

ID (Iz − Iy) (ID − Ix)
4σ

ωl
K(k) (3.83)

Motion along the Heteroclinic Connection (ID = Iy)

For the special case of ID = Iy either formulation can be used to arrive at a solution.
First note that k = 1 for this special case and that sn(τ, k = 1) = tanh(τ), where
tanh is the hyperbolic tangent function. The explicit solution for the angular rates
become:
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ωx = ωl

√
Iy (Iz − Iy)
Ix (Iz − Ix)

1
cosh(τ)

(3.84)

ωy = ωl tanh(τ) (3.85)

ωz = ωl

√
Iy (Iy − Ix)
Iz (Iz − Ix)

1
cosh(τ)

(3.86)

τ − τo =

√
(Iz − Iy) (Iy − Ix)

IxIz
ωl(t − to) (3.87)

where cosh is the hyperbolic cosine function. The period of motion becomes infinite,
of course. As τ → ±∞ the functions tanh(τ) → ±1 and 1/ cosh(τ) → 0 so that
the motion reduces to a uniform rotation about the y-axis with rotation rate ωl in
either direction.

Principal Axis Rotations

Finally, note that substitution of ID = Ix or ID = Iz makes the corresponding
k parameters equal to zero. Further, sn(τ, k = 0) = sin(τ) and that K(0) = π/2.
Thus when ID = Iz then ωx = ωy = 0 and ωz = ωl. It is interesting to note that the

rotation period in the body frame approaches
√{

[IxIy]/[(Iz − Iy)(Iz − Ix)]
}

2π/ωl,
which is different than the inertial period of 2π/ωl.

Analogously, when ID = Ix, ωy = ωz = 0 and ωx = ωl. The rotation period in
the body frame is again different than the inertial period.

Symmetric Moment of Inertia Rotations

If any two of the moments of inertia of the rotating body are equal a significant
simplification occurs in the rotational dynamics. These cases are widely discussed
in textbooks, and hence we will only state the simplified form of their rotational
dynamics for this case. Two different cases can be distinguished, where the mini-
mum moments of inertia are equal to each other, which corresponds to an oblate
body, and where the two maximum moments of inertia are equal to each other,
which is a prolate body.

Oblate Bodies Setting Ix = Iy = Im in the solution has a number of conse-
quences. First, since Im ≤ ID ≤ Iz the body is always in the SAM rotation mode.
Note that k = 0, γ = 0 and σ = 1. Thus, the elliptic sine function degenerates
to a circular sine function. Substituting these changes gives us the new simplified
equations for rotation in the body-fixed frame
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ωx = ωl

√
ID (Iz − ID)
Im (Iz − Im)

cos(τ) (3.88)

ωy = ωlσ

√
ID (Iz − ID)
Im (Iz − Im)

sin(τ) (3.89)

ωz = ωl

√
ID (ID − Im)
Iz (Iz − Im)

(3.90)

The spin rate is constant about the maximum moment of inertia and varies sinu-
soidally between the two minimum axes. It is important to note that the angular
velocity is still moving in the body-fixed frame and remains periodic. The relation-
ship between τ and time becomes

τ − τo =

√
ID (Iz − Im) (ID − Im)

Iz

ωl (t − to)
Im

(3.91)

The period of the angular velocity vector ω in the body-fixed frame is now

P = Im

√
Iz

ID (Iz − Im) (ID − Im)
2π

ωl
(3.92)

Prolate Bodies Setting Iy = Iz = IM in the solution yields different changes.
Now Ix ≤ ID ≤ IM and the body is always in a LAM rotation mode. The parameter
k = 0 again, but now γ = 1 and σ = 0. For the prolate case, care must be made in
setting these moments of inertia equal to each other, as there are cancellations of
zeros that occur. Substituting these into the angular velocity equations now yields

ωx = ωl

√
ID (IM − ID)
Ix (IM − Ix)

(3.93)

ωy = ωl

√
ID (ID − Ix)
IM (IM − Ix)

sin(τ) (3.94)

ωz = ωl

√
ID (ID − Ix)
IM (IM − Ix)

cos(τ) (3.95)

Similar dynamics occur, except now the minimum moment of inertia has a constant
spin rate and the circulation occurs across the two maximum moments. The relation
of the time parameter τ to t is

τ − τo =

√
ID (IM − Ix) (IM − ID)

Ix

ωl (t − to)
IM

(3.96)
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The period of the vector ω in the body-fixed frame is thus

P = IM

√
Ix

ID (IM − Ix) (IM − ID)
2π

ωl
(3.97)

3.2.7 Analytic Solution for Type-II Euler Angles

To complete the analytical specification of torque-free rigid body solution an ex-
pression must also be found for the rotation matrix. We choose to express this
using Euler angles of the body as a function of time, which can be solved for com-
pletely in terms of elliptic functions and integrals. The specific realization of these
angles as a function of time will depend on the set of Euler angles specified, in the
following the standard Type-II Euler angles are used [55]. Starting from an inertial
frame X–Y –Z the first angle is a ccw rotation about the Z-axis by an angle φ
(the right ascension), followed by a ccw rotation about the X ′-axis by an angle θ
(the declination), followed by a ccw rotation about the Z ′′-axis by an angle ψ (the
hour angle). The range of the angles are φ ∈ [0, 2π], θ ∈ [0, π], and ψ ∈ [0, 2π).
The rotation matrix from the inertial frame to the body-fixed frame, CT in our
notation, is specified as:

CT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos φ cos ψ sinφ cos ψ sin θ sin ψ
− sinφ cos θ sin ψ + cos φ cos θ sinψ

− cos φ sinψ − sinφ sinψ sin θ cos ψ
− sinφ cos θ cos ψ + cos φ cos θ cos ψ

sinφ sin θ − cos φ sin θ cos θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.98)

The rotation matrix from the body-fixed frame to the inertial frame is the trans-
pose.

Solution for Euler Angles θ and ψ

First note that the hour angle and declination (Euler angles ψ and θ) can be solved
using only algebraic manipulations. To see this choose the inertial coordinate frame
orientation such that the inertial z-axis is aligned with the angular momentum
vector H and note that |H| = IDωl. Then, the angular momentum vector in
the body-fixed frame is H = IDωl [sin θ sinψ; sin θ cos ψ; cos θ]T , which must be
equal to the vector I · ω = [Ixωx; Iyωy; Izωz]

T . Equate the two vectors to find the
solutions:

tanψ =
Ixωx

Iyωy
(3.99)

cos θ =
Izωz

IDωl
(3.100)



82 3. Non-Perturbed Solutions

The specific form of these relations will depend on the rotational mode the asteroid
is in.

Evaluating the ratios for the case of SAM and LAM rotation yields:

tanψ =
1
σ

√
Ix (Iz − Iy)
Iy (Iz − Ix)

√
1 − σ2sn2(τ)

sn(τ)
(3.101)

cos θ =

√
Iz (ID − Ix)
ID (Iz − Ix)

√
1 − γ2sn2(τ) (3.102)

For a SAM rotation the angle ψ will circulate through all possible values as τ
increases monotonically. For a LAM rotation this angle will instead librate about
±π/2, never crossing the angles 0 or π. For the angle θ note that the quantity√{

[Iz(ID − Ix)]/[ID(Iz − Ix)]
} ≤ 1 for ID ≤ Iz. Thus the relationship is always

defined in terms of real arguments. For the case of SAM rotation the angle θ is
constrained to lie in the interval (0, π/2) while for the case of a LAM rotation the
angle will instead lie in the interval (0, π) and librate about π/2.

Solution for Euler Angle φ

The expression of the right ascension (Euler angle φ) is not as simple. Classical
discussions usually give the closed form for this final angle in terms of ratios of
theta functions [195], which are generally not available for numerical evaluation in
standard packages. This final angle can be found in terms of an elliptic integral of
the third kind, which has a much simpler form than the classical solutions and can
be easily implemented on a computer.

First note the equation for φ̇ [55]:

φ̇ =
1

sin θ
[sinψωx + cos ψωy] (3.103)

From Eqs. 3.99 and 3.100

IDωl sin θ sinψ = Ixωx (3.104)
IDωl sin θ cos ψ = Iyωy (3.105)

Multiply Eqs. 3.104 and 3.105 by ωx and ωy respectively and add, and square
Eqs. 3.104 and 3.105 and add. Then substitute the resultant quantities into
Eq. 3.103 to find:

φ̇ = IDωl

Ixω2
x + Iyω2

y

I2
xω2

x + I2
yω2

y

(3.106)
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Next, use relations I2
Dω2

l = ω2
xI2

x + ω2
yI2

y + ω2
zI2

z and IDω2
l = ω2

xIx + ω2
yIy + ω2

zIz to
simplify Eq. 3.106 further to find:

φ̇ =
IDωl

Iz

[
1 +

ID (Iz − ID) ω2
l

I2
Dω2

l − I2
z ω2

z

]
(3.107)

where ωz is the only function of time in the expression. Making the substitution
for ωz from Eq. 3.78 and carrying out a series of algebraic manipulations puts
Eq. 3.107 into the form:

φ̇ =
IDωl

Iz

[
1 +

Iz − Ix

Ix

1
1 + n sn2

]
(3.108)

n = σ2

(
Iz

Ix

)(
Iy − Ix

Iz − Iy

)
(3.109)

Equation 3.108 consists of a linear increase in time plus a quadrature involving an
elliptic function. The quadrature can be stated as:

φ − φo =
IDωl

Iz
(t − to)

+σ

√
IDIy

IzIx

(Iz − Ix)√
(Iz − Iy) (ID − Ix)

∫ τ

τo

dτ

1 + n sn2(τ)
(3.110)

The integral Π(τ, n) =
∫ τ

0
dτ

1+n sn2(τ) is the elliptic integral of the third kind, for
which robust evaluation routines exist [136]. A few brief properties should be noted
here:

Π(τ + 2K(k), n) = Π(τ, n) + 2Π(K(k), n) (3.111)
Π(τ + K(k), n) = 2Π(K(k), n) − Π(K(k) − τ, n) (3.112)

Thus, to have the function Π(τ, n) defined unambiguously and to accumulate the
appropriate increase in time, we use the following definition:

Π̄(τ, n, k) = 2Π (K(k), n) int [τ/2K(k)]
+Π (τ − 2K(k) int [τ/2K(k)] , n) (3.113)

The function int[x] denotes the truncation of decimal points of the number x,
defined for positive or negative values.

Thus, the right ascension is described as:

φ = φo +
IDωl

Iz
(t − to) +

σ

√
IDIy

IzIx

(Iz − Ix)√
(Iz − Iy) (ID − Ix)

[
Π̄(τ, n, k) − Π̄(τo, n, k)

]
(3.114)
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Note that φ consists of two main terms, a linear drift in time described by the
angular momentum and the Iz moment of inertia, and a more complex increasing
term involving an elliptic integral. The linear drift in φ is significant as it is the
rotation rate of an arbitrary body whose kinetic energy has dissipated to a minimum
value while keeping its angular momentum constant [20].

It is of interest to compute the average rate of change of the right ascension.
This can be computed by differencing the value of φ at τo and τ = τo + 4K(k) and
dividing by the corresponding period P . This yields the result:(

dφ

dt

)
=

ωlID

Iz

[
1 +

Iz − Ix

Ix

Π(K(k), n)
K(k)

]
(3.115)

The Euler angles ψ and θ are periodic with period P . The angle φ, on the other
hand, will not (in general) increase by a multiple of 2π over this time period. Thus
the inertial attitude of the body will be quasi-periodic in time.

Finally, in the limit as ID → Iz the Euler angles approach a singular value for
θ = 0 with φ + ψ equalling the total rotation angle. Taking the appropriate limits
and adding, both φ and ψ will contribute non-trivial computations to this sum
that converge to the total rotation angle φ + ψ = φo + π/2 + ωl(t − to). Alternate
angle definitions can, of course, be used to avoid some of the singular aspects of
the Euler angles as specific configurations are approached. It is important to note
that non-singular algorithms can be robustly coded to handle all possible issues
with the Euler angles.

3.2.8 Specification of the Rotational Dynamics

Finally, it is important to specify the rotational dynamics of a given body relative to
an inertial frame. There are two ways to do this, either by specifying the qualitative
nature of the dynamics or by specifying the initial conditions of the rotational
dynamics. Both procedures are reviewed below.

Starting from the Qualitative Nature of the Rotational Dynamics

The qualitative nature of its motion is controlled by the effective rotation rate
ωl and its dynamic inertia ID. By specifying these two quantities the qualitative
properties of the body’s rotation motion are at once known, and by using the
relationships given herein the quantitative values for its motion are also specified.
By specifying the initial epoch τo the location of the angular velocity vector in its
periodic orbit is defined. Next the initial epoch of the motion to must be specified
as well as the initial right ascension (φo). Once these are chosen the attitude of the
body at the initial epoch is fixed relative to the initial angular momentum vector.

The above four constants specify the rotational motion of the body relative to its
initial angular momentum vector. To completely specify its motion one needs only
specify the orientation of the angular momentum vector in inertial space, which
can be done with the choice of two angles. This defines an additional, constant,
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transformation matrix from the angular momentum relative system to inertial space
that must be applied whenever the attitude of the body is required in inertial space.
These six initial conditions then completely specify the ideal rotational dynamics
of a body, such as an asteroid or comet.

Specifying the rotational dynamics in this way has benefits for simulation, as
the rotation mode for the asteroid is directly chosen as well as the direction about
which the body will precess and nutate (i.e., the angular momentum vector of the
body).

Specifying the Initial Conditions

Now consider the reverse problem, the specification of the rotational motion of the
body given an initial attitude and body-fixed angular velocity. Assume the initial
attitude of the body is specified as a transformation matrix from the body-fixed
frame to the inertial frame, and is specified as T o. The initial body-fixed angular
velocity of the body is specified as ωo.

Given the initial body-fixed angular velocity ωo and inertia tensor I the con-
stants ωl and ID are computed using Eqs. 3.74 and 3.75. Once this computation is
performed the qualitative aspects of the rotational motion are known and all the
relevant parameters of the motion can be computed, such as k, σ, and γ. The spec-
ification of the initial parameter τo must be made more carefully, however. First
find the values of sn(τo) and cn(τo) from Eqs. 3.76–3.78.

sn(τo) =
ωy(to)
σωl

√
Iy(Iz − Iy)
ID(Iz − ID)

(3.116)

where the value of σ depends on which mode the rotation state is in. The evaluation
of the cn(τo) term also depends on which rotation mode the asteroid is in:

cn(τo) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ωx(to)
ωl

√
Ix(Iz − ID)
ID(Iz − ID)

Iy < ID ≤ Iz

ωz(to)
ωl

√
Iz(Iz − Ix)
ID(ID − Ix)

Ix ≤ ID < Iy

(3.117)

These elliptic functions must be inverted to compute τo.
To perform the inversion note the following definitions sn(τo) = sinϕo and

cn(τo) = cos ϕo, and derive the amplitude angle ϕo = arctan (sn(τo)/cn(τo)), where
this angle will lie in the interval [0, 2π) in general. The quantities τo and ϕo are
related via the elliptic integral of the first kind, as defined in Eq. F.2:

τo = F (ϕo, k) (3.118)
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To properly carry out this computation requires the proper accounting for which
quadrant the angle ϕo lies in

τo =

⎧⎪⎪⎨⎪⎪⎩
F (ϕo, k) if ϕ ≤ π/2

2F (π/2, k) − F (π − ϕo, k) if π/2 < ϕ ≤ π
2F (π/2, k) + F (ϕo − π, k) if π < ϕ ≤ 3π/2
4F (π/2, k) − F (2π − ϕo, k) if 3π/2 < ϕ < 2π

(3.119)

where F (π/2, k) = K(k) is the complete elliptic integral of the first kind. If the
case ID = Iy should occur, then τo can be solved uniquely from the initial condition
ωy(to) = ωl tanh(τo) without using elliptic functions or integrals.

Having computed ωl, ID, and τo the Euler angles are defined and hence that
the transformation matrix from the inertial frame with angular momentum along
the z-axis to the body-fixed frame at the initial epoch, CT

o , is defined. The matrix
Co takes us from the body-frame to the inertial frame at the initial epoch. Note
that, in general, there is a disconnect between the inertial frame defined by the
Co matrix and the initial inertial frame in which the body orientation is defined.
To close the loop an additional transformation matrix must be applied to Co to
rotate from the inertial frame with angular momentum aligned with the z-axis to
the inertial frame the body’s attitude is specified in, specifically the transformation
T such that:

TCo = T o (3.120)
T = T oC

T
o (3.121)

Then the inertial attitude of the body is specified by T · C(t).



4. Equations of Motion for a
Small Body Orbiter

This chapter considers the basic equations of motion for a spacecraft or particle
relative to a small body. Several forms of the equations are derived, each with their
own special applications.

4.1 Newtonian Equations of Motion

The most fundamental form for the equations of motion are the standard Newton’s
equations. In the following we assume that the particle has no effect on the motion of
the central body. Assume a frame fixed to the central mass distribution, and relative
to a fixed orientation with respect to inertial space. We also assume gravitational
attraction by the Sun and other bodies, and solar radiation pressure from the Sun
acting on the body. Combining these different accelerations together the standard
equations of motion can be stated as

r̈ =
∂U(CT · r)

∂r
+

N∑
i=0

∂Rpi
(r, di)
∂r

+
∂RSRP (r, d0)

∂r
(4.1)

where r is the spacecraft position vector relative to the small body and referred
to an inertial frame (i.e., the time derivatives are relative to an inertially oriented
frame), U is the gravitational potential of the body discussed in Section 2.5, Rpi

represents the perturbation from the ith attracting body, and RSRP represents the
solar radiation pressure perturbation, both of these are defined in Section 2.6. The
vector d0 represents the position of the small body relative to the Sun and the
vectors di for i ≥ 1 represent the position of additional perturbing bodies relative
to the small body. The transformation dyadic CT takes vectors from an inertial
frame to the small body-fixed frame indicating that the gravitational potential of
the central body is always stated in a body-fixed frame.

It is theoretically important, at this point, to establish that this full set of
equations can be restated in a Lagrangian or Hamiltonian formulation. This allows
us to invoke properties of these general classes of systems later in our discussions.

DOI 10.1007/978-3-642-03256-1_4, © Springer-Verlag Berlin Heidelberg 2012
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4.2 Lagrangian Form of the Equations

Starting from the Newtonian frame, it is simple to write out the general Lagrangian.
Once this is given, changes in coordinates and coordinate frames are simply made
with the appropriate substitution into the Lagrangian. Denote the specific ki-
netic energy of the spacecraft relative to the asteroid-centered frame and the full
potential:

T =
1
2
ṙ · ṙ (4.2)

U = U +
N∑

i=0

Rpi + RSRP (4.3)

The potential is ultimately a function of position and time, and thus does not lead
to a time-invariant system in general.

The Lagrangian is then formed as L = T +U , with a positive sign as the potential
is used instead of the potential energy. The Lagrange equations of motion are then
[55]:

d

dt

(
∂L

∂q̇i

)
=

∂L

∂qi
; i = 1, 2, . . . , n (4.4)

where for the original system the qi and q̇i are the components of the r and ṙ vec-
tors. Once the Lagrangian is defined, it is relatively simple to rewrite the equations
of motion in an alternate frame (such as a rotating frame) or in an alternate set
of coordinates, so long as the specific transformation equations can be solved for
the original position and velocity vectors in terms of the new coordinates and their
time derivatives.

The equations of motion as stated above are convenient for direct numerical
simulation provided that the relative ephemeris of all the bodies, di, are known
and the rotational dynamics of the central body is known and specified via the
transformation dyadic C. This form of the equations are not, however, particularly
useful in terms of understanding the system analytically, nor in interpreting the
output of any numerical simulation. To address these concerns a number of different
reference frames are considered from which to observe the dynamics of the system
or coordinates for reporting the motion. Which frame or coordinates are chosen
depends on what aspect of the problem is of interest. The main frames of interest
are a frame fixed to the central body and a frame fixed to the orbit of the small body
about the Sun. The former frame is more useful for surface and close proximity
motions. The latter is more useful for discussing orbital mechanics perturbed by
solar radiation pressure and solar gravity. The specific methods used to study these
frames are significantly different, and thus the following derivations are carried out
independently of each other. For each frame it is still possible, and often relevant,
to carry the full effect of the small body gravity or solar perturbations.
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4.2.1 Body-Fixed Frame

The equations of motion can be restated under the assumption that the particle
position vector is specified relative to the central body-fixed frame, and that this
body is most generally in a state of complex rotational motion. In terms of the
gravitational perturbations, this formulation actually simplifies the situation as it
removes the transformation from body-fixed to inertial frame that otherwise must
appear in the gravitational potential. It does not simplify the external perturba-
tions, as there must still be a transformation that maps the external perturbations
from their frame of definition into the body-fixed frame. If the body’s rotation state
is specified as a function of time, however, these just represent the time-varying
transformation C(t) discussed in the previous chapter. To make this example more
specific, imagine that the central body is in a state of torque-free tumbling. This
is the situation for the asteroid Toutatis, studied in [76] and Chapter 8.

If the location of the particle is r relative to an inertial frame, the particle loca-
tion with respect to the body-fixed frame is then q = C(t)T ·r and the substitution
r = C(t) · q is made everywhere. The time rate of change of the position vector
can also be computed as ṙ = C(t) · (q̇ + ω × q), where q̇ is taken with respect to
the rotating frame and is expressed in that frame. These terms can be substituted
into the Lagrangian to find:

L(q, q̇, t) =
1
2

[q̇ + ω × q] · [q̇ + ω × q] + U (C(t) · q) (4.5)

U = U(q) +
N∑

i=0

Rpi(C(t) · q, di) + RSRP (C(t) · q,d0) (4.6)

Application of Lagrange’s equations using q and q̇ as the independent coordinates
and velocities then yields the correct form of the equations as stated in a rotating
reference frame:

q̈ + ω̇ × q + 2ω × q̇ + ω × ω × q =
∂U
∂q

(4.7)

It is interesting to note that if the central body is in a torque-free rotation state,
but not rotating about its principal axes of inertia, then the angular velocity is
periodic in the body-fixed state. Thus, the equations of motion have time-varying,
periodic coefficients represented by the angular velocity ω.

If the exogenous perturbations are neglected the potential U = U(q) and is
independent of the transformation dyadic C. If the body rotates about a principal
moment of inertia, the angular velocities ω are constant and the ω̇ term disappears.
For this case the system has an integral of motion, a discussion that is left for later.

4.2.2 Orbit-Fixed Frame

The orbit-fixed frame is defined as the frame that follows the heliocentric orbit
position of the small body. In this frame the Sun remains fixed in an angular
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sense, although its distance from the small body will in general vary periodically
as will the frame rotation rate. It is physically distinct from the body-fixed frame,
however, in that the angular velocity always has a fixed direction, normal to the
orbital plane.

Now denote the orbit-fixed frame with a coordinate Q = CO(t) ·r. If the inertial
z axis is aligned with the heliocentric orbit angular momentum and the x-axis lies
along the Sun–body position vector, the transformation matrix takes a simple form:

CO =

⎡⎣ cos(ω0 + f) sin(ω0 + f) 0
− sin(ω0 + f) cos(ω0 + f) 0

0 0 1

⎤⎦ (4.8)

where the small body heliocentric true anomaly f is an implicit function of time.
The angular velocity is aligned along the z-axis and is:

Ω = ḟ

⎡⎣0
0
1

⎤⎦ (4.9)

where ḟ =
√

μ
p3
0

(1 + e0 cos(f))2.

The transformed Lagrangian in this frame is specified as:

L(Q, Q̇, t) =
1
2

[
Q̇ + ḟ ẑ × Q

]
·
[
Q̇ + ḟ ẑ × Q

]
+ U (

CT
O · Q)

(4.10)

Given this form of the angular velocity, the general equations in this frame are:

Q̈ + f̈ ẑ × Q + 2ḟ ẑ × Q̇ + ḟ2ẑ × ẑ × Q =
∂U
∂Q

(4.11)

Neglecting the mass distribution of the central body, i.e., by choosing U = μ/|Q|
and neglecting non-solar perturbations the equations of motion are periodic in
general with period T = 2πa

3/2
0 /

√
μ0. This period is very long with respect to the

usual orbit period about the central body, and only becomes significant for motion
far from the central body. This is consistent with the simplifying assumption where
the central body mass distribution in neglected and the central body is treated as
a point mass. This assumption is made in the following as it provides a good
motivation to derive a significantly different set of equations for motion in this
regime.

As ḟ is a function of f , one is tempted to make the true anomaly the independent
parameter for these equations. Performing this transformation alone does not yield
any significant simplifications. Rather, following tradition in the elliptic restricted
three-body problem [97] it is easier to simultaneously scale the vector Q by the Sun–
body distance d = p0/(1 + e0 cos f) and change the independent parameter from
time to true anomaly. Then, the transformation sequence can be stated as Q → dq,
and the time transformation can be stated as Q̇ = dQ/dt = dQ/dfḟ = Q′ḟ .
This leads to the following sequence (note, do not confuse the dq notation with a
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differential, it is just a factor d multiplied by q):

Q = dq (4.12)
Q̇ = d′qḟ + dq′ḟ (4.13)

=
√

μ0

p0
[e0 sin fq + (1 + e0 cos f)q′] (4.14)

Q̈ =
√

μ0

p0
[e0 cos fq + e0 sin fq′ − e0 sin fq′ + (1 + e0 cos f)q′′] ḟ (4.15)

=
μ0

p2
0

(1 + e0 cos f)3
[
q′′ +

e0 cos f

1 + e0 cos f
q

]
(4.16)

Substituting these into Eq. 4.11, a common factor can be extracted

q′′ + 2ẑ × q′ +
e0 cos f

1 + e0 cos f
q + ẑ × ẑ × q =

p0

μ0

1
(1 + e0 cos f)2

∂U
∂q

(4.17)

Now consider the potential and its specification in this particular frame (i.e.,
just a point mass plus the solar perturbation). In terms of the original variables

U =
μ

|Q| + μ0

[
1

|d − Q| −
d · Q

|d|3
]
− Q · P0d

Bd3
(4.18)

where the simple lumped solar radiation pressure model is assumed and the vector d
points towards the small body from the Sun. Implementing the new transformation
changes the potential to

U =
μ

d|q| +
μ0

d

[
1

|d̂ − q| − d̂ · q
]
− 1

d
q · P0

B
d̂ (4.19)

Defining V = p0
μ

1
(1+e0 cos f)2U ,

V =
1

1 + e0 cos f

[
μ/μ0

|q| +
1

|d̂ − q| − d̂ · q − P0/μS

B
q · d̂

]
(4.20)

and the associated equations of motion:

q′′ + 2ẑ × q′ +
e0 cos f

1 + e0 cos f
q + ẑ × ẑ × q =

∂V
∂q

(4.21)

The form of these equations is somewhat simpler than the original statement,
and the periodic terms are explicitly identified. Careful attention must be given
to the interpretation to the solution of these equations, as they are relative to
a length scale that changes in time. Specifically, when these solutions are to be
transformed into an inertial frame or into a set of osculating orbit elements, the
transformations in Eqs. 4.12 and 4.14 must first be applied. Additionally, as the
independent parameter is true anomaly, to switch to the time domain one must
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make the transformations from true anomaly through Kepler’s equation, to time.
In this direction there is no need to solve Kepler’s equation iteratively.

This statement of the problem has no approximations other than the neglect
of the central body mass distribution and the simplified solar radiation pressure
term. Thus it is similar to the elliptic restricted three-body problem, except the
coordinate center is not at the center of mass. It is useful to introduce an additional
approximation to this set of equations, assuming that the particle is close to the
central body, or that |q| � 1 and expanding the term 1/|d̂ − q| up to the second
order. This is essentially the “Hill approximation” and was derived in Chapter 2.
The potential V can then be expressed as

V =
1

1 + e0 cos f

[
μ/μ0

|q| +
3
2

(
d̂ · q

)2

− 1
2
q · q − P0/μ0

B
q · d̂ + . . .

]
(4.22)

To isolate the time periodic terms in the potential, extract the 1/2q2 for reasons that
will be evident in a moment and truncate the higher-order terms. The resulting
potential is VH , where the H stands for the Hill approximation. Evaluating the
equations of motion then yield:

q′′ + 2ẑ × q′ +
e0 cos f

1 + e0 cos f
q + ẑ × ẑ × q = − 1

1 + e0 cos f
q +

∂VH

∂q
(4.23)

and simplified by moving the exposed term from the right to the left:

q′′ + 2ẑ × q′ + q + ẑ × ẑ × q =
∂VH

∂q
(4.24)

Finally, noting the identity ˜̂z · ˜̂z = ẑẑ −U leads to the final form of the equations

q′′ + 2ẑ × q′ + (ẑ · q)ẑ =
∂VH

∂q
(4.25)

VH =
1

1 + e0 cos f

[
μ/μ0

|q| +
3
2

(
d̂ · q

)2

− P0/μ0

B
q · d̂

]
(4.26)

Thus, the periodic portion is isolated to one term on the right-hand side.
In the Hill three-body problem, it is customary to make one additional normal-

ization to remove all parameters from the problem. This is to scale the length by
the quantity (μ/μ0)1/3. Doing so does not change the form of the left-hand side
of the equations, and thus can be modeled completely by defining a new potential
that has been so normalized. Let us call this potential ṼH

ṼH =
1

1 + e0 cos f

[
1
|q| +

3
2

(
d̂ · q

)2

− β̃q · d̂
]

(4.27)

β̃ =
P0

μ0B

(
μ

μ0

)−1/3

(4.28)

This basic form of the equations of motion was originally derived in [171].
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4.3 Hamiltonian Form of the Equations

The Lagrangian frame allows for simple restatement of the equations of motion in
different coordinate frames and coordinate systems, so long as the dynamical system
is specified by a set of coordinates and their time derivatives. For physical intuition
and spatial geometry, this works quite well and almost all of the fundamental
properties of astrodynamical systems can be expressed using a Lagrangian set of
the equations of motion. There are a number of deeper properties that exist for
these systems, however, that are not as easily realized in the Lagrangian format.
The first step away from these is via Hamilton’s equations, which replaces the idea
of a coordinate and a velocity with a set of conjugate quantities that are related to
each other as coordinates and their corresponding momenta.

Given a set of equations in a Lagrangian frame, it is rather simple to transform
them into a Hamiltonian form. One can leave the coordinates as-is and only oper-
ate on the momenta and velocities if one wishes to make the transformation in a
minimum number of steps. An efficient way to perform this transformation is via
the Legendre Transformation.

Assume that a well defined Lagrangian L(q, q̇, t) exists from which the equations
of motion can be derived using Lagrange’s equations. Define the momentum, pi,
conjugate to the coordinate qi as pi = ∂L/∂q̇i, or in vector form:

p =
∂L

∂q̇
(4.29)

Recalling the standard form of Lagrange’s equations this becomes

ṗ =
∂L(q, q̇, t)

∂q
(4.30)

This does not simplify matters, however, as we wish to completely eliminate q̇ from
the Lagrangian to find a statement of the equations of motion independent of the
velocities. In principle this can be done if Eq. 4.29 can be solved for the velocity, or
q̇ = f(q,p). A technical condition for this is that |∂2L/∂q̇2| 	= 0, which is generally
satisfied for the systems considered here.

The Legendre Transformation naturally handles such substitutions and indicates
the functional form of the desired expression q̇ = f(q, p). To carry this out form
the new functional expression:

H(q,p, t) = p · q̇ − L(q, q̇, t) (4.31)

where the q̇ expressions in the above are functions of q and p. Now consider vari-
ations in the new variable p while keeping q fixed:

Hp · δp = q̇ · δp + p · δq̇ − Lq̇ · δq̇ (4.32)

where δq̇ can be further expressed as a variation with respect to p. This is not
needed, however, as the two terms dotted with δq̇ are equal and opposite (Eq. 4.29)
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and cancel. This leaves the defining relationship for the transformation:

q̇ = Hp (4.33)

Using a similar variation technique it can be shown that Hq = −Lq, leading to the
complete set of equations of motion in terms of the coordinates and momenta:

ṗ = −Hq (4.34)

Collecting the coordinates and momenta into a single state x = [q; p] ∈ R2n with
the attendant equations of motion defines the state space form of the equations of
motion

ẋ = JHx (4.35)

where J is defined as:

J =
[

0n In

−In 0n

]
(4.36)

and 0n is an n× n matrix of zeros and In is the n× n identity matrix. The matrix
J plays a significant role in Hamiltonian dynamics.

A reapplication of the Legendre Transformation with the defining quantity
q̇ = Hp and assuming that |Hpp| 	= 0 will yield the Lagrangian equations of mo-
tion. Thus the Hamiltonian and Lagrangian expressions of the equations of motion
are fundamentally linked to each other. While the Legendre Transformation tells
us what the new functional for deriving the equations of motion is and indicates
the relationship between the parameters, one must still solve for the q̇ in terms of
the p and make the substitutions.

The importance of the Hamiltonian form of the equations of motion is that
they allow the structure of the equations of motion to be preserved through a
systematic set of transformations between different sets of variables called “canon-
ical variables.” A simple definition of a canonical transformation of a Hamiltonian
dynamical system is one that preserves the same structure of the equations of mo-
tion. Specifically, a transformation between old variables q and p and new variables
Q(q,p) and P (q,p) is a canonical transformation if the transformation equations
are unique and invertible and the resulting equations of motion are:

Q̇ =
∂K(Q,P )

∂P
(4.37)

Ṗ = −∂K(Q, P )
∂Q

(4.38)

where K(Q,P ) = H(q(Q,P ),p(Q, P )).
To show that a proposed transformation is canonical it is not necessary to com-

pletely reconstruct the equations of motion. Rather, there are a number of tests
that can be carried out on the transformation to ascertain whether it is canonical.
A particularly useful test is that if the Jacobian of the transformation is a sym-
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plectic matrix, then the transformation is canonical. This test is used exclusively
in this text, as it has a deeper meaning when discussing the dynamical evolution of
a Hamiltonian system. The Jacobian of an arbitrary transformation is defined as:

M =
∂(Q, P )
∂(q, p)

(4.39)

and is a matrix of dimension 2n × 2n.
For a matrix M to be symplectic it must satisfy two simple rules. It must be a

square matrix of even dimension and it must satisfy the matrix identity:

J = MT JM (4.40)

The matrix J satisfies this equation and is thus symplectic itself.
Symplectic matrices form a group and have distinctive properties. These are

discussed in many texts, but a particularly clear statement of their properties is
found in [132], which are summarized in Appendix D. One important property
is that the determinant of any symplectic matrix always equals 1, and thus a
symplectic matrix is always non-singular and invertible. Next is that the inverse of
a symplectic matrix can always be stated in closed form as

M−1 = −JMT J (4.41)

Both of these results can be directly proven from the definition of a symplectic
matrix, as discussed in the appendix.

Beyond the derivation of the equations of motion in some standard forms, the
main application of canonical transformations used here is to note the properties
of solution flows. Specifically, the solution flow of a Hamiltonian dynamical system
is, itself, a canonical transformation from the state at a specified epoch (i.e., the
initial conditions) to the state at a different time. To establish this consider a
Hamiltonian dynamical system evolved forward in time by a small time interval,
Δt, using a Taylor series expansion in time to evolve the flow forward [56]

x(t + Δt) = x(t) + ẋ(t)Δt +
1
2!

ẍ(t)Δt2 + . . . (4.42)

For small Δt we only consider the linear terms in Δt, as the limit Δt → 0 will be
taken in a moment. Substituting the equations of motion then yields the mapping
between the two states:

x(t + Δt) = x(t) + JHxΔt (4.43)

Taking the partial of x(t + Δt) with respect to x, denoted as Φ, yields

Φ =
∂x(t + Δt)

∂x(t)
(4.44)

= I + JHxxΔt (4.45)
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Now the symplectic test is applied to Φ,

ΦT JΦ = [I − HxxJΔt] J [I + JHxxΔt] (4.46)
= [I − HxxJΔt] [J − HxxΔt] (4.47)
= J + HxxΔt − HxxΔt + O(Δt2) (4.48)
= J (4.49)

The derivation is only for an infinitesimal Δt; however, canonical transformations
form a group, meaning that any combination of canonical transformations in se-
quence results in a canonical transformation. Thus, this result can be extended to
an arbitrary time interval by successive application of the transformation, meaning
that the solution flow, denoted as x(t) = φ(t;xo, to), defines a canonical transfor-
mation from xo to x.

Define the Jacobian of the solution flow as the matrix Φ, commonly termed the
state transition matrix

Φ(t, to, xo) =
∂φ(t; xo, to)

∂xo
(4.50)

Then this matrix is a symplectic matrix, a fact that becomes important later.

4.4 Lagrange Planetary and Gauss Equations

Derivation of equations of motion can be generalized beyond the structured La-
grangian and Hamiltonian approaches. In the following two very important alter-
nate statements of the equations of motion for a particle are derived, the Lagrange
Planetary Equations and the Gauss Equations. The heart of these equations of
motion is the identification of a problem that can be fully integrated in terms of
constants of motion, in this case the two-body problem with no additional pertur-
bations. The inclusion of additional perturbation forces generates changes to the
constants of motion, causing them to become time-varying coordinates. However,
the original transformation between the constants and the solution still stands and
allows the time-varying coordinates to describe the solution. The method by which
such equations can be formally developed is called Variation of Parameters. Two
simple derivations are provided, relying on Brouwer and Clemence for a detailed
discussion of the derivations [19].

We take two different approaches to the Lagrange Planetary and Gauss equa-
tions, as each derivation and set of equations has important distinctions between
them. The Lagrange Planetary equations are derived assuming that the perturba-
tion functions arise from a potential. The Gauss equations, on the other hand, are
derived assuming an arbitrary acceleration is applied to the particle. It is possible to
relate these two assumptions to each other; however, for completeness independent
derivations will be given for both.
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4.4.1 Lagrange Planetary Equations

Consider the dynamical system defined by a position vector r and a velocity vector
v = ṙ. Assume the system is governed by a set of equations of motion that can be
decomposed as:

r̈ =
∂U

∂r
+

∂R

∂r
(4.51)

where U(r) and R(r, t). The potential function U is the main potential and R is the
perturbing potential. The basic assumption is that the problem can be integrated
when R ≡ 0 and expressed in terms of constants of motion, denoted here as α ∈
R6. Specifically, the solution of the dynamical system can be written as r(t) =
r(t,α) and v(t) = v(t, α). Note that v = ∂r/∂t and that ∂v/∂t = ∂U/∂r. For
example, if the main potential is U = μ/r, then the α could be the classical orbital
elements.

The main idea behind the Variation of Constants approach is to let the constants
of integration become the new variables of the dynamical system. This is a well-
posed transformation so long as the α comprise a full, linearly independent solution
of the system, i.e., that the Jacobian ∂α/∂(r, v) is non-singular. Then, under the
perturbation term R, which need not be small, the “constants” of motion become
functions of time and are no longer constant. A future state of the system α∗

can always be transformed to the position and velocity of the point at a new
time through the transformations r(t) = r(t; α∗) and v(t) = v(t;α∗). The α are
sometimes called “osculating orbit elements” as they are the set of elements that
to describe the true trajectory state in phase space at each point in time.

To derive the equations, first take the full time derivative of the position vector:

ṙ =
∂r

∂α
α̇ +

∂r

∂t
(4.52)

Now note that ṙ = v by definition and that ∂r/∂t = v by choice. Efroimsky [33]
has noted that this choice is not necessary, and that by generalizing this relation
one can introduce a so-called “gauge function” into the theory. In the current
description the more conventional derivation is presented that assumes ∂r/∂t = v.
Due to this, the first relation for α̇ is

∂r

∂α
α̇ = 0 (4.53)

where rα ∈ R3×6.
Next take the full time derivative of the velocity vector

v̇ =
∂v

∂α
α̇ +

∂v

∂t
(4.54)

=
∂U

∂r
+

∂R

∂r
(4.55)
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By definition ∂v
∂t = ∂U

∂r and can be cancelled, leaving the second relation

∂v

∂α
α̇ =

∂R

∂r
(4.56)

where vα ∈ R3×6.
These two relations can be combined into a single matrix equation:[

rα

vα

]
α̇ =

[
0

RT
r

]
(4.57)

As the constants α are assumed to provide a complete solution of the system, the
matrix is invertible and can be formally solved for the equations α̇. This is not
a particularly useful approach to the problem, however, as the functions r and v
must be used at every step of the way.

Lagrange introduced an elegant simplification of this problem, as explained in
[19]. Pre-multiply each side of the equation by the matrix [rT

α; vT
α]J , where J is

the symplectic matrix introduced earlier. Carrying out the multiplications yields:[
rT

αvα − vT
αrα

]
α̇ =

[
rT

αRT
r

]
(4.58)

Now note a few items that will simplify these results. First, Rα = Rr ·rα under
the assumption that R is a function of position only, thus the term on the right-
hand side can be replaced by RT

α. The implication of this is that the relation for
r can be substituted as a function of α into the perturbing potential and one only
needs deal with a perturbing potential R(α).

Next note that the general term i, j in the matrix on the left-hand side can be
expressed as

[αi, αj ] = rαi
· vαj

− vαi
· rαj

(4.59)

The operator [−,−] is called a Lagrange bracket and serves as the inverse to the
Poisson bracket. Its properties are discussed in detail in [19], and will be discussed
to a limited extent here. An important feature of the Lagrange bracket is that, for a
given dynamical system, it is only a function of the constants of motion α that have
been chosen. Indeed, it is important to note that we have not chosen the specific
constants yet in this problem, and have only relied on their existence. Using the
Lagrange brackets the equation can be rewritten for the variation of parameters as

[[αi, αj ]] α̇ = RT
α (4.60)

where [[αi, αj ]] represents a matrix with elements [αi, αj ], these elements taking on
all values of i, j = 1, 2, . . . , 6. This matrix is invertible, as it is just formed by the
multiplication of non-singular matrices. Carrying out this inversion then yields:

α̇ = [[αi, αj ]]
−1

RT
α (4.61)
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Before the inversion of this matrix is discussed we point out a crucial prop-
erty: each Lagrange bracket is constant in time. To show this, take the total time
derivative of an arbitrary term in the matrix:

d

dt
[αi, αj ] = vαi

· vαj
+ rαi

· v̇αj
− vαi

· vαj
− v̇αi

· rαj
(4.62)

= rαi
· ∂

∂αj
[Ur + Rr] − rαj

· ∂

∂αi
[Ur + Rr] (4.63)

= rαi · [Urr + Rrr] · rαj − rαj · [Urr + Rrr] · rαi (4.64)
= 0 (4.65)

as the dyadics Urr and Rrr are symmetric. This is an important fact, as it implies
that the matrix of Lagrange brackets need only be evaluated functionally only once,
and that the resulting inversion that occurs is applicable anywhere during the sub-
sequent perturbed motion. It will also have important implications for averaging,
as it allows us to pull the averaging operator across this term.

Lagrange Planetary Equations: Standard Form

Even though the derivation has been simple up to this point, the actual computa-
tion of the Lagrange brackets for a particular choice of constants is quite onerous.
For the details we refer the reader to [19]. If the α are chosen to be the standard
orbital elements: (a, e, i, ω,Ω, σ), where σ = −nτo and τo is the time of periapsis
passage, the following form for the equations are found [19]

ȧ =
2
na

∂R

∂σ
(4.66)

ė =
1

na2e

[
(1 − e2)

∂R

∂σ
−
√

1 − e2
∂R

∂ω

]
(4.67)

i̇ =
1

na2
√

1 − e2

[
cot i

∂R

∂ω
− csc i

∂R

∂Ω

]
(4.68)

ω̇ =
√

1 − e2

na2e

∂R

∂e
− cot i

na2
√

1 − e2

∂R

∂i
(4.69)

Ω̇ =
csc i

na2
√

1 − e2

∂R

∂i
(4.70)

σ̇ = − (1 − e2)
na2e

∂R

∂e
− 2

na

∂R

∂a
(4.71)

where n =
√

μ/a3 is the mean motion. While complicated, all of the coefficients in
front of the partials of R are time-invariant, even though their values change over
time, driven by these ordinary differential equations.

There are many variations on these equations. Common changes are to replace
the argument of periapsis with the longitude of periapsis, � = ω + Ω, to replace
the expression σ with some a term that is a function of the mean anomaly, and to
redefine the orbit elements to eliminate the terms e and sin i in the denominators.
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Delaunay Variables

There is freedom in choosing the specific constants of motion used in the variation of
parameters. Thus, one can ask if there are particular choices which can simplify the
equations, or place them into a standard form. In fact, it is possible to do so, and in
particular it is possible to choose the α so that the transformation r(t,α),v(t, α)
is canonical, as the Newtonian form of the equations of motion are themselves
in Hamiltonian form. Then the matrix [rT

α; vT
α] is symplectic by definition and

[[αi, αj ]] = J .
One particular choice of constants that enable such a transformation are called

Delaunay variables. The resulting equation of motion can be stated as

σ̇ = −∂R

∂L
(4.72)

ġ = − ∂R

∂H
(4.73)

ḣ = −∂R

∂G
(4.74)

L̇ =
∂R

∂σ
(4.75)

Ḣ =
∂R

∂h
(4.76)

Ġ =
∂R

∂g
(4.77)

where the symbols G and H and g and h are traditionally switched in the Delaunay
notation, respectively, σ is defined as before, h = ω, the argument of periapsis, and
g = Ω, the longitude of the ascending node. These are usually termed the angles or
the coordinates. The conjugate momenta are all functions of the orbital elements
a, e and i as follows:

L =
√

μa (4.78)

H = L
√

1 − e2 (4.79)
G = H cos i (4.80)

where L is a direct function of the energy, H equals the angular momentum magni-
tude, and G is the angular momentum projected on the z-axis. To cast these vari-
ables into proper Hamiltonian form, define the system Hamiltonian as H = −R,
with the implicit assumption that the two-body potential acts on the original sys-
tem.

A frequent change in these variables is to introduce a modified Hamiltonian:

H = − μ2

2L2
− R (4.81)
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and replace the epoch σ term with the mean anomaly, l =
∫

n dt + σ. The new
Hamiltonian system is then:

l̇ =
∂H
∂L

(4.82)

ġ =
∂H
∂H

(4.83)

ḣ =
∂H
∂G

(4.84)

L̇ = −∂H
∂l

(4.85)

Ḣ = −∂H
∂h

(4.86)

Ġ = −∂H
∂g

(4.87)

4.4.2 Gauss Equations

The Gauss equations are usually derived either from the Lagrange equations or
in a direct manner. An alternate approach is given here that is sometimes useful
when deriving similar equations for nonstandard coordinates or problems. Now the
perturbing acceleration is represented as an explicit vector a. Thus, the equations
of motion become:

r̈ = Ur + a (4.88)

Again, the equations with a ≡ 0 have a solution expressed as a function of a set of
independent constants: r(t, α) and v(t,α).

Now assume that these functions have been inverted to find the constants of
motion as a function of the particle position and velocity at a particular time:

α = α(r,v, t) (4.89)

When the acceleration a ≡ 0 the α are constant and thus α̇ = αr ·v+αv ·Ur +αt

= 0, where the substitutions ṙ = v and v̇ = Ur are used. The α are again osculating
elements.

Take the total time derivative of α for the general case with a non-zero perturb-
ing acceleration to find

α̇ =
∂α

∂r
· ṙ +

∂α

∂v
· v̇ +

∂α

∂t
(4.90)

=
∂α

∂r
· ṙ +

∂α

∂v
· [Ur + a] +

∂α

∂t
(4.91)

However, the terms αr · v + αv · Ur + αt = 0 by definition. Thus this yields the
very simple, and general, form of the Gauss equations:

α̇ = αv · a (4.92)
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Thus, to compute these all one must do is define an appropriate set of integrals
of motion, take their partials with respect to the velocity, and dot them with the
perturbing acceleration vector.

Phrasing the Gauss equations in this form allows us to perform some derivations
very easily. Consider the two-body problem with an applied acceleration and use
the following integrals of motion, the two-body energy E , the angular momentum
vector H, and the eccentricity (or Laplace) vector e. These are defined in terms of
the spacecraft state as:

E =
1
2
v · v − μ

|r| (4.93)

H = r × v (4.94)

e =
1
μ

v × r × v − r

|r| (4.95)

To apply this result one only needs take the partial of each of these with respect
to the velocity vector and then dot the resulting quantity with the acceleration
vector, yielding

Ė = v · a (4.96)
Ḣ = r̃ · a (4.97)

ė =
1
μ

[
a · ˜(r × v) + ṽ · r̃ · a

]
(4.98)

=
1
μ

[2rv − vr − (r · v)U ] · a (4.99)

Decomposing the acceleration vector into orthogonal components along the ra-
dius vector, S, along the angular momentum vector, W , and along the normal to
these in the direction of travel, T , yields

a = Sr̂ + T θ̂ + WĤ (4.100)

Using this decomposition an explicit form for the time derivatives of these quantities
is

Ė =
H

r
(tan γS + T ) (4.101)

Ḣ = r(TĤ − W θ̂) (4.102)

ė =
H

μ

[
2T r̂ − (S + tan γT )θ̂ − tan γWĤ

]
(4.103)

In terms of orbital elements and integrals of motion the unit vectors have the
following definitions:
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r̂ = cos f ê + sin f ê⊥ (4.104)

θ̂ = − sin f ê + cos f ê⊥ (4.105)

Ĥ =
H

H
(4.106)

ê =
e

e
(4.107)

ê⊥ = Ĥ × ê (4.108)

while the radius r and tan γ have the usual two-body relations and are themselves
functions of true anomaly f . It is interesting to note that when e = 0, where the
Gauss equations are usually singular in argument of periapsis, that the equation
for the Laplace vector is well defined, ė|e=0 = H

μ

[
2T r̂ − Sθ̂

]
, and thus can serve

as a non-singular coordinate. Similarly for the angular momentum in terms of
inclination and longitude of the ascending node.

To derive the traditional Gauss equations from the above one only needs to
express the integrals as functions of orbital elements and take time derivatives.
The simplest example is for the energy, where E = − μ

2a and Ė = μ
2a2 ȧ leading to

ȧ =
2a2

μ

H

p
[e sin fS + (1 + e cos f)T ] (4.109)

which can be further simplified by substituting for H and p. Carrying out these
evaluations for the classical orbital elements yields:

ȧ =
2

n
√

1 − e2
(e sin fS + (1 + e cos f)T ) (4.110)

ė =
H

μ

[
sin fS +

(
e + cos f

1 + e cos f
+ cos f

)
T

]
(4.111)

i̇ =
H

μ

cos(ω + f)
1 + e cos f

W (4.112)

ω̇ =
H

μe

[
(2 + e cos f) sin f

1 + e cos f
T − cos fS

]
− cos iΩ̇ (4.113)

Ω̇ =
H

μ sin i

sin(ω + f)
1 + e cos f

W (4.114)

σ̇ =
r

na2e

[
(cos f + e cos2 f − 2e)S − sin f(2 + e cos f)T

]
(4.115)

A key item of contrast between the Lagrange and Gauss equations is in their
coefficients. The Gauss equations have time-varying terms multiplying the acceler-
ations involving the true anomaly, thus they must each be averaged separately.
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This chapter discusses the properties of solutions to dynamical systems, and in
particular focuses on Hamiltonian dynamical systems. The justification for this
restriction is given below, but essentially arises from the fact that almost all of the
relevant problems of interest to us can be transformed into this general form. We
take advantage of this, as many of the fundamental properties that are of interest
to us can be easily derived when the system is stated in Hamiltonian form.

5.1 Reduction to Time Invariant Hamiltonian
Dynamical Systems

The reader is reminded that all of the generic equations of motion studied in the
previous chapter can be transformed into a Hamiltonian formulation. Thus to study
the general properties of these solutions it suffices to study the properties of Hamil-
tonian systems. First, note that the different formulations can all be transformed
into a time-varying Hamiltonian system. Starting with the Newtonian formulation,
the Hamiltonian function can be defined as the specific energy, independent of
whether this is a conserved quantity. Thus H = 1

2 ṙ · ṙ − U(r, t) with the coor-
dinates being the inertial position vectors r and the momenta being the inertial
velocities ṙ. It is simple to verify that Hamilton’s equations recover the Newtonian
equations of motion. Thus the Newtonian formulation is trivially in Hamiltonian
form.

Next consider the Lagrangian form of the dynamics, along with a Lagrangian
function L(q, q̇, t). As explicitly derived, one can transform these directly into a
Hamiltonian form by a simple transformation in which the coordinates remain fixed
and the new momenta are p = ∂L

∂q̇ . The Hamiltonian function is then constructed
as H(q,p, t) = q̇ · p − L, where the q̇ must be explicitly solved for in terms of the
coordinates and momenta.

Finally, note that the Lagrange Planetary Equations can be rewritten into a
canonical form, such as the Delaunay variables, as explicitly discussed in the pre-
vious chapter. Similar transformations can also be applied to the Gauss equations,
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although it is not always possible to recast the perturbing accelerations as a per-
turbing potential.

Once a system is placed into a Hamiltonian form, then any application of a
canonical transformation will preserve the structure of its equations of motion.
Thus, in a very real sense, the specific formulation of the problem does not matter
as much, especially as it relates to generic properties of these systems.

Of specific interest are dynamical systems whose Hamiltonian function can be
made time invariant by transformation to a special set of coordinates. If this can
be done via a canonical transformation, then the system will have an integral of
motion, called the Jacobi integral, associated with it. For a time invariant Hamil-
tonian the Jacobi integral is just the Hamiltonian function. The number of systems
for which such a transformation exists is quite limited, however, so that for most
general problems of interest the Hamiltonian will always be time varying or time
periodic at best.

However, any time varying Hamiltonian can always be related to a time invariant
Hamiltonian system, at the cost of raising the dimension of the problem by 2.
The procedure for this is quite simple. Assume a Hamiltonian system with q ∈
Rn and p ∈ Rn, and a time varying Hamiltonian H(q, p, t). Introduce a new
independent coordinate τ(t) with its inverse t(τ), so that dt/dτ = t′, where the
′ denotes differentiation with respect to the new independent parameter τ . It is
possible to take τ identically equal to the time (t′ = 1), or one can introduce some
other scaling, but the resulting expression t′ should be independent of τ in order to
develop a time invariant system. Formally define the new time coordinate as qt = t
and the new time-momentum as pt. The new Hamiltonian can then be constructed
as H(q, qt, p, pt) = (H(q,p, qt) + pt) t′. Note that this now provides the equations
of motion with τ as the new independent variable. Computing Hamilton’s equations
of motion

q′ =
∂H

∂p
t′ (5.1)

q′t = t′ (5.2)

p′ = −∂H

∂q
t′ (5.3)

p′t = −∂H

∂qt
t′ (5.4)

The original equations of motion for q and p are recovered with the new indepen-
dent parameter. The time equation is trivially satisfied given the specified relation
between τ and t. Finally, note that the time variation of the time-momentum equals
the negative time partial of the Hamiltonian. Writing this out in differential form
yields dpt = −Ht dt which can be integrated to find

pt(t) − pt(to) = −H(q(t),p(t), t) + H(q(to),p(to), to) (5.5)
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where we have shifted back to the original time notation. Rearranging exposes the
new conservation relation

pt(t) + H(t) = pt(to) + H(to) (5.6)

using an abbreviated notation. Thus, the new Hamiltonian H = pt + H is formally
time invariant and has a conservation relation defined for it. The time-momentum
equals the negative of the original time-varying Hamiltonian plus an arbitrary
constant.

Due to the existence of this result, one can formally treat any Hamiltonian
system as a time invariant system. This allows us to only consider this case in
these detailed discussions, although the time varying form will still be used where
appropriate.

5.2 Properties of General Trajectories

Given a general solution to a Hamiltonian dynamical system there are a number of
fundamental results that can be ascribed to the solution flow. While some of these
properties also exist for arbitrary dynamical systems, Hamiltonian systems have
additional properties that make them distinguished.

Denote the solution to a Hamiltonian system that passes through a point of phase
space xo at an epoch to to be x(t) = φ(t;xo, to). Assume the ordering x = [q,p].
Thus, the solution flow φ(t) satisfies the Hamiltonian equations of motion:

∂φ

∂t
= J

∂H

∂x

∣∣∣∣
x(t)=φ(t)

(5.7)

By definition, a trajectory is a canonical transformation between the state xo

and the state x, with time t being an arbitrary parameter of the transformation.
Thus, the Jacobian of the solution must satisfy the property that Φ(t, to; xo) =
∂x(t)/∂xo be a symplectic matrix (the functional dependence of Φ on the state
will often be suppressed). This provides a few important technical results which
lead to additional functional results. The basic technical result is that |Φ| = 1,
namely that the solution flow is never singular and can always be solved for the
inverse of the flow. Denote this inverse using the solution flow description as xo =
φ(to;x, t). Further, for a linear dynamical system where the solution has the form
x(t) = Φ(t, to)xo this inversion can be carried out in closed form as

Φ(to, t) = Φ−1(t, to) (5.8)
Φ−1(t, to) = −JΦ(t, to)T J (5.9)

from the properties of symplectic matrices (Appendix D).



108 5. Properties of Solution

5.2.1 Initial Conditions and Higher-Order Expansions

Solutions of Hamilton dynamical systems are analytic in initial conditions over fi-
nite timespans, even for chaotic systems. Thus, one can expand a nominal solution
into a higher-order series in order to generate a local characterization of the solu-
tion flow. This is a familiar technique used for linear variations about a nominal
trajectory, but can be expanded to higher orders. The main issue is to develop
a notation that supports such higher-order expansions, as a matrix formulation
cannot be unambiguously applied beyond the first order. Thus for this section an
index notation is introduced, representing the state at a time t by

xi(t) = φi(t; to, xo) (5.10)
i = 1, 2, . . . , 2n (5.11)

Using this notation, the partial of xi with respect to the initial conditions xj(to)
will be denoted as xi,j , with the implication that the sub j index after the comma
implies a partial with respect to the initial state. Specifically:

∂φi(t; to, xo)
∂xj(to))

= φi,j(t; to, xo) (5.12)

with its natural generalizations to higher orders. For the first partial, note the
correspondence between Φ = φi,j , where i denotes the row and j denotes the
column.

Using this notation the function φ(t; to, xo + δxo) can be expanded about the
nominal initial condition xo to find:

xi(t) + δxi(t) = φi(t; to, xo) + φi,j(t; to, xo)δxj(to)

+
1
2!

φi,jk(t; to, xo)δxj(to)δxk(to) + . . . (5.13)

where the Einstein summation convention is used. The higher-order partials φi,jk...n

are called “state transition tensors” in [124] and can be computed analytically if a
closed-form solution exists to the dynamical system, or numerically as discussed in
the next chapter.

Given a nominal trajectory xi(t) these results allow us to describe motion in the
neighborhood of that trajectory both forward and backwards in time. The forward
solution is trivially inferred from the above and equals:

δxi(t) = φi,j(t; to, xo)δxj(to) +
1
2!

φi,jk(t; to, xo)δxj(to)δxk(to) + . . . (5.14)

With such a series it is possible to perform a reversion of series (i.e., invert the series
to solve for xo), so long as the leading linear term is invertible. This is guaranteed
by the symplectic nature of the state transition matrix. Carrying out this reversion
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to the first two orders yields:

δxi(to) = ψi,jδxj(t) +
1
2!

ψi,jkδxj(t)δxk(t) + . . . (5.15)

where ψi,j = φ−1
i,j = −Jilφk,lJkj , and ψi,jk = −φ−1

il ψl,mnφ−1
moφ

−1
np , with the higher-

order terms being more complex (see [124] for a more complete discussion).

5.2.2 Solutions Analytic in a Parameter

Solutions can also be viewed as functions of free parameters in the system. Given
a dynamical system defined as

ẋ = JHx(x, t; μ), (5.16)

where μ represents a parameter of the system, one can define a family of solutions
as a function of this independent parameter μ. The main assumption is that the
Hamiltonian function is analytic in the parameter μ, which is generally the case
for physically defined problems. Examples of such parameters include masses or
reduced masses of attracting bodies, physically defined parameters of a spacecraft
or system that can take on different values, or even values of integrals of motion of
the system. One common property that parameters have is that they are constant
in time. Time-varying parameters can also be studied, under some assumptions,
using the theory of adiabatic invariants (see [4]), but are not considered here.

Generally, for a specific dynamical system these parameters would not be varied,
but instead would just be chosen and assigned a specific value. However, it is often
convenient to allow these parameters to vary in order to understand the robustness
of a particular solution to slightly different models, or to understand the global
stability properties of a dynamical system across all values of a given parameter.
An example of the latter would be varying the mass fraction in the restricted
three-body problem from 0 to 1/2 in order to determine the stability properties of
a certain class of motion.

One specific application is to the continuation of a family of periodic orbits
as a parameter is varied. Consider a solution to Eq. 5.16, denoted as x(t) =
φ(t; xo, to, μ). Such a solution can be found by numerical integration or by ana-
lytic solution. If they are obtained analytically, one can immediately describe the
properties of the solution as the parameter is varied. For a numerically computed
solution this description is not as easy, but can be derived directly from the equa-
tions of motion combined with a numerical integration. Consider a variation in the
parameter μ:

x(t) + δxμ(t) = φ(t; xo, to, μ + δμ) (5.17)

= φ(t; xo, to, μ) +
∂φ

∂μ
δμ + . . . (5.18)
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At the leading order the desired variation in the solution can be found

δxμ(t) =
∂φ

∂μ
δμ + . . . (5.19)

and note that this variation is controlled by the partial φμ = ∂φ
∂μ . Computation

of this partial is most precise if the variational equation is integrated along the
solution. Applying standard linearization approaches yields

d

dt
φμ = JHxxφμ + JHxμ (5.20)

where the Hxx and Hxμ terms are evaluated along the nominal solution contem-
poraneously with φμ. The initial conditions for this solution is simply φμ = 0.

These equations are, in general, non-homogenous, time-varying differential equa-
tions. Given a state transition matrix for the system, Φ(t, to), a general solution
for the partial derivative can be written out as

φμ(t; xo, to, μ) =
∫ t

to

Φ(t, τ)Hxμ(x(τ), τ, μ) dτ (5.21)

From a practical perspective, it is often easiest to directly solve the differential
equation Eq. 5.20 for φμ along with the nominal solution and the state transition
matrix.

These computations can be generalized to higher-order systems of equations
following the approaches previously outlined.

5.2.3 Eigenstructure of the State Transition Matrix

The symplecticity of Φ ∈ R6×6 has important consequences for the structure of
this matrix, which in turn have important implications for Hamiltonian dynam-
ical systems. A matrix is defined, most generally, in terms of its eigenstructure,
which can be considered to consist of its eigenvalues, right eigenvectors and left
eigenvectors, and potentially generalized eigenvectors. The right eigenvector of an
eigenvalue λi is denoted as ui ∈ R6 and satisfies Φui = λiui. A left eigenvector of
the same eigenvalue is denoted as vi ∈ R6 and satisfies ΦT vi = λivi. In general,
it is possible to represent a matrix without repeated eigenvalues in terms of its
eigenvalues and eigenvectors as:

Φ =
2n∑
i=1

λiuiv
T
i (5.22)

= [U ][λ][V ]T (5.23)

where [U ] and [V ] are the right and left eigenvectors arranged as columns, respec-
tively, and [λ] is a diagonal matrix with the eigenvalues along its diagonal. The
more general case of repeated eigenvalues is discussed later.
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Eigenvalues

The eigenvalues of Φ can be discussed using the defining equation

‖λI − Φ‖ = 0 (5.24)

where ‖−‖ denotes the determinant and I is the 6× 6 identity matrix. Given that
Φ is symplectic, and thus has non-zero eigenvalues, it is easy to show, using the
inverse form of Φ (see Appendix D), that∥∥λ−1I − Φ

∥∥ = 0 (5.25)

where λλ−1 = 1. Thus, every eigenvalue will have a matching inverse. For a gen-
eral complex eigenvalue we can describe it as λ = ρ eiθ. Then its inverse has the
description λ−1 = 1

ρ e−iθ, where ρ is a real number, i is the imaginary number
and ex is the exponential function. One fundamental implication of this is that the
characteristic polynomial for any symplectic Φ is symmetric, i.e., has the form:

λ2n + a1λ
2n−1 + . . . + amλ2n−m + . . . + amλm + . . . + a1λ + 1 = 0 (5.26)

Thus every entry in the polynomial of form amλ2n−m has a counterpart amλm.
Since this reciprocal relationship holds for arbitrary values of the ai, it follows that
when a symplectic matrix Φ has a unity eigenvalue, that these must also appear in
pairs. In this case the eigenvectors can become more difficult to compute, and will be
discussed later. Another constraint arises in the fact that Φ is a real matrix, and thus
all complex eigenvalues must have a complex conjugate counterpart. Specifically,
if there exists an eigenvalue λi which has a complex part, then λ̄i, its complex
conjugate, must also be an eigenvalue.

The most general situation occurs for an eigenvalue that is complex and not of
unit magnitude, λ = ρ eiθ, where ρ and θ are real. Then the inverse eigenvalue is
1
ρ e−iθ, the complex conjugate of the original eigenvalue is ρ e−iθ, and the complex
conjugate of the inverse is 1

ρ eiθ, forming a set of four eigenvalues. If an eigenvalue is
real, then λ = ρ and identically equals its complex conjugate and its inverse is just
the reciprocal, λ−1 = 1/ρ, forming a pair. If an eigenvalue has a unit magnitude,
then λ = eiθ and its complex conjugate is equal to its inverse, or λ−1 = λ̄ = e−iθ,
again forming a pair.

The usual approach to representing the eigenvalues of a symplectic matrix is on
the complex plane, with the unit circle serving to orient the values. As any free
parameter of the dynamical system is varied, the eigenvalues of the associated state
transition matrix will evolve on the complex plane. Due to their strict constraints,
the eigenvalues can only transition between different classes by intersecting each
other either on the unit circle or on the real axis.
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Fig. 5.1 Eigenvalues of the state transition matrix plotted on the complex plane, relative to the
unit circle. The three generic types of transitions for a four-dimensional symplectic matrix are
shown.

Eigenvectors

Next, given an eigenvalue of Φ, λi, consider its right eigenvector ui, defined by:

Φui = λiui (5.27)

Multiplying each side of the equation by Φ−1, substituting the form for the inverse
and simplifying yields:

λ−1
i Jui = ΦT Jui (5.28)

Thus, the left eigenvector of the inverse eigenvalue to λi is equal to the right
eigenvalue of λi times the symplectic matrix J , or v−i = Jui, where we introduce
a temporary subscript notation where λ−1

i = λ−i. Similarly the right eigenvector
to λ−1

i , denoted as u−i, serves as the generator to the left eigenvector of λi, or
vi = Ju−i.

These associated left and right eigenvectors are orthogonal to each other as ui ·
v−i = uiJui ≡ 0 from the skew-symmetric property of J . This can be generalized
even further, borrowing from [5]. Consider an arbitrary left and right eigenvalue
and eigenvector, λi and ui and λj and vj , assuming Φ does not have repeated
eigenvalues. Taking the right eigenvector definition Φui = λiui, multiplying on the
left by vj , and bringing all terms to one side yields the relationship:

(λj − λi)vj · ui = 0 (5.29)

If i 	= j then λj 	= λi and the left and right eigenvectors must be orthogonal
to each other. For the case i = j there is no explicit constraint from this result.
However, in that case one knows from linear independence of the eigenvectors (for
a non-repeated root) that vi and ui cannot be orthogonal to each other and can
be properly scaled so that vi · ui = 1. This provides the fundamental result:

vj · ui = δij (5.30)
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where δij = 1 if i = j and = 0 of i 	= j. This fits with the decomposition of the
matrix given above, as [U ][λ][V ]T [U ] = [U ][λ] and [V ]T [U ][λ][V ]T = [λ][V ]T .

The form is not so simple if there is a repeated eigenvalue without two linearly
independent eigenvectors. For Hamiltonian systems this situation occurs generically
for the state transition matrix evaluated over one period of a periodic orbit in a
system which can be canonically transformed into a time-invariant system. This is
discussed explicitly later when periodic orbits are considered.

5.3 Conservation Principles

5.3.1 Nonlinear Integrals

An integral of motion is any function of the state at a given epoch, and perhaps
of the epoch itself, such that its value is constant as the state moves along the
solution flow. Specifically, given some function h(x, t), this is an integral of motion
if it is constant along the flow. For this to hold, the total time derivative of this
quantity must equal zero, or

dh

dt
=

∂h

∂x
· ẋ +

∂h

∂t
(5.31)

=
∂h

∂x
· J · ∂H

∂x
+

∂h

∂t
(5.32)

= 0 (5.33)

Since the first term is independent of the specific functional form in which the
state is specified, assuming a canonical transformation, the time derivative can be
rewritten entirely in terms of the generic Hamiltonian of the system

ḣ = {h, H} +
∂h

∂t
(5.34)

where {., .} denote Poisson brackets and are defined as

{h, H} =
∂h

∂x
· J · ∂H

∂x
(5.35)

For h to be an integral of motion the following must be true

{h, H} +
∂h

∂t
= 0 (5.36)

The simplest example of this is often the Hamiltonian function itself. If a trans-
formation can be found that places the Hamiltonian into a time invariant form,
then the system in question has an integral of motion in the Hamiltonian function.
This is clear as the quantity {H,H} is a scalar and hence must be symmetric,
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yet its transpose must also equal its negative as JT = −J , making {H,H} = 0.
Thus

Ḣ =
∂H

∂t
(5.37)

and only equals zero if the Hamiltonian is independent of time. If true, this is called
a Jacobi integral, although we will also use the more colloquial term of “energy
integral.” It is not always apparent that a system has such an integral, although
when it does this has important implications for the solution of the system. For
instance, if the circular restricted three-body problem is posed in a Newtonian
formulation it is not evident from the Hamiltonian that the system has an energy
integral. It is only when a transformation into a uniformly rotating frame of the
proper period is enacted that it becomes obvious. Despite this, the solutions of
the Newtonian formulation have constraints on them, arising from the integral of
motion, just as solutions of the rotating formulation do. It is important to note
that a Jacobi integral exists for any Lagrangian system that can be transformed
into a frame where the Lagrangian is time invariant. The form of this integral is
just the Hamiltonian from the Legendre transformation: q̇ · Lq̇ − L.

Another important form of a conservation principle occurs when the system
can be transformed into a Hamiltonian in which some coordinates or momenta
are missing. This usually only occurs for a system with a physical symmetry or
one with an unreduced conservation principle. The simplest manner in which these
conservation laws appear is if a specific coordinate is absent from the Hamiltonian,
say qI . Then ṗI = −∂H/∂qI = 0, and pI is a constant. The coordinate is not
necessarily constant in this case, as H may depend on pI . The converse case is if the
Hamiltonian does not contain a certain momentum pI , as then q̇I = ∂H/∂pI = 0,
and the coordinate itself is a constant. As coordinates and momenta can always
be swapped via a canonical transformation (see [56]), one can always change this
situation into one where the momenta is conserved. In all cases, conservation of
linear or angular momentum can generally be placed into this form.

This definition of an integral can even be applied to the Jacobi integral described
above. Specifically, this tells us that if the Hamiltonian is taken as a momentum
of the system, the conjugate coordinate to it will be the time. Thus, when a form
of the Hamiltonian can be found that is independent of time, the Jacobi integral
is recovered. The time-invariance transformation also falls into place, as in the
absence of a transformation that makes the current Hamiltonian time-invariant,
one can just define this time-varying quantity as the new momentum, define a new
time, and trivially construct a new Hamiltonian that has a conservation law defined
for it.

5.3.2 Initial Conditions as Local Integrals of Motion

Every trajectory has a full set of integrals of motion defined for it, which is just
the state of the system at a specified epoch. Consider the general solution function,
x(t) = φ(t; xo, to) and its inverse xo = φ(to;x, t). Taking the total time derivative
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of xo with respect to t yields

dxo

dt
=

∂φ(to; x(t), t)
∂x(t)

· dx

dt
+

∂φ(to; x(t), t)
∂t

(5.38)

For a time invariant system it can be shown that ∂φ(to;x(t),t)
∂t = −ẋ(to), and substi-

tuting the Hamiltonian equations for the state time derivatives defines the identity

Φ(to, t)JHx|t − JHx|o = 0 (5.39)

Introducing the inverse identity Φ(to, t) = Φ−1(t, to) = −JΦ(t, to)T J the relation
can be reduced to

−Hx|o + ΦT (t, to)Hx|t = 0 (5.40)

which is identically satisfied. Thus, the total time derivative of the initial conditions
is identically zero and every trajectory formally has a complete set of integrals
defined for it in any given state defined at an epoch. This is a fundamental result
for any dynamical system. When combined with an expansion of a solution in terms
of its initial conditions in the vicinity of a nominal solution, this implies that one
can construct local “integrable” solutions for motion over finite timespans in the
vicinity of a known solution.

However, while each set of initial conditions defines a set of integrals, the result
is only local and does not translate to a global characterization in general. To
do that would require the convergence of these local solutions over a large, if not
global, domain. In the absence of such convergence, this result does not provide
us the global characterization associated with integrable problems. Despite this
limitation, such expansions and time-limited solutions are frequently sufficient for
practical purposes [124].

5.3.3 Linear Integrals

The existence of an integral of motion places some additional constraints on the
linearized solution flow. Assuming that h(x, t) = C is an integral of the motion,
note the following results and identities:

h(xo, to) = h(φ(t;xo, to), t) = C (5.41)
h(xo + δx, to) = h(φ(t;xo + δx, to), t) (5.42)

C +
∂h

∂x

∣∣∣∣
to

· δx = C +
∂h

∂x

∣∣∣∣
t

· Φ(t, to; xo) · δx (5.43)

where higher-order terms are ignored. As this result must hold for all possible values
of δx, it follows that

∂h

∂x

∣∣∣∣
to

=
∂h

∂x

∣∣∣∣
t

· Φ(t, to; xo) (5.44)
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The left-hand side is constant by definition, as it is evaluated at the specified epoch
of the solution, and thus the right-hand side defines an associated integral of motion
for the state transition matrix Φ, and was originally discussed by Poincaré [131].
This will be of particular interest when special solutions to the equations of motion
are considered, such as equilibrium points and periodic orbits. It is also in similar
in form to Eq. 5.40.

5.4 Equilibrium Points and Stability

Now the simplest solutions to the equations of motion are considered, those in
which the dynamics at a particular point in phase space are identically zero, or
ẋ = 0. The existence of an equilibrium point often implies that the Hamiltonian
function is time-invariant, although exceptions do exist, as will be seen in Chapter
12. The following will only consider time-invariant systems.

5.4.1 Form of the State Transition Matrix

Suppose that a Hamiltonian function H(x) has an equilibrium point, i.e., there
exists a point x∗ such that ∂H/∂x|x∗ = 0. Then the dynamics at this point in phase
space are null, or ẋ∗ = 0, and the point ideally remains stationary, or φ(t; to, x∗) =
x∗. The main question then progresses to what the motion of the system is when
slightly perturbed from this point in phase space. A related question is whether
a given equilibrium point is stable in the sense of Lyapunov or not, and can be
answered if the motion in the vicinity of the equilibrium point can be described.
Formally, the solution can be characterized as x∗ + δx(t) = φ(t;x∗ + δxo, to).
Assuming that δxo is an infinitesimal quantity, a Taylor Series expansion of the
solution function can be performed to find δx(t) = Φ(t, to) · δxo. The associated
equation of motion for the state transition matrix is found to be:

Φ̇ = J Hxx|x∗ Φ (5.45)

where the matrix JHxx is constant as it is evaluated at the equilibrium point.
Thus the solution can be expressed in closed form using the exponential matrix

Φ(t, to) =
∞∑

m=0

1
m!

(t − to)m[JHxx]m (5.46)

= e(t−to)JHxx (5.47)

Application of this result relies on the dynamics matrix being constant.
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5.4.2 Eigenstructure of the State Transition Matrix

A few properties of the eigenvectors and eigenvalues of the state transition matrix Φ
are now established. First note that if a vector u is an eigenvector of the dynamics
matrix JHxx, then it is an eigenvector of the state transition matrix Φ. Specifically,
let JHxxu = σu where σ is a complex number in general. Then, multiplying the
state transition matrix by u and using the exponential equation yields

Φu =
∞∑

m=0

1
m!

(t − to)m[JHxx]mu (5.48)

=

( ∞∑
m=0

1
m!

(t − to)mσm

)
u (5.49)

= e(t−to)σu (5.50)

and thus the associated eigenvalue to an eigenvector u has the form λ = e(t−to)σ,
linking the eigenstructure of JHxx with that of Φ. From the properties of eigen-
values of a symplectic matrix, one can also infer the properties of the eigenvalues
of the dynamics matrix.

Let us write σ = α + iβ, where α is the real part of the eigenvalue and β is
the imaginary part, with i =

√−1. Then, from the symplectic nature of Φ it is
known that if e(t−to)(α+iβ) is an eigenvalue then so must its inverse, e(t−to)(−α−iβ),
its complex conjugate, e(t−to)(α−iβ), and the inverse of its complex conjugate,
e(t−to)(−α+iβ). Thus if σ = α + iβ is an eigenvalue of JHxx then so must −α− iβ,
α − iβ, and −α + iβ. Note that if either α or β are zero, than the eigenvalues
only come in pairs, as ±α or ±iβ. For a 1-DOF system Φ ∈ R2x2 and it can only
have two eigenvalues, meaning that either α = 0 or β = 0. For a 2-DOF or higher
system Φ ∈ R2n×2n, n ≥ 2, and the more general case can occur as well. However,
if the total state 2n is not divisible by 4, i.e., if n is odd, then at least one pair of
eigenvalues must be pure real or pure imaginary.

There are, generically, three different possibilities that can occur for the eigen-
values, each of which has specific consequences for motion close to an equilibrium
point. Each of these are reviewed in turn in the following.

Real Eigenvalues of JHxx

If σ is a real eigenvalue then there are two eigenvalues with equal magnitude and
opposite signs, ±α. The corresponding eigenvalues of the state transition matrix
are then e±α(t−to), and there are both asymptotically stable and unstable mo-
tions in the vicinity of the equilibrium point. This is a hallmark of Hamiltonian
systems and means that they cannot exhibit generic asymptotic stability. The as-
sociated eigenvectors, u±, are real and each eigenvalue/eigenvector pair defines a
one-dimensional manifold for motion close to the equilibrium point:

δx±(t) = a e±α(t−to)u± (5.51)
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where a is an arbitrary amplitude, positive or negative, on these manifolds. The
positive solution δx+ is unstable and will depart the equilibrium point at an expo-
nentially increasing rate in time. This is often characterized in terms of the charac-
teristic time of the exponential expansion, τ = 1/α. For example, in the Earth–Sun
system the L1,2 equilibrium points have a characteristic instability time on the
order of 23 days, while in the Earth–Moon system the same points have an insta-
bility time on the order of 2 days. If the linear unstable manifold is propagated
forwards in time using a numerical integration scheme, the manifold continues into
a nonlinear trajectory that can stray far from the equilibrium point. Conversely,
the negative solution δx− is asymptotically stable as time increases and will ap-
proach the equilibrium point with the same characteristic time. To compute the
nonlinear stable manifold, one starts a point on the linear stable manifold and
integrates backwards in time to find where the trajectory has come from, which
again can stray far from the equilibrium point. These properties of the stable and
unstable manifolds, that they stray far from the equilibrium points, have been used
in practical applications for transferring spacecraft to and from libration points in
the Earth–Sun system and, more recently, in the Earth–Moon system. They have
even been characterized as “super-highways” in the solar system, although that
terminology is perhaps a bit overreaching.

Imaginary Eigenvalues of JHxx

If σ is an imaginary eigenvalue then there are two eigenvalues with equal mag-
nitudes and opposite signs, ±iβ (where i denotes the imaginary unit in the next
few paragraphs). The eigenvalues of the state transition matrix are then e±iβ(t−to)

and both lie on the unit circle. From Euler’s formula note that the eigenvalues can
also be expressed as cos(β(t − to)) ± i sin(β(t − to)), and thus that these eigenval-
ues represent solutions that oscillate about the equilibrium point. This is a weak
form of Lyapunov stability for a linear dynamical system, with no guarantees that
when nonlinear dynamics are taken into account that the the solution will remain
bounded. The question of nonlinear stability is much more difficult and few results
exist. The fundamental result in this area is the Kolmogorov–Arnold–Moser The-
orem [4] which places conditions on an equilibrium point, or periodic orbit, under
which it can be nonlinearly stable. Conversely, Marchal has shown that a linearly
stable point can at most have a nonlinear instability that is polynomial in time, and
not exponential [97]. Since practical applications are generally only interested in
finite time solutions, Marchal’s result is taken as a motivation for accepting linear
stability as practically sufficient for stability.

Since the eigenvalues are imaginary, the eigenvectors must be complex with
u± = uR ± iuI . Taken together, these eigenvectors define a 2-D surface around
the equilibrium point filled with closed trajectories, called a center manifold. The
center manifold can be expressed in terms of real numbers as

δxC(t) = 2a [cos(β(t − to) + ϕ)uR − sin(β(t − to) + ϕ)uI ] (5.52)

where a is again an arbitrary amplitude (now chosen to be positive in general)
and ϕ is an initial phase angle. Together these two parameters trace out the two-
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dimensional center manifold. This can be seen more clearly if the arbitrary phase
angle is extracted to find

δxC(t) = 2a cos ϕ [cos(β(t − to))uR − sin(β(t − to))uI ]
−2a sinϕ [sin(β(t − to))uR + cos(β(t − to))uI ] (5.53)

with the coefficients a cos ϕ and a sinϕ serving as the two-dimensional generator of
the center manifold.

The linear center manifold has a constant period of motion 2π/β that is indepen-
dent of amplitude. In the Earth–Sun system the L1,2 center manifolds have a period
of approximately half a year, while in the Earth–Moon system they have a period
of approximately 2 weeks. Nonlinear continuation of the center manifolds is more
difficult than for the stable and unstable manifolds. In general, families must be
computed at increasing amplitudes away from the equilibrium point using a differ-
ential correction approach. Such procedures are discussed in the following chapter
when computation of periodic orbit families are covered. Using the techniques of
analysis and perturbation theory it is also possible to analytically construct the
center manifolds related to an equilibrium point, as has been developed rigorously
to a high level of sophistication by Simo’s Barcelona group (see [51]).

Complex Eigenvalues of JHxx

If the dynamical system has two or more degrees of freedom, it is also possible for σ
to be a complex eigenvalue with non-zero α and β. Then there are four eigenvalues
associated with the system, ±α± iβ. The eigenvalues of the state transition matrix
are then e±α(t−to)e±iβ(t−to) and trajectories consist of exponential growth and con-
traction in addition to oscillation, forming unstable and stable spirals emanating
from the equilibrium point.

The eigenvectors are complex in general where the overbar denotes complex con-
jugation and with the form u± and ū±, with the ± being associated with the sign
of the real part of the eigenvalue. Each complex conjugate pair of eigenvectors de-
fine a 2-D surface around the equilibrium point filled with exponentially increasing
or decreasing spirals. These manifolds can be expressed as

δx±S(t) = 2a e±α(t−to) [cos(β(t − to) + ϕ) (u± + ū±)
+i sin(β(t − to) + ϕ) (u± − ū±)] (5.54)

where again a is an arbitrary positive amplitude and ϕ is an initial phase angle.
Each spiral traces out a two-dimensional manifold, creating a four-dimensional
manifold overall when both are considered.

5.4.3 General Motion in the Vicinity of an Equilibrium Point

The generic motion in the vicinity of an equilibrium point will have components
that lie on all of the available manifolds in the vicinity of the equilibrium point.
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For definiteness, let us consider a 2-DOF system with a pair of stable/unstable
eigenvalues and a center manifold. A general expression for motion relative to the
equilibrium point is specified as

δx(t) = a− e−αtu− + a+ eαtu+ + 2acc [cos(βt)uR − sin(βt)uI ]
−2asc [sin(βt)uR + cos(βt)uI ] (5.55)

As all of these eigenvalues are distinct, note the existence of a left eigenvector vi

for each eigenvalue with the property that vi · uj = δij . Thus, these eigenvectors
can be used to select what component of an arbitrary initial vector, δxo lies on
each of the manifolds. Specifically, a− = v− · δxo and a+ = v+ · δxo. Projections
onto the center manifold become more algebraically complex, and thus are more
simply stated as vc · δxo and v̄c · δxo. Introduction of these projections allows us
to take the state transition matrix definition full circle, and rewrite the motion in
the vicinity of the equilibrium point in terms of the eigenstructure of that point

δx(t) =
[
e−αtu−v− + eαtu+v+ + 2 cos(βt) (uRvR − uIvI)
−2 sin(βt) (uRvI + uIvR)] · δxo (5.56)

where the products of eigenvectors are all outer, or dyad, products. This formula
provides an explicit decomposition of the state transition matrix into its funda-
mental components and is equivalent to Eq. 5.22.

5.4.4 Constraints Due to Integrals

For the particular case of a time-invariant system and an equilibrium point, the
constraint on the state transition matrix shown in Eq. 5.44 does not apply. To
understand this, note that the partial of the integral, in this case H(x), is identically
zero when evaluated at the point x∗. Thus, there is no constraint on the matrix Φ
in Eq. 5.44.

If the system has an additional integral of motion, denoted as h(x) = C, where C
is a constant and h a scalar function (assumed time-invariant), there are additional
constraints. Note the usual relationship ḣ = {h, H} = 0. If h is not the Hamiltonian
and is a linearly independent integral, its gradient will in general not equal zero.
Thus in this case the neighborhood of the equilibrium point x∗ can be evaluated
to find the result:

∂h

∂x

∣∣∣∣
x∗

· [I − Φ(t − to; x∗)] = 0 (5.57)

where the fact that the value of hx is constant when evaluated at an equilibrium
point is used. From this one can immediately note that Φ has a unity eigenvalue,
and that the quantity hx is a left-eigenvector of the matrix. This implies the pres-
ence of a second unity eigenvalue for the matrix with the right-eigenvector Jhx.
Thus, for every additional integral of motion for a given dynamical system beyond
the Hamiltonian, there exist two unity eigenvalues for the state transition matrix
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evaluated in the vicinity of the equilibrium point. The presence of such additional
integrals of motion can complicate the numerical search for equilibrium points, as
discussed in Section 6.2, due mainly to the fact that they imply that the dynamics
matrix JHxx has a pair of zero eigenvalues.

5.5 Periodic Orbits and Stability

5.5.1 Definition of a Periodic Orbit

Assume a Hamiltonian system with state x = [q, p], Hamiltonian function H(x, t),
and attendant equations of motion ẋ = JHx with solutions x(t) = φ(t;xo, to).
A solution to this set of equations is said to be periodic with period T if the
state of the system exactly repeats itself after a timespan T and the equations of
motion evaluated at this state repeat themselves. As with all trajectories, a periodic
orbit can be uniquely defined by an initial state, here denoted as x∗

t , where the t
subscript indicates that it can be defined at any point along the trajectory. Thus
the condition for a periodic orbit is

x∗
t = φ(t + T ;x∗

t , t) (5.58)
JHx(x∗

t , t + T ) = JHx(x∗
t , t) (5.59)

and it can be immediately seen that for a time invariant Hamiltonian a sufficient
condition for a solution to be periodic is that it repeats itself, as then the dynamics
will also repeat. An equilibrium point is a special case of a periodic solution where
the period of motion equals zero. For a time-varying Hamiltonian there is a more
stringent condition on the dynamical system itself, namely that the gradient of the
Hamiltonian repeat itself over the same timespan T . This is usually relaxed to the
stipulation that the Hamiltonian itself is time periodic, meaning that there exists
some constant time T such that H(x, t + T ) = H(x, t), for all time t.

For time-varying systems that do not repeat themselves, i.e., there exists no
time interval T such that H(x, t + T ) = H(x, t) for all t, such systems cannot
have periodic solutions in general. This is the situation for “real world” motion, as
the orbits of the planets never repeat themselves exactly, etc. Still, the concept of
periodic orbits in these systems is important, as planetary systems can generally be
reduced to simplified models that are periodic or time invariant. If these simplified
systems are “close” to the real systems, the influence of the periodic orbits often
persists in the perturbed problem, meaning that trajectories in the real systems
still feel the influence of the periodic orbits and their stability properties, even if
those solutions do not exist in the equations at hand. The simplest way to think
of their influence is that the periodic solutions exist in a lower-order model of the
system, and that the non-periodic terms represent higher-order perturbations that
destroy the periodicity, yet which may not entirely eliminate the influence of the
first-order periodic solutions.

A motivating interest in periodic solutions is that they are defined for all time.
Specifically, once x(t+T ) = x(t) is established, this solution can be generalized to
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x(t+mT ) = x(t) for m = ±1,±2, . . .. Thus, knowledge of the solution over a time
interval t ∈ [0, T ) is sufficient information to know the solution for all time. Except
for integrable systems, this is generally the only time one can have such complete
knowledge of the solution of the equations of motion.

As should be apparent from the conditions for periodicity, there is a fundamental
difference between periodic orbits in time-invariant systems and in time periodic
systems. For time invariant systems there are no a priori constraints on what
possible periods of the solutions there may be. Indeed, for time-invariant systems
there are usually connected families of periodic solutions that have periods which
continuously cover some range of values. For every periodic orbit with a given
period, there will in general always exist a continuous family of periodic orbits
with different periods in its neighborhood.

For time-periodic systems, there can only be periodic orbits with periods that
are multiples of the smallest period of the Hamiltonian. Thus, periodic orbits are
isolated in terms of period, and as will be shown, are also isolated in initial condi-
tions.

5.5.2 Floquet Theory

The motion in the vicinity of a periodic orbit in phase space has a special structure
associated with it. In particular, while the state transition matrix expanded about
a periodic orbit cannot be expressed in closed form in general (unlike for an equi-
librium point), the functional form of its general solution can be found. Floquet’s
theorem provides such an explicit functional form for the state transition matrix
relative to a periodic orbit.

The state transition matrix follows the equation:

Φ̇(t, to) = JHxx(x(t))Φ(t, to) (5.60)

where x(t) = φ(t + T ;xo, to). Since the nominal solution is periodic with an as-
sumed period of T , the dynamics matrix JHxx is periodic with the same period.
Based on this additional constraint Floquet’s Theorem can be proved. The simplest
statement of the theorem is that the state transition matrix evaluated relative to
a periodic orbit has the standard form:

Φ(t, to) = P (t, to) eM(t−to) (5.61)

where P is a non-singular, periodic matrix function of time with period T and M
is a constant matrix.

Consider the state transition matrix solution over one period T , Φ(T ) (where
we will take to = 0 and stop carrying this term). The matrix Φ(T ) is a symplectic
matrix and thus its eigenvalues follow the fundamental rules for these systems.
The state transition matrix of a periodic orbit taken over one period will always
have two eigenvalues equal to 1, and cannot be reduced to a diagonal matrix of
eigenvalues. This will be considered in more detail later, yet this fact is addressed
in the following derivation. The remaining part of the matrix can be decomposed
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into its left and right eigenvectors and its eigenvalues. The unity eigenvalues can at
least be isolated into a Jordan block form, and will have associated left and right
eigenvectors and generalized eigenvectors. This allows us to generically write the
state transition matrix into a decomposed form:

Φ(T ) = UΛV T (5.62)

where V is the matrix of left eigenvectors and generalized eigenvectors, U is the ma-
trix of right eigenvectors and generalized eigenvectors, and Λ is a matrix in Jordan
form with distinct eigenvalues of the state transition matrix along the diagonals
and the one Jordan block for the repeated unity eigenvalues (for a time-invariant
system), with the structure [

1 1
0 1

]
(5.63)

The matrix Λ can be written in exponential form as Λ = e[α]T . The matrix [α] is
again in Jordan form with diagonal entries associated with all the non-repeated
eigvenvalues, equal to αi = ln(λi)/T , and one Jordan block with zeros along the
diagonal and one above the diagonal. Thus, the state transition matrix can be
written as

Φ(T ) = U e[α]T V T (5.64)

This decomposition of the state transition matrix is used to motivate a new matrix
function ψ(t) defined as

ψ(t) = U e[α]tV T (5.65)

Note that ψ(t) is the matrix solution to the time invariant matrix equation

ψ̇ = U [α]V T ψ (5.66)

To show this recall the property of the left and right eigenvectors, namely that
V T U = UT V = I. As the solution to a time invariant matrix equation, the function
ψ(t) has a few key properties. Of specific interest to us is the inverse relation
ψ−1(t) = ψ(−t).

Using this new function ψ(t), a decomposition of the state transition matrix can
be defined

Φ(t, to) = P (t, to)ψ(t − to) (5.67)

or conversely a new function P (t, to) is defined by:

P (t, to) = Φ(t, to)ψ−1(t − to) (5.68)

For this definition it can be shown that P is a periodic function of time with period
T . The proof is simple. First, note that, by definition, P (0, 0) = I, and furthermore
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that P (T, 0) = I, the latter due to the definition of ψ in Eq. 5.65. Next, consider
the equation of motion of P ,

Ṗ (t, to) = JHxx(t)Φ(t, to)ψ−1(t − to)
−Φ(t, to)ψ−1(t − to)U [α]V T (5.69)

To establish periodicity, it is just needed to show that Ṗ (0, 0) = Ṗ (T, 0), as then the
solution P must be periodic since its value is equal at these two epochs. Substituting
these time limits into the above expression yields the following:

Ṗ (0, 0) = JHxx(0) − U [α]V T (5.70)
Ṗ (T, 0) = JHxx(T )Φ(T, 0)ψ−1(T ) − Φ(T, 0)ψ−1(T )U [α]V T (5.71)

but Hxx(T ) = Hxx(0) along a periodic orbit and Φ(T, 0)ψ−1(T ) = I, making the
two expressions equal and finishing the proof.

In final form, note that the solution to the state transition matrix in the vicinity
of a periodic orbit has the general form:

Φ(t, to) = P (t, to)U e[α](t−to)V T (5.72)

where U and V T are the right and left eigenvector (and generalized eigenvector)
matrices of Φ(T ), respectively, and [α] = ln(Λ)/T .

5.5.3 Stability of Periodic Orbits

A particular application of Floquet’s Theorem is to the stability of a periodic orbit,
as their stability properties provide an immediate description of the phase space
flow in the vicinity of that solution. Specifically, if an orbit is stable this implies
that phase flows in the vicinity of the orbit will stay close to the periodic orbit.
Conversely, if an orbit is unstable, this implies that there are pathways that flow
from close to the solution to “far” from the solution, and allows for the phase space
to be traversed to either approach or depart from the periodic orbit.

Stability analysis is made particularly simple by using the Floquet decomposi-
tion. First, consider the propagation of the state transition matrix to an arbitrary
epoch in the future, denoted as t + mT , assuming an initial epoch of to = 0:

Φ(t + mT ) = P (t)U e[α](t+mT )V T (5.73)
= P (t)U e[α]tV T U e[α]mT V T (5.74)
= Φ(t)UΛmV T (5.75)
= Φ(t)Φ(T )m (5.76)

The stability of the solution is clearly dominated by the eigenvalues of the state
transition matrix evaluated over one orbit period. If all of the eigenvalues Λ have
unity magnitude, i.e., are of the form λj = eiθj , then the matrix Λm will not grow
under iteration and the orbit is considered to be stable. Note that this does not
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constitute nonlinear stability, a much more difficult topic for which few sharp results
exist, the most important being the Kolgomorov–Arnold–Moser Theorem [4]. In
general, stability does imply lack of hyperbolic instability, with any instabilities
that may exist only being polynomial in time at most [97]. Conversely, the existence
of one eigenvalue with a magnitude not equal to unity implies instability, due to
the existence of its inverse pair with magnitude less than or greater than unity,
respectively.

Similar to equilibrium points, periodic orbits will also have stable, unstable and
center manifolds associated with them, depending on the stability of the system.
The fundamental stability result for a periodic orbit reduces to the computation
of the eigenvalues and eigenvectors of the state transition matrix over one orbit
period, Φ(T ), which can be represented again as a set of eigenvalues λi = eαiT and
corresponding eigenvectors, ui. While the eigenvalues of the state transition matrix,
when mapped over one orbit period, are invariant with where they start within one
periodic orbit, the eigenvectors will, in general, depend on where they start within
one the periodic orbit. Specifically, the eigenvectors for Φ(T, 0)u(0) = λu(0) and
Φ(T + t, t)u(t) = λu(t) are different, even though the eigenvalues are the same.
This arises from the relationship

Φ(t + T, t) = Φ(t, 0)Φ(T, 0)Φ−1(t, 0) (5.77)

thus leading to the relationship u(t) = Φ(t, 0)u(0) [58]. Thus, after every orbit
period the eigenvectors repeat their direction, and expand or contract according
to whether |λ| is greater or less than one. For an eigenvector associated with an
eigenvalue with unity magnitude, λ = eiθT , the eigenvector will in general be
rotated by a total net angle θ over one orbit period, tracing out lines on a torus
surrounding the periodic orbit.

The analogy between manifolds of equilibrium points and of periodic orbits have
many similarities, most of which are clearly exposed when the concept of surface
of section and Poincaré map is introduced. The main difference is the dimension
of the manifolds, however. For the stable and unstable eigenvalues (i.e., when λ is
real and either greater or less than unity) the manifolds are now two-dimensional
surfaces, essentially one-dimensional manifolds emanating from every point along
a closed periodic orbit and thus forming a two-dimensional sheet. The center mani-
fold, for a generic periodic orbit, consists of sets of quasi-periodic tori that surround
the periodic orbit, forming a two-dimensional surface for a given offset amplitude.
Thus, as the amplitude is varied these define three-dimensional objects. All of these
manifolds can also be extended beyond the linear regime, as described previously
for the equilibrium point manifolds. The procedure for extending these manifolds
becomes more difficult, due to their higher dimensions. This problem has been ex-
tensively studied in the literature, using numerical techniques [118], semi-analytical
techniques [109] and analytical techniques [40, 51].
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5.5.4 Unity Eigenvalues for Time Invariant Systems

For periodic orbits in time-invariant systems, i.e., systems that conserve their
Hamiltonians, there are always a pair of unity eigenvalues in addition to the eigen-
values discussed above, and were already alluded to in the section on Floquet
Theory.

Assume that we are studying a periodic orbit in a time-invariant system, thus
the Hamiltonian is a constant of motion. Again consider Eq. 5.44, now applied to
the Hamiltonian of the system. Due to the periodicity of the underlying motion
the partial Hx(0) = Hx(T ) and is non-zero, leading to:

Hx(0) [I − Φ(T, 0)] = 0 (5.78)

meaning that Φ has a unity eigenvalue and that Hx is a left eigenvector. By sym-
metry there is a second unity eigenvalue with JHx as its right eigenvector. This
makes sense, as a displacement along the dynamics of the initial point should just
correspond to a point displaced along the periodic orbit, or δx = ẋδt = JHxδt.
Since the orbit repeats itself, this displaced point will repeat itself with the same
period. The presence of these unity eigenvalues for periodic orbits in time-invariant
systems complicate the solution process for finding periodic orbits.

Whenever a repeating eigenvalue is found for a matrix, it is important to under-
stand whether the associated eigenvectors with these repeated roots are linearly
independent. To evaluate this the concept of a generalized eigenvector must be in-
troduced, discussed in some detail in [58] for astrodynamical systems. A generalized
eigenvector of grade k for an eigenvalue with multiplicity m satisfies

(Φ − λI)k
uk = 0 (5.79)

(Φ − λI)k−1
uk 	= 0 (5.80)

For a periodic orbit with repeated unity eigenvalues, one can always find the gen-
eralized eigenvector of rank 1, JHx. Thus, the generalized eigenvector of rank 2
must satisfy

(Φ − I) u2 = JHx (5.81)

as (Φ − I)JHx = 0. Multiplying by Φ−1 = −JΦT J and noting that Hx is a left
eigenvector of Φ yields [

I − Φ−1
]
u2 = JHx (5.82)

Thus, subtracting the two leads to the condition that[
1
2
(
Φ + Φ−1

)− I

]
u2 = 0 (5.83)

Thus, for a non-zero generalized eigenvector of rank 2 to exist the matrix 1
2 (Φ +

Φ−1) − I must be singular, and u2 must lie in its null space. This matrix can be
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shown to always be singular by choosing u2 = JHx and noting that this is also a
right eigenvector of Φ−1, which can be shown from the symplectic property. Then[
1
2 (Φ + Φ−1) − I

]
JHx = JHx − JHx ≡ 0, proving that the matrix must have at

least one zero eigenvalue when JHx is a unity eigenvector, which always occurs
for time-invariant systems evaluated at a periodic orbit. Since Φ and Φ−1 have the
same set of eigenvalues, due to the inverse property of their eigenvalues, this implies
that there exists a second zero eigenvalue of this matrix as well. This generalized
eigenvector must include a component along the gradient of the Hamiltonian, Hx,
however in general it also includes components along the other eigenvectors of
the system [58]. That it must contain a component along Hx arises from the fact
that this vector is orthogonal to all other eigenvectors, including JHx. Thus, since
the remaining generalized eigenvector must complete the linear space, it must also
contain a component of Hx.

For a time-varying system, such a displacement along the orbit without mod-
ifying the time changes the dynamics and yields a solution in the vicinity of the
periodic orbit and not on the periodic orbit. Thus, periodic orbits in time-periodic
systems, which do not conserve the Hamiltonian, generally do not have unity eigen-
values. If they do, these only occur at specific stability bifurcation points and do
not arise generically.

5.5.5 Periodic Orbit Families

A fundamental aspect of periodic orbits in time-invariant systems is that they can
be continued into families by varying a parameter such as the Jacobi constant
or a parameter of the dynamical system. The discussion of such families is post-
poned until the concept of a surface of section and Poincaré map are introduced.
Once these ideas are presented, the discussion for continuation of a family becomes
clearer.

5.6 General Trajectories and Stability

The two most important classes of solutions have now been discussed, equilibrium
points and periodic orbits. There are important higher-dimensional generalizations
of periodic orbits called quasi-periodic orbits which are an important class of solu-
tion, but are in general difficult to compute and characterize. We do not consider
these classes of solutions, although they will be of future interest to the study of
small body orbiters. The importance of solutions such as equilibria, periodic orbits,
and quasi-periodic orbits is mainly attached to the fact that they can be specified
for all time and that their stability can be unambiguously computed. Addition-
ally, through their stable and unstable manifolds they influence wider regions of
phase space. Despite all of these things, the number of such special trajectories are
vanishingly small with respect to more general trajectories without such special
initial conditions. Thus, it is relevant to discuss these other solutions. However,
due to our not having a clear expression of these trajectories valid over all time (an
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exception being for integrable systems), there are only limited things that can be
stated about such trajectories.

First, recall our notation for a solution, x(t) = φ(t; xo, to). In some special cases,
namely if the state xo lies on a manifold to an equilibrium point or a periodic orbit,
then the solution may have a well-defined limit. If it lies on a stable manifold, then
the trajectory is defined as t → ∞, if on an unstable manifold it is defined as
t → −∞. It is significant to note that the dimension of an object’s manifolds will
always be greater than the object in question itself. Thus, one can immediately
note the outsized influence which equilibria and periodic orbits have.

If one moves away from these special cases, or has a trajectory that moves away
from a special orbit either forwards or backwards in time, this leads to a general
solution without a known limiting structure. The solution may still be subject to
other constraints, such as having to lie on an energy surface or remain within a
zero-velocity surface, but it is not necessary to assume these phase space constraints
in general. Instead, all one knows is that the solution will either continue to evolve
over time or may run into a physical constraint, such as impacting the surface
of a small body, a planet, or the Sun. Beyond the specific path of the trajectory,
which can only be ascertained by some solution procedure, the other main item of
interest is determining how neighboring trajectories evolve. In fact, from a practical
point of view, knowing how neighboring trajectories evolve can be more helpful in
understanding a general trajectory than where the trajectory itself goes. This is
primarily due to the fact that spacecraft locations in phase space are never known
precisely, and thus knowledge of how the local phase volume evolves informs us as
to whether neighboring solutions will remain close to each other or diverge.

The standard approach to characterizing the local dynamics about a nominal
trajectory is via Lyapunov Characteristic Exponents (LCE). These are, in some
sense, a generalization of the characteristic exponents found for an equilibrium
point and a periodic orbit. Instead of measuring how rapidly a neighboring trajec-
tory expands along a specified direction, an LCE instead measures the maximum
rate of expansion in a region of the neighboring phase space. There are several tech-
niques that are used to compute LCEs, or to ascertain specific properties related
to them. The following is the simplest and most direct definition.

First, assume a nominal trajectory defined by an epoch state and time, xo, to.
Linearizing about the nominal trajectory yields the state transition matrix, which
takes a small variation δxo into a later variation relative to the nominal trajectory:
δx(t) = Φ(t, to)δxo. In principle it is always possible to choose the norm |δxo| small
enough to satisfy linearity assumptions that affect the deviation of δx(t) for any
timespan t − to. Given these steps the finite time LCE is computed as

χ(t) = max
δxo

1
t

ln
( |Φ(t, to)δxo|

|δxo|
)

(5.84)

It is instructive to look at this function more closely.
As the logarithm is a definite function, its maximum value will occur at the

maximum value of its argument. This can be rewritten by squaring the norm and
dividing through by the magnitude of δxo and is the same as finding max|u|=1 u ·
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ΦT Φ ·u. To solve this problem, write out a constrained Lagrangian function to find
the extremal values, Ξ = u · ΦT Φ · u − ξ(u · u − 1), where Ξ is a scalar function
and ξ is a Lagrange multiplier. Extrema are found by solving the equations ∂Ξ

∂u = 0
and ∂Ξ

∂ξ = 0. The second equation gives us u · u = 1 while the first gives us[
ΦT Φ − ξI

]
u = 0. Thus, one only needs to find eigenvalues and eigenvectors of

the matrix ΦT Φ in order to compute the extremal values. The eigenvalues of ΦT Φ
can be computed from the eigenvalues of Φ, denoted here as λi, i = 1, 2, . . . , 2n
and have the usual structure for symplectic matrices. Specifically, the eigenvalues
of ΦT Φ equal ξi = λiλ̄i, i = 1, 2, . . . , 2n. Thus, there may exist repeated unity
eigenvalues if λi = eiθ, but these will not be defective in general and thus will
have linearly independent eigenvectors (see [100] for a discussion of the general
properties of these eigenvalues and eigenvectors). Evaluating the cost function Ξ
at a general extremum yields Ξ = λiλ̄i, i = 1, 2, . . . , 2n and thus that the maximum
occurs for maxi∈[1,2n] λiλ̄i. Carrying this back to the original definition of χ(t),

χ(t) =
1
t

ln max
i

√
λiλ̄i (5.85)

It can shown in general that the limit of this quantity converges to a constant
value as t → ∞, and that it can be considered to be an integral of motion for any
particular trajectory [119]. This provides the formal definition of an LCE:

χ∞ = lim
t→∞χ(t) (5.86)

If χ∞ > 0, the trajectory is considered to be unstable as neighboring trajectories
will deviate exponentially from the given trajectory. Conversely, if χ∞ = 0 this
implies that neighboring solutions are bounded, in a linear sense, although it does
not guarantee nonlinear boundedness. The practical computation of the LCE is
difficult, it being impossible to determine a general trajectory for all time. There
are a wealth of practical computation schemes and related definitions which are
discussed in the reference [42].

It is instructive to apply this definition to an equilibrium point. For the state
transition matrix evaluated at an equilibrium point, the maximum eigenvalue λiλ̄i

will have the generic value e2αt where α is the largest real part of the eigenvalues
of JHxx evaluated at the equilibrium point. Thus, it can be immediately seen
that χ∞ = α, which fits precisely with one’s expectations. In particular, if the
equilibrium point is stable then all of the eigenvalues satisfy λiλ̄i = 1 and χ(t) ≡ 0.
Similar results are found if applied to a periodic orbit.

5.7 Surfaces of Section and Poincaré Maps

Finally, the important concepts of surface of section maps and Poincaré maps are
introduced. Although these two are usually related to each other, it instructive to
separate our discussion of them. Following their appropriate definition families of
periodic orbits and additional properties of these solutions can be discussed.
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5.7.1 Surface of Section Maps

For time-invariant dynamical systems it is often convenient to reduce the dimen-
sionality of the system via a “surface of section.” A surface of section is some
geometrically defined surface or condition in phase space which, when a trajectory
crosses this surface or passes through this condition, the precise point of intersec-
tion is obtained and reported in some coordinate frame. Usually the trajectory must
cross the surface or condition in a proscribed direction. The simplest example of a
surface of section is some coordinate axis in the configuration space, say the x-axis.
Then, whenever a trajectory crosses through the value y = 0 the values of all of
its other coordinates and momenta (or velocities) are reported. For a simple orbit
traveling about the origin in the x–y plane there should be at least two x-crossings
per orbit – however, by restricting the surface of section to only be reported (to
only exist) when the trajectory crosses in a certain direction, say for ẏ > 0, then
there could only be one surface of section crossing per orbit. A surface of section
need not be defined only in the configuration space, although these are often the
most convenient and commonly used surfaces. For example, periapsis passages can
be used as a surface of section, defined as the condition ṙ = r · ṙ/r = 0 with the
additional condition that r̈ > 0.

To set this up in a more generic fashion, let the surface of section be defined by
a scalar equation S(x) = 0, with x ∈ R2n (see Fig. 5.2). In the above examples
this function would equal x2 or ṙ · r/r. To be well-defined, the solution flow to be
observed using the surface of section must be transversal to the surface of section,
meaning that the trajectory is non-tangent to the surface. This can be enforced
by requiring ∂S

∂x · ẋ > 0, where a preferred direction of crossing has been defined.
The solution flow relative to a well-defined surface of section will repeatedly cross
through the surface after each orbit and will not have a grazing, or tangential,
intersection with it. A given trajectory being transverse to the surface of section
at one crossing is no guarantee that it will be transversal to the surface at a
future crossing, or even that it will ever cross the surface again. It is possible for
a trajectory to initially have transversal crossings of a surface of section yet later
evolve to the point where there are grazing, or perhaps no, additional crossings. An
example of the latter is if a trajectory with a periapsis surface of section escapes
from the system in question – it will never have another periapsis crossing and hence
will never appear on the surface again. Due to this, the choice of surface of section
is often very important in analyzing a dynamical system, as a poor choice may lead
to no intersections. Thus, the selection of surfaces of section is highly dependent
on the problem and the particular type of flow that is being investigated.

Surfaces of section are usually only set up in time invariant dynamical systems,
as then, whenever a trajectory crosses through the same surface of section coordi-
nates again, the motion, by definition, defines a periodic orbit. For a time-varying
dynamical system, the surface of section would have time-varying dynamics across
its surface and does not yield any systematic simplification. It is interesting to
consider a time periodic dynamical system, i.e, one with a Hamiltonian where
H(x, t) = H(x, t + T ), that is transformed into its time invariant form with its at-
tendant increase in dimensions. For such a time invariant system the natural surface
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Fig. 5.2 Illustration of a surface of section.

of section to choose is the time coordinate. Such a surface would consist of report-
ing the dynamics whenever the time coordinate equals to + nT , n = 0,±1,±2, . . ..
By definition, the solution flow will always be transverse to this surface of section.
This particular application of a surface of section is called a stroboscopic map and
has been widely applied to time-periodic systems.

Let us take the periapsis passage in a two-body orbit as an example, using
a Lagrangian formulation. Then S(x) = ṙ = r·ṙ

r and Sx =
[

ṙ
r ; r

r

]
, where ap-

plication of the result ṙ = 0 simplifies the partial with respect to position. The
transversality condition then becomes Sx · ẋ = ṙ·ṙ

r + r·r̈
r > 0. If the acceleration

in the two-body problem is substituted as an example, r̈ = −μr/r3, this leads
to Sx · ẋ = 1

r

[
ṙ · ṙ − μ

r

]
. Thus the surface is only crossed when this is greater

than zero, implying that the local speed is greater than local circular speed, a
prerequisite to have a periapsis passage.

The main advantage of the surface of section is that it allows us to replace a
continuous time solution with a discrete map, effectively removing the time from
the system. Reducing the trajectory to these surface crossings allows us to define
a mapping function G(x). Assume an initial point on the surface of section is
chosen, x0, at a time t0, such that S(x0) = 0 and the transversality condition
is satisfied. Then the mapping to the next surface crossing can be represented
as x1 = G(x0) =

{
x(t1)|S(φ(t1, t0,x0)) = 0, Sx · ẋ|t1 > 0, t1 > t0

}
. This mapping

implicitly defines a passage time t1, constrained in general to be the first passage
of the surface of section after t0, although the exact value of this time is not of
specific interest in terms of the surface of section map. Repeating this procedure, it
is possible to propagate a single trajectory through many surface crossings, denoted
as:

xi+1 = G(xi) (5.87)
= G(G(xi−1)) (5.88)
= G2(xi−1) (5.89)
= Gi+1(x0) (5.90)
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This notation still carries around a full 2n state vector, although technically this
can be reduced by one dimension to a 2n− 1-dimensional state vector through the
constraint S(xi) = 0. It is important to note that in the computation of a surface
of section, to compute subsequent passages it is necessary to integrate the entire
trajectory forward (or backwards) in time. For a stroboscopic map in a time periodic
dynamical system the definition of the surface of section is xn = φ(to +nT ; xo, to).

5.7.2 Poincaré Maps

As the surface of section map was only defined for a time invariant system, the
discrete surface of section mapping defined above has a Jacobi integral of motion.
Specifically,

H(x0) = H(Gi(x0)) = C0 (5.91)

As the Hamiltonian is a relatively simple algebraic function it is also possible to
eliminate an additional coordinate or momenta from consideration, reducing the
dimensionality of the state by two (one for the surface of section and the other
for the energy) to a 2n − 2-dimensional system. Generally, one removes a velocity
or momentum component using the constant Hamiltonian, while one removes a
coordinate using a surface of section. This is not a fundamental restriction, however.
Once the additional state is removed from the map, the value of the Hamiltonian
along a specific trajectory becomes a new parameter of the system and the resulting
system is defined as a Poincaré map.

To formalize this, assume that two states are removed from the original 2n-
dimensional state vector x, one each from the conditions S(x) = 0 and H(x) = C.
For a given dynamical system it is important, of course, to systematically remove
the same states at each crossing. Let us define the so-reduced state vector as y ∈
R2n−2. It is important to remember that there is a unique state x associated
with each reduced state y, surface of section function S, and energy value C.
Redefine the mapping function, now explicitly specifying the energy level that is
being considered, with the form g(y;C). This discrete mapping function defines a
Poincaré map, a mapping function that returns a trajectory back to a surface of
section and maps every initial point chosen on that section with the same value of
the Hamiltonian. Our dynamics are then:

yi+1 = g(yi; C) (5.92)
= gi+1(y0; C) (5.93)

The properties of the Poincaré map reduction have been studied extensively in the
literature for a variety of applications. Our main application of this map will be in
the computation of periodic orbits in time-invariant systems and in understanding
the stability of such periodic motions. The map has also been extensively applied
to the study of dynamical systems, an application not explored here.
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It should be noted that if a dynamical system has additional integrals of motion,
it is possible to further reduce the dimensionality of the Poincaré map. Perhaps the
main benefit of the map is that it allows one to reduce the dimensionality of the sys-
tem without having to go through the laborious process of eliminating integrals of
motion from the full dynamical system. It can be assumed the reduction of the dy-
namical system to a Poincaré map has explicitly removed a coordinate–momentum
conjugate pair. If dealing with a Lagrangian system, it suffices to remove a coordi-
nate value and its time derivative, as when transformed into a Hamiltonian system
this will also correspond to a coordinate–momentum pair being removed.

Systematic application of a Poincaré map to a collection of initial conditions
implies that these conditions are chosen with the same Hamiltonian value, although
the trajectories will be distinct in general. Mapping such collections repeatedly
through the map then allows for the exploration of a dynamical system through
an inspection of 2n−2 dimensions, instead of the usual 2n dimensions. For 2-DOF
systems this is tractable, as the resulting map is only two-dimensional. For higher-
degree-of-freedom systems the utility of this approach is not as great, as the map
itself lives in a four-dimensional or higher space.

5.7.3 Linearized Poincaré Map

Notions of local motion can be carried over to the Poincaré map. Assume a nonlinear
map between points y0 and y1 = g(y0; C). Consider an initial variation of y0 such
that δy0 lies in the surface of section and conserves the Hamiltonian. Specifically,
this means that ∂S

∂y0
· δy0 = 0 and ∂H

∂y0
· δy0 = 0. This small variation will also be

mapped back to the surface of section and will naturally conserve energy, defining
y1 + δy1 = g(y0; C) + Φ0,1δy0, where the reduced state transition matrix Φ0,1 is
defined as the (2n − 2) × (2n − 2) matrix that linearly maps the Poincaré map
back to itself in the vicinity of a nominal trajectory. Note the following identities
∂S
∂y1

· δy1 = 0 and ∂H
∂y1

· δy1 = 0. The practical computation of this linearized map
is discussed later, at this point one only needs to note its existence.

This has defined a mapping of local variations about a nominal trajectory

δy1 = Φ1,0δy0 (5.94)

which naturally generalizes to the iterated map

δyn+1 = Φn+1,nδyn (5.95)
= (Πn

i=0Φi+1,i) δy0 (5.96)

where the state transition matrix Φi+1,i depends on the associated nominal tra-
jectory between the points yi and yi+1 = g(yi; C), and is defined for a specific
surface of section and energy value. If the reduction to the nonlinear Poincaré map
is performed by systematic reduction of a coordinate–momentum pair, the resulting
system is Hamiltonian and hence the linearized Poincaré map will be a symplectic
matrix, and thus will inherit all the relevant properties defined for these maps.
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5.7.4 Periodic Orbits and Stability

Now, let us reconsider periodic orbits in light of the Poincaré map. Note that a
periodic orbit will correspond to a fixed point in a Poincaré map, denoted as y∗.
It is defined as

y∗ = g(y∗; C) (5.97)

To evaluate the stability of this fixed point, consider a small variation in the
neighborhood of its initial conditions and its expansion through the linearized map

y∗ + δy1 = g(y∗ + δy0;C) (5.98)
= g(y∗; C) + Φ∗

1,0δy0 + . . . (5.99)
δy1 = Φ∗

1,0δy0 + . . . (5.100)

The linear map about a fixed point is independent of which iteration it is being
applied to, and in particular Φ∗

1,0 = Φ∗
i+1,i = ΦM . The linearized Poincaré map ΦM

is defined as the monodromy matrix, and it describes the stability of the periodic
orbit in question. To note this, recall from Floquet theory that the eigenvalues of
the state transition matrix mapped over one period were independent of where the
matrix was evaluated along the orbit. Thus, the eigenvalues that the monodromy
marix inherits from the full state transition matrix are independent of where the
surface of section is chosen along the periodic orbit, and iterates of the monodromy
matrix will then describe local motion on the surface of section from crossing to
crossing

δyn = Φn
Mδy0 (5.101)

Before the eigenstructure of ΦM is discussed, note that the reduction process to
a constant energy surface and to a surface of section will remove the two generic
unity eigenvalues present in the full state transition matrix. From Floquet theory,
the monodromy matrix has the general form eM ′T , where M ′ is now a constant
matrix of size (2n − 2) × (2n − 2) and generically does not have zero eigenvalues.

Consider the eigenvalue and right eigenvector pairs of ΦM , (λi, ui, i = 1, 2,
. . . , 2n − 2). Again, associated with each λi is its complex conjugate, its inverse,
and the inverse of its complex conjugate. If λi is real, then only its inverse must
also exist, and if the magnitude of λi is unity, then only its complex conjugate must
exist. The interpretation and analysis of the stable, unstable and center manifolds
associated with the fixed point are all analogous to the discussion for the structure
in the vicinity of an equilibrium point, except now instead of being continuous in
time the dynamics occur at discrete mappings.

Stability of Periodic Orbits in a 2-DOF problem

Consider the monodromy matrix computed for a periodic orbit in a 2-DOF problem.
In this case it is a simple 2×2 matrix, and thus it is possible to provide a tractable
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Fig. 5.3 Illustration of a stable and unstable fixed point, showing the manifolds and iterates.

discussion of its stability. The general form of the monodromy matrix will be

ΦM =
[

a b
c d

]
(5.102)

with the constraint that ad− bc = 1, which for 2× 2 matrices is the necessary and
sufficient condition for them to be symplectic. The eigenvalues of this matrix can
be specifically computed from

λ± =
1
2
(a + d) ± 1

2

√
(a + d)2 − 4 (5.103)

and λ±λ∓ = 1. If |a + d| < 2 the periodic orbit is linearly stable and λ̄± = λ∓.
If instead |a + d| > 2 the eigenvalues are both real with one greater than 1 in
magnitude and the other less than 1 in magnitude, and λ± = 1/λ∓. Thus, in this
case the orbit is unstable in general, and has one stable and one unstable manifold.
In the limiting case when a + d = 2, the eigenvalues equal 1 and are repeated, and
usually represent a transition of the eigenvalues from being on the unit circle to
being off the unit circle, or vice versa. If a + d = −2, the eigenvalues equal −1
and are repeated. This also represents a possible transition of the eigenvalues from
stability to instability, or vice versa. The implications of these different transitions
are discussed below. Note that periodic orbits in 2-DOF systems cannot exhibit
complex instability, unlike equilibrium points in 2-DOF systems.

Stability of Periodic Orbits in a 3-DOF problem

Consider the monodromy matrix computed for a periodic orbit in a 3-DOF problem.
In this case it is a 4 × 4 matrix, and again it is possible to provide a tractable
discussion of its stability. The general form of the monodromy matrix will be
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ΦM =

⎡⎢⎢⎣
a b c d
e f g h
j k l m
n p q r

⎤⎥⎥⎦ (5.104)

with the symbols i and o being reserved. The characteristic equation can be ex-
pressed as

0 = λ4 + αλ3 + βλ2 + αλ + 1 (5.105)
α = − (a + f + l + r) (5.106)
β = af − be + al − cj + ar − dn

+fl − gk + fr − hp + lr − mq (5.107)

Defining γ = λ + λ−1 it is possible to show that γ satisfies the equivalent charac-
teristic equation

γ2 + αγ + β − 2 = 0 (5.108)

For stability it can be shown that γ must be a real number and satisfy −2 ≤ γ ≤ 2.
These conditions will hold if and only if the following inequalities hold

8|α| − 16 ≤ 4β − 8 ≤ α2 ≤ 16 (5.109)

This defines a stability plot in the α, β space, showing the different possible stability
states for a periodic orbit (see Fig. 5.4).

5.8 Periodic Orbit Families

Given the Poincaré map definition and the identification of the monodromy matrix
it becomes tractable to discuss the continuation of periodic orbits into families in a
more complete fashion. A number of different topics are discussed in the following,
including the generic isolation of periodic orbits at fixed values of Jacobi energy,
the possible stability transitions along a period orbit family as its energy changes,
and the intersections of periodic orbits with other families of the same and higher
periods.

5.8.1 Isolation of Periodic Orbits at Constant Jacobi Values

First determine the conditions for another periodic orbit to exist in the vicinity of a
given periodic orbit at a fixed value of energy. Given a fixed point y∗ of a Poincaré
map

y∗ = g(y∗; C) (5.110)



5.8 Periodic Orbit Families 137

Fig. 5.4 Stability diagram for periodic orbits in a time invariant 3-DOF system as a function of
α vs. β.

consider a variation in the state while keeping the energy fixed. Assume the varia-
tion is small enough to expand the fixed point using the monodromy matrix, and
tacitly assume that the new point maps back into itself

y∗ + δy∗ = g(y∗; C) + ΦMδy∗ (5.111)

Simplifying the condition becomes

[ΦM − I] δy∗ = 0 (5.112)

Recall that ΦM has had its unity eigenvalues removed and thus it generically will
not have any unity eigenvalues except at exceptional points. If there are unity eigen-
values, then there will be neighboring periodic orbits with their relative location to
y∗ located along the null space of ΦM − I. If, as is expected for the generic case,
there are no unity eigenvalues of ΦM , then the periodic orbit is isolated at the fixed
value of energy.

This is generally the case for the stroboscopic Poincaré map defined for time-
periodic systems. In fact, for these systems where the conserved Hamiltonian equals
the time-momentum plus the Hamiltonian, one can show that the value of this
Hamiltonian is in general invariant with the state and is always equal to the same
constant. This implies that periodic orbits in stroboscopic systems are generically
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isolated, unless there exists another integral of motion that introduces additional
unity eigenvalues.

5.8.2 Continuation of Periodic Orbits with Jacobi Energy

Given the generic isolation of periodic orbits at a given energy, their continuation
is explored with a variation in the energy. Now in addition to varying from the
fixed point we also allow the Hamiltonian value C to vary by δC, leading to the
condition

[ΦM − I] δy∗ =
∂g

∂C

∣∣∣∣
∗
δC (5.113)

where the partial of the Poincaré map with respect to energy can be computed
relatively easily, as is discussed in the next chapter. Assuming that ΦM has no
unity eigenvalues the new, neighboring periodic orbit is defined by

y∗ + [ΦM − I]−1
g∗CδC (5.114)

and maps into itself at the linear level. An algorithm for using the linearized
Poincaré map to nonlinearly converge on a fixed point is discussed in the next
chapter. If, instead, ΦM has unity eigenvalues then this implies that there exists
a neighboring periodic orbit with the same value of energy. This is not a generic
situation and will generally only apply for an exceptional periodic orbit.

Thus, a family of periodic orbits can be defined that passes through y∗ at a
value of C and generally continues for larger and smaller values of C. This can be
represented as a mapping from C to y as y = h(C), where h ∈ R2(n−1). The graph
of h then defines the family, where the tangent vector to the curve is defined by
[ΦM − I]−1

gC .

5.8.3 Stability Transitions along a Periodic Orbit Family

As a family of periodic orbits is traced out, the eigenvalues of the associated mon-
odromy matrix are expected to vary as well. To emphasize this we now show the
monodromy matrix as a function of energy, ΦM (C), assuming that there exists a
family of fixed points defined by y = h(C).

Let us consider a 2-DOF problem first, as there are only two eigenvalues for such
a system. If the family is stable at a point h(C0), with eigenvalues e±iθ (where i
is the imaginary unit) where the rotation angle θ 	= 0, π, then the local family will
always be a stable fixed point as well. The only way the system can transition to
an unstable orbit is for the eigenvalues to meet at θ = 0, π and transition to the
positive or negative real axis, respectively. The converse situation holds if the fixed
point is unstable at a given value of C0. The two different possible transitions have
significantly different implications.
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Intersection along θ = 0

First consider the implications if θ → 0. Drawing on an analysis of such stability
transitions for symmetric 2-DOF periodic orbits by Hénon [66], one can distinguish
two cases. For both cases it can be assumed that ΦM has unity eigenvalues so
‖ΦM − I‖ = 0 and the matrix [ΦM − I] cannot be uniquely inverted. Then the
solutions that are consistent with this condition can be explored

[ΦM − I] δy = gCδC (5.115)

In this case one can always choose a δy along an eigenvector of unity such that the
left-hand side equals zero.

Local Extremum If either term of gC 	= 0, then the right-hand side can only
be made to equal zero if δC = 0. This implies that the current family is forced to
change along a direction defined by the null space of ΦM − I with no change in
energy. This generically corresponds to the periodic family curve h(C) being at an
extremum with respect to C and, in some sense, turning back on itself in phase
space. See Fig. 5.5 left for a graphical representation. Following such a transition
there will exist two branches of the periodic orbit family at a given value of energy,
one will be stable and the other unstable. Such reversals in a periodic orbit fam-
ily are relatively common, and essentially represent a bifurcation with the family
appearing or disappearing as the energy C is varied.

Family Intersection If, on the other hand, |gC | → 0 as θ → 0, then this rep-
resents an intersection of the current family with another family with the same
value of energy, C. For this to be defined these two fixed points must physically
cross through the same point in phase space at the same value of C. At such a
crossing of families, they will generally exchange stability, as shown in Fig. 5.5
right. The vanishing of the gC terms is a hallmark of such an intersection, as in the
vicinity of the intersection there are multiple solutions which the linear conditions
cannot accommodate. If the continuation conditions were developed to second or-
der or higher (depending the the number of intersections), then there should be a
definitive set conditions that can be solved for.

Intersection along θ = π

In this case the eigenvalues collide along the negative real axis at λ = −1. At such a
bifurcation the matrix ΦM−I has full rank and is invertible. Thus, the family seems
to seamlessly transition from stable to unstable, or vice versa, at such a transition.
What is really going on here is a bit more interesting, however. If the double-iterate
of the Poincaré map is considered, g2(y∗), this is still a fixed point but now its
monodromy matrix is Φ2

M and, at the stability transition point, will have a pair
of unity eigenvalues. This is an example of a period-doubling bifurcation, where a
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Fig. 5.5 Local extremum of a periodic orbit family (left) and an intersection of two periodic
orbit families (right).

pair of fixed points of twice the period are born, inheriting the stability type of the
single-period orbit that undergoes its transition. The resulting family may either
persist or may intersect with the single-period family again at a different value of
C, providing the single family with its same initial stability type. Figure 5.6 shows
the generic situation.

Fig. 5.6 Period doubling stability bifurcation.
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Higher-period Intersections

Passage of θ through π corresponds to the birth of a period-2 family. Similarly
passage through special values of θ = 2πm/n may result in n-period families to
bifurcate. Whether such higher-period fixed points bifurcate or not, it is impor-
tant to note that the base fixed point will not undergo any stability transitions
for these bifurcations, and indeed will seemingly remain unaware of whether such
bifurcations are occurring.

Higher-dimension Systems

Similar reasoning applies to systems with three or more degrees of freedom, except
there exists one additional type of intersection. Here, it is possible for two sets of
eigenvalues to intersect along the unit circle and bifurcate into an unstable periodic
orbit with a set of two-dimensional stable and unstable spiral manifolds. Since
these stability bifurcations do not occur along the real axis, continuation of the
family is not a problem. It is interesting to note that there are rigorous conditions
for when such an intersection will result in a stability bifurcation. Specifically,
Krein’s Theorem states that if the pair of colliding eigenvalues on the unit circle
are traveling in the same direction, then a stability bifurcation will not occur. If
they are traveling in the opposite direction, then a bifurcation may occur [5].



6. Solution and Characterization
Methods

In the following we discuss various methods by which the equations of motion can
be solved to find the trajectory of a particle or a solution flow in the neighborhood
of a trajectory. We make an implicit assumption that the equations we wish to
solve are non-integrable, meaning that there exists no closed-from solution. In many
situations we will rely on a closed-form solution of a simpler, non-perturbed system
to help generate a solution to a more general problem. As the given problems are
non-integrable, we are always limited in that our solutions and solution methods are
approximate, and only represent the true solution up to some degree of precision
over a finite timespan. Some exceptions to these occur for the special solutions
of dynamical systems, namely (relative) equilibria and periodic orbits. A relative
equilibria is an exact solution to a system, and in general does not rely on a solution
of the simpler, non-perturbed problem. A periodic orbit is not exact, as it has a
limit on the precision (except in the rare cases where a completely convergent series
is found in closed form), although there is no limit on the timespan for the solution,
that being infinite. All other solutions have limitations on both precision and time.

Our goal in constructing solutions is not to find single trajectories of arbitrary
precision – that can already be done using numerical techniques. Rather, our goal
is to represent a solution and the neighborhood about that solution, since that is
the most important aspect of our dynamical understanding of motion.

In the following we will sometimes not specifically assume any structure for the
equations of motion, due to the generality of many solution techniques, but can
assume a generic formulation of the equations of motion as ẋ = f(x, t) where
x ∈ R2n and f : R2n × R → R2n. In other instances we will include an added
term representing perturbations from an integrable problem. Exceptions to this
convention will be noted. We will also use the Hamiltonian formalism when appro-
priate.
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6.1 Numerical Integration

The most direct, and in many ways simplest and most precise, method to solve for
the motion of a particle given the equations of motion is to numerically integrate
the trajectory. A numerical integration takes a current value of the state and the
dynamics function, which must be computable as a function of the state, and
generates a discrete map in time to a subsequent (or previous) state. For a given
numerical integrator there is always an error associated with this map; however,
this error can be driven to a small value by appropriate choice of the time step
and algorithm. The field of numerical analysis is far too comprehensive to be easily
summarized, but for astrodynamics applications there are a few main approaches
that are used, described in brief later. The main point is that the field is sufficiently
advanced so that there is no reason to doubt the stated numerical precision of a
solution, given the caveats associated with the particular numerical scheme. Thus,
one can consider the output of a numerical integrator to be a valid solution to the
differential equations, to within some degree of precision. It should not be mistaken
with the actual solution, which will have additional properties that the numerical
solution may not enjoy, such as symplecticity and analyticity, yet for a given initial
state it is an accurate representation of the solution. As such, these solutions can
be used to test analytical results, to provide precise predictions or reconstructions
of a particular trajectory, and can be used as a tool for analysis.

Technically, the solution that comes out of a numerical integrator is a series of
discrete states xi at given time steps, ti, where i = 0, 1, . . . , N , t0 is the initial
time, and tN is the final time (where tN < t0 can occur without ambiguity). Most
numerical routines also provide a means by which to interpolate between the states
xi and xi+1, sometimes using neighboring states to improve the interpolation. This
provides the illusion of a continuous solution, whereas the interpolated points will
in general have lower precision than the discrete points output by the system, and
may not share the fundamental properties of the solutions as they are not directly
constructed from the equations of motion. It is important to note that the total
timespan of a given map, tN −t0, need not be an integer number of some fundamen-
tal time step, as almost all integrators have the capability to adjust the time step to
achieve any desired end point in time. Because of this a numerical solution can be
represented as if it were a continuous time solution, x(t) = φ(t;xo, to), where the
solution is also subject to the chosen parameters of the system. This allows us to
represent a numerical solution precisely in the same way as an analytical solution
would be represented.

6.1.1 Lagrangian, Hamiltonian and Orbit Element Computations

If the system is defined by a Lagrangian in terms of coordinates and their time
rate of change, L(r, ṙ, t), then the corresponding equations of motion are found by
solving Lagrange’s equation d

dt

(
∂L
∂ṙ

)− ∂L
∂r = 0 for the acceleration, resulting in a set

of equations r̈ = F (r, ṙ, t). Then make the usual transformation of a second-order
differential equation into a first-order by defining x = [r, v], where ṙ = v, and
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f = [v, F (r,v, t)]. Hamilton’s equations with a Hamiltonian function H(q,p, t)
are already in the appropriate form, as if given x = [q; p] the equations ẋ = JHx

follow, where f(x, t) = JHx.
We also consider the orbit element forms of the equations that arise from the

Lagrange and Gauss equations. In these one can generically assemble the orbit
elements into a single state vector, for the classical orbit elements this could be
x = [a, e, i, ω,Ω, τo]. Then both sets of equations can be immediately written into
general form. In fact, there is a bit more structure to the equations than that.
Lagrange’s planetary equations have the form ẋ = FL(x)∂R

∂x , where FL is a 6 × 6
matrix that is a nonlinear function of the orbit elements but not time, and R(x)
is the perturbing potential. Similarly, the Gauss equations take the form ẋ =
FG(x, t)a, where FG is now a 6 × 3 matrix that is a function of the state x and
time, while a ∈ R3 is the applied acceleration. Once in these forms the equations
of motion can be directly passed to a generic numerical integration scheme.

6.1.2 State Transition Matrix Computations

Note that the state transition matrix is a crucial component of the theory. The state
transition matrix can be analytically solved for only in the case where the nominal
solution is an equilibrium point of a time-invariant system. For any other solution
one must numerically integrate to find Φ(t, to). Already discussed is the differential
equation which Φ satisfies, which is always derived from the fundamental equations
of motion as

Φ̇(t, to) =
∂f

∂x

∣∣∣∣
t

Φ(t, to) (6.1)

Φ(to, to) = I (6.2)

where the solution of the nominal trajectory φ(t;xo, to) must be substituted into
the dynamics matrix

A(t) =
∂f

∂x

∣∣∣∣
t

at each point of time. It is often convenient to integrate both the state x(t) and
the state transition matrix simultaneously, thus evolving the dynamics associated
with a point in phase space and the linear description of the dynamics about that
point.

Depending on what form of the equations of motion are being integrated, the
state transition matrix may not be symplectic. However, for many cases the state
transition matrix can be simply transformed into a symplectic form. For example
consider a Lagrangian framework, where

Φ(t, to) =
∂(r(t),v(t))

∂(ro, vo)

Unless the position and velocity are relative to an inertial frame, this will not be a
symplectic matrix. Recall the simple Legendre Transformation, where the current
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position vector can be taken as the Hamiltonian coordinate q(t) = r(t) and the
momentum is defined as the partial of the Lagrangian with respect to the velocity,
p(t) = ∂L

∂v . Using these definitions one can express a symplectic state transition
matrix in terms of the Lagrangian variables as

∂(q(t), p(t))
(qo,po)

=

⎡⎣ I 0
∂2L

∂v∂r

∣∣∣∣
t

∂2L

∂v2

∣∣∣∣
t

⎤⎦Φ(t, to)

⎡⎣ I 0
∂2L

∂v∂r

∣∣∣∣
to

∂2L

∂v2

∣∣∣∣
to

⎤⎦−1

(6.3)

where the state transition matrix Φ is computed for the Lagrangian variables.

6.1.3 Common Integrators

The field of numerical integration continues to be an area of innovation and research
advancement. Thus in the following only a few different types of numerical integra-
tion routines are mentioned, leaving the interested reader to decide for themselves
which one to use. Each tends to have advantages that suit themselves for different
applications. The day when one single approach to numerical integration will be
used is still apparently in the distant future.

Variable Step Predictor–Corrector Routines

Perhaps the most widely used numerical integrators are those that simultaneously
develop a prediction and an estimate of the current error in the numerical integra-
tion. Based on the predicted error and the desired tolerance in the computation the
time step can be adjusted to be longer or shorter, varying this as the solution is be-
ing computed. A common formulation for these integrators are the Runga–Kutta
methods, and they are widely available in pre-packaged computational environ-
ments. These methods are often quite useful for astrodynamics problems where
there can be relatively long periods of small perturbations interspersed with short
periods of more intense interactions between bodies. When numerically integrating
high-eccentricity orbits this occurs quite frequently, with longer time steps being
acceptable through apoapsis and short time steps through periapsis.

Fixed-Step Integrators

Another school of thought is willing to forgo speed for greater precision in compu-
tation. Along these lines are the extremely accurate fixed-step integration methods
such as Burlisch–Stoer. Use of these algorithms in the literature is usually associ-
ated with computations that strive to achieve machine precision over long timespans
[52, 53].
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Symplectic or Variational Integrators

More recently, the development and application of symplectic or variational integra-
tors has gained much attention. These are integration methods where the discrete
time steps are chosen so that they conserve some fundamental property of the dy-
namical system. For instance, symplectic integrators have been developed for the
integration of Hamiltonian systems and preserve the symplectic structure of the
underlying equations of motion. These approaches have been further generalized
recently to conserve other quantities that might be associated with the geometry
of motion or the underlying dynamical system. When symplecticity of the state
transition matrix is important it is possible to implement an integration scheme
for just that matrix which will ensure symplecticity independent of how the nom-
inal trajectory is integrated [184]. A useful review of numerical integrations, with
a definite bias toward variational integrators, is provided in [60].

6.1.4 Verification of a Numerical Integrator’s Performance

More important than what numerical integration routine is used is that the re-
searcher performs verification and validation tests of their numerical integrations
to ensure that the algorithms have been implemented correctly and that adequate
error tolerances have been chosen. For astrodynamical problems, which usually are
dealing with a system perturbed from two-body motion, an effective way to ver-
ify integration performance is to directly integrate the two-body problem. As this
problem is integrable, it is possible to transform the system at each point into orbit
elements and verify that they remain conserved for stressful integration cases such
as high-eccentricity orbits. For systems that have a Jacobi integral defined for the
full system, it is usually also good practice to confirm that the integration scheme
keeps the integral constant. These are not proofs of the integrator’s accuracy, but
are effective ways to verify performance.

For integrations of the state transition matrix it is also useful to perform valida-
tions of the numerical accuracy of its computation. For all dynamical systems with-
out dissipation, the determinant of the state transition matrix should generically
equal 1, and this can be used as a check. Additionally, for a nominally symplectic
matrix it is possible to check whether the matrix verifies the symplectic condition,
and view deviation from this either as an indication of poor error tolerances or a
mistake in the implementation.

6.2 Computation of Equilibrium Solutions

6.2.1 General Algorithm

Given a dynamical system reduced to Hamiltonian form, ẋ = JHx, an equilibrium
solution is a particular state of the system, x∗, which causes the dynamics function
to be identically zero. The defining equation is:

Hx(x∗) = 0 (6.4)
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where the Hamiltonian is assumed to be time-invariant and hence is a constant
of the motion. If the equation is written as a Lagrangian system, the equilibrium
condition can be reduced to a set of algebraic equations of the form

∂L(r∗,0)
∂r

= 0, (6.5)

where this is a three-dimensional equation instead of the six-dimensional Hamilto-
nian form. Thus, for a specific problem, it is often easier to solve the Lagrangian
form for zero accelerations in the configuration space, as the equilibrium condition
for the velocities is trivially satisfied.

When the dynamical system has no integrals of motion other than the Jacobi
integral (for a time invariant Hamiltonian or Lagrangian), then equilibrium points
are in general non-degenerate, or |H∗

xx| 	= 0. This implies that a Newton–Raphson
method can be applied to compute the equilibrium points. Specifically, given a test
value for an equilibrium point xi, search for the correction δxi that will satisfy the
condition: Hx(xi + δxi) = 0. If “close” to the solution (i.e., if a reasonable guess
for the point is provided) it is possible to expand the function in a Taylor Series:
Hx(xi) + Hxx(xi) · δxi + . . . = 0. Solution of this equation at the linear order
provides the update:

δxi = −Hxx(xi)−1 · Hx(xi) (6.6)

and a new test solution is computed as xi+1 = xi+δxi and the procedure is iterated
until the equilibrium condition is satisfied to an acceptable degree of precision.

6.2.2 Complications from Additional Integrals

The presence of an integral of motion in addition to the Jacobi integral compli-
cates this procedure and ensures that the above algorithm will fail. As seen earlier in
Chapter 5 the state transition matrix expanded about an equilibrium solution has a
pair of unity eigenvalues when an additional integral of motion exists. Specifically,
for an integral of motion linearly independent from the Hamiltonian, h(x) = Ch,
the state transition matrix evaluated at an equilibrium x∗ satisfies the following
condition: hx(x∗) · [I − Φ(t, to; x∗)] = 0. Thus, hx is a left eigenvector of Φ with
a unity eigenvalue. The symmetry of Hamiltonian systems ensures that there ex-
ists another unity eigenvalue associated with the matrix with a right eigenvector
Jhx(x∗). As the associated linear system is time-invariant the explicit solution
exists

Φ(t, to; x∗) = eJH∗
xx(t−to) (6.7)

= I + (t − to)JH∗
xx +

1
2
(t − to)2 [JH∗

xx]2 + . . . (6.8)

Substitution of this form of the solution into the eigenvalue equations yields the
following conditions:

H∗
xx · J · h∗

x = 0 (6.9)
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Thus, the Hamiltonian is degenerate at an equilibrium with two zero eigenvalues
and any numerical technique using the Newton–Raphson method to compute the
point will become ill-defined as the test solution comes close to the equilibrium.

This happens as associated with every equilibrium point of a system with an
additional integral is a family of neighboring equilibrium points at the same value
of energy and same value of the integral h(x). Specifically, suppose an equilibrium
solution is given such that H∗

x = 0 and h(x∗) = Ch. Consider an arbitrary variation
from this point δx, the question is whether there exists a neighboring point that
will satisfy both the equilibrium condition and have the same value of the integral
h. If so, then there should be a solution satisfying the two conditions H∗

xx · δx = 0
and h∗

x · δx = 0. As the Hamiltonian is degenerate at the equilibrium point the
first condition is satisfied by the eigenvector δx = Jh∗

x, meaning that there is
another equilibrium point lying in this direction. This vector direction also satisfies
h∗

x ·Jh∗
x = 0 trivially. Thus, there is not a unique point to which the algorithm can

converge, and hence the procedure becomes ill-defined.
This demonstration also suggests a specific approach that can be used to con-

struct a more robust computation algorithm. Instead of searching over the full
state direction δx, one can restrict the search to the direction δx⊥ defined such
that δx⊥ · Jhx(x) = 0, i.e., not allowing variations along the line of continuous
equilibria. Practically speaking, this equation can be solved in terms of one vari-
ation direction to define a 2n − 1 space in which to search. It is also possible to
make a further reduction, by choosing to eliminate a second direction by further
constraining δx⊥ by the condition hx · δx⊥ = 0, maintaining a constant value of
h. However, this presupposes that a value of h has been chosen that allows an
equilibrium to exist, something that is not necessarily true.

An explicit example of this form of degeneracy can be given. Consider the relative
two-body problem in a rotating reference frame with the Hamiltonian function
H = 1

2

(
P 2

r + 1
r2 P 2

θ

) − ωPθ − μ
r , where ω is the rotation rate. Due to the absence

of θ the momentum Pθ is an integral of motion. The second, associated integral of
motion for θ exists by quadratures once the solution for r and Pr is found. Applying
the equilibrium condition yields

Hx =

⎡⎢⎢⎣
− 1

r3 P 2
θ + μ

r2

0
Pr

1
r2 Pθ − ω

⎤⎥⎥⎦ (6.10)

Hxx =

⎡⎢⎢⎣
3
r4 P 2

θ − 2μ
r3 0 0 − 2

r3 Pθ

0 0 0 0
0 0 1 0

− 2
r3 Pθ 0 0 1

r2

⎤⎥⎥⎦ (6.11)

It can be verified that the matrix Hxx has two zero eigenvalues. The gradient of h
is hx = [0, 0, 0, 1] and Jhx = [0, 1, 0, 0]. If the search is constrained in the direction
normal to Jhx this implies that θ is fixed. If the search in the direction hx is
constrained, this implies that Pθ is fixed. Doing so provides us with two equations
which can be solved to find Pr = 0 and r = P 2

θ /μ, with an ancillary condition
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1
r2 Pθ −ω = 0. Note that an improper choice of Pθ may yield an inconsistency with
one of these equations. One can either use the final equation to define the proper
value of Pθ, something which is trivial for the given simple problem, or not be
restricted to searching for it at a specified value of Pθ to begin with, which allows
one to simultaneously solve for r, Pr and Pθ. For more general systems where the
solutions are not as easily found, it is preferred to solve for the value of the integral
simultaneously with the solution of the other states. Then the full solution is found
to be: r∗ =

(
μ/ω2

)1/3, P ∗
r = 0, P ∗

θ =
(
μ2/ω

)1/3.

6.2.3 Stability Computation

Once an equilibrium point of the system is found, then the stability of that point can
be determined by evaluating the eigenvalues of the matrix JH∗

xx, evaluated at the
equilibrium point. Only in the simplest cases can the eigenvalues and eigenvectors
of this matrix be determined analytically. It is noted that even in the restricted
three-body problem, the Euler equilibrium solutions must be found numerically
for a precise evaluation of them. Thus, it is usually easiest to use a computational
toolbox to evaluate the eigenvalues and eigenvectors of the dynamics matrix at
the equilibrium point. Once these are found the methods outlined in the previous
chapter for describing motion in the vicinity of the equilibrium point can be applied.

6.3 Computation of Periodic Orbits

6.3.1 General Algorithm

The traditional approach to analytical or numerical computation of periodic orbits
relies heavily on the symmetric properties of the forces in the system [70, 65,
18]. Examples of this include the computation of periodic orbits in the restricted
three-body problem and the Hill problem, best exemplified by the seminal work of
Hénon. As a direct application to asteroids, this approach has been used to compute
symmetric periodic orbits about tri-axial ellipsoids [153]. For application to “real”
objects, however, there are no symmetries in the force fields and the periodic orbit
computation must be generalized to a form that does not rely on such symmetries.
The algorithm of Deprit and Henrard [31] views periodic orbits in terms of their
intrinsic differential geometric properties and enables such computations, as applied
by Lara [86] and others. In the following we present a more direct approach that
we find to be more intuitive and which only requires the computation of the state
transition matrix.

For the computation of a periodic orbit it is necessary to solve the equation:

x = φ(T ; x, 0) (6.12)

for a given period T . The standard approach is to assume an initial state x0 that
is sufficiently close to, but does not solve, the periodicity condition. Often this
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initial estimate can be found by applying simple two-body theory to the perturbed
problem. Then assume that a small correction, δx, may solve the problem

x0 + δx = φ(T ;x0 + δx, 0) (6.13)
= φ(T ; x0, 0) + Φ(T, 0)δx + . . . (6.14)

If the higher-order terms are ignored this equation can be rearranged to

[I − Φ(T, 0)] δx = φ(T ; x0, 0) − x0 (6.15)

where the right-hand side is not exactly zero. At this point, prior to a periodic orbit
having been converged on, the matrix on the left is generally non-singular and can
be inverted to yield an estimate for the correction. Then the trial solution can be
updated as x1 = x0 + δx.

Normally this process would be repeated until the mismatch |φ(T, 0, xi)−xi| < ε.
If the system is time periodic, then the matrix Φ(T, 0) will, generically, not have
unity eigenvalues, even when the periodic orbit has been converged upon, and is
itself the monodromy matrix for that orbit. Thus, in this sense, computation of
periodic orbits in time periodic systems are much easier than in time-invariant
systems, although generation of the appropriate initial conditions can be difficult.
First, the period of the motion must be equal to an integer multiple of the system
period and thus is immediately specified. Second, a Newton–Raphson method us-
ing the full state transition matrix works well to converge upon a periodic orbit,
assuming the initial estimate is chosen sufficiently close to a periodic motion. For
perturbed orbital problems, it is often sufficient to choose the motion that would
be periodic in the two-body problem as a first estimate for the algorithm.

For a time-invariant system there are additional challenges. First, the period of
the orbit is a free parameter. Second, and more importantly, when the solution
tends towards a periodic orbit, two eigenvalues of Φ tend towards unity and, if at
a periodic orbit, would equal unity. Thus, as the target state is approached the
matrix [I −Φ] becomes singular and the algorithm diverges. One remedy would be
to choose the pseudo-inverse of the singular matrix. An alternate, and constructive
approach, is to remove the offending unity eigenvalues by restricting the linear
variation to a Poincaré map. The advantage of the latter approach is that it defines
the monodromy matrix of the periodic orbit once computed. This approach, first
detailed in [175], is presented in the following.

6.3.2 Reduction of the State Transition Matrix to a
Linear Poincaré Map

The reduction is easiest to derive for a Lagrangian system, but can be generalized
for a Hamiltonian system as well. In the following assume that the full Lagrangian
state is x = [r, ṙ], that the Lagrangian is time-invariant, L(r, ṙ), and thus a Ja-
cobi integral exists which can be evaluated as the Hamiltonian of the system,
H(x) = ṙ · ∂L

∂ṙ − L, albeit with positions and velocities instead of coordinates
and momenta. Assume a simple surface of section, chosen to equal a coordinate
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value S(x) = rI = 0, where I = 1, 2, or 3. Transversality in this case means that
Sx · ẋ = ṙI 	= 0. Using the simple example of the surface of section being rI = 0,
its associated speed vI is then eliminated from the Jacobi integral. Note that for
most Lagrangian systems encountered in astrodynamics ∂H

∂vI
= vI and is non-zero

at the surface of section by definition, and thus it is usually simple to eliminate
this term. Then the reduced state is y = [rJ , rK , ṙJ , ṙK ] where J, K 	= I and do
not equal each other.

The procedure starts with choosing an initial state x0 such that S(x0) = 0
and H(x0) = C, a specified value of energy. The trajectory is then propagated
until a time t1 when S(x(t1)) = 0. The state transition matrix is propagated
simultaneously to find Φ(t1, t0), where this will map deviations in the initial state
to deviations in the final state at time t1, or δx(t1) = Φ(t1, t0)δx0. The initial
deviation is δx0 = [δrJ , δrK , δrI , δvJ , δvK , δvI ]. It is trivial to choose δrI = 0,
thus keeping the initial state on the surface of section. The energy of the deviated
trajectory must also be restricted to a constant value, or H(x0 + δx0) = H(x0).
Expanding the Hamiltonian and simplifying yields the condition at the linear order
Hx|0 ·δx0 = 0. Expanding this in terms of the reduced state results in Hy

∣∣
0
·δy0 +

HvI
|0 δvI = 0, which can be solved for the necessary variation in the initial velocity

vI to maintain a constant value of energy

δvI = − 1
HvI

|0
Hy

∣∣
0
· δy0 (6.16)

Now a linear mapping can be constructed that takes a variation in the reduced
state, δy0, and maps it into a variation in the initial state δx0 that can be mapped
forward using the full state transition matrix

δx0 = (P0 + PH) δy0 (6.17)

where P0 and PH are 2n × (2n − 2) matrices in general that enforce the initial
projection onto the surface of section and constant energy surface. Specifically the
matrices have the following form for the assumed configuration

P0 =

⎡⎢⎢⎣
In−1,n−1 0n−1,n−1

01,n−1 01,n−1

0n−1,n−1 In−1,n−1

01,n−1 01,n−1

⎤⎥⎥⎦ (6.18)

PH = −ŵI+n Hy
∣∣
0

(6.19)

Note that the matrices in P0 all have their subscripts defined for both the identity
matrices and the zero matrices. In the equation for PH for the example considered,
ŵI+n is the zero vector with a 1 in the I +nth row and in general is the unit vector
along the eliminated velocity component. Then PH is formed by taking the outer
product of the two vectors, creating a matrix of size 2n × 2(n − 1).

This vector is then applied to the state transition matrix to find

δx(t1) = Φ(t1, t0) (P0 + PH) δy0
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The state deviation at t1 automatically satisfies energy conservation, or Hy

∣∣
1
·

δx(t1) = 0, and thus the value of δvI(t1) can be ignored. The same does not hold for
the surface of section constraint, however, and S(x(t1)+δx(t1)) = Sx|1 ·δx(t1) 	= 0
in general. In fact, for an arbitrary variation of δy0 there will only be a line of initial
conditions that have the deviated state at t1 on the surface of section, with the
rest of the states either having already passed through the surface or not having
reached it yet (see Fig. 6.1). This occurs generically as the time from one surface
of section passage to the next is not constant over linear variations, but in general
will change with the initial state.

Fig. 6.1 First return map of a solution flow to a surface of section. The initial set is on the
surface but the first return at the nominal time only intersects the surface along a line, with the
other half of the flow having passed through the surface already and the other not having passed
through yet.

To address this allow the time of passage to vary in order to force the deviated
trajectory to cross the surface of section

S(x(t1 + δt) + δx(t1)) = S(x(t1)) + Sx|1 ·
[
∂x(t1)

∂t
δt + δx(t1)

]
(6.20)

Restricting to linear terms, equating this to zero, and noting that ∂x(t1)/∂t = ẋ(t1)
results in the condition

Sx|1 · ẋ(t1)δt + Sx|1 · δx(t1) = 0 (6.21)

which can be solved for the necessary time variation as a function of the deviated
final state

δt = − 1
Sx|1 · ẋ(t1)

Sx|1 · δx(t1) (6.22)

Given the fundamental transversality assumption, Sx|1 · ẋ(t1) = vI(t1) 	= 0.
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Now the final deviated state can be adjusted to ensure that it lies on the surface
of section

δx1 = δx(t1) + ẋ(t1)δt (6.23)

=
[
I − 1

Sx|1 · ẋ(t1)
ẋ(t1) Sx|1

]
· δx(t1) (6.24)

= PS · δx(t1) (6.25)

Note that the final deviation δx1 has been defined to denote the deviation that
lies on the surface of section. Also, note that the mapping matrix PS is a 2n × 2n
matrix and is full rank in general. Finally, note that the term ẋ(t1) Sx|1 is an outer
product of two vectors.

Thus, the final deviation δx1 now both conserves energy and lies completely on
the surface of section. Thus, for the final step this vector can be projected onto the
reduced state to find the final deviation of the linearized Poincaré map

δy1 = PT
0 PSΦ(t1, t0) (P0 + PH) δy0 (6.26)

This has explicitly defined a reduced linear map from the surface of section to the
surface of section in the vicinity of the nominal trajectory

Φ1,0 = PT
0 PSΦ(t1, t0) (P0 + PH) (6.27)

At this point, if Φ1,0 is required in a symplectic form, the linear transformation
discussed previously from a Lagrangian system to a Hamiltonian can be imple-
mented (Eq. 6.3). It is essential to note that, if evaluated at a fixed point, the
matrix Φ1,0 = ΦM and will have both of the generic unity eigenvalues removed
from it.

6.3.3 General Algorithm Revisited

Having a properly reduced linear Poincaré map the computation scheme can be
reconsidered, now restricted to the reduced state. Consider the nonlinear Poincaré
map from an initial point y0 and fixed energy C to the next crossing

y1 = g(y0, C) (6.28)

Now, consider a deviation in the initial state that makes this into a fixed point map

y0 + δy0 = g(y0 + δy0, C) (6.29)
= y1 + Φ1,0δy0 + . . . (6.30)
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assuming the algorithm to compute Φ1,0. The initial deviation is chosen to satisfy
this equation, leading to

δy0 = [I − Φ1,0]
−1 (y1 − y0) (6.31)

and the test solution is iterated as y1 = y0 +δy0 and the process repeated. Now, if
the initial state is within the basin of attraction of the fixed point, the process will
converge and, as discussed previously, the matrix I − Φ1,0 will generically remain
non-singular and as y0 → y∗ then Φ1,0 → ΦM , the monodromy matrix.

6.3.4 Stability Computation

Once the fixed point is converged to a specified accuracy the monodromy matrix
ΦM is also automatically defined by reduction of the original state transition ma-
trix. Stability of the resulting fixed point is then determined by computing the
eigenvectors and eigenvalues of ΦM . Again, it is usually easiest to perform such
computations using a standard software package.

6.3.5 Families of Periodic Orbits

Having computed a periodic orbit at a particular value of a parameter or energy
value, the question arises as to how this single object can be generalized to a larger
family of such solutions, generated as the parameter value is changed. From the
earlier discussion on family continuation, the first estimate of the new fixed point
at energy C + δC is given as δy∗ + [I − ΦM ]−1

g∗
CδC. The remaining issue is how

to compute

g∗
C =

∂g(y∗, C)
∂C

For the example system from above, and for the reduced state in general, there
is one coordinate which is eliminated and which has a non-zero gradient along the
Hamiltonian. Thus

δC =
∂H

∂vI
δvI

where the velocity coordinate is chosen to ensure that this gradient is non-zero. As
the gradient term is a scalar, it can be solved directly for the necessary variation
in the velocity component for a given change in energy,

δvI =
1

HvI

δC

Next, note that the velocity vI can be varied independently of the reduced state
variation, which can remain zero in general. Thus, the deviation in the final reduced
state is equal to

δy1 = PT
0 PSΦ(t1, t0)ŵI+3

δC

HvI

(6.32)



156 6. Solution and Characterization Methods

where the unit vector ŵI+3 is as described before. From this the ratio δy1/δC can
be directly computed to find the necessary partial

g∗
C = PT

0 PSΦ(t1, t0)ŵI+3
1

HvI

(6.33)

It is also possible to continue periodic orbit families in parameters of the equa-
tions of motion. The procedure is largely the same as outlined here for tracing out
a family as a function of energy, except now the partial of the state with respect to
the parameter must be determined. In Chapter 5 the defining differential equation
for this partial is described, and following its computation it can also be projected
to the surface of section using the same methodology as outlined here.

6.4 Semi-Analytical Solutions: Higher-Order Solution
Expansions

An alternate solution approach is to take a nominal, numerical solution of the
system as the known solution and expand about it using an assumed form for
the relative solution. This is exactly what is done when a linear expansion of an
orbit is performed; in the following this approach is generalized and continued to
higher orders in a systematic fashion. The following is largely borrowed from the
derivation given in [124].

Assume a standard form for the equations of motion, ẋ = f(x, t), and that
x ∈ R2n and f : R2n × R → R2n. Then the solution of these equations can be
represented as x(t) = φ(t; xo, to) and φ is analytic in the initial conditions for
|t| < ∞. It is not necessary to assume any special conditions on the solution flow,
such that it be a periodic orbit, be an equilibrium point or lie on a manifold. All
of these conditions can be modeled by this theory, however.

The goal is to expand the solution as a Taylor Series in terms of its initial condi-
tions, with the coefficients being time-varying functions. Introduce tensor notation
to specify the equations of motion and solution as

ẋi = fi(x, t) (6.34)
xi(t) = φi(t; xo, to) (6.35)

i = 1, 2, . . . , 2n (6.36)

where x = (x1, x2, . . . , x2n) is kept as a convenient way to denote the entire state.
For the expansion introduce a variation about the initial conditions, xo+δxo which
is introduced in the solution function. Carrying out the expansion for φ(t; xo +
δxo, to) − φ(t; xo) leads to

δxi(t) =
∞∑

p=1

1
p!

φi,j1j2...jp
(t, to)δxo

j1δx
o
j2 · · · δxo

jp
(6.37)
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where the Einstein summation convention is assumed for the repeated indices in
the above summation, i.e.,

φi,jδx
o
j =

2n∑
j=1

φi,jδx
o
j and φi,j1j2...jp

=
∂pφi(t; xo, to)

∂xo
j1

∂xo
j2
· · · ∂xo

jp

Note that the series is formal, but due to the properties of ordinary differential
equations it is expected to converge for small enough δxo when evaluated over a
finite time, providing an explicit equation for δxi(t) as a function of δx0

j .
Similarly, expand the equations of motion evaluated at a time t in terms of the

above δxi(t), for f(x(t) + δx(t), t) − f(x(t), t) to find

δẋi(t) =
∞∑

p=1

1
p!

fi,j1j2...jp
(x(t), t)δxj1(t)δxj2(t) · · · δxjp

(t) (6.38)

In a final step substitute Eq. 6.37 into Eq. 6.38 to derive expressions for the time
derivatives of the coefficients φi,j1j2...jp

(t, to) so they can be posed as solutions to a
series of equations of motion. Now balance orders of the initial conditions, realizing
that they are the constants of motion for this solution procedure and that the
resulting expansions must balance at each order. Carrying this out recovers the
expressions in [124], which are listed through third order as

φ̇i,j = fi,α(t)φα,j (6.39)

φ̇i,jk = fi,α(t)φα,jk + fi,αβ(t)φα,jφβ,k (6.40)

φ̇i,jkl = fi,α(t)φα,jkl + fi,αβ(t) (φα,jφβ,kl + φα,jkφβ,l + φα,jlφβ,k)
+fi,αβγ(t)φα,iφβ,jφγ,k (6.41)

The first equation is just the State Transition Matrix, while the higher-order equa-
tions are generalizations of this, and thus are called the State Transition Tensors
(STTs). The convergence properties of these solutions are tested in [124] and shown
to be quite effective in modeling the nonlinear dynamics relative to a nominal trajec-
tory. All of the higher-order partials are symmetric in their indices, i.e., φi,αβγ(t, to)
and fi,αβγ(t) are symmetric in α, β and γ in general.

Having the differential equations defined for the STTs all that is needed are
their initial conditions to carry out numerical integrations. These are quite trivial

φi,j(to, to) = δij (6.42)
φi,j1j2...jp(to, to) = 0 for p ≥ 2 (6.43)

It is most efficient to integrate the nominal trajectory φi(t;xo, to) in tandem with
the STTs, as the entire set of equations then form a closed system. The computa-
tional cost of this approach is not trivial. Including the nominal state the number
of differential equations to compute for a first-order expansion is 2n(2n+1), at sec-
ond order is 2n

(
2n2 + 3n + 1

)
, accounting for the symmetric in the higher-order

partials, and continues to scale as (2n)4 at third order, etc.
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Depending on the specific form of the equations of motion many of the dynamics
terms fi,j1j2...jp may be identically zero above a certain index value. For example, if
the system is modeled using Newton’s Equations, f(x, t) = [v; Ur(r)], the higher-
order expansions would follow

fi,i+3 = 1 for i = 1, 2, 3 (6.44)
fi+3,k1,k2,...,kp = Uxi,xk1 ,xk2 ,...,xkp

for i, ki = 1, 2, 3 (6.45)

fi,j1j2...jp
= 0 for all other jp for i = 1, 2, 3 (6.46)

and

fi,j1j2...jp = 0 for i, ji = 4, 5, 6 (6.47)

6.5 Analytic Solutions

There is a long history of analytical solution methods that arises out of Celestial
Mechanics. By an analytic solution we mean that the solution to the equations
of motion can be expressed in terms of analytical functions expanded in some
parameter about a known solution. The use of analytical solutions are several.
First, an analytical solution evaluated to a high degree of precision essentially
replaces a numerical integration with a closed-form function evaluation. This is the
fundamental and original motivation behind development of these solutions, and
it has been developed to extremely high levels of precision in the study of motions
in the restricted three-body problem [51]. The existence of an analytic solution of
this form enables the structure of motion in these problems to be studied in detail.

Further motivations include the development of approximate solutions valid over
extremely long timespans, and is considered further in the following section when
we discuss secular solutions. Development of analytical solutions enable much more
difficult problems to be considered, such as mapping orbit uncertainty forward in
time. Specifically, given an analytical solution, it becomes possible to solve the
diffusionless Fokker–Planck–Kolmogorov Equation to find the probability density
function of particle as a function of time. Additionally, it becomes simple to explore
the neighborhood of a solution given an analytical approximation to it, enabling
applications to navigation and orbit determination techniques.

Two approaches are discussed that develop analytical solutions by very different
methods. The first applies analytic continuation and follows the classical develop-
ment by Moulton. In this approach the solution is built up at each order by solving
a quadrature. The other approach is the Lie–Deprit algorithm, which has a basis
in von Zeipel’s method. This method enforces the condition that the solution is
constructed so that it is a canonical solution, and hence preserves the Hamiltonian
constraints of the original problem statement. We do not discuss this method in
detail, but instead refer to some appropriate texts for its exposition.
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6.5.1 Moulton’s Method of Analytic Continuation

The following is modified from Moulton [111], consult that text for a more rig-
orous description of the convergence of the series involved, plus a more in-depth
description of this general solution method and its variations.

Assume a general differential equation of the form:

ẋ = f(x, t) + εg(x, t) (6.48)

where the problem can be completely solved when ε = 0. Denote the general
solution to the problem as x(t) = φ(t; xo, to, ε), where ε is retained as a parameter.
Denote the known, analytical solution when ε = 0 as x(0) = φ(t;xo, to, 0) and note
that this is not necessarily a Hamiltonian system.

By hypothesis, the solutions to this full system of equations are analytic in ε,
and thus the solution can be expanded as an analytic function of ε. The term ε
need not be a physically defined parameter, and can just represent the fact that
the order of magnitude of |g| � |f | in general. Specifically one can expand the
general solution into a Taylor series about the known solution

x(t) = x(0) + εx(1) +
1
2!

ε2x(2) + . . . (6.49)

We do not try to express what the radius of convergence of this series is, but note
that for an analytic and well-behaved dynamical solution over a finite timespan
that such a radius of convergence will exist.

The derivation of the method is simple, one just substitutes the above general
form of the solution into the full equations of motion, expands them in orders of
ε, and then balances terms at each order of epsilon, which is where analyticity is
assumed. Skipping some of the involved details of the expansion, carrying it out
and comparing terms at orders ε0, ε1 and ε2 yields the results:

ε0 : ẋ(0) = f(x(0), t) (6.50)

ε1 : ẋ(1) =
∂f

∂x

∣∣∣∣
0

x(1) + g(x(0), t) (6.51)

ε2 : ẋ(2) =
∂f

∂x

∣∣∣∣
0

x(2) + 2
∂g

∂x

∣∣∣∣
0

x(1) + p(x(0), x(1), t) (6.52)

and at the kth level has the same general form:

εk : ẋ(k) =
∂f

∂x

∣∣∣∣
0

x(k) + k
∂g

∂x

∣∣∣∣
0

x(k−1)

+p(x(0), x(1), . . . ,x(k−1), t) (6.53)

where the p are functions that arise from the higher-order partials of the equations
of motion and are all functions of the expansion at lower orders. These are worked



160 6. Solution and Characterization Methods

out to the second and sometimes higher order in Moulton, but can also be computed
using a symbolic manipulator.

Then, assuming that the solution x(0)(t) is known in closed form, each order
equation only involves linear terms at that order with all nonlinear terms appearing
at lower order, meaning that the problem can be solved by quadratures once a
solution for the homogeneous linear term is found. For the case where the solution
x(0) is constant, such as occurs for orbit element formulations, the linear equations
can be solved in closed form with the exponential matrix, and if f ≡ 0 the entire
solution process can be reduced to quadratures.

Let us specifically consider the case when f ≡ 0, then the solution to these
equations can be expressed in a concise, recursive form. First note that the solu-
tion at order 0 is just the initial conditions, x(0) = xo, implying that the initial
conditions for all higher-order terms are identically zero, x(k)(to) = 0, k ≥ 1. Thus
the solutions have the form:

x(1)(t, to) =
∫ t

to

g(xo, τ) dτ (6.54)

x(2)(t, to) =
∫ t

to

2
∂g

∂x

∣∣∣∣
o

x(1)(τ, to) dτ (6.55)

x(k)(t, to) =
∫ t

to

[
k

∂g

∂x

∣∣∣∣
0

x(k−1)(τ, to)

+p(x(0),x(1), . . . ,x(k−2), τ, to)
]
dτ (6.56)

While implementation of this method can be cumbersome beyond the first order,
it provides a systematic method to describe these higher-order dynamics.

6.5.2 Generating Function Approaches

These approaches generally rely on the canonical form of the equations of motion
and state the problem as a general expansion of a generating function, defined for
all orders of perturbation. At each order of expansion one finds partial differential
equations that must be solved. These partial differential equations are usually sim-
plified by eliminating fast variables, retaining only the more slowly varying terms.
Then the solution procedure is advanced to the next order, systematically build-
ing up a higher-order solution. The von Zeipel method is the first widely applied
version of this solution technique, and is detailed in [19]. An important innovation
for this theory was introduced by Deprit, through the use of Lie transforms, which
eliminated the need to perform analytical operations on the von Zeipel solution and
enabled the direct solution of the initial conditions. A detailed discussion of the
Lie–Deprit method is given in [13]. The manner in which these theories were applied
took fundamental advantage of the periodic motion of the unperturbed two-body
system to construct generating functions that eliminated such periodic angles at
subsequently higher orders. In this way, these analytical expansion theories essen-
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tially perform high-order averaging of a dynamical system and, at leading order,
provide similar results to those discussed next for the mean motion derivations.

Despite the rigor and advantages of these methods, we do not present the theory
in detail, as this would require significant additional discussions that stray from
the core purpose of this text. It must be noted that these expansion techniques
have not been widely applied to the problem of small-body orbiters to date, except
to the motion about planetary satellites [90], and may represent a new and fruitful
application of this theory. Possible drawbacks include the relative strength of the
perturbations, which may require high-order expansions in order to fully capture
the effects analytically.

6.6 Mean Motion Derivations

A particularly effective method for the approximate evaluation of the dynamics
of a system is through the use of averaged equations. Once derived, such averaged
equations can themselves be integrated numerically, or can often be solved in closed
form. The Lie–Deprit method taken at the first order alone provides what can be
considered to be an “averaged” form of the equations of motion, as it provides a
systematic way of removing the fast variables while retaining the slower variables
of the system. This approach has the advantage of allowing the solutions to be
expanded to higher orders, as has been investigated in numerous studies. However,
as indicated above this methodology has considerable theoretical overhead and is
beyond the scope of the current text, which is focused on more direct and practical
approaches for describing orbital motion about small bodies.

The method presented below, in contrast, develops the averaged equations of
motion at first order and discusses properties of these solutions. These averaged
equations of motion capture the secular evolution of the system and can either be
numerically integrated or in some cases solved in closed form. The advantage of this
approach is that it is possible to easily capture the qualitative effect of perturbations
over long timespans with significantly reduced computational requirements. Similar
approaches have been systematically developed to higher orders by Laskar [92] for
investigating the long-term stability of the solar system.

These methods are generally applied to orbit element formulations such as the
Lagrange Planetary Equations or the Gauss Equations. Thus, the dynamical system
of interest for this approach has a simplified form as compared to the general system
for Moulton’s analytical theory

ẋ = εg(x, t) (6.57)

where when ε = 0 the resulting equation is trivially solved by specifying some
set of initial conditions, x0, which one can think of as being the orbit elements
of an unperturbed satellite in motion about a point mass body. In developing the
acceleration perturbations g(x0, t), even though the nominal solution consists of
constants it is usually necessary to map this solution into a Cartesian frame which
specifies the motion of the satellite relative to the system as a function of time.



162 6. Solution and Characterization Methods

This is generally where the time-variation in the equations of motion arises from.
The following development makes the tacit assumption that, all else being equal,
the resulting perturbing acceleration g(x0, t) will be periodic or quasi-periodic in
time t. In the application section there are explicit examples of these perturbations
and the relevant assumptions are discussed again at that time.

6.6.1 First-Order Solutions

Now apply Moulton’s theory to first order to find the approximate evolution of
the system as a function of time. If the perturbation is relatively small, then these
changes may not be dramatic, although they will systematically change the state of
the system. Writing out the general expression for the first-order solution, ignoring
the parameter ε, yields

ẋ1 = g(x0, t) (6.58)

where the analytic continuation results are used, meaning that x0 is the unper-
turbed motion. For orbital systems, as discussed above, one can assume that
g(x0, t + T ) = g(x0, t), where T is generally the orbit period of the unperturbed
motion or is related to it. There are often other time-varying quantities in these
equations, in computing the periodicity one often assumes that these times are held
fixed, and may be averaged over later under some mild conditions. The solution
for x1 can be explicitly written out as

x1(t) − x1(0) =
∫ t

0

g(x0, τ) dτ (6.59)

where for convenience we take to = 0. Then over a period t + T

x1(t + T ) − x1(0) =
∫ t+T

0

g(x0, τ) dτ (6.60)

=
∫ T

0

g(x0, τ)dτ +
∫ T+t

T

g(x0, τ) dτ (6.61)

= x1(T ) +
∫ t

0

g(x0, τ) dτ (6.62)

leading to

x1(t + T ) − x1(t) = x1(T ) (6.63)

Thus, at the level of the approximation a propagation n orbits into the future
yields:

x1(t + nT ) = x1(t) + nx1(T ) (6.64)
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meaning that, to the leading order, the long-term effects can be captured by under-
standing the change in x1 over one orbit period of the nominal system. Indeed, it
now is possible to take the time average of x1 to understand the predicted long-term
behavior:

x̄1 = lim
t→∞

1
t

∫ t

0

x1(τ) dτ (6.65)

= lim
n→∞

1
t′ + nT

[∫ t′

0

x1(τ) dτ + n

∫ T

0

x1(τ) dτ

]
(6.66)

=
1
T

∫ T

0

x1(τ) dτ (6.67)

Thus, to initially understand the long-term evolution of the system one only needs
to study its evolution over one cycle using the approximate map

x(t + nT ) = x0 + nx1(T ) +
∫ t

0

g(x0, τ) dτ (6.68)

where t ≤ T . Such extrapolation of this result is inaccurate, however, since the
integral x1(T ) depends strongly on the nominal value x0, and if the full solution
is diverging from this initial value the integral will become less and less relevant.
This can be fixed by replacing the simple extrapolation of the analytical solution
with a more sophisticated mapping approach, updating the nominal solution at
every step in time. To represent this dependence a more precise notation is intro-
duced, x1(T ; x0) which shows that the perturbed solution depends explicitly on
the nominal state.

Then the sequence in which the nominal solution is updated using x1 is

x(T ) = x0 + x1(T ; x0) (6.69)
x(2T ) = x(T ) + x1(T ; x(T )) (6.70)

x((n + 1)T ) = x(nT ) + x1(T ; x(nT ) (6.71)

This directly gives the expected change in the state over one orbit period at an
arbitrary step n as

x((n + 1)T ) − x(nT ) = x1(T ;x(nT )) (6.72)

or

Δx(nT ) = x1(T ; x(nT )) (6.73)
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This can be interpreted as a net rate of change of the state over one orbit period

Δx(nT )
T

=
1
T

x1(T ; x(nT )) (6.74)

=
1
T

∫ T

0

g(x(nT ), τ) dτ (6.75)

= ḡ(x(nT )) (6.76)

and this is interpreted as the average rate of change in the state, where now that
rate of change can shift from orbit to orbit. Abstracting this to a continuous time
system yields:

ẋ = ḡ(x) (6.77)

where the function ḡ has had its time variation due to orbital motion removed and
is computed as

ḡ(x) =
1
2π

∫ 2π

0

g(x, M) dM (6.78)

where the time is replaced with the mean motion, M = nt, and the period by
T = 2π/n, essentially assuming that all averaging will be over orbital motion. In
this sense this process is equivalent to the first-order Lie Series equations where
the “fast” variable has been eliminated. From the analytic continuation side this
represents the average rate of change of the system and defines a new nonlinear set
of equations for the propagation of the orbit state.

6.6.2 Short-Period Terms

Now consider the solution over one time period of the unperturbed problem. Then
the actual solution should be represented with two terms, a secular (or averaged)
term represented above, which varies linearly with time over one orbit period, and
a periodic term

x(t) = xo + ḡt + xp(t) (6.79)

for 0 ≤ t ≤ T . Note that it is not needed to keep ḡ constant, but this eases the
derivation. Then the periodic part of the solution xp(t) repeats itself over one orbit,
yielding the proper change in the state over one period. Taking the time derivative
of this relationship yields:

g(x, t) = ḡ(x) + ẋp(t) (6.80)

which provides an explicit differential equation for the periodic term:

ẋp = g(xo, t) − ḡ(xo) (6.81)
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where only the constant terms inside of the dynamics equations are retained, es-
sentially substituting the nominal initial condition xo for the full solution. Then a
quadrature can be carried out for xp to find

xp(t) =
∫ t

0

g(xo, τ) dτ − tḡ(xo) (6.82)

This provides an estimate of the periodic solution relative to the secular solution
within each time interval, and will be explicitly used in the following.

The solutions to the secular equations given above represent the average evo-
lution of the dynamical system, but comparison between numerical integrations
and these secular equations, when starting from the same initial conditions, will in
general show a divergence between the two. While this may be due to neglected
second-order effects for a strongly perturbed system, often this results because of an
inconsistent choice of initial conditions. Carefully considering the original deriva-
tion of the mean state x̄, it is important to note that the limit t → ∞ was taken.
In the later derivation of the secular rates of change of these elements, however,
we necessarily limited ourselves to a single cycle of the nominal system. Returning
to the decomposition of motion into a mean part and a periodic part, it becomes
clear that over a single cycle there may be a non-trivial contribution to the average
from the periodic part which does not grow in time, yet which can shift the mean
value of the state starting from some initial condition xo. Thus, taking the average
of a solution decomposed as Eq. 6.79 over a single cycle yields:

x̄ = xo +
1
2
ḡT + x̄p (6.83)

The average of the periodic part is non-zero and equals:

x̄p =
1
T

∫ T

0

[∫ τ ′

0

g(xo, τ) dτ − τ ′ḡ(xo)

]
dτ ′ (6.84)

=
1
T

∫ T

0

∫ τ ′

0

g(xo, τ) dτ dτ ′ − T

2
ḡ(xo) (6.85)

So given an initial condition for the dynamical system, xo, which is used in the
numerical integrations, the average value of the state over a single period is offset
from this and equals:

x̄ = xo +
1
T

∫ T

0

∫ τ ′

0

g(xo, τ) dτ dτ ′ (6.86)

The interpretation of this result is that given an initial condition for a state xo

the secular equations should be initialized at the above value of x̄ for the mean
equations to track the true evolution more closely. This small correction can often
reduce deviation between secular and true solutions by a significant amount.
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6.6.3 Multiple Averaging Time Scales

For some problems of interest, there may be multiple time scales or frequencies
over which relevant dynamical motion occurs. Examples include planetary satellite
orbiters, where the orbit period of the spacecraft is often much smaller than the
orbit period of the planetary satellite (see Chapter 17). Another example would be
orbital dynamics about a slowly rotating asteroid, as again the orbit period may
be much shorter than the rotation period [72].

In these situations the two time scales are defined by an orbital rate, n, and
the motion of external bodies in the system with their own angular rate N . If
N/n � 1 it is acceptable to hold N constant while an initial average is taken
over n. Then the remaining system has a time-varying term associated with N , in
general periodic. This term can also be averaged over, usually yielding a greatly
simplified set of equations. The usual stipulation is that the time scales between
the two periods are sufficiently far apart. The degree of separation that is sufficient
should be studied on a case-by-case basis.

6.6.4 Averaging the Lagrange Planetary Equations

A special mention must be made of averaging applied to the Lagrange Planetary
Equations. These equations have the general form g(x, t) = G(x)Rx(x, t), where
G(x) is a matrix and does not contain time explicitly. Thus, averaging applied to
these equations can be drawn all the way back to the perturbing potential R(x, t),
greatly simplifying the derivation of the mean equations. The average potential is
defined as

R̄(x) =
1
2π

∫ 2π

0

R(x, M) dM (6.87)

where the averaging is generally expressed in terms of mean anomaly. The resulting
secular equations are then ˙̄x = G(x)R̄x(x̄). One main consequence of this approach
is that the mean anomaly is removed from the perturbation potential and thus the
semi-major axis is constant in the averaged motion and serves as an integral of
motion for these equations. If the original system has a Jacobi integral, then that
function is still conserved after the averaging and defines an integral of motion
distinct from the semi-major axis.

If the singly averaged potential is a function of a second periodic term of period
T , or R(x, t, M) = R(x, t + T, M), and sufficient distance between the two time
scales exists, another averaging may be performed to yield:

R(x) =
1

T2π

∫ T

0

∫ 2π

0

R(x, τ, M) dM dτ (6.88)

Specific applications of this in will be made in Chapter 17.
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6.7 Discrete Orbit Updates

When a dynamical system has a time-varying quantity, an averaging analysis gen-
erally holds this time-varying quantity stationary while performing its quadrature
over the motions of a satellite. For many systems this is a reasonable approxima-
tion which allows the equations to be simplified. Important situations can arise,
however, where this is not a good approximation. Specific examples usually include
systems where the time variation is of similar magnitude as the orbital variation in
time, such as a spacecraft orbiting close to a rotating asteroid. For these systems
it is not appropriate to hold the asteroid stationary during the averaging process
as significant interactions between the two systems result, yielding large changes
in quantities such as the energy or angular momentum.

It is desirable to capture these effects analytically or semi-analytically, as these
approaches generally provide more insight into the factors of the system which con-
trol the changing orbit. To analyze these effects it is useful to state the dynamical
system in terms of the Lagrange Planetary Equations. Assume that the perturba-
tion function has an explicit time variation, R(x, t). If the system has significant
interaction over one orbit, then averaging the system can mask these interactions.
To capture them consider the Moulton analytic theory to the first order, expressed
as a quadrature:

x1(t) =
∫ t

to

f(x0(τ), τ) dτ (6.89)

where both the orbital motion and the physical system are allowed to vary simul-
taneously. If this is performed over one orbit then one finds explicit formula for the
change in the state over this interaction.

Δx =
∫ to+T

to

f(x0(τ), τ) dτ (6.90)

where T is the orbit period. Formally, it is then possible to update the nominal state
and re-integrate over a given time-span, leading to a discrete map approximation
[130].

These quadratures generally cannot be evaluated in closed form, essentially due
to the explicit dependence of the two-body solution on true anomaly and the depen-
dance of the physical system on time. For an analytic expression of the potential,
however, it is usually possible to isolate these quadratures as a function of semi-
major axis and eccentricity alone, allowing the dependance of the other orbital
elements to remain clear. Specific applications of this approach are presented in
Chapter 7. Other examples of this approach can be found in [187, 129].
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6.8 Phase Space Constraints

The final, and in some sense most precise, constraints that can be placed on a solu-
tion arise from the topology of conserved quantities. The most common approach
to developing a hard constraint on a trajectory is the use of zero-velocity surfaces.
These arise in systems with a Jacobi integral and allow one to specifically map out
regions where it is impossible for a particle to enter, as a function of the Jacobi
integral value.

For systems where a Jacobi integral exists the generic form that these integrals
take is

J(r,v) =
1
2
v2 − V (r) (6.91)

where V is the potential and v = |v| is the speed relative to the frame in which all
time variation in the system is removed (usually a uniformly rotating frame). The
concept is quite simple: for a given value of the Jacobi integral, C, the inequality
v2 ≥ 0 must hold, leading to the more general constraint

C + V (r) ≥ 0 (6.92)

Thus, this provides explicit constraints on the position of the particle, independent
of the speed, for a given constant C, which is V (r) ≥ −C.

A simple example of this is found in the two-body problem and its energy in-
tegral, E = 1/2v2 − μ/r. Now note that the potential is negative definite, with
the resulting inequality being expressed as μ/r ≥ −E. Next consider the different
possibilities, that E < 0, E = 0 and E > 0. First consider E = 0, yielding the
inequality μ/r ≥ 0. This provides no constraint on the system, as the quantity on
the left is always positive and only approaches 0 as r → ∞. Similarly for the case
E > 0, which leads to the inequality μ/r ≥ 0 ≥ −E. Thus, in these situations there
are no constraints placed on the motion, even though additional constraints can be
developed for the special case of the two-body problem. Use of zero-velocity curves
generally has such null results for specific values of the constant. This is due to the
potentials usually being definite in sign, meaning that the inequality will often be
trivially true.

More interesting for the two-body problem is the case of negative energy, E < 0,
as the inequality then becomes μ/r ≥ −E > 0, meaning that there are values of
r which violate the inequality. Specifically, the system is restricted to r ≤ μ/|E|,
providing an upper bound on the distance that the solution can get from the origin.
While these results are somewhat trivial for the two-body problem, they also apply
for more complex systems that do not have specific solutions, such as the restricted
three-body problem.

Generally, the presence of additional integrals of motion allow for additional
restrictions on the motion, without having to solve for the motion specifically. Al-
though often these restrictions must be combined with some other integral, such
as the Jacobi or energy integrals. A good example of this can be found when some
component of the angular momentum is conserved. Let’s assume that the system
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conserves angular momentum with a relationship of the form h = r2θ̇ = rv cos γ,
and that it has a Jacobi integral of the form v2 = 2C + 2V (r). The presence of
such an additional relation allows us to eliminate the speed, v, and transform the
angular momentum integral to h = r

√
2C + 2V (r) cos γ. Note that the previous

zero-velocity constraint can assure us that only regions where V + C ≥ 0 are con-
sidered. If h 	= 0, then the sign of the expression cannot change in general and it
can be noted that cos γ 	= 0 unless r → ∞, and thus that γ lies in the interval
(−π/2, π/2). Now, let us assume that the trajectory has a closest or furthest ap-
proach to the origin, i.e., a periapsis or apoapsis passage. Geometrically it is known
that γ = 0 at these points which leads to the relation h = rapse

√
2C + 2V (rapse),

implying that there are unique closest and furthest passages, dependent on the
number of roots these expressions have. This was seen explicitly in the two-body
example given in Chapter 3 where there was a resultant quadratic equation related
to this constraint.



Part III

Applications to Asteroids, Comets
and Planetary Satellites



Applied Analysis and Case Studies

We now analyze a number of specific problems that involve motion about small
bodies, applying the models and techniques from the previous chapters to these
strongly perturbed systems. Our approach is to consider some specific bodies and
describe the application of our previously stated analysis techniques to them. Ac-
cordingly, this chapter represents a series of case studies for specific bodies or
specific classes of bodies. However, the descriptions are made as general as possible
in order to ensure that these analyses can be readily transported to other systems.

In Chapters 7 to 10 we focus on orbital dynamics about asteroids, only ac-
counting for their mass distribution and morphology. In Chapter 11 we consider
controlled motion in the vicinity of an asteroid. Chapters 12 to 14 focus on the case
when solar radiation pressure is the dominant perturbation. Chapter 15 discusses
the interaction of a spacecraft with radial cometary outgassing fields. Chapters 16
to 18 discuss the orbital dynamics about a planetary satellite.



7. Uniformly Rotating Bodies:
Asteroid 433 Eros

The fundamental problem of orbital dynamics about small bodies is typified by the
interaction of the spacecraft with a non-spherical body that is rotating uniformly in
space. This was the problem presented to NASA’s Near Earth Asteroid Rendezvous
(NEAR) mission when it had its rendezvous with asteroid 433 Eros. Eros has a
highly irregular shape (see Fig. 1.5), is uniformly rotating about its maximum
moment of inertia, and is massive enough so that solar radiation pressure and solar
gravity play a relatively minor role in perturbing a spacecraft trajectory. Thus the
analysis of this problem can restrict itself solely to the interaction of a spacecraft
and uniformly rotating mass distribution. This chapter is based on an analysis
performed prior to rendezvous with the asteroid in 2000, based on a model from a
flyby of the asteroid in late 1998 [175] and also recounts some pre-mission planning
analyses [154]. Thus, the gravity field values, total mass, and asteroid shape are
not as accurate as currently available models, but making such changes will not
alter the results and conclusions significantly. Detailed descriptions of the actual
mission dynamics and Eros shape model are found in [107, 83].

7.1 Model of 433 Eros

The necessary parameters and models for this analysis are the total mass of the
asteroid, the rotation period of the asteroid, and the shape of the body (as we will
apply a constant density approximation to find its gravitational field) (Table 7.1).
The asteroid orbit about the Sun is not relevant, as we will be neglecting solar
radiation pressure and the solar tide.

The shape model of Eros used in this analysis was obtained from the NEAR
imaging science team [185] and has a 5-degree surface resolution. It has a total
estimated volume of approximately 3,000 km3 and a mean (volumetric) radius of
8.97 km. This shape was significantly refined following the NEAR spacecraft ren-
dezvous with the asteroid [47]. The shape model has been transformed into a trian-
gular plate model with 2,432 vertices and 4,860 plates, centered at its volumetric
center and oriented along its principal axes of inertia (assuming constant density).
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Table 7.1 Basic Eros parameters used for this analysis

Parameter Symbol Value Units

Gravitational Parameter μ 5 × 10−4 km3/s2

Rotation Period Tr 5.27 hours
Rotation Rate � 3.3118 × 10−4 radians/s
Oblateness Gravity Coefficient R2

oC20 −26.755 km2

Ellipticity Gravity Coefficient R2
oC22 12.752 km2

For gravitational calculations outside of the circumscribing sphere of the asteroid,
a gravity field expanded up to degree and order 16 derived from the constant den-
sity shape is used [191], while when close to the body the polygonal gravitational
field algorithm of Werner, described previously, is used. Analytical calculations are
restricted to the low degree and order gravity field coefficients.

7.2 Equations of Motion

There are two forms of the equations of motion that are useful for this analysis,
a Lagrangian dynamics form and a Lagrange Planetary Equations form. Both of
these are used and briefly restated for the specific case of a uniformly rotating body
with no external perturbations.

7.2.1 Lagrangian Dynamics

First consider the Lagrangian dynamics written in the frame rotating with the
asteroid. In this coordinate system the central gravity field does not change with
time, and since the rotational rate of the asteroid is constant, the equations of
motion are time-invariant. The Lagrangian in the body-fixed frame is

L(r, ṙ) =
1
2
ṙ · ṙ +

1
2
�2r · ˜̂z · ˜̂z · r − U(r) (7.1)

We assume that the principal moments of inertia have been aligned with the co-
ordinate axes of the system, with the ẑ-axis aligned with the maximum moment
of inertia. Hence the rotational dynamics of the body consist of uniform rotation
about this axis.

In the body-fixed reference frame the equations of motion are:

ẍ − 2�ẏ = �2x + Ux (7.2)
ÿ + 2�ẋ = �2y + Uy (7.3)

z̈ = Uz (7.4)

where � is the rotation rate computed from the asteroid rotation period and U
is the gravitational potential. Since these equations are time invariant they have a
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Jacobi integral

J =
1
2
(
ẋ2 + ẏ2 + ż2

)− 1
2
�2

(
x2 + y2

)− U(x, y, z) (7.5)

7.2.2 Lagrange Planetary Equations

An alternate description of the orbit dynamics is found using the Lagrange Plane-
tary Equations. For our computations it is more useful to use the canonical form of
the Lagrange equations given in Chapter 4, revised to express the change in orbit
Keplerian energy, E, total orbit angular momentum, H, and orbit angular momen-
tum projected onto the z-axis, G, as a function of the gravitational perturbations
acting on them.

dE

dt
=

∂R

∂t
(7.6)

dH

dt
=

∂R

∂ω
(7.7)

dG

dt
=

∂R

∂Ω
(7.8)

where:

E = − μ

2a
(7.9)

H =
√

μa(1 − e2) (7.10)
G = H cos i (7.11)

R = U − μ

r
(7.12)

and a, e, i, ω and Ω are the osculating orbital elements. Also note the orbit param-
eter p = a(1− e2) which is used when convenient. Finally, denote the true anomaly
by f and the mean anomaly at epoch term as σ.

For the additional equations describing the dynamics of the argument of peri-
apsis, longitude of the ascending node, and mean epoch the classical form of the
Lagrange Planetary Equations are used.

ω̇ =
√

1 − e2

na2e

∂R

∂e
− cot i

na2
√

1 − e2

∂R

∂i
(7.13)

Ω̇ =
csc i

na2
√

1 − e2

∂R

∂i
(7.14)

σ̇ = − (1 − e2)
na2e

∂R

∂e
− 2

na

∂R

∂a
(7.15)

It is important to restate the Jacobi integral in terms of the variables consid-
ered here. In this system the integral takes on a particularly simple form when so
evaluated:

J = E − �G − R (7.16)
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7.3 Analytic Characterization

First the application of approximate, analytical analysis to characterize spacecraft
orbital dynamics about a uniformly rotating body are described. The results from
such an analysis are not as exact as numerical computations, but have general
application as several key parameters can be left in functional form.

7.3.1 Perturbations from Asteroid Oblateness

The effect of the C20 gravity term, or the oblateness, on a spacecraft orbit has
been studied extensively in connection with the Earth orbiter problem (see [19]).
To accurately capture this effect analytically requires the inclusion of higher-order
gravity terms, such as C30 and C40. Recall the general forms for these potential
expansions

R20 =
μR2

oC20

r3

(
1 − 3

2
cos2 δ

)
(7.17)

R30 =
μR3

oC30

2r4
sin δ

(
5 sin2 δ − 3

)
(7.18)

R40 =
μR4

oC40

8r5

[
35 sin4 δ − 40 sin2 δ + 3

]
(7.19)

where sin δ = sin i sin(ω + f). The averaging of these potential yield the secular
potentials

R20 =
μR2

oC20

2a3(1 − e2)3/2

(
3
2

sin2 i − 1
)

(7.20)

R30 =
3μR3

oC30

2a4(1 − e2)5/2
sin i sin ωe

(
5
4

sin2 i − 1
)

(7.21)

R40 =
3μR4

oC40

8a5(1 − e2)7/2
(7.22)[(

35
8

sin4 i − 5 sin2 i + 1
)(

1 +
3
2
e2

)
+

5
4

sin2 i cos(2ω)
(

3 − 7
2

sin2 i

)
e2

]
Substituting R20 into the equations for the secular rates in argument of periapsis,

longitude of ascending node and mean anomaly yields

dω

dt
=

3nC20

2p2

(
5
2

sin2 i − 2
)

(7.23)

dΩ

dt
=

3nC20

2p2
cos i (7.24)

n = n

[
1 +

3C20

√
1 − e2

2p2

(
3
2

sin2 i − 1
)]

(7.25)
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The significant item to note is that the secular rates of these angles can become
very large when orbiting close to asteroids. The leading frequency of these variations
is A20 = 3nC20/(2p2) and for Eros has the value

A20 = −85.6
1

ã7/2(1 − e2)2
degrees/hour (7.26)

where ã is the spacecraft semi-major axis normalized by the mean asteroid radius
(8.97 km for Eros) and e is the orbital eccentricity. The corresponding frequency
for an Earth orbiter is 0.415 degrees/hour, over two orders of magnitude smaller.
Thus, for operations within several mean radii of the asteroid the spacecraft orbit
will be subject to large secular rates in its orbit plane orientation and in-plane ori-
entation. The large rate clearly shows how orbital dynamics close to an asteroid are
significantly more perturbed than planetary orbiters, and implies that assumptions
made classically for planetary orbiters may not always apply.

Once an orbit is chosen that is “safe” from most destabilizing influences, such as
a retrograde orbit, these large secular rates must still be accounted for and cannot,
except in a few specific orbit geometries, be directly controlled. The impact and
control of these effects were evaluated and incorporated into the NEAR orbital
mission plan [154].

7.3.2 Analytical Stability Analysis of Polar Orbits

Polar orbits and the global coverage they provide were of particular interest to the
NEAR mission and will be to any asteroid mapping experiment. In fact, the NEAR
mission had an extended period in a polar orbit and there was interest in decreasing
the orbit radius as much as possible to gain additional signal in the gravitational
measurements. During the mission it was determined numerically that polar orbits
had a lower limit on radius that, if violated, soon led to unstable (escaping) orbital
motion.

It is, in fact, possible to better understand this lower limit using classical an-
alytical and averaging techniques combined with more modern characterizations
found for asteroid orbiters. To better understand the dynamics in this particular
case, the combined effects of the C20, C30, and C40 gravity coefficients on a polar
orbit must be considered.

Of particular interest to us is the evolution of the eccentricity, which follows the
basic equation:

ė = −
√

1 − e2

na2e

∂R

∂ω
(7.27)

e′ = − r2

μae

∂R

∂ω
(7.28)

where e′ denotes differentiation with respect to orbit true anomaly. Recall the
familiar result from the standard averaging analysis of C20 that the argument of
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periapsis has a secular component defined as:

ẇ =
3nr2

oC20

2a2(1 − e2)2

(
5
2

sin2 i − 2
)

(7.29)

meaning that the argument of periapsis will have a constant rate of change on av-
erage, and that the eccentricity will have no secular evolution due to this particular
gravity term.

What is observed numerically for orbiters near Eros, however, is a large tran-
sient oscillation in eccentricity which causes the orbit periapsis to occasionally dip
closer to or farther from the asteroid. As established previously in [175] (and dis-
cussed later in this chapter) it is the orbit periapsis and eccentricity that controls
the coupling of the asteroid gravity field to the orbit dynamics, and that periapsis
passages at a close enough distance can rapidly destabilize motion. Thus it is of
interest to characterize analytically the expected variations in eccentricity due to
the gravity field perturbations. This can be done by inspecting the transient vari-
ations in eccentricity due to C20 and the long-period variations in eccentricity due
to C30 and C40 combined with the secular motion of the argument of periapsis. In
the following the assumption that the orbit is near-circular is made, and thus that
higher orders of eccentricity can be ignored.

The differential equation for eccentricity with respect to C20 can be written as:

e′ =
3
2

C20 sin2 i

a2

[
sin(2ω) (cos(3f) + cos(f))

+ cos(2ω) (sin(3f) + sin(f)) + O(e)
]

(7.30)

which can be integrated with respect to true anomaly to yield:

Δe20 =
3
2

C20 sin2 i

a2
(7.31)[

sin(2ω)
(

1
3

sin(3f) + sin(f)
)

+ cos(2ω)
(

1
3
(1 − cos(3f)) + 1 − cos(f)

)
+ O(e)

]
This gives the amplitude of the short-period eccentricity fluctuation about its mean
value, which is found by taking the average of the above equation over one orbit,
or

Δe20 =
1
2π

∫ 2π

0

Δe dM (7.32)

=
2r2

oC20

a2
sin2 i cos(2ω) + O(e) (7.33)
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Thus, the total fluctuation in eccentricity due to C20 is computed as Δe20 + Δe20,
for which a reasonable bound can be found:

Δe20 + Δe20 ≤ 10
3

r2
oC20

a2
sin2 i (7.34)

This upper limit does not, however, agree with numerical integration of an orbit in
the full gravitational field, indicating that higher-order terms must be included in
the analysis.

To analyze the contribution of C30 to the variation of e consider the differential
equation for this term

ė30 = −3
2

nr3
oC30

a3(1 − e2)2

(
5
4

sin2 i − 1
)

sin i cos ω (7.35)

The presence of cos ω in the equation is important as it will have a secular change
due to C20. Thus, we change the independent variable to ω to find:

de30

dω
= ė30/ω̇20 (7.36)

= −1
2

r3
oC30

ar2
oC20

sin i cos ω (7.37)

which can be immediately integrated to find:

Δe30 = −1
2

r3
oC30

ar2
oC20

sin i sinω (7.38)

By combining an analysis of the effect of C20 and C30 on a near-circular, polar
orbit the following relation for the maximum value of eccentricity over one circu-
lation period of the argument of periapsis is found

emax ∼ 10
3

r2
o|C20|
a2

+
r3
o|C30|

ar2
o|C20| (7.39)

This relation predicts that the maximum excursion in eccentricity is 0.125 for a
35-km orbit, 0.1 for a 40-km orbit, and 0.07 for a 50-km orbit. The equation is
plotted in Fig. 7.1 for the values of Eros. The period of the oscillation is computed
from secular C20 theory for the circulation in argument of periapsis:

Tω =
8π

3
a3.5

√
μr2

o|C20| (7.40)

and is equal to 41 days in a 35-km orbit, 62 days in a 40-km orbit, and 142 days in
a 50-km orbit. This long-period oscillation in eccentricity does not seem to affect
the long-term stability of the orbit until the semi-major axis drops below 35 km.
Agreement between these approximate limits and numerical integrations for long-
term stable orbits seem to agree well; see Fig. 7.2.
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Fig. 7.1 Maximum eccentricity oscillation as a function of altitude for a polar orbiter.

When the polar orbit radius drops below 35 km, it enters a region of stronger
interaction with the rotating gravity field. This also coincides with a 5:2 resonance
at a = 35 km and a 3:1 resonance at a = 33 km between the orbit period and the
rotating asteroid. The mechanism of the instability at this limit follows a pattern
that involves the long-term eccentricity oscillation plus the (small) effect of the C40

gravity coefficient term.
As the strength of the Eros/orbit interactions increases with eccentricity, an

initially circular orbit at a semi-major axis of 33 km will experience a mounting
perturbation as the eccentricity increases (due to C20 and C30). However, numerical
integration of the spacecraft motion in an Eros gravity field taken to third degree
and order only, starting at this semi-major axis value, will not experience a long-
term instability. This is due to the maximum eccentricity amplitude not being large
enough to bring the orbit into a region of strong interaction with the gravity field.
If the effect of the C40 gravity term is modeled, however, it boosts the maximum
eccentricity by a small amount, characterized as a function of argument of periapsis.
To find this contribution consider the averaged equation for eccentricity due to this
gravity term with respect to time and with respect to argument of periapsis:
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Fig. 7.2 Time integration of eccentricity for polar orbits at semi-major axes of 40 (top) and 50

(bottom) kilometers. The predicted constraints on short and long-period fluctuations are seen to
agree well.
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ė40 =
15
16

nr4
oC40

a4(1 − e2)3

(
3 − 7

2
sin2 i

)
sin2 i sin(2ω)e (7.41)

de40

dω
= −15

16
r4
oC40

a2(1 − e2)r2
oC20

(
7
6 sin2 i − 1

)(
5
4 sin2 i − 1

) sin(2ω)e (7.42)

Assuming small e again, and allowing inclination to be equal to 90◦ gives us

e40 = eo exp
[
−5

8
R4

oC40

a2R2
oC20

sin2 ω

]
(7.43)

At a semi-major axis of 35 km this perturbation can increase eccentricity by at most
4.5%. At a = 33 km the effect of this gravity term is sufficient to nudge the orbit
into a region of unstable motion, characterized by large changes in orbit energy and
angular momentum from orbit to orbit. Numerical integrations including fourth-
degree and -order gravity verifies this result, as is evident from Fig. 7.3.
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Fig. 7.3 Eccentricity of a numerically integrated polar orbit with an initial semi-major axis of
33 km, low enough to excite unstable motion.

For initial values of semi-major axis chosen lower than ∼33 km the long-term
oscillation in eccentricity coupled with the increasing strength of the transient
fluctuations in energy and angular momentum combine to make it infeasible to
safely orbit the asteroid. It is interesting to note that this is approximately the
same limit found for the linear stability of direct, near equatorial orbits and agrees
with the results reported in [91].
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7.3.3 Effect of Transient Perturbations

In the extremely perturbed environment close to an asteroid such as Eros the
spacecraft can be subject to large changes in its orbital elements over a relatively
short time period. Such situations have not arisen in classical astrodynamics, where
perturbations are generally small and effects take many orbits or days to become
significant. In the asteroid environment, however, large fluctuations in an orbit can
be observed per orbit about the body, in many cases causing a chaotic evolution of
an orbit leading to an impact or escape from the body. Even though these effects
are large, it is possible to characterize them analytically and even use them in the
design of close-proximity operations [3].

For analytical computations we use the canonical form of the Lagrange Planetary
Equations stated earlier which express the change in orbit Keplerian energy, angular
momentum, and angular momentum projected onto the z-axis as a function of the
gravitational perturbations acting on them.

The strongest perturbation that the trajectory feels when in close proximity
to the asteroid is mainly due to the second-degree and -order gravity field of the
rotating body [175], which has the explicit form:

R20+22 =
μR2

o

r3

[
C20

(
1 − 3

2
cos2 δ

)
+ 3C22 cos2 δ cos 2λ

]
(7.44)

Our analytical estimates only consider the contribution from these terms.
Although the orbital dynamics are best computed using numerical integrations,

a class of estimates for the change in orbit energy and angular momentum can
be derived which provide a great deal of insight into the effect of a close flyby on
the resulting orbit [158]. Of particular interest is the change in orbit parameters
as a spacecraft descends from a relatively high apoapsis to a periapsis close to
the asteroid surface, and the change in orbit parameters as the spacecraft travels
through a full orbit, from apoapsis to apoapsis. In the following the explicit formulae
for the change in energy E, angular momentum H, and the projection of the angular
momentum along the z-axis, G are stated. Changes in these parameters can be
related to changes in the classical orbital elements (see [187, 129]). The following
directly applies the theory outlined in Section 6.7.

Half-Orbit Perturbations

Over a transfer from apoapsis to periapsis variations in the orbital elements due
to both the C20 and the C22 gravity coefficients occur. The projected angular
momentum G is identically conserved under perturbation from C20, and thus will
not vary. The energy and total angular momentum, E and H will vary over a half
orbit, however, yielding changes of:

ΔHC20 = 2
√

μ

p3
C20 cos 2ω sin2 ie (7.45)

ΔEC20 =
μ

2p3
C20

[−1 + 3
(
cos2 i + sin2 i cos 2ω

)] (
3 + e2

)
e (7.46)



186 7. Uniformly Rotating Bodies: Asteroid 433 Eros

Similarly, and leading to more detailed results, the change in orbit elements E,
H, and G due to C22 over one-half an orbit can also be predicted approximately:

ΔHC22 = −3E22

√
μ

p3[
cos4(i/2)

{
sin 2(ω + Ω)I1

2 + cos 2(ω + Ω)J1
2

}
+ sin4(i/2)

{
sin 2(ω − Ω)I1

−2 − cos 2(ω − Ω)J1
−2

}]
(7.47)

ΔGC22 = −3C22

√
μ

p3

[
1
2

sin2 i
{
sin 2ΩI1

0 + cos 2ΩJ1
0

}
+ cos4(i/2)

{
sin 2(ω + Ω)I1

2 + cos 2(ω + Ω)J1
2

}
− sin4(i/2)

{
sin 2(ω − Ω)I1

−2 − cos 2(ω − Ω)J1
−2

}]
(7.48)

and the variation in E can be found from the Jacobi integral. The integrals In
m and

Jn
m have the definitions:

In
m = 2

∫ π

0

(1 + e cos f)n cos (mf − 2ωEt) df (7.49)

Jn
m = 2

∫ π

0

(1 + e cos f)n sin (mf − 2ωEt) df (7.50)

These integrals cannot be expressed in closed form in general except for the par-
ticular cases:

I−2
0 =

sin
(
2π
√

ω2
Ea3/μ

)
√

ω2
Ep3/μ

(7.51)

J−2
0 =

cos
(
2π
√

ω2
Ea3/μ

)
√

ω2
Ep3/μ

(7.52)

The numerical quadrature of these integrals has been treated previously [158].
These integrals are intimately related to the Hansen Coefficients [159]. Figure 7.4
shows the values of these integrals over an interval of parameter values of interest.
The total variation in these elements over an apoapsis to periapsis passage is then
computed as:

ΔH = ΔHC20 + ΔHC22 (7.53)
ΔG = ΔGC20 + ΔGC22 (7.54)
ΔE = ΔEC20 + ΔEC22 (7.55)

Using these results, it is possible to predict the change in orbital parameters
between apoapsis of the transfer ellipse to periapsis of the ellipse. In general, the
variation in energy and angular momentum can be quite large, implying that using
Keplerian orbits to initiate numerical targeting routines may be an inefficient way
in which to choose a target flyover condition. Rather, using the above relations in
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Fig. 7.4 Contours of the integrals that describe the transient effect of the C22 gravity coefficient
on an orbiter.
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Fig. 7.4 Continued.
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the initial design of a de-orbit maneuver can provide additional insight into the
selection of target points for observation on the asteroid surface.

Full-Orbit Perturbations

For analysis of the low-altitude flyovers the orbit is continued through periapsis
up to its next apoapsis passage, experiencing additional perturbations along the
way. For the effect of the C20 gravity term these additional perturbations erase the
fluctuations in angular momentum and energy. For the C22 effects, however, only a
partial cancellation occurs, leaving a residual change in the orbit elements that is
often rather large [158, 175]. The results are similar to the half-orbit results, except
that the integrals Jn

m will cancel out over a full orbit pass, leaving only the terms
containing the integrals In

m.

ΔH = −6C22

√
μ

p3[
cos4(i/2) sin 2(ω + Ω)I1

2 + sin4(i/2) sin 2(ω − Ω)I1
−2

]
(7.56)

ΔG = −6C22

√
μ

p3

[
1
2

sin2 i sin 2ΩI1
0

+ cos4(i/2) sin 2(ω + Ω)I1
2 − sin4(i/2) sin 2(ω − Ω)I1

−2

]
(7.57)

ΔE = −6C22ωE

√
μ

p3

[
1
2

sin2 i sin 2Ω
{
I1
0 − (1 − e)3I−2

0

}
+ cos4(i/2) sin 2(ω + Ω)

{
I1
2 − (1 − e)3I−2

0

}
− sin4(i/2) sin 2(ω − Ω)

{
I1
−2 − (1 − e)3I−2

0

} ]
(7.58)

It can be seen that I1
2 
 I1

−2 and I1
2 
 I1

0 in the regions of interest (see Fig. 7.4).
Thus, direct, low-inclination orbits will be subject to the terms I1

2 while retrograde,
near equatorial orbits will be primarily subject to the terms I1

−2. Inspecting the
contour plots, it is obvious that direct orbits will experience much larger changes
in energy and angular momentum over each orbit, while the retrograde orbits will
experience little, if any, change per orbit.

In Fig. 7.5 contour plots of the fractional change in orbit energy and angular
momentum per orbit are presented, using the appropriate Eros constants. These
contours are computed using only the I1

2 integrals, per the above discussion. Thus,
each of the contours will scale as cos4(i/2) sin [2(ω + Ω)], allowing the results to be
generalized to a range of orbit inclinations and body-relative geometries (recall that
the argument of periapsis and longitude of the ascending node define the location
of periapsis in the body-fixed frame). Using this result it is possible to qualitatively
predict the expected perturbation experienced by an orbit and use this to compute
acceptable limits for proximity operations.

There are many applications of these formulae, including the setting of limits
for the minimum periapsis of a spacecraft orbit and the design of very close passes
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Fig. 7.5 Contour plot of fractional change in Keplerian energy (left) and angular momen-
tum (right) per orbit, computed specifically for Eros. The contour values are scaled by
cos4(i/2) sin(2(ω + Ω)) to generate the predicted changes.

over the asteroid. Related formulae were used to design relatively safe close flybys
over the Eros surface [3]. In that application the functions were used to predict
which surface flybys would cause the spacecraft apoapsis and period to increase,
ensuring ample time following a close flyby to transition the orbit into a safe orbit
at a sufficient distance from the asteroid. Further application of this orbit-to-orbit
mapping approach can be found in [187, 129, 143].

7.4 Phase Space Characterization

Now consider the explicit characterizations that can be made concerning the phase
space about a uniformly rotating asteroid. These characterizations consist of appli-
cations of the Jacobi integral, computation of equilibrium points, and the explicit
computation of families of periodic orbits and their stability about the asteroid.

7.4.1 Stability against Impact

Using the Jacobi integral it is possible to determine the conditions under which im-
pact of a spacecraft with the asteroid surface is possible. The zero-velocity curves
for the Eros system are found by computing the contours of the gravity plus cen-
tripetal potential in the body-fixed position space x, y, and z. These contour lines
then define the limits of physical motion that a spacecraft can have in the body-fixed
space, given that value of the Jacobi constant. In general the spacecraft dynamics
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Fig. 7.6 Zero-velocity curves about Eros projected into the x-y-plane.

must satisfy the inequality constraint:

U +
1
2
�2

(
x2 + y2

)
+ Jo ≥ 0 (7.59)

which constrains the spacecraft to lie on one side of the zero-velocity curves. Fig-
ure 7.6 shows the zero-velocity curves corresponding to the Eros shape model.

Of primary interest is finding the value of the Jacobi constant such that, for all
values of Jo less than this, the zero-velocity curves are guaranteed to separate the
trajectory space containing the asteroid and the space not containing the aster-
oid. This explicitly ensures that a spacecraft in orbit in the outer region with the
appropriate Jacobi integral value can never, under gravitational dynamics alone,
impact onto the asteroid surface. For the Eros shape model this value of Jo is found
to be Jo = −5.109 × 10−5 km2/s2 and is associated with one of the equilibrium
points relative to the body. To ensure stability against impact the initial spacecraft
conditions must be chosen such that the spacecraft position resides in the outer
portion of the zero-velocity curve and that the value of the Jacobi integral is less
than or equal to Jo:

E − �G − R ≤ Jo (7.60)

which provides a simple check in terms of osculating orbital elements for whether or
not the spacecraft might impact with the surface at some point in the future. This
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relation can be expressed in terms of initial osculating elements for an assumed
direct, equatorial orbit specified by its periapsis radius, eccentricity and initial
longitude λ in the body-fixed frame.

−μ(1 + e)
2rp

+ �
√

μrp(1 + e) + U(r = rp, λ) + Jo = 0 (7.61)

where the potential U is evaluated from the actual gravity field. Figure 7.7 shows
a plot of the limiting stability-against-impact curve for the Eros system (including
the full effect of the gravity field) in terms of initial periapsis radius and eccentricity
for an equatorial orbit.
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Fig. 7.7 Stability-against-impact curve for equatorial, direct orbits. Initial orbits to the left of
this line may impact with Eros at some point in the future, orbits to the right of this line cannot
impact with Eros unless some additional forces act on the satellites.

This analysis shows that direct, circular orbits must lie outside of 34 kilometers
from Eros in order to not be able to impact on the surface. This does not mean
that the spacecraft will not undergo large perturbations and changes in its orbit
from the gravity field. The condition can also be computed for out-of-plane or
retrograde orbits, but the sharpness of the zero-velocity surface analysis loses its
power as inclination is increased, which is a known delinquency of this method.
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7.4.2 Orbit Stability Characterizations

Another approach to the stability characterization of orbits about an asteroid is
to study the stability of equilibrium points and periodic orbit families about the
body. If stable families of periodic orbits can be found which lie near orbits of
interest then these can be candidates for a mission orbit. Some basic families of
periodic orbits and their stability are now discussed. In this context, the existence
of a stable orbit will imply that a spacecraft placed near such an orbit will not
experience large changes in its orbital elements over timespans of interest, usually
days to weeks. An unstable orbit implies that, depending on the characteristic time
of the instability, the spacecraft may deviate markedly from the original trajectory
in a fairly short time. The characteristic instability times of orbits about asteroids
can be very short, on the order of hours, and may interfere with orbital operations.
This is especially true when one considers the navigation of spacecraft, as flying in
an unstable orbit environment implies that the orbit uncertainty becomes stretched
at a hyperbolic rate, leading to greater uncertainties about where the spacecraft is
located [168].

Equilibrium Points

A uniformly rotating asteroid with an approximately ellipsoidal shape will in gen-
eral have 4 synchronous orbits (equilibrium points) about it. Exceptions to this rule
exist, with the asteroid Betulia being an interesting case in point with 6 equilib-
rium points [96]. These points will lie, approximately, along the long and short axes
of the asteroid, close to the ideal synchronous orbit radius rs = (μ/�2)1/3, which
equals 16.581 km for Eros. Generally, the equilibrium points along the long-axis of
the body will lie outside of rs and will always be saddle points, having a hyperbolic
stable and unstable manifold and two oscillatory modes (in and out of plane).

The equilibrium points along the short equatorial axis will lie inside of rs and
may either be completely oscillatory or have complex roots, leading to hyperbolic
stable and unstable spirals. For many asteroid shapes considered thus far these
equilibrium points are unstable. Exceptions will occur if the body has a small
shape ellipticity in the equator, rotates slowly, or has a large density.

For the Eros shape model in question the four synchronous orbits were computed
(all unstable) and their coordinates as well as their characteristic times and Jacobi
values presented in Table 7.2. The smallest value of J for the equilibrium points,
−5.109 × 10−5, serves as the constant for the stability against impact criterion
developed earlier.

Table 7.2 Positions, characteristic instability times and Jacobi constant values for the Eros
synchronous orbits.

x y z τ J
(km) (km) (km) (hours) (km/sec)2

19.546 0.364 −0.839 0.69 −5.103 × 10−5

−19.600 −0.158 −1.170 0.70 −5.109 × 10−5

0.106 15.284 0.234 1.59 −4.279 × 10−5

−0.110 −15.281 0.162 1.64 −4.279 × 10−5
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The osculating elements of such an equilibrium point are all constant (evident
given that the period of motion is effectively zero) except for the longitude of the
ascending node which has a secular rate equal to the rotation rate of the asteroid.

Resonances in Periodic Orbits

Other than equilibrium points, all other periodic orbits in the Eros-fixed frame
have a non-zero period of motion and have a non-constant trajectory relative to
the body. A distinction is made here between periodic orbits in the body-fixed
frame and in the inertial frame. In general, a periodic orbit in the body-fixed frame
will not be a periodic orbit in the inertial frame. However, at special values of the
body-fixed orbit period the orbit will correspond to a periodic orbit in the inertial
frame. This situation often corresponds to the intersection of two or more body-
fixed periodic orbit families and usually corresponds to the onset of instability for
one of these families. Thus, it is of interest for us to understand the conditions for
these resonances to occur in our particular case.

Consider an orbit which repeats itself in the body-fixed space every time period
TP . Considering this same orbit, now specified in terms of osculating orbit elements,
it is clear that the orbit elements (a, e, i) must repeat with period TP , and the
orbit elements of ω and Mo must shift by some value 2πm;m = 0,±1,±2, · · · over
a time TP . The longitude of the ascending node, Ω, need not repeat and instead
will shift by a multiple of 2π plus an added angle, all equaling θ = �TP , where � is
the rotation rate of the asteroid. Thus, when this angle θ is commensurate with 2π
the body-fixed periodic orbit is also an inertial periodic orbit. Intersections of these
near-circular orbit families with eccentric orbit families can be found in the vicinity
of these resonances, which result in intervals of unstable periodic orbit families.

Let us consider the two special cases of direct and retrograde periodic orbits.
For each of these cases the body-fixed period is approximately:

1
TP

=
1
Tr

± 1
To

(7.62)

To =
2πr3/2

√
μ

[
1 +

3C20

4r2

]
(7.63)

where the + sign is for retrograde orbits and the − sign is for direct orbits, Tr is
the rotation period of the asteroid, To is the inertial orbital period of the spacecraft
(computed with C20 corrections and assuming a circular orbit). The direct orbit
period has a singularity when the inertial orbit period approaches the body rotation
period, corresponding to the equilibrium points and the surrounding phase space.
In Fig. 7.8 the ratio of the direct body-fixed orbit period over the Eros rotation
period is shown, assuming the above formula. There are commensurabilities of
3:2 at a 35-km radius, 2:1 at a 27.5-km radius, and higher commensurabilities as
the singularity is approached. In Fig. 7.10 the ratio of the retrograde body-fixed
orbit period over the Eros rotation period is shown, again assuming the above
formula. The only significant commensurability here is a 1:2 ratio at a radius of
approximately 18 km, and the retrograde orbit becomes unstable in the vicinity of
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Fig. 7.8 Ratio of the periodic orbit frequency over the Eros rotation frequency for the direct
family of orbits. Plotted is the predicted ratio (found using oblate planet theory) and the numeri-
cally computed ratio for the direct family of periodic orbits split into stable and unstable portions
of the family.

this ratio. The direct orbit instabilities, however, are not as clearly linked to the
commensurabilities, which may be due to the large perturbations in this regime.
A detailed study of this phenomenon applied to periodic orbits about a general
asteroid model is found in [74].

Direct Periodic Orbits

The family of direct, equatorial, near-circular, body-fixed periodic orbits were com-
puted about this model of Eros. Figure 7.8 shows the family as a curve between
mean orbit-radius and orbit-period frequency divided by Eros rotation frequency.
Far from the body these orbits are stable, as expected; however, as the family
comes closer to the body they become unstable – for the circular branch of the
family this occurs at a radius of approximately 30.8 km and a Jacobi integral value
of −4.938× 10−5 (km/s)2. Before this stability bifurcation occurs, the family itself
splits into a circular branch and two elliptic branches – the elliptic branches lose
their stability at a slightly higher value of the Jacobi constant.

The proper interpretation of this result is that the minimum stable, direct orbit
radius about Eros will be ∼31 km, but this assumes some fairly special initial
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Fig. 7.9 Minimum radius stable, direct circular orbit about Eros and locations of the unstable
1:1 synchronous orbits projected into the x–y plane. Also shown is a silhouette of Eros.

conditions. It is possible, at higher radius values, to find non-periodic orbits that
are characterized by having finite Lyapunov characteristic exponents (indicating
that they are unstable). So, this limit should be considered to be an absolute
minimum for stable, direct, equatorial orbits about Eros. Note that this minimum
orbit radius violates the stability against impact limit implying that, if sufficiently
perturbed from its stable orbit, it is possible for a spacecraft on that trajectory to
impact on the asteroid surface.

It is significant to note from Fig. 7.8 that the onset of instability is not associated
with any particular resonance, leading us to conclude that it is associated with the
increasing strength of the gravity perturbations as the direct orbit draws closer
to the rotating body and its C22 gravity term. Observing the predicted fractional
change in orbit energy and angular momentum in the vicinity of where the periodic
orbits first become unstable in Fig. 7.5 the fractional change in each of these quan-
tities is on the order of 3–5% – leading to the conclusion that perturbations of this
magnitude may destabilize the orbit dynamics. Shown in Fig. 7.9 is the minimum
radius, direct, stable circular orbit about Eros and the 1:1 synchronous orbits, all
projected into the x–y plane.
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Retrograde Periodic Orbits

Periodic orbits are also computed which lie in the equatorial plane but travel in
the opposite sense of the asteroid rotation. Figure 7.10 presents the orbit radius
– frequency ratio curve for this orbit family. Generally speaking, such retrograde
orbits are stable at almost all radii, even close to the asteroid surface. The reason
for this stability is easy to understand: when orbiting in the opposite sense of the
asteroid rotation the destabilizing effect of the C22 gravity term is diminished, as
its effect becomes “averaged out” in space due to the large relative angular motion
between the spacecraft and asteroid. In fact, as the spacecraft orbit becomes close
to the asteroid, its rotation rate increases and hence the effective variations of the
asteroid’s gravity field diminish. This is clearly evident when numerically integrated
retrograde orbits are compared with predictions from modeling the ellipsoid as
an oblate body [153]. For retrograde orbits this comparison holds up quite well,
indicating that these orbits are stable. This fact was used in the nominal design of
the Eros orbital operations [154] and allowed the NEAR-Shoemaker spacecraft to
come close to the Eros surface.
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Fig. 7.10 Ratio of the periodic orbit frequency over the Eros rotation frequency for the ret-
rograde family of orbits. Plotted is the predicted ratio (found using oblate planet theory) and
the numerically computed ratio for the retrograde family of periodic orbits split into stable and
unstable portions of the family.
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There are some notable exceptions to this stability, however. These occur when
resonances develop between the asteroid rotation rate and the secular motion of the
spacecraft orbits’ longitude of ascending node (as discussed above). For the case of
Eros these resonances occur in the vicinity of 18 km, where a 1:2 commensurability
exists between the periodic orbit period and the asteroid rotation rate. There is also
an isolated instability region around 20 km, corresponding to the intersection of the
retrograde orbits with an out-of-plane family of orbits with twice the period. Shown
in Fig. 7.11 is the minimum radius, retrograde stable circular orbit about Eros,
projected into the x–y plane, before the first instability interval is encountered.

Based on these instability limits, a reasonable constraint to place on retrograde,
equatorial orbits is that they lie outside of 21 km from the center of Eros. Again, the
danger of flying in or near a region of unstable orbits is due both to the possibility
that the orbit may diverge from its nominal path and that the orbit uncertainty
will increase significantly.
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Fig. 7.11 Minimum radius stable, retrograde circular orbit about Eros projected into the x–y
plane before the first instability interval is encountered. Also shown is a silhouette of Eros.
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7.4.3 Out-of-Plane Orbits

The analysis thus far has focused on periodic orbits in or near to the asteroid equa-
torial plane. When significantly out-of-plane orbits are considered, several difficul-
ties arise. For the periapsis and node arguments to have their required resonance,
there are more stringent constraints placed on the orbit period so that, physically,
the spacecraft is in the equatorial plane after one or more rotations of the central
body. This restriction means that out-of-plane periodic orbits do not exist at all
radii, as the equatorial families do, and thus are less useful in analyzing the stabil-
ity of general motions about the asteroid. When such out-of-plane periodic orbits
exist, they then correspond roughly to mean motion resonances with the rotation
period of the asteroid. In [91] a detailed exploration of these periodic orbit families
is made in order to characterize the stability limitations in that regime.

In order to gain additional insight into the stability of near-polar orbits results
from the stability limit of direct periodic orbits (above) are combined with the
analytical results found earlier for the change in energy and angular momentum.
Consider, for definiteness, the stability of a polar orbit (i = 90◦), leading to a
scaling factor for the contour plots of cos4(π/4) = 0.25. Thus, the contour plot
must be scaled by one-quarter. Due to differences in the gravitational and orbit
interaction for a polar orbit (the interactions are more varied as there are more
possible encounter geometries when in the nominal orbit) a reasonable criterion for
stability appears to occur when the changes in orbit energy and angular momentum
are on the order of 1%. This corresponds to the 5% contour lines on Fig. 7.5,
and gives an indication of reasonable stability limits for polar orbits that are in
agreement with the numerically determined limit of 33 km in a polar orbit.

The actual dynamics of polar (or of any) orbits about such a body are quite
interesting. Due to the quasi-random movement of the argument of periapsis and
longitude of the ascending node in the body-fixed space, the changes in energy
and angular momentum will either add or subtract to the orbit, introducing the
possibility of an orbit having random walks in terms of orbit elements. Figure 7.12
shows three numerically integrated polar orbits, started with an initial periapsis
radius of 30 km and apoapsis radii of 45, 75 and 100 km respectively. Each is
integrated for 600 hours (25 days), and their trajectory in the periapsis radius–
eccentricity space is plotted. This plot shows how individual trajectories can either
be confined to regions of orbit element space or diffuse into escaping or impacting
trajectories. While there is significant correlation between Fig. 7.12 and Fig. 7.5,
the controlling dynamical issues are also evidently much deeper.
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8. Complex Rotators:
Asteroid 4179 Toutatis

In this chapter the assumption of uniform rotation is removed. Many asteroids
are non-uniform rotators, potentially due to several different causes. These include
spin-down due to the YORP effect, which can make an asteroid more susceptible to
perturbing torques, and tumbling due to a close planetary flyby, an asteroid fission
event, or an impact. Comets are also believed to often be in such a spin state due
to outgassing jets on the surface that are activated around every perihelion pas-
sage. Strong evidence exists for several comets being in non-uniform rotation states
including Halley and Encke [149, 12]. Once in a tumbling mode, we assume that
the body will approximately follow the torque-free rigid-body dynamics described
earlier. While this is not exactly true, due to solar radiation pressure torques,
gravitational perturbations, and internal dissipation effects, over timespans of in-
terest for the motion of a particle or spacecraft in the asteroid frame this is a good
assumption.

In this section orbital motion close to and about asteroid 4179 Toutatis is ana-
lyzed. This is an asteroid that has been imaged to extremely high resolution using
range-Doppler radar [76]. The asteroid is in a tumbling long-axis mode with body-
fixed angular velocity period of 5.42 days and a period associated with its long-axis
precession of 7.54 days. We again do not consider the effects of solar radiation
pressure or the solar tide in order to keep our initial focus just on the gravitational
problem. This mode of rotation completely changes the types of calculations and
investigations one can perform for the body, and thus serves as an excellent can-
didate for our next case study. The results from this section are reduced from the
detailed analysis of this asteroid presented in [173].

8.1 Model of 4179 Toutatis

The necessary parameters and models for this analysis are the assumed density of
the asteroid (2.5 g/cm3), the rotation state of the asteroid, and the shape of the
body (as we will apply a constant density approximation to find its gravitational
field) (Table 8.1). The asteroid orbit about the Sun is again not relevant as the
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solar radiation pressure and the solar tide are neglected. The density used is a pure
assumption, as there are no direct measurements of the mass of Toutatis.

Table 8.1 Toutatis model parameters.

Parameter Symbol Value Units

Gravitational Parameter μ 1.279 × 10−6 km3/s2

Effective Rotation Rate ωl 1.8548 × 10−5 radians/s
Effective Rotation Period 2π/ωl 3.92 days

Dynamic Inertia ID/Iz 0.51983 –

Pole Declination δ 39.514 → 40.450 degrees

Right Ascension
Period 2π/α̇ 176.4 hours
Rate α̇ 9.894 × 10−6 rad/s

Minimum Moment of Inertia Ix/Iz 0.31335 –

Intermediate Moment of Inertia Iy/Iz 0.94471 –

Oblateness Gravity Coefficient R2
oC20 0.77768 km2

Ellipticity Gravity Coefficient R2
oC22 −0.01634 km2

The shape model of Toutatis used in this analysis was obtained from range-
Doppler imaging of the asteroid and has a surface resolution of about 84 meters
and is described with a polygonal model with 1,600 vertices. It has a total esti-
mated volume of approximately 7.67 km3 and a mean (volumetric) radius of 1.223
km. A higher-resolution model with surface features at a precision of meters is also
available [77]. For gravitational calculations outside of the circumscribing sphere of
the asteroid we used a gravity field expanded up to degree and order 20, while when
close to the body the polygonal gravitational field algorithm of Werner, described
previously, is used. Analytical calculations are restricted to the second degree and
order gravity field coefficients. Finally, the oblateness parameter has been defined
relative to the body-fixed x-axis, the minimum moment of inertia, due to the rota-
tion state of the body. As Toutatis is an a LAM rotational mode, the body makes
complete rotations about its minimum moment of inertia and the dynamics be-
come simpler to model with this change in convention. This is the reason for the
positive C20 coefficient and the correspondingly small C22 coefficient, as Toutatis
is nearly prolate about that axis. If we make the approximation that Toutatis is
exactly prolate about this symmetry axis, then its pole declination is constant at
∼40◦ and its precession period equals the right ascension period of 176.4 hours
(7.35 days).
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8.2 Equations of Motion

The equations of motion are stated in a Lagrangian framework in the body-fixed
frame. The Lagrangian is again

L(r, ṙ, t) =
1
2
ṙ · ṙ +

1
2
r · 
̃ · 
̃ · r − U(r) (8.1)

however, by choosing a body-fixed frame the gravitational field is still time-invariant
while now the angular velocity becomes time periodic, as it follows the torque-free
rigid-body rotations (see Chapter 3). Application of Lagrange’s equation leads to
the second-order vector differential equation

r̈ + 
̇ × r + 2
 × ṙ + 
 × 
 × r = Ur (8.2)

If switched to an inertial frame it is interesting to note that the time periodicity
would be lost in general as tumbling motion is not time-periodic in inertial space.
There is no longer a Jacobi integral for this problem.

A perturbation formulation using the Lagrange Planetary Equations is used with
the perturbation potential specified as R = U − μ

r . Due to the shape of Toutatis,
nearly prolate with a clear pear-shaped deviation along its minimum moment of
inertia, an appropriate statement of the potential can be found using the second-
degree and -order gravity field perturbations.

R2(r) = − μ

2r3
C20

[
1 − 3(r̂ · p̂)2

]
+

3μ

r3
C22

[
(r̂ · ŝ)2 − (r̂ · q̂)2

]
(8.3)

where we assume that the unit vectors p̂, q̂, ŝ are aligned with the body’s principal
axes of inertia. These unit vectors must be found from the time-varying transfor-
mation matrix for the rigid-body motion. For the asteroid Toutatis we chose to
make the long-axis of that body to be the p̂-axis, giving it a positive C20 coeffi-
cient (i.e., a prolate body) and a very small C22 coefficient. In the following the
specific decomposition of the body need not be specified to evaluate the relevant
perturbation equations.

Many of the analysis techniques outlined in the previous chapter are still appli-
cable, thus we will focus mostly on those which have clearly changed. These are the
computation of periodic orbits and their use to characterize a dynamical system
and the application of averaging.

8.3 Analytical Characterization

A large fraction of asteroids in complex rotation are characterized by having a slow
overall rotation rate. The asteroid specifically discussed in this section, Toutatis,
is a clear example of this having an inertial period of approximately 7.54 days and
a body-fixed periodic angular velocity vector of 5.42 days. One result of this is
that most orbital motion of interest about these bodies is within the resonance
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region about these bodies. Orbit mechanics in these situations can become much
different, with the gravity field essentially “dragging” the particle orbit about it
(see [72] for a discussion of this case for a uniformly rotating asteroid). For such slow
rotators, when at resonant distances one also finds that the perturbations from the
gravity field are reduced due to the larger distances. Due to these physical effects,
it is possible to average the perturbing potential over a particle’s orbit period while
keeping the mass distribution fixed in inertial space, i.e., keeping the unit vectors p̂,
q̂, and ŝ stationary. After the averaging is performed, these can be allowed to vary
in order to understand the net effect of the body’s complex motion. Substituting
in the averaged results (Appendix A) the singly averaged perturbation potential is
found to be

R̄2(t) =
n2C20

4(1 − e2)3/2

[
1 − 3

(
p̂ · ĥ

)2
]

+
3n2C22

2(1 − e2)3/2

[(
q̂ · ĥ

)2

−
(
ŝ · ĥ

)2
]

(8.4)

where ĥ is the unit angular momentum vector and these are still a function of time
as the body-fixed unit vectors precess and nutate in time following the torque-free
rigid-body solutions.

For computation of the Lagrange Planetary Equations for this singly averaged
potential there is no dependence on the mean anomaly or argument of periapsis in
the perturbing potential. There is a functional dependence on eccentricity, semi-
major axis, inclination and longitude of the ascending node, yielding the following
partials:

∂R̄2

∂a
= −3

a
R̄2 (8.5)

∂R̄2

∂e
=

3e

1 − e2
R̄2 (8.6)

∂R̄2

∂i
= − 3n2

(1 − e2)3/2[
1
2
C20(p̂ · ĥ)(p̂ · ĥi) − C22

(
(q̂ · ĥ)(q̂ · ĥi) − (ŝ · ĥ)(ŝ · ĥi)

)]
(8.7)

∂R̄2

∂Ω
= − 3n2

(1 − e2)3/2[
1
2
C20(p̂ · ĥ)(p̂ · ĥΩ) − C22

(
(q̂ · ĥ)(q̂ · ĥΩ) − (ŝ · ĥ)(ŝ · ĥΩ)

)]
(8.8)

∂R̄2

∂ω
= 0 (8.9)

The evaluations of the partials (p̂ · ĥi) and (p̂ · ĥΩ) are derived later in the analysis.
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8.3.1 C20 Dynamics

In the following discussion consider the dynamics under the C20 coefficient alone,
as this is the major perturbation. If we set C22 = 0, this implies that the moments
of inertia are equal and the rotational dynamics of the object simplify to a constant
angle between the symmetry axis and the angular momentum with a constant pre-
cession rate about the angular momentum. Let us assume that the total rotational
angular momentum of the rotating body is aligned with the inertial ẑ-axis. The
axis of symmetry is then defined by a constant declination angle δ and a right
ascension α, defined as

p̂ = cos δ sinαx̂ − cos δ cos αŷ + sin δẑ (8.10)

where α = α̇(t− to)+αo. The unit angular momentum vector, the node vector and
the transverse vectors are then

ĥ = sin i sinΩx̂ − sin i cos Ωŷ + cos iẑ (8.11)
n̂ = cos Ωx̂ + sin Ωŷ (8.12)
t̂ = − sinΩ cos ix̂ + cos Ω cos iŷ + sin iẑ (8.13)

and thus

(ĥ · p̂) = cos i sin δ + sin i cos δ cos(Ω − α) (8.14)

Define the relative node angle λ = Ω − α, which measures the orbit node relative
to the rotation pole right ascension. This leads to

(n̂ · p̂) = cos δ sin(λ) (8.15)
(t̂ · p̂) = sin i sin δ − cos i cos δ cos(λ) (8.16)

Also note the following

ĥΩ = sin in̂ (8.17)

ĥi = −t̂ (8.18)

The Lagrange equations are then (modifying Ω̇ to λ̇ = Ω̇ − α̇)

ȧ = 0 (8.19)
ė = 0 (8.20)

i̇ = −3
2

nC20

p2
(p̂ · ĥ)(p̂ · n̂) (8.21)

λ̇ =
3
2

nC20

p2
csc i(p̂ · ĥ)(p̂ · t̂) − α̇ (8.22)
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ω̇ =
3
4

nC20

p2

[
1 − 3(p̂ · ĥ)2 − 2 cot i(p̂ · ĥ)(p̂ · t̂)

]
(8.23)

σ̇ =
3nC20

√
1 − e2

4p2

[
1 − 3

(
p̂ · ĥ

)2
]

(8.24)

with the dot products given above.
Of specific interest for orbit design are orbits that do not change secularly in

time, termed “frozen orbits” as at least some of their orbit elements are constant
on average. The orbit elements a and e are both frozen under the C20 gravity field
perturbation. By choosing the node vector n̂ to be orthogonal to the pole vector, p̂,
specifically choosing λ = mπ, then the inclination will not change on average either.
Just choosing the node vector thus will not necessarily maintain the condition on
λ unless λ̇ = 0 as well. These conditions are considered below.

First note for λ = mπ that ĥ · p̂ = sin (δ ± i) and t̂ · p̂ = ∓ cos (δ ± i), where +
is for m even or zero and − is for m odd. The condition for λ to maintain its value
then requires the secular trend in the node to balance against the precession rate
of the asteroid

α̇ = ∓3
4

nC20

p2

sin 2 (δ ± i)
sin i

(8.25)

This provides a constraint between the inclination, semi-major axis and eccentricity
for a given rotation state consisting of α̇ (= 9.894 × 10−6 rad/s) and δ (= 40◦).
Given that α̇ is positive yields the constraint ∓ sin 2(δ ± i) > 0, which leads to
bounds on the inclinations over which frozen orbits can be found: π

2 −δ < i < π−δ
for λ = 0 and the two intervals i < δ and i > δ + π

2 for λ = π. Assuming these
constraints and solving for the semi-major axis yields

a7/2 = ∓ 3
√

μC20

4α̇(1 − e2)2
sin 2(δ ± i)

sin i
(8.26)

= ∓66.668
1

(1 − e2)2
sin 2(δ ± i)

sin i
(8.27)

The final element that can be frozen is the argument of periapsis. This condi-
tion is a function of inclination alone, requiring that the following transcendental
equation be equal to zero

3
2

cos 2(δ ± i) − 1
2
± cot i sin 2(δ ± i) = 0 (8.28)

For the Toutatis value of δ = 40◦ there are zeros at 25.0◦, 102.3◦ and 151.6◦ for
λ = 0 and at 27.7◦, 79.6◦ and 154.1◦ for λ = π. In Fig. 8.1 the semi-major axis
versus inclination for a frozen orbit to exist is plotted, and note that not all of the
inclination values where the argument of periapsis is frozen are allowed. These can
all be generalized to eccentric orbits, which will shift the semi-major axes to larger
values in general without changing the frozen periapsis conditions.
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Fig. 8.1 Frozen orbit conditions for a Toutatis orbiter.

It is also instructive to carry out a stability analysis of these frozen orbits under
deviations in inclination and relative node. Taking a variation in the inclination and
relative node for the Lagrange equations of these elements and evaluating them at
the frozen orbit conditions yields

Δi̇ = ∓3
2

nC20

p2
sin(δ ± i) cos δΔλ (8.29)

Δλ̇ =
3
2

nC20

p2

[
± cos(i)

2 sin2(i)
sin 2(δ ± i) − cos 2(δ ± i)

sin(i)

]
Δi (8.30)

Using the fact that

α̇ = ∓3
4

nC20

p2
csc(i) sin 2(δ ± i)

these equations can be simplified and reduced to one second-order differential equa-
tion

Δλ̈ + α̇2 [1 ∓ tan(i) cot 2(δ ± i)]
cos δ cos(i)
cos(δ ± i)

Δλ = 0 (8.31)

where the coefficient of the Δλ term must be positive for the solution to be stable.
Also indicated on Fig. 8.1 are the stability regions of the frozen orbits. Only the
λ = π orbits have fully frozen, stable orbits possible, as the only fully frozen λ = 0
orbit occurs at the transition between stability and instability. The stability of these
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orbits is evaluated numerically under the full second-degree and -order gravity field
in [173].

Thus there are three families of stable frozen-orbits for circular orbits, and two
stable frozen orbit solutions for eccentric orbits, each with the right ascension of
the rotation pole aligned with the descending node of the orbit (λ = π) and inclina-
tions around 30◦ and 150◦ (we do not consider the frozen periapsis solution at the
stability transition to be stable). Inclusion of higher-order dynamics can certainly
affect these frozen orbits. For the three frozen angles, inclination, relative node,
and argument of periapsis, higher-order terms in the gravity field can be offset by
adjusting the nominal values. This is so as the gradients of the Lagrange equations
for these elements are non-zero at the frozen orbits, and thus adjustments can be
made in these angular values to null out a small perturbation. The same is not true
for the orbit elements that are uniformly zero, namely semi-major axis and eccen-
tricity. A higher-order perturbation in one of these cannot be nulled, and frozen
orbit solutions for these higher-order perturbations must be found themselves. The
semi-major axis will generally remain conserved so long as the averaging assump-
tions apply. The same is not true for the eccentricity, however, which is influenced
by the C30 gravity term, a situation which is considered in more detail in [173].

8.3.2 Doubly-Averaged Solutions

For orbits far from Toutatis, beyond a semi-major axis of ∼23 km, the rotation
pole of the body will precess faster than the mean motion of the orbit. In this
situation the orbital dynamics can be analyzed by averaging a second time, over
the time-varying rotation state of the asteroid. This averaging will be acceptable
in general where there remains a non-resonance condition between the precession
period of the rotation pole and the orbit period. Specifically, this implies that
the relative node of the orbit is not constant (λ̇ 	= 0) and that there is not a mean
motion resonance between the orbit and the rotational dynamics. Orbits when such
resonances exist are considered in the following section. For simplicity consider the
case where C22 ∼ 0 and the rotation pole dynamics follow a simple rotation of the
right ascension with the declination constant.

The second time average of R2 is evaluated by varying the pole right ascension
α over one precession period, specifically the time average of (ĥ · p̂)2 while keeping
the angular momentum vector constant. Expanding this product yields

cos2 i sin2 δ + 2 sin i cos i sin δ cos δ cos(Ω − α) + sin2 i cos2 δ cos2(Ω − α) (8.32)

The averaging operator is 1
2π

∫ 2π

0
(−) dα and yields

cos2 i sin2 δ +
1
2

sin2 i cos2 δ (8.33)
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Substituting this back into the singly-averaged R20 potential yields

R20 =
n2C20

4(1 − e2)3/2

[
1 − 3 cos2 i sin2 δ − 3

2
sin2 i cos2 δ

]
(8.34)

If δ → π/2, which is the usual case of a uniformly spinning rotationally symmet-
ric body, the classical singly-averaged potential for the leading oblateness term is
recovered.

8.4 Phase Space Characterization

Analytical results are large limited to the application of averaging approximations.
To progress further in the investigation of this system it is necessary to use nu-
merical integrations. The results shown in this section all model the full Toutatis
gravity field without any of the preceding simplifications and provides a way to
verify the analysis and the assumptions made above.

8.4.1 Numerical Integrations

Some general numerical integrations have been made to show the severity of the
gravity field perturbations on an orbiter, with the results presented graphically. In
Fig. 8.2 three different trajectories are shown. The plots on the right are shown
relative to inertial space while the plots on the left are shown from a frame fixed and
rotating with the asteroid. The upper diagrams correspond to a ballistic trajectory
from the surface that is less than escape speed, yet which travels relatively far
from the asteroid. As the body travels far from the body the non-spherical mass
distribution is not as important and the inertial trajectory looks like, and is close
to, an elliptic orbit (note that the inertial attitude of Toutatis at re-impact of
the particle is shown on the right). On the upper-left, the complex rotation of
Toutatis plays a role in the trajectory relative to the body-fixed frame, enabling
the ballistic trajectory to travel to the far side of the asteroid (essentially meaning
that the asteroid has rotated beneath this orbit to present a new face to the re-
impacting particle). The middle frames correspond to a trajectory lofted with a
relatively low speed, with the particle being captured into orbit initially due to
the asteroid rotating such that the first periapsis was not under the surface. After
this the trajectory is strongly influenced by the non-spherical gravity field of the
asteroid and its rotation state. It is specifically interesting to note that in the inertial
frame the orbit plane undergoes a large rotation from orbit to orbit. Viewing the
body-fixed frame it becomes clear that the asteroid’s mass distribution is actually
dragging the orbit frame with itself, as it undergoes its complex rotation. This
motion persists for several revolutions before impact occurs again. Finally, in the
bottom images a trajectory is shown that is given a very small lofting speed. The
particle remains trapped in orbit for an extremely long time, on the order of months,
before it re-impacts. The fact that this occurs for the lowest energy trajectory lofted
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Fig. 8.2 Ballistic trajectories about Toutatis. The images on the right these are viewed from
an inertial frame. The images on the left are viewed in a frame rotating with Toutatis. Credit:
DIAL/JPL-Caltech.

from the surface points out a potential concern for human missions to asteroids.
Should activity on the surface of such a body stir up a cloud of particles, then it
may be possible to create a transient atmosphere of rocks that persist in orbit for
very long timespans.

Figure 8.3 shows the time evolution of an orbit chosen to satisfy the stable frozen
orbit condition derived above. This figure explicitly shows the same behavior as seen
in the previous figure, with the asteroid mass distribution dragging the orbit with
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Fig. 8.3 Numerically integrated orbit about Toutatis, chosen according to the “frozen orbit”
parameters, shown in a frame that rotates with the asteroid. Credit: DIAL/JPL-Caltech.

it as it rotates in inertial space. This orbit is stable in the sense that it will persist
for an arbitrarily long time in the absence of other perturbations.

8.4.2 Periodic Orbits

The time-varying nature of the equations of motion destroy the existence of the
Jacobi integral and of equilibrium points in these systems. Thus, two tools for
understanding the dynamics about this system are not available to us. The only
systematic solutions which are available to us are periodic orbits.

Periodic orbits in a time-periodic system have several properties not shared
by orbits in time-invariant systems. First, the variation matrix associated with
one period does not have unity eigenvalues in general. This is analogous to the
monodromy matrix in a time invariant system, defined such that the energy integral
has been removed from the linear variation. In those systems this implied that a
periodic orbit was isolated in phase space at a fixed level of energy. For a time-
periodic system the lack of an energy integral implies that the periodic orbit is
isolated in the full six-dimensional phase space. Thus, these periodic orbits are
similar to equilibria in time invariant systems in that they only exist at discrete
points. In many ways this property makes it algorithmically easier to compute
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periodic orbits as one can use the full state transition matrix without reduction.
Conversely, the initial conditions of these orbits must be identified independent of
a family, meaning that one cannot compute one family member and then trace out
the family as the parameter varies. Choosing initial estimates for these periodic
orbits then becomes an exercise in appropriately identifying candidate solutions,
generally resonant orbits in the unperturbed problem.

First consider the types of periodic orbits which can be found. The periods of
these orbits must be of the form T = nTp, where Tp is the period of the angular
velocity vector in the body-fixed frame and n is an integer. Despite this fact, it is
convenient to discuss these orbits as m : n orbits, where m represents the number
of spin periods the rigid body has covered and n represents, approximately, the
number of orbits the particle has made about the body in inertial space. This is
related to the generation of initial guesses for these orbits to feed into an iteration
scheme for their computation. Independent of the body-fixed rotation period, the
orbit and mass distribution must repeat their configuration relative to each other
in inertial space for a periodic orbit to exist. By using the unperturbed motion as
the first estimate for this, periodic orbits can be located and numerically converged
upon.

In Figs. 8.4 to 8.7 a series of numerically computed periodic orbits for the Tou-
tatis system are presented. We make a special note of the intrinsic beauty that
these mathematically defined objects have, especially when viewed relative to the
general, non-symmetric mass distribution, as they close upon themselves.

Fig. 8.4 Direct 1:1 periodic orbits about Toutatis. Two of these orbits are stable and two are
unstable. Credit: DIAL/JPL-Caltech.
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Fig. 8.5 Stable retrograde 1:1 periodic orbits about Toutatis. Credit: DIAL/JPL-Caltech.

Fig. 8.6 Stable retrograde 1:2 periodic orbits about Toutatis. Credit: DIAL/JPL-Caltech.
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Fig. 8.7 Stable retrograde 1:3 periodic orbits about Toutatis. Credit: DIAL/JPL-Caltech.



9. Binary Asteroids: 1999 KW4

Binary asteroids are estimated to constitute over 15 percent of the Near-Earth
Asteroids and may be as prevalent in the Main Belt as well. There are many im-
portant issues of science that can be investigated by studying and sending probes
to investigate these systems, and their study has been one of the main foci of as-
teroid science over the last decade. Thus, it is highly probable that a future space
mission will visit a binary asteroid and need to carry out operations in its vicinity.
The problem of trajectory design and navigation in these systems is complex and
challenging, as it requires modeling of the dynamics of the asteroid system in ad-
dition to the motion of the spacecraft about the system. In the most general sense
the problem of binary asteroids orbiters integrates four classical problems of astro-
dynamics: the Hill problem, the restricted three-body problem, the non-spherical
orbiter problem and the full two-body problem [162], constituting a complex simu-
lation problem. The general problem has been considered in detail in a number of
analyses [165, 36, 38, 37, 35], all involving the solution of the full two-body problem
for the gravitating components of the binary asteroid, a topic beyond the current
book (Fig. 9.1 shows the general geometric description of this problem). Thus in
this chapter we introduce the simplest model for a binary asteroid, which is still
sufficient for initial mission design and analysis for many of the observed binary
systems.

In this simplest model the two component bodies of the binary are modeled as a
sphere and a tri-axial ellipsoid, with the satellite assumed to have no influence on
the motion of the two primaries. This particular problem will be referred to as the
(sphere)-restricted full three-body problem. The general form of the equations of
motion were first derived in [162]. Further, we will assume that the two bodies are in
a relative equilibrium, and thus this system can be transformed into a time invariant
Lagrangian through a uniform rotation transformation. As for the restricted three-
body problem, five equilibrium can be found and the stability of the analogue L4,
L5 points are investigated. Some numerical studies of periodic orbits in this system
are also presented, using the binary asteroid 1999 KW4 as a motivating model.

DOI 10.1007/978-3-642-03256-1_9, © Springer-Verlag Berlin Heidelberg 2012
D.J. Scheeres, Orbital Motion in Strongly Perturbed Environments, Springer Praxis Books, 215
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Fig. 9.1 The full two-body problem involves the coupled rotational and translational motion of
two gravitating bodies.

9.1 Model of 1999 KW4

In Table 9.1 we present the dimensional model parameters for the binary asteroid
1999 KW4, while in Table 9.2 we present normalized values used later in our numer-
ical analysis. In reference to this model, the larger component of the binary is called
“Alpha” and the smaller component “Beta.” Note that detailed shape models exist
for each of these bodies and their motion has been analyzed extensively [121, 165].
Despite this, only a simplified form of the model is presented for definiteness in
the following discussion. The largest approximation is modeling the primary as a
sphere, when in actuality it is closer to an oblate spheroid. Incorporation of that
component of the primary into the current analysis alone would require significant
additional discussion on the modeling of the mutual potential of the binary asteroid
components, a topic beyond our current scope [194].

Table 9.1 Representative dimensional values and model for 1999 KW4 [121].

Component Parameter Value Units

Orbit:
Period 17.42 hours

Semi-Major Axis 2.55 km
Eccentricity ∼ 0
Total Mass 2.50 × 1012 kg

Alpha:
Mass 2.35 × 1012 kg

Mean Radius 0.658 km
Rotation Period 2.76 hours

Beta:
Mass 0.135 × 1012 kg

Mean Radius 0.225 km
Semi-Axes 0.297 × 0.225 × 0.171 km

Rotation Period 17.42 hrs
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Table 9.2 Representative non-dimensional values and model for 1999 KW4.

Component Parameter Value

Orbit:
Spin rate 0.21487
Orbit Size 8.565

Mass Fraction 0.9457

Alpha:

Mean Radius 2.215
Distance from Center of Mass 0.465

Beta:
Mean Radius 0.758
Semi-Axes 1 × 0.758 × 0.576

Distance from Center of Mass −8.100

9.2 The Full Two-Body Problem

In order to find the equations of motion of a spacecraft in the vicinity of a binary
system, it is necessary to first consider the full two-body problem, which describes
how the binary asteroid components move relative to each other. At the simplest
level this can be captured by the restricted three-body problem, treating each
binary asteroid component as a sphere. Our current analysis is more generalized
than this, allowing for one of the asteroid components to be an ellipsoid while
keeping the other as a sphere. If non-spherical bodies are to be modeled for both
components the mutual potential between these bodies must be considered, which
becomes more complex (reviewed in [194, 36]).

For the current problem statement Ms is the mass of the sphere and Me is
the mass of the constant density tri-axial ellipsoid. The mass fraction of the two
primaries is defined as,

ν =
Ms

Me + Ms
(9.1)

The relative position vector of the sphere with respect to the ellipsoid center of
mass is Rr. Then, relative to their center of mass, the positions of the asteroid
components are,

Re = −νRr (9.2)

Rs = (1 − ν)Rr (9.3)

where subscripts s and e refer to the sphere and the ellipsoid, respectively.
For a coordinate frame fixed to the ellipsoid, the motion of the sphere relative

to the ellipsoid is modeled as [160]:

R̈r + 2Ω × Ṙr + Ω̇ × Rr + Ω × (Ω × Rr) = G(Me + Ms)
∂Ue

∂Rr
(9.4)
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The vector Ω is the angular velocity of the ellipsoid, which follows Euler’s equation

I · Ω̇ + Ω × I · Ω = −G(Me + Ms)Rr × ∂Ue

∂Rr
(9.5)

The inertia dyadic of the ellipsoid is represented as I and Ue is the “unit grav-
itational parameter” mutual potential between the sphere and ellipsoid. It can be
shown that this is precisely equal to the gravitational potential of the ellipsoid,
which is found in Section 2.5, Eq. 2.32. In general, Ue is a function of the ellipsoid
semi-major axes, α, β, and γ, and the position vector from the ellipsoid to the
sphere, Rr.

To simplify the analysis introduce the following non-dimensionalization of the
problem. The maximum radius of the ellipsoid, denoted as α, and the mean motion
of the system at this distance,

n =

√
G(Me + Ms)

α3

are taken as length and frequency scales, respectively. Therefore, the normalized
position and angular velocity are

R =
Rr

α
and ω =

Ω

n

Equations 9.4 and 9.5 now become

R̈ + 2ω × Ṙ + ω̇ × R + ω × (ω × R) =
∂Ue

∂R
(9.6)

I · ω̇ + ω × I · ω = −νR × ∂Ue

∂R
(9.7)

where Ue is now a function of ᾱ = 1, β̄ = β/α, γ̄ = γ/α and R.
Solutions to these coupled differential equations define the relative motion of the

sphere and ellipsoid and the spin of the ellipsoid. Of particular interest to the cur-
rent analysis is the steady-state condition when the ellipsoid rotates synchronously
with the mutual orbit. This situation is studied in detail in [160], where it is shown
that the stable configuration for such a system is for the sphere to be placed along
the ellipsoid’s long axis and for the entire system to spin about an axis parallel
to the ellipsoid’s maximum moment of inertia direction at a rate that counters
the gravitational attraction between the two bodies. Setting up this special initial
state, and assuming the initial speed of the sphere in the ellipsoid fixed frame to
be zero, the equilibrium condition reduces to

ω × ω × R =
∂Ue

∂R
(9.8)
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Applying the results from Section 2.5 this condition can be reduced to

ω2 =
3
2

∫ ∞

λ

dv

(ᾱ2 + v)Δ(v)
(9.9)

In this case, ᾱ represents the ellipsoid axis along which the sphere is placed (=1
in our model) and λ = R2 − ᾱ2, where R is the distance between the primaries.
Making the substitution v = u + λ, the spin rate equation can be simplified to,

ω2 =
3
2

∫ ∞

0

du

(R2 + u)Δ(u)
(9.10)

where Δ(u) =
√

(ᾱ2 + u)
(
β̄2 + u

)
(γ̄2 + u). This relation is precisely equal to the

Carlson Elliptic Integral RJ [136].
With this spin rate, the binary asteroid primaries are now in a stable synchronous

rotation about each other, forming a relative equilibrium.

9.3 The Restricted Full Three-Body Problem

9.3.1 Equations of Motion of a Particle

Having defined the motion of the binary asteroid primaries in the full two-body
problem, the equations of motion for a spacecraft in this system can be defined as
the restricted full three-body problem. The barycenter of the binary asteroid system
is the coordinate center and the location of the spacecraft is defined by the position
vector r. Although the mutual potential for the relative motion of these bodies was
used, for the gravitational attraction on the spacecraft a different potential must
be used that separately accounts for the attraction of the two components. Define
a unit gravitational parameter potential for the spacecraft as

Use(r, Rr) =
ν

|r − (1 − ν)Rr| + (1 − ν)Ue(r + νRr) (9.11)

where Ue is the same ellipsoid unit potential as used for the mutual potential. For
ν → 0 the ellipsoid dominates the system and for ν → 1 the sphere dominates.

Skipping the details of transforming from an inertial frame to a rotating orbit-
fixed frame, the equations of motion in a frame fixed with the ellipsoid are

r̈ + 2Ω × ṙ + Ω̇ × r + Ω × (Ω × r) = G(Me + Ms)
∂Use

∂r
(9.12)

where Ω is driven by Eq. 9.5. These equations do not make any assumptions on
the binary system being in a relative equilibrium, evident through the inclusion of
the Ω̇ term.
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The same normalizations are introduced as for the full two-body problem, defin-
ing a new position vector ρ = r

α and the same time scaling. Then Eq. 9.12 becomes

ρ̈ + 2ω × ρ̇ + ω̇ × ρ + ω × (ω × ρ) =
∂Use

∂ρ
(9.13)

where Use(ρ,R) is functionally unchanged and ω is satisfied by Eq. 9.7. Figure 9.2
shows the geometry for the scaled problem.

Fig. 9.2 Geometry of the restricted full three-body problem.

If the binary asteroid is in a relative equilibrium, as defined above, the only
change is to set ω̇ = 0, treat R as constant vector and solve for ω from Eq. 9.9. In
this case, the system has a Jacobi integral, specified as

J =
1
2
ρ̇ · ρ̇ − 1

2
ω̃ · ω̃ · ρ − Use (9.14)

9.3.2 Equilibrium Solutions

If the binary asteroid is in a relative equilibrium, as for the restricted three-body
problem five equilibrium solutions exist for the present problem. The three collinear
points, analogous to L1, L2 and L3, exist along the axis joining the primaries and
are always unstable. However, the two equilibrium points analogous to the L4,5

points may be stable with their stability properties affected by the presence of the
ellipsoid.

The equilibrium solutions can be obtained from Eq. 9.13 by setting all velocities
and accelerations to zero and solving the resulting algebraic equations. Doing so
yields

ω × (ω × ρ) =
∂Use

∂ρ
(9.15)
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These can be reduced to three scalar equations

ω2x +
∂Use

∂x
= 0 (9.16)

ω2y +
∂Use

∂y
= 0 (9.17)

∂Use

∂z
= 0 (9.18)

where expressions for the ellipsoidal portion of the partials can be found in Sec-
tion 2.5, Eqs. 2.35 to 2.37.

It can be shown that z = 0 is required for the third equation to be satisfied,
and that y = 0 will always satisfy the second equation. For this case the first
equation has three roots along the x-axis, qualitatively similar to the L1, L2 and
L3 equilibrium points in the restricted three-body problem (R3BP). Finally, the
first two equations also have a solution off of the x-axis, analogous to the L4,5

solutions in the R3BP. When β̄ = γ̄ → 1, the location of these equilibrium points
go to x = (0.5 − ν)R and y =

√
3/2R for our normalization of the problem, where

R is the normalized distance between the two bodies. For non-unity values of β̄
and γ̄ the location of these equilibrium points can vary widely, as seen in Fig. 9.3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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1
Equilibrium positions of the RF3BP, r = 2

X

Y

Fig. 9.3 Geometric location of the L4 analogue libration points for β̄ = γ̄ and R = 2. The
ellipsoid is centered at the origin and the sphere at (1, 0) and is off to the right. In the classical
R3BP the location of L4 is fixed at (0.5, 0.866) for this choice of coordinates. The points go from
left to right as ν goes from 0 → 1, and from bottom to top as β̄ goes from 0 → 1. The starred
points are stable locations of the L4 analog points. Credit: [10].
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For the dimensional parameters of the binary asteroid 1999 KW4 all of the
equilibrium points and corresponding zero-velocity curves for that system have
been computed in [10] and shown in Fig. 9.4. Qualitatively speaking, the placement
of the equilibrium points and the sequence of zero-velocity curves in this system
are relatively unchanged from the R3BP. The precise stability conditions for the
off-axis points do change, which is discussed in the following sections.

Fig. 9.4 Zero-velocity curves for a particle about the binary asteroid 1999 KW4. The axes are in
units of kilometers and the equilibria are defined by the intersections of the zero-velocity curves.
Credit: [10].

9.3.3 Stability of the L4,5 points

For the R3BP, stability of the equilateral points is given by the Routh criterion,
which provides a range of mass fraction values for stability. This can be precisely
computed as

ν <
1
2

[
1 −

√
23
27

]
∼ 0.0385 (9.19)

ν >
1
2

[
1 +

√
23
27

]
∼ 0.9615 (9.20)
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The presence of the ellipsoid in the present study can affect the stability of these
equilibria. Specifically, they become a function of the semi-major axis ratios and
the distance between the bodies in addition to the mass fraction.

It can be shown that the out-of-plane oscillations about these equilibrium points
are always stable. The in-plane stability conditions for these equilibria can be re-
duced to finding the roots of the characteristic equation∥∥∥∥λ2 − ω2 − Uxx −2ωλ − Uxy

2ωλ − Uxy λ2 − ω2 − Uyy

∥∥∥∥ = 0 (9.21)

where the usual Use subscript is suppressed and the second-order partial derivatives
for the ellipsoid component of the potential are given in Section 2.5, Eqs. 2.38 to
2.43. The L4,5 points have a non-zero Uxy partial.

Expanding the determinant, the characteristic polynomial is

λ4 + Aλ2 + B = 0 (9.22)

where
A = 2ω2 − Uxx − Uyy (9.23)

and
B = ω2 + ω2(Uxx + Uyy) + UxxUyy − Uxy

2 (9.24)

Therefore, for a system to be stable, i.e., for the roots to be purely imaginary,
the conditions to satisfy are

A > 0 (9.25)

B > 0 (9.26)

A2 − 4B > 0 (9.27)

Figures 9.5 to 9.7 show results from this stability investigation. In each plot the
horizontal axis is the β̄-value of the ellipsoid, going from 0 to 1 and the vertical axis
represents the mass ratio ν of the system, varying from 0 to 1 where the middle
portion has been cut out. Each plot shows the Routh criterion as a horizontal line
at their respective values of the limit.

Figure 9.5 shows the stability region transition as the ellipsoid goes from being
spherical to a highly oblate body with a normalized distance set to 1. Figure 9.6
shows the stability region transition as the ellipsoid again goes from being spherical
to highly oblate. In this case, the normalized distance has been set to 2 and the
effect of the ellipsoid is seen to be significantly reduced. Figure 9.7 shows the
stability region transition as the distance between the bodies is varied from 1 to 4
in normalized units. In this case, the ratio γ/β = 1, making the ellipsoid prolate.
The presence of the ellipsoid can have a dramatic influence on the stability of these
equilibrium points, but as the distance between the bodies increases the original
results from the R3BP are recovered.
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Fig. 9.5 Stability region transition for parameters: r = 1, γ/β = 0.25 → 1. Credit: [10].
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Fig. 9.6 Stability region transition for parameters: r = 2, γ/β = 0.25 → 1. Credit: [10].
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Fig. 9.7 Stability region transition for parameters: γ/β = 1, r = 1 → 4. Credit: [10].

9.4 Periodic Orbit Computations

To finish this chapter a series of periodic orbit family computations made for the
1999 KW4 system are presented in the normalized units. Only planar orbits that
are symmetric with respect to the x-axis are considered, meaning that they make
an orthogonal crossing of the x-axis at least twice. For the 1999 KW4 constants the
large value of R ∼ 8 means that the ellipsoid has a relatively minor influence on the
orbital dynamics, but the relatively large value of ν ∼ 0.05 changes the structure of
the families as compared to the more familiar Sun–Jupiter value of ν ∼ 0.000954,
which is almost two orders of magnitude smaller.

In Figs. 9.8 and 9.9 some specific periodic orbits extracted from several differ-
ent families are shown, separated by whether they are direct or retrograde. By
definition, direct orbits have an inclination value of 0 degrees when viewed from
an inertial frame, while retrograde orbits have an inclination value of 180 degrees.
These orbits are presented in a rotating frame, and thus their direction of travel in
these frames are a combination of their inertial direction of travel and their angular
rate as compared to the orbit rate of the binary system.

The direct periodic orbits show a variety of radial variations, ranging from near-
circular to highly eccentric. The eccentric orbits can have a characteristic loop or
cusp, meaning that the angular rate of the orbit matches or exceeds the rotation
rate of the frame, making the orbit change from retrograde to direct in the rotating
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Fig. 9.8 Select direct periodic orbits about the 1999 KW4 system (shown in scaled units).

Fig. 9.9 Select retrograde periodic orbits about the 1999 KW4 system (shown in scaled units).
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frame, while always being direct in the inertial frame. In Fig. 9.8 all of the periodic
orbits except for the largest one are unstable, some with characteristic multipliers
that exceed 10. The largest orbit, lying beyond the secondary, is stable and this
family continues as a near-circular orbit to arbitrary distance from the system,
maintaining stability. As this family is continued to smaller radii they become
unstable at x-axis crossings of less than 9.0 units and are discussed in more detail
later. Almost all of the periodic orbit families found within the secondary are
unstable, implying that it would be challenging to orbit within the secondary in
the same sense of motion. There is one short interval of near-circular orbits within
the secondary that was found to be stable, with a positive x-axis crossing ranging
between 6.5 and 7.5 units.

The retrograde periodic orbits are all uniformly near-circular, although there is
an observable degree of eccentricity in the closest orbit shown in Fig. 9.9. The orbits
with smallest and largest radii in the figure are both unstable, while the middle
two orbits are both stable. There is a larger interval of stable orbits within the
secondary for this system. Retrograde orbits with an x-axis crossing between 3.25
and 7 units are stable, with another stable interval between ∼ 7.3 and 7.5 units.
Retrograde orbits outside of the secondary are generally stable except for an interval
that ranges from an x-axis crossing of just less than 9 units to about 9.2 units. The
outermost retrograde orbit in Fig. 9.9 is taken from this interval.

In Figs. 9.10 and 9.11 some additional details are presented on two families of
interest as they undergo a series of stability changes. Both families are taken from
just outside of the secondary, with the first set a direct family and the second a
retrograde family. It can be seen that both families go through a series of extrema
in the family curves showing one of the perpendicular x-axis crossings versus the
Jacobi constant. From the discussion in Chapter 5 one expects to see stability
transitions associated with each extremum with respect to the Jacobi constant. In
the lower left images from each figure the magnitude of the eigenvalues (i.e., the
stability indices) for the families are shown and in the lower right the angles that
the eigenvalues make with the real axis in the complex plane are shown. These
images taken together allow us to trace the sequence of stability transitions as the
family evolves to smaller x-axis crossings.

Taking the direct orbits in Fig. 9.10 first, the orbit eigenvalues are stable and on
the unit circle as the Jacobi constant increases (and x-axis crossings decrease), but
then at the point labeled ‘II’ a double bifurcation occurs, with one set of eigenvalues
colliding at (1,0) and going unstable (this is the set that generates the extrema)
with the other colliding at (-1,0) and going unstable, signifying the intersection
with a stable periodic orbit of double the period. This period doubling bifurcation
corresponds to an out-of-plane bifurcation. The Jacobi constant then decreases until
point ‘III’ is reached, where the positive real eigenvalues collide again at (1,0) and
re-enter the unit circle. The curve undergoes another extremum at this point and
the Jacobi constant continues to increase as the x-axis crossing is decreased. The
orbit itself remains unstable, with negative real values for two of its eigenvalues,
corresponding to an out-of-plane instability.
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Now consider the retrograde orbits in Fig. 9.11. First, as the Jacobi constant
is decreased the family has a decreasing x-axis crossing. At point ’II’ the family
curve reaches an extremum and one pair of the eigenvalues collides at (1,0) and
departs the unit circle. The family then increases its Jacobi constant as the crossing
continues to decrease, seen by the interval of zero angle eigenvalues in the plot on
the lower right or by the interval of non-unity eigenvalues on the lower left. At
point ’III’ the family goes through another extremum and the eigenvalues return
to the unit circle, with the family regaining its stability and continuing its initial
trend.

Fig. 9.10 Portion of a direct periodic orbit family about the 1999 KW4 system. The x-axis
crossings as a function of Jacobi constant are shown at top, the eigenvalue magnitudes at lower
left, and angles with the positive real axis in the complex plane at lower right.
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Fig. 9.11 Portion of a retrograde periodic orbit family about the 1999 KW4 system. The x-axis

crossings as a function of Jacobi constant are shown at top, the eigenvalue magnitudes at lower
left, and angles with the positive real axis in the complex plane at lower right.



10. The Surface Environment
on Asteroids

The goal of many space missions to small bodies, such as the Hayabusa mission
to Itokawa and the forthcoming OSIRIS-REx mission to asteroid 1999 RQ36, are
to take samples from the surface of the body. The prospect of designing a transfer
to an asteroid surface and choosing where on the surface to sample begs several
questions related to the flow of material across an asteroid surface, possible regions
of stable resting points, and the surface forces and slopes that a landing spacecraft
will encounter. The detailed design of surface encounters rests heavily on the capa-
bilities and design of the proposed spacecraft. A series of interesting case studies
for the Hayabusa spacecraft and its successful touchdowns on the asteroid Itokawa
surface were summarized in [81, 201, 64, 84]. In the following we take a more dy-
namics and mechanics oriented approach and describe the surface environment due
to gravitational and rotational effects, describe measures of surface stability, and
discuss some simple characterizations of the ballistics of bodies from the surface of
an asteroid. This chapter does not probe the interesting question of how surface
rovers should be designed and operated in order to achieve specific goals (see [85]).

10.1 Surface Specification

The physical surface of the asteroid to be specified can be defined by a constraint
function S(r) = 0, where S > 0 corresponds to a positive altitude above the sur-
face and S < 0 would be below the surface. On the surface of the asteroid the
gradient of S is defined as the surface normal, Sr = n̂, and is itself a function of
position on the asteroid surface. If the asteroid shape is specified as a polyhedron,
then the constraint consists of a series of flat plates with constant normal vectors
that become discontinuous at edges and vertices. The second partial of S is iden-
tically zero if on a flat facet, and is not defined as the surface point changes from
facet to facet. If the surface is specified as a smooth function, such as the popular
Gaussian random shape models [113], the second partial can be non-zero and would
describe the local topography. An actual asteroid surface will, of course, consist of a
highly discontinuous function as asteroid surfaces are often covered with boulders,

DOI 10.1007/978-3-642-03256-1_10, © Springer-Verlag Berlin Heidelberg 2012
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cobbles and blocks [108]. Thus, the use of a flat or smooth surface is an obvious
simplification that describes macroscopic properties of the surface while ignoring
its small-scale features.

10.2 Surface Geopotential

A quantity of interest for the surface environment is the effective potential, defined
by the combined gravitational potential and rotational potential terms. For a uni-
formly rotating body this is just the Jacobi integral discussed earlier, evaluated
at rest on the asteroid surface. This provides a relative measure of the available
energy that can be converted to kinetic energy (and hence easily dissipated) based
on the location of a particle in the asteroid frame. The effective potential energy
function of an asteroid is:

V (r) =
1
2
r · ω̃ · ω̃ · r + U(r) (10.1)

where ω is the angular velocity vector of the body and can be time-varying. Uniform
rotation is generally assumed in this chapter (see [173, 165] for a discussion of
surface slopes on a non-uniformly rotating body). Using this, the dynamical height
of the asteroid surface can be computed, a relative measure from a locally defined
average gravity [181].

A more direct interpretation of the surface geopotential is to link it directly
to possible dynamical motion across the asteroid surface. Recall from the Jacobi
integral that the quantity J = 1

2v2 − V (r) is conserved during ballistic flight, if
the body is uniformly rotating (which is assumed for the current discussion). Here
v is the speed of the particle in the body-fixed frame. Thus, given two points at
rest on the surface of the asteroid, ro and r, the ideal kinetic energy required for
an object to move from one location to the other can be compared. Assume that
the body is at rest at point ro and that the two points will be linked by a ballistic
trajectory (independent of the existence of a ballistic trajectory between these two
points). Then the two Jacobi integral values can be equated to find:

1
2
v2 − V (r) = −V (ro) (10.2)

and solved for the speed required to link the two points on the surface

v =
√

2 (V (r) − V (ro)) (10.3)

To be defined, the quantity V (r) − V (ro) ≥ 0, and thus the point ro, must lie at
a lower point in the geopotential. If this speed is to be defined everywhere on the
asteroid surface relative to the rest point ro, the rest point must be taken at the
lowest value of the geopotential on the surface. Then the geopotential across the
asteroid surface can be defined in terms of the kinetic energy or speed required to
boost a particle from the rest point to another point on the asteroid. Conversely,
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this relationship can also be interpreted as the excess speed or kinetic energy that a
particle would have if it falls to the lowest point on the asteroid without dissipation.
This speed, or more fundamentally the value of V (r), can be used to characterize
the geopotential across the asteroid surface. This has advantages over the use of
the “dynamical height” in that it provides direct information about the required
specific kinetic energy needed to transfer from one region to the other, or the energy
relieved due to downslope motion.

Figure 10.1 shows the surface geopotential mapped across the surface of asteroids
Eros and Itokawa. These two asteroids are chosen as example bodies as they are
the most complete models of asteroids in existence, with detailed shape models,
spin states, and masses.

Fig. 10.1 Geopotential mapped over the surfaces of Eros and Itokawa. Note the different scales
for the different bodies.
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10.3 Surface Forces and Environment

The mechanical forces felt on the surface can be reduced to surface normal and
transverse frictional forces acting on a particle. These forces can be reduced to sur-
face acceleration fields and are defined by the asteroid’s gravity field, surface, and
rotation state. Recent interest in other forces acting on the asteroid surface have
been revived by the unexpected morphology of the Eros and Itokawa surfaces. In-
deed, electromagnetic forces operating on small dust particles are being considered
to explain some of the dust ponding seen on Eros [93, 141]. In addition to these
are occasional impulsive forces that may jolt asteroid regolith, due to impacts of
other asteroids on the asteroid surface [54, 182, 7]. Finally, it has been speculated
that van der Waals cohesion between grains on the surface of an asteroid may play
an important role in the distribution and mechanics of surface material [169]. The
current discussion only focuses on the gravitational and rotational accelerations,
however.

The total acceleration that a particle feels when at rest on the surface of a
rotating asteroid is:

N = ω̇ × r + ω × ω × r +
∂U

∂r
(10.4)

If the asteroid is uniformly rotating then the surface acceleration is equal to the
gradient of the geopotential, N = Vr. If the local surface normal is n̂, then the
surface acceleration is split into a normal and tangential component:

N⊥ = n̂ · N (10.5)

N‖ =
[
¯̄U − n̂n̂

]
· N (10.6)

and the local slope of the system is defined as:

φ = arctan
[ |N‖|

N⊥

]
(10.7)

The surface slope can be related to the static coefficient of friction on the surface,
μ, as μ ≥ tanφ.

The description of the surface gravitational field and surface normal vectors
is simple if a constant density polyhedral model of the asteroid is used, as there
is an exact concordance between the shape and the gravity field. The spherical
harmonic expansions of the gravity field cannot be used for this analysis, due to
their divergence at the surface of an irregularly shaped body. Thus, if a body
has significant density heterogeneity, the polyhedral gravitational potential must
be modified to account for these, a challenging problem in general that has been
considered at an elementary level in [170].

Figures 10.2 and 10.3 show the surface normal acceleration and slope mapped
across the surface of asteroids Eros and Itokawa.
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Fig. 10.2 Surface normal acceleration mapped over the surfaces of Eros and Itokawa. Note the
different scales for the different bodies.

The rotational dynamics of the body can play a significant role in modifying
the surface environment, and may change the stability and structure of motion
on the surface. For bodies in complex rotation the slopes and surface forces are
time periodic, and could potentially add sufficient “shaking” (physically realized
by slowly varying slopes at each point on the surface) to cause the surface to relax,
reducing the potential energy stored in local slopes. Any asteroid subject to non-
uniform rotation following a large impact or planetary flyby will have these time
periodic forces acting on its surface, which could play a role in smoothing a surface
after an impact. This is distinguished from seismic shaking, where the asteroid feels
small seismic events due to the flux of impactors striking the asteroid. While the
magnitude of shaking expected from impactors should be larger than from non-
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Fig. 10.3 Slopes mapped over the surfaces of Eros and Itokawa. Note the different scales for the
different bodies.

uniform rotation, the non-uniform rotation will act continuously on the asteroid
over the time it takes for it to relax into uniform rotation.

Finally, it should be noted that if an asteroid were to actually describe a figure of
equilibrium (see [189, 39]), then the surface slope would be identically zero over the
entire body. In fact, deviations of surface slope from zero indicate deviations from
a figure of equilibrium. Slope distributions of asteroids have been measured from
spacecraft observations and from radar imaging of asteroids. The surface slopes of
most bodies measured in this way have uniformly low slopes (i.e., less than 30◦ on
average) that, at the least, could be indicators of a relaxed surface.
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10.4 Stationary and Stable Motion

Of interest is a methodology for describing the stability of a point on the surface,
specifically if it is trapped at a certain region or if it is at a local “high” and
is subject to downslope motion. While these concepts are trivially tied to surface
topography on the surface of the Earth, or planetary bodies in general, on asteroids
there can be drastic changes of the concept of where “down” is as a function of the
shape, gravity field and spin state [57].

Motivated by our ability to identify a “lowest point” on the surface of an asteroid
in terms of the kinetic energy required to transfer between two points, we will search
for local stationary points of the geopotential across the surface of the body. To
formalize this, define a geopotential cost function which can be evaluated for local
stationarity subject to lying on the asteroid surface, or S(r) = 0,

Λ = V (r) + λS(r) (10.8)

where λ is a Lagrange multiplier. The necessary conditions for a given point to be a
locally stationary point on the surface is that δΛ = 0 or (Vr + λSr) · δr + Sδλ = 0
for all admissible variations of δr and δλ. Noting that Sr = n̂ and S ≡ 0 this
condition can be reduced to

Vr + λn̂ = 0 (10.9)

For a uniformly rotating asteroid this just specifies that the total acceleration acting
on the surface particle is parallel to the surface normal, that λ is the surface normal
acceleration, and thus that the slope equals zero. Specifically, λ = −n̂ · Vr. Thus,
zero slope regions are candidates for local gravitational highs and lows.

To evaluate whether a candidate point with zero slope is a gravitational high or
low, consider the second variation of Λ

δ2Λ = δr · [ω̃ · ω̃ + Urr + λSrr] · δr (10.10)

where the other terms are identically zero given the surface constraint. If on a
faceted shape model Srr ≡ 0 except at edges and vertices where it is undefined.
Stability of a surface point then implies that δ2Λ > 0, or can only increase for
any given admissible δr. If δ2Λ < 0 then the point is at a local maximum of the
geopotential, and has excess energy for moving in the downslope direction. If the
second variation is semi-definite the local point is a saddle. For a smooth surface
the stability condition can be reduced to the definiteness of the matrix

ω̃ · ω̃ + Urr − n̂ · VrSrr > 0 (10.11)

and for a faceted model the term Srr disappears.
The stability of a surface point need not be constant as a function of an object’s

spin rate. In [57] the stable surface points of a uniformly rotating ellipsoid were
computed and shown to depend on the rotation rate of the ellipsoid. Thus, if
a body has a changing spin rate over time the geopotential highs and lows can
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switch, which may have important consequences for the subsequent migration of
material. This also implies that direct inspection of the topography of a small body
may not indicate the geopotential lows on the body.

An alternate way of determining the stability of a surface region is to plot the
directions of the local acceleration vectors tangent to the surface, which in general
point in the direction of downslope motion. If these vectors point towards a zero
slope region, then this will be a local geopotential low and material may accumulate
in this region. If, instead, it points away from a local zero slope region than that
is an unstable surface region with a local maximum value of the geopotential. The
advantage of this approach is that it allows one figure to show both the local slopes
and the local gepotential lows and highs. Figure 10.4 presents such an image for
1999 KW4 Alpha. Here it can be clearly seen that the flow of loose material will
be from the polar regions towards the equatorial region. As blue signifies near-zero
slopes, there exists a stable resting area around the equator, while the polar regions
are unstable. This slope pattern is due to the high spin rate of the body. If the spin
rate were sufficiently lower, then the slope arrows would be reversed and the polar
regions would be the stable region again.

Fig. 10.4 Surface slopes and slope arrows plotted over the surface of 1999 KW4 Alpha. Blue
regions are near zero-slope, green is at ∼30◦ slope and red is at ∼75◦ slope. Credit: DIAL/JPL-
Caltech.
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10.5 Roche Lobe and the Guaranteed Return Speed

On the surface of a uniformly rotating asteroid, the geopotential energy can also
be related to the minimum amount of energy a particle requires before it can
escape from the asteroid (the guaranteed re-impact speed in [174]). Specifically,
the value of V (r) at the synchronous orbits with minimum value of the Jacobi
constant (C∗) defines the zero-velocity surface that surrounds and encloses the
asteroid in three-dimensional space. The effective potential energy evaluated at this
synchronous orbit defines the minimum energy that a particle must have before it
becomes possible to escape from the surface of the asteroid, i.e., a particle with
Jacobi constant greater than this value could, theoretically, escape from the asteroid
following a purely ballistic trajectory. If a particle has an energy less than this, and
is within the zero-velocity curve, then it is impossible for it to leave the vicinity
of the asteroid. This surface has also been referred to as the Roche lobe, and was
studied in the particular case of Phobos [32], and more recently has been computed
for Eros [107]. Phobos was found to nearly “fill” this minimum energy surface,
meaning that particles on its surface were prone to escape that body when given
sufficient speeds. Conversely, Eros lies entirely within this energy surface, although
56% of that asteroid’s surface lies within 1 km of this energy surface, the closest
point lying only 90 meters from the energy surface. Figure 10.5 shows the computed
Eros Roche lobe projected into the Eros equatorial plane. Note, it is not necessary
for the asteroid surface to lie completely within the Roche Lobe.

Fig. 10.5 Roche lobe of asteroid Eros, shown projected onto its equatorial plane.
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The guaranteed return speed is then computed across the surface of the asteroid
as

vret =
√

2 (V (r) − C∗) (10.12)

and is defined to be zero when the energy of the surface exceeds C∗. This concept is
important when considering the motion of surface rovers, as induced speeds relative
to the surface of greater than this amount may lead to the ejection and escape of a
rover from the asteroid surface while speeds less than this ensure capture. Figure
10.6 shows the surface return speed mapped across the surface of asteroids Eros
and Itokawa.

Fig. 10.6 Surface return speed mapped over the surfaces of Eros and Itokawa. Note the different
scales for the different bodies.



10.5 Roche Lobe and the Guaranteed Return Speed 241

10.5.1 Surface Escape Speeds

The guaranteed return speed can be thought of as a necessary condition for escape
from the surface, i.e., a particle must have speed greater than this value if it is
to escape. It is not a sufficient condition, however, as having a speed in excess of
the return speed does not guarantee that the particle will escape. Such a sufficient
condition for escape cannot be established as rigorously as outlined above, but
conditions can be derived that yield reasonable estimates of this outcome.

The approach to this question is more constructive. First consider the inertial
speed of a particle resting on an asteroid surface, which will be vI = ω × r (see
Fig. 10.7). Depending on the surface topography in relation to the spin state, this
velocity can point away from the asteroid surface if the point is on the leading edge
of the asteroid, or may point into the asteroid if it is on a trailing edge. Due to
this, the necessary additional speed necessary to impart escape speed to a particle
may vary drastically over a small body’s surface.

Fig. 10.7 Surface inertial speeds vary as a function of location on a rotating body.

To progress to the next step, define the escape speed from a point on the asteroid
surface as the additional speed normal to the asteroid surface that would provide
the particle sufficient speed to have a positive Keplerian energy when far from the
asteroid. This criterion has been tested in earlier papers [174, 173] and found to
be a reliable indicator, sufficient to develop surface maps to follow trends across
an asteroid’s surface. This definition results in a velocity vector in inertial space of
vI = vescn̂+ω×r. Our definition requires the magnitude of vI to be greater than
or equal to

√
2Umax where Umax = max [U(r), μ/r], which is a conservative result.

Solving for the surface escape speed vesc yields [173]

vesc(r) = −n̂ · (ω × r)

+
√

[n̂ · (ω × r)]2 + 2Umax(r) − (ω × r)2 (10.13)
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This is not a well-defined quantity when the body has locally non-convex regions
where a speed normal to the surface would result in a re-impact with a different
region of the body. Despite this, the result will still indicate the level of speed
necessary in general to generate energies consistent with escape from a body. Fig-
ure 10.8 shows the escape speed mapped across the surface of asteroids Eros and
Itokawa.

Fig. 10.8 Escape speed mapped over the surfaces of Eros and Itokawa. Note the different scales
for the different bodies.



11. Controlled Hovering Motion
at an Asteroid

We end our sequence of chapters on dynamics dominated by the small-body gravity
in isolation by focusing on the application of control maneuvers to enact hovering
about a small body. This technique was applied during the Hayabusa mission to
asteroid Itokawa, where the spacecraft maintained its location on the Sun-side of
the asteroid by performing occasional thrusting maneuvers. For a small body this is
a feasible set of operations as the necessary propellant to maintain a given distance
can be quite small. This chapter draws from a number of different analyses of such
motion [157, 151, 16, 17, 22] and only presents an introduction to the problem,
leaving details to these other papers and for future work.

11.1 Motivation

Performing scientific explorations of small bodies such as asteroids and comets can
be simplified in many cases by abandoning an “orbital” approach in favor of a “hov-
ering” approach in which the spacecraft thrusts continuously, near-continuously,
or sporadically to null out gravitational and rotational accelerations, either fix-
ing its position in a body-fixed frame or in a heliocentric orbit-fixed frame. Such
approaches to small-body exploration make it possible to obtain high-resolution
measurements, and even samples, from multiple sites over the body surface with-
out having to make complicated transitions from orbital to body-fixed trajectories
between each near-surface observation period. The Hayabusa mission to Itokawa
implemented a mixture of these approaches, maintaining an orbit-fixed location
when far from the asteroid and transitioning into a body-fixed frame during its
descents to the asteroid surface.

A variant of such hovering is to perform a sequence of slow hyperbolic flybys of
the target body, with V∞ on the order of centimeters to tens of centimeters per
second, ending each flyby with a small maneuver to turn the trajectory around for
the next flyby. Such an approach can also enable the gravity field of the body to be
determined [180], which may be more difficult if the spacecraft is in a fixed location
and frequently thrusting (which was the case for the Hayabusa spacecraft).

DOI 10.1007/978-3-642-03256-1_11, © Springer-Verlag Berlin Heidelberg 2012
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The main issue that arises with a hovering approach is that the artificial equilib-
rium point that the spacecraft creates in the relevant frame of reference is almost
always unstable, and thus must always be implemented with the navigation of this
hovering solution in mind. In the following we review some simple results that can
be developed for a hovering analysis, and discuss procedures for the stabilization
of such hovering trajectories.

There are two general approaches to controlled motion: near-inertial hovering
and body-fixed hovering. In near-inertial hovering the spacecraft is stationed at a
fixed location relative to the asteroid in the Sun–asteroid frame, the asteroid rotat-
ing beneath the spacecraft. This is the hovering mode implemented by Hayabusa
during most of its mission. In body-fixed hovering the spacecraft is stationed at
a fixed location relative to the rotating asteroid, implying that the spacecraft is
rotating with the asteroid in inertial space. This mode is essential for sampling a
small-body surface, as at some point the spacecraft must control its motion in the
asteroid-fixed frame. Again, the Hayabusa mission implemented body-fixed hover-
ing in a dynamic sense during its sampling runs close to the surface. Both of these
ideas, and their generalizations, are discussed in more detail below.

For the implementation of either approach to be feasible some minimal level of
sensing capability is needed on-board the spacecraft. First is the ability to directly
sense altitude, either using a laser altimeter or by the efficient processing of stereo-
scopic optical measurements. This measurement type forms the backbone of an
automatic control system to maintain altitude and position relative to an asteroid.
In addition to this, it is ideal for the vehicle to have the ability to sense its loca-
tion relative to the asteroid surface. This can be implemented by optical sensors or
scanning lasers, both of these technologies are in different stages of development.
These are not the only types of measurements available or useful, but they are the
most essential. The efficient measurement of altitude allows for the implementa-
tion of automatic control algorithms that stabilize the spacecraft hovering position,
while measurements of body-relative location allows for an expanded capability for
the control and motion of the spacecraft. For the latter case, the spacecraft must
be able to correlate measured features with a global topography map in order to
locate its current location. For some specific applications it may only be necessary
to measure and detect lateral motion in addition to vertical motion, but for the
most general applications the ability to detemine its global location on the aster-
oid is necessary. This implies that a global map of the asteroid surface has been
created at some earlier point, ideally using the same instruments to be used for the
relative navigation. The development and implementation of such sensor systems
is a technology that is currently being developed, and is available for use in the
future.

In addition to the above sensing and estimation capability, the spacecraft will
also require precise 6-DOF control capability. This implies a full set of thrusters
for executing arbitrary control moves, perhaps augmented by momentum wheels
for fine attitude control. It may be feasible to use more restrictive thruster configu-
rations for the control of the spacecraft, although these would have to be carefully
designed for specific implementation approaches. Finally, some, but not all, of these
active control approaches imply that the vehicle may be out of Sun-light for con-
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siderable periods of time. Thus, such power considerations should be factored into
the development and design of space vehicles for these advanced approaches.

11.2 Near-Inertial Hovering

In this approach the spacecraft fixes its location relative to the body in the rotating
body–Sun frame, creating an artificial libration point in this frame. A useful way
to think about this approach is to first consider the Sun–asteroid libration point.
A spacecraft placed in this location will, ideally, remain fixed in its position. If,
however, the spacecraft adds a constant thrust acceleration away from the asteroid,
it would have to move its location closer to the asteroid in order for the forces to
balance again. If a sufficiently large acceleration is added, it could conceivably hold
its position relatively close to the asteroid. If close to the asteroid, it would have
to supply an acceleration of ∼μ/r2 to “hover” at a radius of r from the attracting
asteroid.

From this relationship an approximate measure of the propellant cost to hover
can be developed. Assuming a spherical asteroid of density ρ and radius R the
control acceleration needed to null out the gravity at a given distance r is

u ∼ 4π

3
GρR

(
R

r

)2

(11.1)

∼ 24ρR

(
R

r

)2

m / s / day (11.2)

where the units have been converted to meters per second of ΔV per day and R is
in km. Thus, assuming a density of 2 g/cm3, hovering at the surface of a 0.1-km
body costs 4.8 m/s/day while hovering at the surface of a 10-km body costs 480
m/s/day – the former value being reasonable and the latter being unreasonable for
extended hovering.

Considering the more general case, it is possible to specify the necessary control
acceleration to maintain position at an arbitrary location in the asteroid–Sun ro-
tating frame. Due to the relatively slow motion of the body about the Sun (on the
order of degrees per day at fastest), this position can be considered to be nearly
inertial over relatively short periods of time. Thus this discussion will assume that
the spacecraft wishes to fix itself in an inertially oriented frame. Assuming that
the spacecraft is attracted to the rotating asteroid and also has some thrusting
capability, represented as a control acceleration u, the full equations of motion are

r̈ =
∂U

∂r
+ u (11.3)

where r is the position of the spacecraft relative to the asteroid and is specified rela-
tive to an inertially fixed frame, U(CT ·r) = μ

r +R(CT ·r) is the gravitational field,
C is the transformation dyad that takes the asteroid-fixed frame into the inertial
frame, and R is the perturbing, non-spherical component of the gravity field. Sim-
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ply put, open-loop inertial hovering is enacted by choosing the control acceleration
to balance against the local attraction at the desired hovering location r∗.

u = − ∂U

∂r∗ (11.4)

For hovering above a uniformly rotating non-spherical asteroid the control law is
time-varying and periodic with the rotation of the asteroid. If the central body is
tumbling then the control acceleration will not repeat in general, as a tumbling
body will generally not present the same orientation in inertial space twice.

Although this hovering specification is simplistic, as it is not necessary to con-
tinuously throttle the propulsion system to hover, it is a useful point from which
to consider the stability of this approach. Specifically, consider the effect of a small
error in positioning of the spacecraft – this could either be due to navigation un-
certainties in the precise placement of the spacecraft or could be due to an error in
the propulsion system, meaning that the current control law is actually the hover-
ing law for a neighboring spacecraft location. Linearizing about r = r∗ + δr and
assuming that the control is exactly canceling the gravitational attraction at r∗

yields

δr̈ =
∂2U

∂r2

∣∣∣∣
∗
· δr (11.5)

∂2U

∂r2

∣∣∣∣
∗

= − μ

r∗3
[
U − 3r̂∗r̂∗]+

∂2R

∂r2

∣∣∣∣
∗

(11.6)

The stability of this system for a uniformly rotating body can be evaluated using
Floquet’s theorem, and for complex rotation would require the computation of
Lyapunov characteristic exponents. These more detailed issues are considered in
[17], while for current purposes It is more instructive to ignore the gravitational
perturbation component R and instead just focus on the point-mass attraction
term. This is often justified as inertial hovering will generally occur relatively far
from the central body where the gravitational perturbations are small and could
be ignored.

When considering the point-mass term the stability is tractable as the dynamics
matrix Urr is time-invariant, and its eigenvalues and eigenvectors can be easily
identified. There exists one eigenvector along the r̂∗ vector, and dotting this unit
vector with the dynamics matrix yields

2μ

r3
r̂∗ = − μ

r∗3
[
U − 3r̂∗r̂∗] · r̂∗ (11.7)

Note that the eigenvalue is ±√(2μ/r3), and thus has an exponentially stable and
unstable component. The other eigenvector is found by dotting the dynamics matrix
with any vector perpendicular to r̂∗, denoted as r̂∗

⊥, yielding

− μ

r3
r̂∗
⊥ = − μ

r∗3
[
U − 3r̂∗r̂∗] · r̂∗

⊥ (11.8)
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In this case the eigenvalues along this direction are imaginary and equal to
±i
√

(μ/r3). Thus the 3-DOF system can be reduced to a 1-DOF system along
r̂∗ which has a stable and unstable component and a 2-DOF system consisting of
two uncoupled harmonic oscillators perpendicular to the hovering position vector.
The oscillation period of the motion in the perpendicular direction has period equal
to the orbit period of a circular orbit with semi-major axis equal to the hovering
radius, 2πr∗2/3/

√
μ. The characteristic time of the hyperbolic manifolds equals

r∗2/3/
√

2μ. In the radial direction this leads to motion of the form

δr = α+e

√
2μ

r∗3 t + α−e
−
√

2μ

r∗3 t (11.9)

Thus any small disturbance in this direction will grow exponentially with a char-
acteristic time that is only a function of body density and r∗/R. As this is the
dominant term in the stability analysis it implies that hovering must always be
carried out with control along the radial, hovering direction. Thus, practical im-
plementation requires the addition of a closed-loop feedback control (potentially
through the ground) that senses the altitude or distance deviation of the spacecraft
from its ideal hovering point. The necessary control loop to stabilize this motion is
actually quite simple, and can be implemented in an automatic way using minimal
spacecraft resources [16]. There are limits to this approach, however. A spacecraft
cannot inertially hover within the maximum radius of the asteroid at its hovering
latitude, due to obvious physical constraints. Additionally, as the radius of hov-
ering becomes closer to the body, the automatic control approach described here
can become unstable due to the neglected higher-order terms, potentially leading
to difficulties in implementation.

It is not necessary, however, to force the spacecraft to be fixed precisely at
one location. A generalization of this idea places the spacecraft in an elliptic or
hyperbolic orbit relative to the asteroid, and has its velocity vector “reflected”
whenever it gets within a certain distance to the asteroid (for an elliptic orbit)
or gets a certain distance away from the asteroid (for a hyperbolic orbit), forcing
the spacecraft to travel back on, or close to, its original path but in the opposite
direction. Figure 11.1 shows this graphically, while Fig. 11.2 presents the trajectory
of a spacecraft hovering relative to an asteroid in an asteroid–Sun rotating frame
(this hovering point is away from the sub-solar point and below the equatorial plane,
as seen in the graphics, and includes the attraction of the asteroid, the attraction
of the Sun, and the solar radiation pressure). Despite the simplicity of this control
law – providing a fixed ΔV every time a distance to the asteroid is crossed – it
can maintain the spacecraft within a fixed control volume over an arbitrarily long
timespan. This approach can be thought of as hovering with a relatively large
dead-band control about the nominal hovering point, and requires essentially the
same control and sensing capability on-board the spacecraft. This is essentially the
approach used by the Hayabusa spacecraft during its mission at Itokawa [82]. In
this approach the time between control maneuvers can be made arbitrarily long by
increasing the size of the dead-band box away from the asteroid. The Lyapunov
stability of this approach to hovering was investigated in detail in [17] and found
to be robust. The use of hyperbolic-flyby only interactions with a small body has
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Fig. 11.1 Simple inertial hovering scheme, where a constant ΔV vector is applied (relative to
the Sun–asteroid frame) whenever a threshold distance is crossed.
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Fig. 11.2 Dynamics of a fixed ΔV hovering scheme for a spacecraft situated off the sub-solar
point and below the asteroid orbital plane. Projection of the trajectory into the orbital X–Y plane
(left) and into the X–Z plane (right). The trajectory remains bounded and nonlinearly stable for
arbitrary periods of time.

been proposed for a number of small-body missions, although it has yet to be fully
implemented [180].

Inertial hovering, or its above variations, has several attractive attributes which
may make it a mainstay approach of future exploration. There are also a number
of drawbacks and limitations, however. On the positive side, this approach can
be applied to any small body, and the cost of inertial hovering can theoretically
always be driven to zero by hovering at a high enough altitude (not accounting for
the statistical control to stabilize the hovering point). However, the position where
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hovering is feasible may be far from the body, and may not afford the optimal
viewing geometry. For example, if the NEAR-Shoemaker spacecraft had taken a
hovering approach to its mission to Eros and implemented inertial hovering at a
distance of 50 km from the asteroid (which was the nominal orbit radius for most of
the mission), it would have required over 15 m/s per day to maintain this position,
or for its prime 9-month mission would have required a total ΔV on the order of
4 km/s. Contrasted with the actual fuel usage (on the order of a few tens of m/s),
hovering was clearly not a reasonable approach for that body. Thus, to gain high
resolution scientific measurements this approach is largely limited to smaller bodies
with their associated smaller hovering cost.

A related drawback pertains to the ability of a spacecraft to accurately measure
the mass and gravity field of the asteroid, and hence to compile an accurate under-
standing of the body’s internal structure. When using such a controlled hovering
mode, errors in the spacecraft thrusters and solar radiation pressure parameters will
compete with the signature of the asteroid gravity field acting on the spacecraft.
While it might be possible to extract some averaged results on the total mass of the
asteroid, these results would be corrupted by many different uncertainties that will
not be uniquely separated from the gravity signature. Additionally, higher-order
gravity fields will be nearly impossible to extract. Again, this was the situation for
the Hayabusa mission as it was only able to estimate a relatively imprecise estimate
of the asteroid’s mass and was not able to determine any of its higher-order gravity
field coefficients [1, 200, 166]. This is a serious limitation, as it deprives the mission
of essential scientific data and may make it difficult to subsequently transition to
a body-fixed hovering exploration of the asteroid. Recent research has investigated
the ability of a spacecraft to obtain mass and higher-order gravity field coefficients
for a small body by carrying out several slow hyperbolic flybys of the body [180].
Using this approach it is feasible to gain precise information on the gravity field
up to second degree and order (assuming that the shape has also been estimated)
and to detect up to fourth degree and order gravity coefficients for an asteroid the
size of Itokawa (∼100 meters across).

11.3 Body-fixed Hovering

The counterpart to inertial or near-inertial hovering, with its range of implemen-
tation options, is hovering in the small-body-fixed frame. In this approach the
spacecraft fixes its position relative to the rotating body. A natural way to visual-
ize this approach is to imagine using a “jet-pack” to levitate off of the surface of a
rotating body, such as the Earth or an asteroid. Since the gravitational attraction
is relatively weak at asteroids, it is possible to implement such hovering trajectories
for extended periods of time (hours) with total costs that can be relatively modest,
on the order of meters per second. This approach to controlling motion in close
proximity to small bodies has been analyzed in detail [157, 151] and a detailed
simulation of this approach has been developed for analysis of hovering over arbi-
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trary models of asteroids [16, 17]. During its final descent, the Hayabusa spacecraft
also enacted a form of body-fixed hovering in its sampling mission [81].

The implementation of this approach has similarities to inertial hovering, but
now everything must be done relative to the asteroid-fixed frame, which generally
has a rotation period on the order of hours to days at most. Thus, the spacecraft ac-
celeration must accommodate both the gravitational and centrifugal accelerations,
although there are locations where the hovering cost is zero (at the synchronous or-
bits). Additionally, the spacecraft must reorient its attitude in inertial space in order
to maintain the same orientation relative to the asteroid surface. This body-fixed
hovering approach also suffers from the same basic instability noted for the inertial
hovering case, although there are regions where this approach yields completely
stabilized motion [157]. A similar control strategy, using altimetry to maintain a
fixed altitude, can stabilize a hovering point so long as it is located within the syn-
chronous radius of the body. This result holds approximately true over the entire
body and places an altitude “ceiling” on hovering for a simple control law to be
able to stabilize its location.

There are a number of drawbacks related to body-fixed hovering as well. First,
it is essential that a fairly accurate model of the asteroid spin, topography and
gravity field be available. The gravity field must be defined down to the surface of
the body as well, something which is not always easy to do (as described previously).
Thus, body-fixed hovering should be preceded by a period of characterization at a
relatively high level of accuracy. In the future, it may be possible to dispense with
this requirement, but that would only be after the basic technology and approach
has been proven. Most important, however, is that a body-fixed hovering vehicle
could experience periods of solar occultation, making the presence of batteries or
non-solar power generation essential for long-term operations at the surface of a
body. Additional operations issues also exist, such as communications, attitude
determination, and the mechanical interface of its control thrust plumes with the
surface.

In the following the stability of hovering in a uniformly rotating asteroid-fixed
frame is considered. An analytical consideration of hovering is only investigated
above a point mass in the following, although some examples of the more complex
cases of hovering over non-spherical mass distributions are presented. The equations
of motion for a point mass in a uniformly rotating frame can be restated from
Chapter 7 with the addition of a control acceleration

q̈ + 2ω̃ · q̇ + ω̃ · ω̃ · q = − μ

q3
q + u (11.10)

To generalize this to a uniformly rotating arbitrary mass distribution replace the
gravitational acceleration − μ

q3 q with Uq and have the angular velocity vector be
aligned with the maximum moment of inertia and equal in magnitude to its rotation
rate. Hovering at a specified point in the asteroid-fixed frame, q∗, requires a control
acceleration of u∗ = μ

q∗3 q∗+ω̃ ·ω̃ ·q∗. For simplicity, assuming that hovering occurs
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in the equatorial plane, this simplifies to

u∗ =
(

μ

q∗3
− ω2

)
q∗

Thus the nominal hovering cost can go to zero if the hovering radius equals the
synchronous orbit radius. For a non-spherical mass distribution this is equivalent to
placing the spacecraft at one of the libration points. These are often unstable, and
have a more complex instability structure than found for the inertially hovering
equilibrium points, and thus the stability properties of body-fixed hovering orbits
are expected to be different than the simple structure found for inertial hovering
points.

For this point-mass hovering analysis denote the hovering location vector as
q∗ = q∗ [cos θx̂ + sin θẑ], where θ is the latitude of hovering, the asteroid rotates
about the ẑ axis, and q∗ is the distance from the body center of mass. Assuming
q = q∗ + δq one can linearize the equations of motion about this point to find

δq̈ + 2ω˜̂z · δq̇ =
{
−ω2˜̂z · ˜̂z − μ

q∗3
[
U − 3q̂∗q̂∗]} · δq (11.11)

Writing out the characteristic matrix for this case, with λ as the test eigenvalue,
yields ⎡⎣λ2 − ω2 + ω2

q

(
1 − 3 cos2 θ

) −2ωλ −3ω2
q sin θ cos θ

2ωλ λ2 − ω2 + ω2
q 0

−3ω2
q sin θ cos θ 0 λ2 + ω2

q

(
1 − 3 sin2 θ

)
⎤⎦ (11.12)

where ω2
q = μ/q3 and the explicit hovering position has been substituted. The

characteristic equation for the system is a fully coupled polynomial of degree 3
in λ2. In Fig. 11.3 the different stability results are given as a function of scaled
radius and θ, with different colors indicating different stability types. There are four
types of stable and unstable motion found for hovering in the body-fixed frame.
For all latitudes of hovering with ωq > ω (i.e., hovering within the resonance radius
of the asteroid) there is unstable motion with characteristics similar to inertial
hovering: one stable and unstable manifold and two center manifolds. For this
case the stable and unstable manifolds no longer line up with the radius vector
in general. Transitioning to hovering locations above the resonance radius there
is a larger set of hovering stability types. The red regions correspond to complex
stable and unstable manifolds and one center manifold, the white regions are fully
stable, and the dark regions have two pairs of stable and unstable manifolds and
one center manifold.

The inclusion of non-spherical mass distributions can change the distribution
of stability types markedly. This is analyzed in [17] where the hovering stability
type is mapped over the surface of a number of different asteroids. Some specific
examples of this are shown in Figs. 11.4 to 11.6, which plot the hovering fuel cost,
the stability type, and the characteristic time for a spacecraft hovering above the
Eros surface at an altitude of 100 meters. A further generalization of body-fixed
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Fig. 11.3 Body-fixed hovering stability as a function of radius and latitude above an ideal
spinning sphere. White is stable (oscillatory), blue regions have a single stable and unstable
manifold, and two center manifolds red regions have complex stable and unstable manifolds and
one center manifold, and the dark regions have two pairs of stable and unstable manifolds and
one center manifold.

Fig. 11.4 The average cost of hovering at a 100-meter altitude above asteroid Eros, as a function
of latitude and longitude of the hovering point.

hovering is to model the translational motion relative to the asteroid surface. This is
analyzed in [151] where it is shown that motion against the rotation of the asteroid
is in general more stable than motion in the same sense over the asteroid surface.
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Fig. 11.5 The stability of hovering points at a 100 meter altitude above Eros. An index of 0 is
stable (oscillatory), 1 has a single unstable / stable manifold, 2 has two pairs of unstable / stable
manifolds, and -1 has a set of complex unstable / stable manifolds. Note that there are no stable
hovering locations, which is expected as the 100 meter altitude is uniformly within the resonance
radius of the body.

The implementation of body-fixed hovering can also be accomplished using a
simple dead-band controller acting on the altitude of the spacecraft, in conjunction
with a single thrust direction properly aligned relative to the asteroid gravity field,
technologies that are clearly feasible to implement now. If, in addition to maintain-
ing a single altitude at a specific location, it is desired for the spacecraft to translate
in the asteroid-fixed frame, moving from one site to another, and to descend and
ascend from the surface, additional sensing and control technology will have to be
used. First, the spacecraft must maintain its attitude in the body-fixed frame – it
should be noted that the spacecraft will not do so naturally, as its attitude will
remain fixed in inertial space and will want to spin in the asteroid-fixed space. Sec-
ond, for it to perform translational motions will require that the spacecraft have
the capability to locate itself relative to the surface and perform some higher-level
control to null out transverse oscillations about the hovering point.

The development of this surface-relative motion capability is perhaps the most
advanced concept tendered here. This idea also solves the problem of rover locomo-
tion over an asteroid surface, as instead of relying on natural trajectories induced
by mechanical “jumpers” it provides controlled motion from one location to an-
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Fig. 11.6 The minimum characteristic time of the unstable 100 meter altitude hovering locations
mapped in contours above the Eros surface.

other. There are a number of interesting peculiarities associated with such surface
relative motion, such as the fact that there is a preferred direction of motion about
an asteroid in this mode [151]. Motion in the same direction as asteroid rotation can
actually destabilize the dynamics of the spacecraft control, while translational mo-
tion in the opposite direction will tend to stabilize the control system. Other than
this observation, which can be easily proven, there is little known about the sta-
bility and control of surface-relative motion at small bodies, making it an essential
topic for future research.



12. Solar Radiation Pressure:
Exact Analysis

Moving beyond gravity-only dynamics about small bodies, we first consider the
combined effect of solar radiation and solar tide perturbations on a spacecraft
orbiting about an asteroid or comet. In this section we assume the central body
can be modeled as a sphere, and neglect gravitational perturbations. This situation
models orbital dynamics when far from asteroids or comets where the dominant
perturbation will be from solar effects. We shall also see that for large enough
bodies, such as Eros, solar radiation pressure only plays a minimal role. For missions
to bodies whose sizes are on the order of a few kilometers or less, however, solar
radiation pressure is the principal concern for orbital stability. It is interesting to
note that the solar tide is generally negligible when compared to solar radiation
pressure, yet it is included in this discussion for completeness. From a direct analysis
of the equations of motion and their equilibrium points specific limits can be derived
on orbit semi-major axis for when solar radiation can strip a spacecraft out of orbit.
The analysis given here is based on some earlier work by Dankowicz [27] and the
analysis given in [171].

12.1 Models

In the current discussion a focus on comets is introduced in addition to asteroids,
although not on any one particular body. Listed in Table 12.1 are a number of
different spacecraft and their target bodies. We identify Rosetta with the comet
Wirtanen, which was its original target, in addition to listing its properties rela-
tive to its current target Comet Churyumov-Gerasimenko. The ST-4 spacecraft to
comet Tempel-1 was a proposed mission to that body and is included as it had a
very low mass-to-area ratio leading to it being a highly perturbed body, and thus
is of interest. The asteroid and comet mass properties are all approximate. This
analysis fully accounts for the potentially elliptic motion of the small body about
the Sun, which is appropriate given that the solar radiation pressure will vary
strongly as a function of distance from the Sun. Estimates of spacecraft values of
mass-to-area ratio are highly speculative, and are estimated based on very simple
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descriptions of the spacecraft total mass and total surface area that would poten-
tially be facing the Sun. As these values were obtained from the gray literature in
many cases, they are likely to be off by a factor of a few.

Table 12.1 Approximate values of the spacecraft mass-to-area ratio (B), the small-body gravi-

tational parameter (μ), the small body’s orbital eccentricity (eS) and orbit parameter (pS), the
non-dimensional parameter ε = (μ/μSun)1/3, and the non-dimensional parameter β, defined later
in this chapter.

Spacecraft B μ eS pS ε β
Body Name (kg/m2) (km3/s2 (—) (AU) (—) (—)

Rosetta 20 3 × 10−7 0.658 1.752 1.31 × 10−6 28.5
Wirtanen

Rosetta 20 7 × 10−7 0.64 2.047 1.74 × 10−6 21.5
Churyumov-Gerasimenko

ST-4 7.5 5 × 10−6 0.5175 2.285 3.34 × 10−6 29.8
Tempel 1

NEAR-Shoemaker 40 5 × 10−4 0.223 1.385 1.55 × 10−5 1.20
Eros

Hayabusa 33 5 × 10−8 0.136 1.25 7.2 × 10−7 31.41
Itokawa

12.2 Equations of Motion

The solar derived forces acting on the spacecraft are the solar radiation pressure
(SRP) force that acts on the craft and the tidal force from the sun, necessitating
a model for the asteroid’s motion about the sun. The small body’s orbit about
the sun is modeled using 2-body theory, which is adequate for describing the body
dynamics over time periods of relevance for a spacecraft mission. All the relevant
models and equations were previously derived for the general case in Chapters 2 and
4. This chapter focuses on a very simple model for motion about a body dominated
by SRP, as it provides useful insight into the fundamental aspects of this problem
and also enables the derivation of a simple condition for when a spacecraft will be
bound to the small body.

12.2.1 Point Mass with No Rotation

The simplest system to analyze is that of a non-rotating, constant acceleration
acting on a spacecraft orbiting about a point mass. This problem is integrable if
motion is constrained to a plane containing the acceleration vector, as it is a limiting
case of the fixed two-center problem with one of the centers being moved to infinity
[13]. This problem was also analyzed extensively by Dankowicz [27, 28, 29, 30] using
advanced methods of dynamical systems theory. Dankowicz’s analysis considered
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both the unperturbed problem and various perturbations of it. From the initial
analysis of Dankowicz some very useful results can be extracted for spacecraft
orbit design, which are based on the ideal conservation of the angular momentum
about the constant force direction (i.e., the line of action of the solar radiation
pressure). These results are considered first.

The relevant potential in this case is U = μ/r + aSRP d̂ · r where d̂ is assumed
to be stationary with respect to inertial space. The resulting equations of motion
are:

r̈ = − μ

r3
r + aSRP d̂ (12.1)

It can be easily shown that the total angular momentum projected onto the d̂
direction is conserved, or Hd = d̂ · (r × ṙ) is a constant. The form of the equations
are simplified if one shifts to a cylindrical frame with the axis of the cylinder
along d̂ and the radius, ρ, and polar angle, θ, measured perpendicular to this
direction. Assign the x̂-axis to the direction of the acceleration and the ŷ- and
ẑ-axis perpendicular to this to find the simplified set of equations

ẍ = −μx

r3
+ aSRP (12.2)

ρ̈ − ρθ̇2 = −μρ

r3
(12.3)

ρθ̈ + 2ρ̇θ̇ = 0 (12.4)

where r2 = x2 + ρ2. Figure 12.1 shows the geometry of the orbit, with the radius
ρ measured from the x-axis and the displacement away from the asteroid center
measured along the x axis.

Fig. 12.1 Geometry of the orbit relative to the asteroid and the anti-Sun line (along aSRP ).
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The conserved angular momentum is now Hd = ρ2θ̇ and can be immediately
inferred from integrating Eq. 12.4. Eliminating θ̇ through this parameter yields the
simplified set of equations and related potential

ẍ =
∂Ud

∂x
(12.5)

ρ̈ =
∂Ud

∂ρ
(12.6)

Ud =
μ

r
− 1

2
H2

d

ρ2
+ aSRP x (12.7)

It is important to note that the reduced set of equations still have a Jacobi integral:

J =
1
2
(
ẋ2 + ρ̇2

)− Ud (12.8)

This is directly related to the energy of the system, as if Hd = ρ2θ̇ is substituted
the following results

J =
1
2

(
ẋ2 + ρ̇2 + ρ2θ̇2

)
− U (12.9)

where U = μ/r + aSRP x is the original perturbation and the velocity term ẋ2 +
ρ̇2 + ρ2θ̇2 = v2

I where vI is the magnitude of the total inertial velocity.

12.2.2 Point Mass with Rotation

Once the motion of the asteroid about the Sun is modeled, by allowing the unit
vector d̂ to rotate as a function of time, the conservation of Hd is destroyed and
the dynamics of the system become much more complex. Additionally, the solar
gravitational effect must be taken into account as it balances the centripetal accel-
erations that arise from the frame rotation. Finally, the elliptic orbit of the body
about the Sun must be accounted for, as this causes large fluctuations in the mag-
nitude of the solar radiation pressure. Incorporating our simple SRP model into
a sun-fixed rotating frame and expanding the solar gravitational attraction to the
lowest order yields

r̈ + 2ḟ Z̃ · ṙ + f̈ Z̃ · r + ḟ2Z̃ · Z̃ · r = − μ

r3
r + aSRP d̂ − μS

2d3

[
r − 3(d̂ · r)r

]
(12.10)

where f is the small-body heliocentric orbit true anomaly and μS is the Sun’s
gravitational parameter (∼1.327 × 1011 km3/s2). The equations are difficult to
analyze in this form, due to the time-varying coefficients. A standard approach for
such a problem is to introduce the true anomaly as an independent parameter and
to scale the position vector by the time-varying distance d, defining a new position
vector R = r/d. These transformations, along with the Hill approximation, were
derived in detail in Chapter 4 and initially derived for the asteroid/comet problem
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in [171]. Making these transformations gives us the new equations of motion

r′′ + 2ẑ × r′ + (ẑ · r) ẑ =
1

1 + eS cos f

∂U

∂r
(12.11)

U =
1
|r| + βd̂ · r +

3
2

(
d̂ · r

)2

(12.12)

The parameter β is constant and describes the relative acceleration of the SRP on
the spacecraft. In terms of fundamental quantities it equals

β =
(1 + ρ)P0

BμSε
(12.13)

where ε = (μ/μS)1/3. Note that β is not necessarily a small quantity. For example,
the Rosetta spacecraft at comet Wirtanen, the DS-4 spacecraft at Tempel 1, and
the Hayabusa spacecraft at Itokawa will all have values of β ∼ 30. In contrast the
NEAR-Shoemaker spacecraft at the asteroid Eros had β ∼ 1 and planetary orbiters
will have β � 1.

It is significant to note that Eq. 12.11 only contains two parameters, the eccen-
tricity of the orbit eS and the normalized effect of the SRP force, β, and that the
equations are time-periodic in the true anomaly f . These equations have a close
affinity with the elliptic restricted three-body problem, with the change of moving
the origin to the smaller primary, the addition of Hill’s approximation for the effect
of the larger primary, and the effect of the solar radiation pressure. Rewriting the
equations in scalar form (assuming that d̂ = x̂) yields:

x′′ − 2y′ =
1

1 + eS cos f

[
− x

r3
+ β + 3x

]
(12.14)

y′′ + 2x′ =
1

1 + eS cos f

[
− y

r3

]
(12.15)

z′′ + z =
1

1 + eS cos f

[
− z

r3

]
(12.16)

12.3 Analysis of the No-Rotation Case

First consider the equations of motion with no rotation, given in Eqs. 12.5 to 12.7.
These equations have many interesting properties, but the one focused on here is
the existence of a relative equilibrium point that corresponds to a circular orbit,
offset from the center of the point mass along the direction x̂ and perpendicular to
this same direction. A modified form of this orbit will also play a special role in the
more general case accounting for motion of the body about the Sun, described in
the next chapter. The unique aspect of this solution is that it can lose its stability
at a certain value of energy, and that this agrees well with observed limits for the
escape of a spacecraft due to the SRP perturbation.
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The equilibrium point is simple to find, solving for ∂Ud/∂x = 0 and ∂Ud/∂ρ = 0:

xeq =
aSRP

μ
r3
eq (12.17)

ρ4
eq =

h2
d

μ
r3
eq (12.18)

where these two equations are coupled through the relation r2 = x2 + ρ2. The
crucial parameter is the orbit radius, r, and the ratio aSRP /μ. Once these are
specified the value of x and ρ are fixed. By definition x ≤ r and thus leads to a
fundamental limit on the orbit radius, r ≤ √

μ/aSRP . Conversely, as ρ ≤ r as well,
a lower limit can be found as H2

d/μ ≤ r, which implies a limit Hd ≤ 1/
√

μaSRP .
The equilibrium conditions can be simplified. Since ρeq is stationary then θ̇eq

must also be stationary and can be used as a parameter of the equilibrium. Rewrit-
ing in terms of this yields the simplified form of the equilibrium

xeq =
aSRP

θ̇2
eq

(12.19)

ρ2
eq =

Hd

θ̇eq

(12.20)

θ̇2
eq =

μ

r3
eq

(12.21)

The Jacobi integral at the equilibrium point can also be determined. Substituting
and simplifying reduces the dependence of C on only the value of xeq as:

J = −μ

2

(
aSRP

μxeq

)1/3

− 3
2
aSRP xeq (12.22)

It is instructive to find the maximum value of J as a function of x, found by solving
Jx = 0 for x∗ and substituting back into the expression for J . Solving for these
values yields

x∗ =
1

3
√

3

√
μ

aSRP
(12.23)

Jmax = − 2√
3
√

μaSRP (12.24)

These become important when considering the stability of the equilibrium points.
To study the stability of this equilibrium point form the linearized equations of

motion and compute the characteristic equation. For these equations this is simple,
and yields the characteristic equation

λ4 − λ2 (Uρρ + Uxx) + UρρUxx − U2
ρx = 0 (12.25)
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Uρρ = −4θ̇2
eq

[
1 − 3

4

(
ρeq

req

)2
]

(12.26)

Uxx = −θ̇2
eq

[
1 − 3

(
xeq

req

)2
]

(12.27)

Uρx = 3θ̇2
eq

ρeqxeq

r2
eq

(12.28)

Inserting these into the characteristic equation yields:

λ4 + 2θ̇2
eqλ

2 + θ̇4
eq

[
1 −

(
3xeq

req

)2
]

= 0 (12.29)

with the simple factorization:(
λ

θ̇eq

)2

=
3xeq

req
− 1,−

(
3xeq

req
+ 1

)
(12.30)

For stability the roots must be pure imaginary, i.e., λ2 must be real and negative.
One root is always of the proper sign for stability, while the other root only has
the proper sign for stability when the condition

3xeq

req
< 1 (12.31)

holds, which then becomes the condition for stability of this special orbit. Note
that req can be solved for in terms of xeq, yielding

req =
(

xeqμ

aSRP

)1/3

Substituting this into the relationship defines a limit on xeq for stability of the
system:

xeq <
1

3
√

3

√
μ

aSRP
(12.32)

The upper bound on xeq is the value at which the Jacobi integral value takes on its
maximum value. Figure 12.2 shows the zero-velocity curves of this system in the
ρ–x space, with the equilibrium points plotted on them.

In [27] the orbit dynamics of the system were studied when the relative equilibria
were unstable, and escape was found to be the common occurrence. From the above
analysis it is clear that when J < Jmax there will be two relative equilibrium orbits,
one stable with x < x∗ and one unstable with x > x∗. When J = Jmax these two
equilibrium points coincide at the maximum value of J . For larger values of J the
equilibrium point does not exist. This relationship allows us to derive a necessary
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Fig. 12.2 Zero-velocity curves in the ρ–x space with circular orbits plotted as stars. The full

range of the zero-velocity curves are shown in the top, with a detail shown in the bottom. Credit:
[21].

condition for escape of a spacecraft from the asteroid in this simple model, or
conversely a sufficient condition for stability. Simply put, if the Jacobi energy of a
spacecraft is less than Jmax and the spacecraft is in the interior region of the zero-
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velocity surface, then it cannot escape. If its Jacobi energy is equal to or greater
than Jmax, then it is possible for it to escape, and in practice escape is the usual
situation. Thus, given an initial value of Hd, x and ρ a limit for the reduced speed
of the system can be found, (ẋ2 + ρ̇2)/2 ≤ Jmax + Ud. This limit can be made
simpler and more useful by taking advantage of the special structure of the Jacobi
integral to find a limit on the inertial speed of the spacecraft

1
2
v2

I ≤ μ

r
+ aSRP x − 2√

3
√

μaSRP (12.33)

This limit can be related to the osculating semi-major axis of an initial orbit eval-
uated at x = 0, defined by the relationship v2

I/2 − μ/r = −μ/(2a), to find:

μ

2a
≥ 2

√
μaSRP√

3
(12.34)

a ≤
√

3
4

√
μ

aSRP
(12.35)

This serves as a useful design parameter in constraining the maximum orbit size
for mission design purposes.

12.4 Analysis of the Rotation Case

Now the dynamics associated with Eqs. 12.14 to 12.16 are addressed. The main
focus of this discussion is on the equilibrium points of these systems and their use
in deriving limits on semi-major axis for an orbiter to be bound to the small body.

12.4.1 Equilibrium Points of the System

Computing the Location of the Equilibrium Points

Equations 12.14 to 12.16 will admit an equilibrium solution that is independent of
the true anomaly if y = z = 0 and x is chosen such that −x/|x|3 + β + 3x = 0.
This is a generalization of the well-known Lagrange equilibrium points in the Hill
problem, the current result having been generalized to include the solar radiation
pressure and the elliptic motion of the body. The condition for the equilibrium
points becomes:

3x3 + βx2 − x

|x| = 0 (12.36)

where the equation takes on a different form depending on whether x is greater
than or less than 0. For any value of β an exact solution can be computed using
Cardano’s formula (for the solution of a cubic equation), or by applying a numerical
procedure. It is more practical, however, to generate approximate expansions for
the cases of β small and large. Parameter values of β � 1 apply to spacecraft that
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are heavier and smaller about bodies that are larger and denser, values of β 
 1
apply to spacecraft that are lighter and larger about bodies that are smaller and
less dense.

For β � 1 the roots of the equation can be found by expanding the solution
about the classical Hill’s solution, x∗ = ± (1/3)1/3, in powers of β. To the second
order this procedure yields:

x∗ ∼ ±
(

1
3

)1/3

− β

9
± 31/3

81
β2 + . . . (12.37)

For β 
 1 the roots of the equation can be found by expanding the solution in
powers of 1/

√
β for x > 0 and in powers of 1/β for x < 0, with a leading term on

the order β. Again, applying this procedure yields:

x∗ ∼
{−1

3β − 9
β2 + . . . x∗ < 0

1√
β
− 3

2β2 + . . . x∗ > 0 (12.38)

In Fig. 12.3 comparisons of the leading order of these expansions are compared to
numerical solutions of Eq. 12.36.

In the coordinate frame rotating with the body–Sun line these equilibrium points
have position and velocity values relative to the body of:

R∗ = dεx∗d̂ (12.39)

Ṙ∗ = ε

√
μS

pS
eS sin fx∗d̂ (12.40)

Expressing the position and velocity of the equilibrium points in an inertial frame
relative to the Sun provides an even more compact result:

D∗ = [1 + εx∗]d (12.41)
Ḋ∗ = [1 + εx∗] ḋ (12.42)

where d and ḋ denote the inertial body position and velocity vector with respect
to the Sun. In all cases x∗ is a solution of the equilibrium condition, Eq. 12.36. It is
important to note that these equilibrium points correspond to elliptic orbits with
the same eccentricity and period but with a constant fractional offset in distance
from the body location.

In Fig. 12.4 the location of the Sun-side equilibrium point is shown (in metric
units) as a function of true anomaly both with and without the solar radiation
pressure, using parameter values from the Rosetta spacecraft and comet Wirtanen.
From this figure it becomes obvious that the solar radiation pressure plays a major
role in changing the location of these equilibrium points. A spacecraft with large β,
such as Rosetta, that is controlled close to the libration point would have a much
“safer” environment with which to view a comet than a spacecraft that was not
strongly affected by the radiation pressure. Due to this geometric property we will
study the stability of the Sun-side equilibrium point in greater detail, to ascertain
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Fig. 12.3 Analytical and numerically computed equilibrium points for x > 0 (top) and x < 0
(bottom).
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Fig. 12.4 Geometry of the equilibrium points relative to the central body as a function of true
anomaly.

whether or not it is a suitable location for a spacecraft as a comet travels through
perihelion.

Stability of the Equilibrium Point

In the classical Hill problem, the equilibrium points equivalent to those discussed
above are all hyperbolic unstable, meaning that a particle placed near their location
will depart at an exponentially increasing rate along a one-dimensional manifold,
and could be attracted to the point at an exponentially decreasing rate along a one-
dimensional manifold (see Chapter 16 for an explicit analysis of the Hill problem).
The strength of this instability can be measured by the characteristic time for the
equilibrium point. The characteristic time is a measure of how swiftly a particle
will depart from the equilibrium point if slightly perturbed from it. In the limit for
small perturbations, the initial displacement will increase by an order of magnitude
in less than 3 characteristic times. The characteristic time can also be used as a
measure of the control effort needed to maintain the spacecraft in the vicinity of
the libration point. A smaller value indicates that more frequent control is needed
and that the spacecraft must detect its position deviation over a shorter timespan
[137, 59].
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In the current application, these equilibrium points are more properly viewed
as periodic orbits, and hence the computation of their stability must numerically
integrate the state transition matrix about the Sun-side equilibrium point over a
full period and then study its eigenvalues. We perform this computation as the
true anomaly travels from −180◦ to 180◦ and the characteristic exponents of the
system are found from the eigenvalues of the resulting state transition matrix. The
general form of the variational equation is:

Φ(f, f0)′ = A(f)Φ(f, f0) (12.43)
Φ(f0, f0) = I (12.44)

A(f) =
[

O I
G J

]
(12.45)

where O is a 3 by 3 zero matrix, I a 3 by 3 identity matrix, and

J =

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ (12.46)

G =
1

1 + eS cos f

⎡⎣ 3 + 2
x∗3 0 0

0 − 1
x∗3 0

0 0 − 1
x∗3

⎤⎦ (12.47)

where the matrix G has been evaluated at the equilibrium point. For a given equi-
librium point Φ is parameterized by the eccentricity, eS , and the spacecraft non-
dimensional SRP parameter β.

Figure 12.5 shows the characteristic time of the Sun-side equilibrium point as a
function of the parameters β and eS . For weak SRP effects (β small) the character-
istic time is short, indicating that a perturbed particle will rapidly depart from the
vicinity of the equilibrium point. For strong SRP effects (β large) the characteristic
time is long, indicating a relatively slow departure. As the eccentricity of the body
grows there is a decrease in the characteristic time.

This result is interesting for spacecraft with large values of β, as it implies that
it becomes easier to control a spacecraft at the Sun-side equilibrium, a point from
which it can monitor a comet through perihelion passage. Due to the larger values
of β, not only is the characteristic time longer, meaning that the spacecraft has
more time between applications of its control, but the geometric distance of the
spacecraft from a comet is greatly increased over the distance of the tide-only
equilibrium points. This is an important consideration, as the spacecraft will be
less subject to comet outgassing and ejected particles.
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Fig. 12.5 Characteristic time of the unstable equilibrium points (x < 0) as a function of comet
eccentricity and spacecraft β.

12.4.2 Spacecraft Capture

Using the same formalism of the Hill equations of motion, combined with results
on the equilibrium point locations, it is also possible to derive a sufficient condition
for a spacecraft’s trajectory to be bound to a small body. This is an important
consideration as it is desirable to place the spacecraft into an orbit that is definitely
bound to the nucleus – accounting for both the solar radiation pressure and the
solar tide. While the boundedness of any single trajectory can usually be definitively
decided by numerical integration, useful analytical results can also be obtained
which provide sufficient conditions for a spacecraft to be bound to the body. This
condition is found by forming and studying an algebraic relation derived from the
equations of motion, and using the results from the previous section on equilibrium
points.

Algebraic Relation

To form the algebraic relation proceed as if forming the total Jacobi integral for
Eqs. 12.14 to 12.16, multiplying each equation by x′, y′ and z′ respectively and
summing them. Treating the term (1 + eS cos f) instantaneously as a constant the
expression can be integrated to find:



12.4 Analysis of the Rotation Case 269

J ′ =
1
2
(
v2 + z2

)− U(r)
1 + eS cos f

(12.48)

U(r) =
1
r

+ βx +
3
2
x2 (12.49)

where v2 = x′2 + y′2 + z′2. This expression is only a constant of integration in the
special case when the body is in a circular orbit about the sun (eS = 0). It serves
a useful purpose, however, in establishing the sufficient criterion for spacecraft
capture at the body. Following Marchal [97], Eq. 12.48 is re-expressed as

Γ = 2U(r) − (1 + eS cos f)
[
v2 + z2

]
(12.50)

The complete differential of Γ with respect to true anomaly yields

Γ ′ = eS sin f
[
v2 + z2

]
(12.51)

showing that this quantity is only conserved for a circular orbit about the Sun, or
for an equilibrium point in the orbital plane.

Whether or not Γ is conserved, if Γ < Γ ∗, then the interior region surrounding
the body is definitely separated from the outer region. Thus, for the duration when
this inequality holds a spacecraft cannot escape from the body if in this interior
region.

Zero-Velocity Curves in the Plane

The utility of this relation becomes obvious when considering the planar (z = 0)
zero-velocity curves, as then the relationship becomes invariant with respect to true
anomaly:

Γ = 2U(x, y, z = 0) (12.52)

Thus, even though Γ itself is not constant, boundaries for bounded motion that
are constant can still be derived – analogously to the circular Hill problem. Shown
in Fig. 12.6 are zero-velocity curves for Eq. 12.52. It is significant to note that the
equilibrium points serve the same function in this curve as in the standard circular
problem, as they denote the points at which the region containing the nucleus
connect the regions that are separated from the nucleus. The value of Γ at the
equilibrium points is a constant and provides a useful criterion for whether the
spacecraft is guaranteed to be bound to the nucleus or not, valid independently of
the true anomaly.

For β � 1 the value of Γ at the equilibrium points is:

Γ ∗
± ∼ 34/3 ± 2

(
1
3

)1/3

β̃ − 1
9
β2 + . . . (12.53)
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Fig. 12.6 Zero-velocity curves for the exact SRP case.

while for β 
 1 the value is computed to be:

Γ ∗
+ ∼ 4

√
β + . . . (12.54)

for x∗ > 0 and

Γ ∗
− ∼ −1

3
β2 + . . . (12.55)

for x∗ < 0. From the values given above, it is clear that for Γ > Γ ∗
+ the region

surrounding the nucleus is separated from the region containing infinity.

Sufficient Condition for Capture

Combining the previous results shows that there is a simple sufficient criterion for
the capture of a spacecraft at a body: if the value of Γ for a spacecraft is always
greater than Γ ∗

+, and the spacecraft is inside of the zero-velocity surface, then
the spacecraft is definitely bound to the body. Since the value of Γ changes over
time, the satisfaction of the criterion at one time does not guarantee that it will
be satisfied at some point in the future, so its use is somewhat limited. This does
fit well, however, with using the criterion for a spacecraft mission as operations
will generally focus on shorter time spans over which this criterion provides useful
results.

To generate such results it is useful to express Γ in terms of osculating elements.
To properly evaluate the orbital elements, and to make them useful for practical
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computation, it is necessary to transform from the non-dimensional coordinates to a
metric set of coordinates. In a coordinate frame with an inertially fixed orientation
the position and velocity vector are evaluated as:

RI = R (12.56)
ṘI = Ṙ + Ω × R (12.57)

and the resulting expression for Γ becomes:

Γ =
2d

ε2μS

[
− E + ΩH cos i +

εμSβ

d2

(
d̂ · RI

)
+

3
2

Ω2

(1 + eS cos f)

(
d̂ · RI

)2

−1
2
Ω2R2 − 1

2
Ω′ṘI · RI − 1

8
Ω′2R2

]
(12.58)

where H is the total angular momentum of the spacecraft and d̂ varies in time.
It is important to note that Γ is multiplied by the body–Sun distance, meaning

that even if a spacecraft were in an orbit with constant orbital elements, the value
of Γ would decrease as the body neared the Sun, and increase as the body moved
away from the Sun. This is the main contributor to the mechanism that can cause
a previously stable trajectory about a body to become unstable near perihelion –
allowing the spacecraft to be ejected from its orbit about the body.

To apply this sufficient condition to the stability of an orbit about a body the
value of Γ should be computed along with the trajectory of the spacecraft. If the
trajectory has sustained periods where the condition Γ > Γ ∗

+ is violated, then this
trajectory is a candidate for ejection from the body. On the other hand, should
the condition be satisfied throughout the time period of interest, the trajectory is
guaranteed to be bound to the body.

Evaluating the“Average” Sufficiency Condition

For the general design of an orbit, using the above osculating criterion is limited as
the value of Γ that a trajectory has may vary considerably within one spacecraft
orbit around the body. Thus it is of interest to examine what the average value of
Γ is over a spacecraft orbit, so a more general criterion can be developed. Due to
the strong perturbations acting on the spacecraft orbit the averaged values of the
orbit elements will change in time. However, these changes will in general move
more slowly than the variation in Γ over a single orbit, giving some justification to
this approach. Standard averaging can be applied to Γ over one particle orbit

Γ̄ =
1
2π

∫ 2π

0

Γ dM (12.59)

where M is the mean anomaly of the orbit. The body position about the Sun
remains constant over one spacecraft orbit about the body. Note that after ap-
plication of this averaging, the condition Γ̄ > Γ ∗

+ is no longer a true sufficiency
condition, but rather an indicator of when escape is likely. Also, it should be noted
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that this averaging may not be valid for spacecraft in long-period orbits, when
the body moves through a considerable range of true anomaly over one spacecraft
period.

Evaluating this average yields:

Γ̄ =
2d

ε2μS

[
−E + ΩH cos i − 3ae

2
εμSβ

d2
[cos ω cos λ − sinω sinλ cos i]

+
3a2

4
Ω2

(1 + eS cos f)

[(
1 − sin2 λ sin2 i

)(
1 +

3e2

2

)
+

5e2

2
{(

cos2 λ − sin2 λ cos2 i
)
cos 2ω − sin 2λ sin 2ω cos i

}]
−a2

8
(
4Ω2 + Ω′2)(1 +

3e2

2

)]
(12.60)

where λ is the longitude of the ascending node measured in inertial space.
If the mean orbit elements of a spacecraft trajectory are computed, using an

analytical approach (see the next chapter), then the average value of Γ can be
computed as the orbital elements change.

In Fig. 12.7 the stability bound on the Hayabusa spacecraft at Itokawa, the
Rosetta spacecraft at Wirtanen (its original target), the ST-4 spacecraft at Tempel
1, and the NEAR-Shoemaker spacecraft at Eros is shown as a function of body–
Sun distance. The bounding semi-major axis is found by numerically solving for
the orbit semi-major axis from the equation Γ̄ = Γ ∗

+, assuming the spacecraft
is initially in a circular, zero inclination orbit about the body starting on the
Sun line between the body and the Sun. Included in this figure are checks on
the condition found by starting a spacecraft at the same initial conditions and
integrating forward to see whether the spacecraft escapes or is in a bound orbit.
The numerical integration included the effect of solar gravitation and solar radiation
pressure without approximation. Each spacecraft/body pair was checked at body
periapsis and apoapsis, with the resulting agreement being remarkably good. That
the averaged condition is no longer a true sufficient condition can be seen in that
the numerically determined limiting semi-major axis for the Hayabusa spacecraft
was less than the “averaged” sufficiency condition. All the other cases, however,
give excellent agreement. Were the numerically integrated spacecraft started in a
different initial orbit – such as a retrograde or polar orbit – the agreement might
not be so good, which is the usual case for such a sufficiency criterion [61].

The above formulae are too involved analytically to develop any sort of sim-
ple “back of the envelope” criterion. However, under some reasonable spacecraft
assumptions such a criterion can be developed. If the nominal spacecraft orbit is
relatively close to the body, then the semi-major axis will become relatively small
as compared to the orbit energy, E. Using this as a justification to ignore all the
terms except the orbit energy in the above averaged results yields the simpler, and
approximate, result:

Γ ∼ εd

a
(12.61)
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Fig. 12.7 Numerically and analytically determined stability limits.

Using this to evaluate the stability condition for both small and large values of β
yields:

a <

⎧⎪⎨⎪⎩
1

34/3

(
μ

μS

)1/3

d β � 1(
μ

μS

)1/3
d

4
√

β
β 
 1

(12.62)

Expressing the β 
 1 bound into natural units yields

a <
d

4

√
μ

(1 + ρ)P0/B
(12.63)

=
1
4

√
μ

aSRP
(12.64)

which differs from the bound found in Eq. 12.35 by a factor of
√

3. It is important
to note that these bounds were computed using very different approaches and that
they represent different criteria. The current bound represents a necessary condition
for escape and is derived under approximation. In contrast, in the context of the
no-rotation model the earlier bound represents a necessary and sufficient condition
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for escape for the class of terminator orbits. It is remarkable that they only differ
by a factor of

√
3.

Using these bounds it is possible to place limits on the maximum orbit size
attainable about small bodies. In Fig. 12.8 we show the limiting semi-major axis
to small-body radius ratio as a function of small-body radius for different nominal
densities. In this plot we assume a small body–Sun distance of 1 AU, a spacecraft
mass-to-area ratio of 30 kg/m2 and a spacecraft reflectance of 0. With these values
we find a limit for the orbit radius over small body radius as

a

R
<

√
3d

4

√
4πG/3

(1 + ρ)Po/BSC

√
σR (12.65)

∼ 10.9 . . .
√

σR (12.66)

where σ is the bulk density in g/cm3 and R is the small-body radius in km. Note
that the larger bound is plotted, the smaller bound for capture will equal 2/3 of
the plotted value. For this relationship, we note that orbital operations are possible
even around small, ∼10-meter-sized bodies (assuming asteroid-type densities).

Fig. 12.8 Maximum a/R for being bound to a small body, using the less conservative (i.e.,
larger) limit.
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Finally, it is important to note that these limits are all a function of the space-
craft mass-to-area ratio. This is a design parameter, however, and can be increased
should larger orbits be desired about very small bodies. To scale this plot to other
values of mass-to-area ratio multiply the given values by

√
BSC/30, where BSC is

in kg/m2, and to scale it to other values of spacecraft reflectance divide the given
values by 1/

√
1 + ρ.



13. Solar Radiation Pressure:
Averaged Analysis

Stating the same problem analyzed in the previous chapter as a perturbation prob-
lem allows us to introduce averaging to the dynamics of the system. In the following
we show that the averaged dynamics of an orbiter subject to solar radiation pres-
sure (SRP) and orbiting about a point mass can be solved in closed form with a
very simple solution that still exhibits significantly complex behavior. Given this
solution we are able to identify a set of stable “frozen orbits” that are suitable for
spacecraft mission design and which enable a spacecraft to orbit about very small
asteroids without the need for active control.

13.1 SRP Perturbation Formulation and Averaging

Given that the perturbation from solar radiation pressure is usually small, it is
useful to cast the problem into a perturbation form. The problem is first studied
in the absence of rotation, and then with rotation later. The perturbing potential
associated with the simple SRP model used can be stated as

RSRP = aSRP d̂ · r (13.1)

where d̂ points from the Sun to the small body. The concept of averaging is intro-
duced as this allows for the evaluation of the secular effect of the perturbation on
this system. Using the Lagrange planetary equations, the potential can be aver-
aged prior to application in this system. Thus the first step is to define the averaged
potential

R̄SRP =
1
2π

∫ 2π

0

RSRP dM (13.2)

= aSRP d̂ · r̄ (13.3)

where M is the mean anomaly. The average is taken over the unperturbed two-
body motion of the spacecraft about the asteroid with the direction d̂ fixed initially.
Thus one only needs to compute the average of the position vector, a classically
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known result:

r̄ = −3a

2
e (13.4)

where e is the eccentricity vector and has magnitude equal to the eccentricity and
points towards the orbit periapsis. This leads to:

R̄SRP = −3aaSRP

2
e · d̂ (13.5)

The same form of the equations holds if d̂ is assumed to be fixed or assumed to be
rotating about the sun at an angular rate ḟ .

Stated in this form, the rates of change of the orbit elements can be computed by
substituting the averaged potential R̄SRP into the Lagrange planetary equations.
The simplest observation to make is that the semi-major axis is conserved on
average, and hence the energy of the orbit is conserved on average. The Lagrange
planetary equations for this case can be integrated in closed form, a fact originally
realized by Mignard and Hénon [106], and worked out in detail in [156]. An alternate
statement of the perturbation equations is given by Richter and Keller in [139] and
uses the angular momentum and eccentricity vectors as the nominal orbit elements.
These are not an immediately obvious choice, as this system is overdetermined in
that the 6 components of these two vectors are functions of only 4 orbit elements
with secular rates, e, i, ω and Ω. Still, this formulation has a significant advantage
in being able to be solved in closed form, a fact originally realized by Richter
and Keller for the non-rotating case. Our current analysis generalizes this to the
rotation case, and also points out several important features of the solutions.

First the Gauss equations for the angular momentum and eccentricity vector are
derived for the solar radiation pressure force and then these equations are averaged.
The angular momentum equation is simple, and thus it is derived first. Recall the
definition of angular momentum, H = r × v. From the fundamental form of the
Gauss equations (Eqs. 4.92) this is

Ḣ =
∂H

∂v
· aSRP (13.6)

= r̃ · aSRP (13.7)
= −ãSRP · r (13.8)

where aSRP is the constant SRP acceleration vector pointing away from the Sun.
From above the average value of the position vector to find the average value of Ḣ.

Ḣ =
3a

2
ãSRP · e (13.9)

The derivation of the averaged equation for ė is more complicated. First recall the
definition of the eccentricity vector e = 1

μv×H − r̂. Applying the Gauss equation
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rule to this one must take partials of the angular momentum as well. Carrying this
out yields

ė =
1
μ

[2rv − vr − (r · v)U ] · aSRP (13.10)

ė =
1
μ

[ãSRP · H + (rv − (r · v)U) · aSRP ] (13.11)

The term r · v averages to zero, leaving the average of rv to be carried out, which
is not zero. In Appendix C it is shown that rv = −H̃/2, leading to

ė =
3
2μ

ãSRP · H (13.12)

For the final step, scale H by a factor
√

μa, and note that a is constant on
average.

h =
1√
μa

H (13.13)

With this step, and substituting aSRP = aSRP d̂, the equations become

ė =
3aSRP

2

√
a

μ
˜̂
d · h (13.14)

ḣ =
3aSRP

2

√
a

μ
˜̂
d · e (13.15)

With this normalization the angular momentum vector equals h =
√

1 − e2ĥ with
the constraint e · e + h · h = 1.

13.2 No-Rotation Solution

Equations 13.14 and 13.15 are time-invariant, linear equations if the rotation of
d̂ is neglected. As such, they can be solved in closed form [139]. To facilitate this
re-write the equations in a matrix form:[

ė

ḣ

]
=

3aSRP

2

√
a

μ

[
0 ˜̂

d
˜̂
d 0

] [
e
h

]
(13.16)

The general solution for this dynamical system is:
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e(t)
h(t)

]
= Φ(t − to)

[
eo

ho

]
(13.17)

Φ(t) =
[

d̂d̂ 0
0 d̂d̂

]
− cos

(
3aSRP

2

√
a

μ
t

)[ ˜̂
d · ˜̂d 0

0 ˜̂
d · ˜̂d

]

+ sin
(

3aSRP

2

√
a

μ
t

)[
0 ˜̂

d
˜̂
d 0

]
(13.18)

The state transition matrix is also an orthonormal matrix in that Φ−1 = ΦT ,
which was the main motivation behind introducing the normalization to the angular
momentum vector h.

This result assumes, in its derivation, that the spacecraft remains bound to
the asteroid. It also does not account for the offset in mean orbit plane along the
direction d̂. It is interesting to note, however, that both rates of change in h and e
are normal to d̂, meaning that a displacement of the center of orbit in this direction
should not affect these averaged equations.

There are two simple applications of these secular equations. First is to find all
possible frozen orbits, or orbits where the average angular momentum and eccen-
tricity vectors remain constant. Second is to study some special solutions.

13.2.1 Frozen Orbits

Frozen orbits are defined for all e and h such that ė = ḣ = 0. This can be reduced
to the two conditions:

˜̂
d · h = 0 (13.19)
˜̂
d · e = 0 (13.20)

or that either the magnitude of the vector be zero or it be aligned with d̂. Since h
and e are normal to each other, they cannot both be aligned with d̂ at the same
time, thus one of them must be zero. Not considered is the case of h = 0 as this is
a rectilinear orbit, leaving e = 0 and h = ±hd̂ being the only viable frozen orbit
solution. This agrees exactly with the relative equilibrium found for this orbit in
the exact analysis, a circular orbit with angular momentum vector oriented towards
or away from the Sun.

13.2.2 Special Solutions

Next consider the general solution for the system eccentricity when started in an
initially circular orbit, resulting in the closed-form solution

e(t) = sin(ωt)˜̂d · ĥo (13.21)

h(t) = cos(ωt)ho + (1 − cos(ωt))d̂d̂ · ho (13.22)
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Of special interest is the eccentricity of the orbit and the inclination, relative to
the direction d̂. To set up these solutions note that the initial inclination is defined
by cos io = ĥo · d̂. The eccentricity solution is then found as

e = |sin(ωt)| sin io (13.23)

Thus, an orbit started in the plane perpendicular to d̂, or io = 0, π, will remain
circular. As the inclination varies from these values, so does the maximum eccen-
tricity reached, up to a 90◦ orbit which will pass through a rectilinear orbit every
period 2π/ω. The inclination solution can be found to follow

cos i =
cos io√

1 − sin2 io sin2(ωt)
(13.24)

Again, an orbit started perpendicular to d̂ remains so, and the maximum excursion
from this plane is the initial inclination. Of course, any other special case can be
worked out, but these are of interest due to the practical applications of circular
orbits.

13.3 Rotation Solution

Now consider the perturbation solution when rotation of d̂ occurs. The rotation rate
equals the true anomaly rate of ḟ , and the rotation direction is always perpendicular
to d̂ and defined as the direction ẑ. Under the assumption that the orbit rate about
the asteroid is fast as compared to the orbit rate of the asteroid about the Sun
the same equations for ė and ḣ can be used. A complication occurs as e and h
are specified in an inertially fixed frame but now the perturbing force direction d̂
rotates. To alleviate this the equations for the eccentricity and angular momentum
vectors can be shifted into a rotating frame using the transport equation. Given a
frame rotational velocity vector of ḟ ẑ yields

ėr + ḟ ˜̂z · e =
3aSRP

2

√
a

μ
˜̂
d · h (13.25)

ḣr + ḟ ˜̂z · h =
3aSRP

2

√
a

μ
˜̂
d · e (13.26)

where the r subscript indicates time derivative with respect to a rotating frame
and will be dropped from this point on. Thus, again, the secular equations can be
written as a linear system

[
ė

ḣ

]
=

3aSRP

2

√
a

μ

⎡⎢⎢⎢⎣
− 2ḟ

3aSRP

√
μ

a
˜̂z ˜̂

d

˜̂
d − 2ḟ

3aSRP

√
μ

a
˜̂z

⎤⎥⎥⎥⎦
[

e
h

]
(13.27)
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While this is a linear differential equation, it is no longer time-invariant as both
ḟ and aSRP now vary in time. It is important to note that the ratio ḟ/aSRP is
time-invariant, as both vary inversely with d2:

2ḟ

3aSRP

√
μ

a
=

2BSC

√
μSunA(1 − E2)

3(1 + ρ)P0

√
μ

a
(13.28)

This quantity is a constant for a given asteroid, spacecraft and spacecraft orbit. As
it is inconvenient to work with, define the equivalent quantity, following [106]:

tanΛ =
3(1 + ρ)P0

2BSC

√
a

μμSunA(1 − E2)
(13.29)

As the SRP perturbation becomes strong, Λ → π/2, and as it becomes weak Λ → 0.
Broken down into more fundamental orbital quantities it can be expressed as

tanΛ =
3(1 + ρ)P0

2B

1
VlcHsun

(13.30)

where Vlc is the local circular speed of the spacecraft about the asteroid and Hsun

is the specific angular momentum of the asteroid about the Sun.
Despite the time-invariance of the ratio, the multiplying factor of the matrix is

still time-varying. This can be eliminated, however, by changing the independent
parameter from time to the true anomaly of the asteroid about the Sun. To make
this transformation let, for example, ė = de

df ḟ = e′ḟ . Then the factor in front
of the matrix becomes the newly defined SRP strength parameter, leading to the
time-invariant linear differential equations:[

e′

h′

]
=

[
−˜̂z tanΛ

˜̂
d

tanΛ
˜̂
d −˜̂z

] [
e
h

]
(13.31)

where the direction d̂ is now fixed in the rotating coordinate frame. It is convenient
to redefine the independent variable from true anomaly f to a new angle ψ =
f/ cos Λ.

The solution matrix can again be reduced to elementary functions, yielding the
explicit solution:[

e(ψ)
h(ψ)

]
= Φr(ψ − ψo)

[
eo

ho

]
(13.32)

Φ(ψ) = cos(ψ)I6×6 + (1 − cos(ψ)) ×⎡⎣ cos2 Λẑẑ + sin2 Λd̂d̂ − sinΛ cos Λ
(
ẑd̂ + d̂ẑ

)
− sinΛ cos Λ

(
ẑd̂ + d̂ẑ

)
cos2 Λẑẑ + sin2 Λd̂d̂

⎤⎦
+ sin (ψ)

[
− cos Λ˜̂z sinΛ

˜̂
d

sinΛ
˜̂
d − cos Λ˜̂z

]
(13.33)
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The solutions are periodic in ψ, repeating every true anomaly 2π cos Λ. Thus, over
one heliocentric orbit the solution will repeat 1/cos Λ times. As the perturbation
grows large, and Λ approaches π/2, the solution will repeat many times. Conversely,
as the perturbation grows small the solution will repeat only once every heliocentric
orbit. Also, the state transition matrix is again orthonormal and defines a rotation
matrix in six-dimensional space.

13.3.1 Frozen Orbits

The existence of frozen orbits for this system are discussed again. There are now
additional possibilities not present in the case of no-rotation. Again, to find them
search for solutions to the algebraic equations

−˜̂z · e + tanΛ
˜̂
d · h = 0 (13.34)

−˜̂z · h + tanΛ
˜̂
d · e = 0 (13.35)

The vectors e and h remain orthogonal but now both must have non-zero magni-
tude for a frozen orbit to exist. A detailed study of this matrix and its null spaces
shows that there are two classes of solutions.

Ecliptic Plane Frozen Orbits First choose e parallel to d̂ and h parallel to ẑ,
then the second equation is identically solved and the first equation reduces to a
vector equation parallel to the unit vector t̂. It turns out that the direction in which
these vectors point is important, thus introduce the test solutions e = e(d̂ · ê)d̂
and h = h(ẑ · ĥ)ẑ. Resolving the first equation along the direction t̂ then yields:

e(d̂ · ê) + tanΛh(ẑ · ĥ) = 0 (13.36)

Note again that h =
√

1 − e2, which simplifies the expression to

e√
1 − e2

= −(d̂ · ê)(ẑ · ĥ) tanΛ (13.37)

Thus there are two conditions for a frozen orbit to exist in this configuration:

−(d̂ · ê)(ẑ · ĥ) = 1 (13.38)
e = sinΛ (13.39)

This class of frozen orbit was originally discussed in [156] and were called ecliptic
frozen orbits. The orbit lies in the same plane as the asteroid’s heliocentric orbit.
If the orbit normal is aligned with the heliocentric orbit, periapsis must point
towards the Sun, otherwise if the orbit normal is anti-parallel to the heliocentric
orbit normal, periapsis must point away from the Sun. As the perturbation strength
grows the orbit approaches rectilinear, while if the perturbation strength vanishes
the orbit approaches circular. Due to this, these orbits are not preferred for strongly
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perturbed situations, as the periapsis has a low altitude. Also, these orbits cross
through the body’s shadow.

Terminator Plane Frozen Orbits A second frozen orbit solution, called solar
plane-of-sky orbits in [156], also exist and are more useful for highly perturbed
systems. Now, choose e parallel to ẑ and h parallel to d̂ so that Eq. 13.34 is iden-
tically solved and Eq. 13.35 reduces to a vector equation parallel to the unit vector
t̂. Again the direction in which these vectors point is important, thus introduce
the test solutions e = e(ẑ · ê)ẑ and h = h(d̂ · ĥ)d̂. Resolving Eq. 13.35 along the
direction t̂ then yields:

e tanΛ(ẑ · ê) + h(d̂ · ĥ) = 0 (13.40)

which simplifies again to

e√
1 − e2

= −(ẑ · ê)(d̂ · ĥ) cot Λ (13.41)

The two conditions for a frozen orbit to exist in this configuration are:

−(ẑ · ê)(d̂ · ĥ) = 1 (13.42)
e = cos Λ (13.43)

This orbit lies in the plane perpendicular to the Sun-line, commonly referred to as
the terminator plane. If the orbit normal points towards the Sun, periapsis must
point above the orbit plane along the positive ẑ-axis, otherwise if the orbit nor-
mal points away from the Sun, periapsis must point below the orbit plane. As the
perturbation strength grows the orbit becomes more circular, while if the perturba-
tion strength vanishes the orbit approaches rectilinear. Due to this, these orbits are
preferred for strongly perturbed situations. Also, these orbits avoid the asteroid’s
shadow. Finally, these orbits are the natural continuation of the equilibrium orbits
in the no-rotation case.

13.3.2 Special Solutions

Finally for this case the closed-form solution for eccentricity and inclination are
studied when the orbit is initially circular. The solution is more complex in this
case but can still be stated in a relatively simple form for eccentricity

e(ψ) = 2 sinΛ| sin(ψ/2)|
{

1 − sin2 Λ sin2(ψ/2)

−
[
cos Λ sin(ψ/2)

(
ĥo · t̂

)
+ cos(ψ/2)

(
ĥo · d̂

)]2 }1/2

(13.44)
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Some special cases are considered to make this more apparent. First, assume that
the orbit normal is parallel to ẑ (see Fig. 13.1). Then the solution reduces to:

e(ψ) = 2 sinΛ| sin(ψ/2)|
√

1 − sin2 Λ sin2(ψ/2) (13.45)

The maximum eccentricity behavior is actually somewhat complex for this case.
If tanΛ < 1, then the maximum occurs at ψ = π and equals sin 2Λ. However, if
tanΛ > 1 then the maximum is e = 1 and occurs at ψ = arccos(− cot2 Λ).

Fig. 13.1 Eccentricity as a function of the scaled true anomaly (ψ) for different values of Λ).
Eccentricity is initially zero and the angular momentum vector points in the positive ẑ-direction.

Next, assume the orbit normal is parallel to d̂ (see Fig. 13.2). Then the eccen-
tricity varies as

e(ψ) =
1
2

sin(2Λ)(1 − cos ψ) (13.46)

The maximum now occurs at ψ = π and equals sin 2Λ. It is interesting to note that
for a weak and a strong perturbation the maximum eccentricity approaches 0 in
this case, but for a “median” perturbation of tanΛ = 1 the maximum eccentricity
is unity, leading to impact. For this case the proper choice of eccentricity vector
will yield a frozen orbit.
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Fig. 13.2 Eccentricity as a function of the scaled true anomaly (ψ) for different values of Λ).
Eccentricity is initially zero and the angular momentum vector points in the positive d̂-direction.

Finally, assume the orbit is initially parallel to t̂ (see Fig. 13.3). Then the ec-
centricity varies as:

e(ψ) = sinΛ| sinψ| (13.47)

and the maximum eccentricity occurs at ψ = ±π/2 and reaches a value of sin Λ.
For all three cases we note that the generic dynamics of an initially circular orbit

are quite complex. Thus the terminator frozen orbits seem to be unique in their
ability to maintain a constant eccentricity in the presence of the SRP perturbation.
We do not consider the inclination variation for these problems in closed form, due
to its complex dynamics.

13.4 Characteristic Values of Λ

From the above we see that the parameter Λ exerts a significant influence over the
expected orbital dynamics of a spacecraft in the vicinity of a small body. Thus it
is instructive to consider the expected values of this parameter across a range of
small-body sizes and densities. In Fig. 13.4 the values of this parameter are shown
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Fig. 13.3 Eccentricity as a function of the scaled true anomaly (ψ) for different values of Λ).
Eccentricity is initially zero and the angular momentum vector points in the positive t̂-direction.

for a range of small-body sizes as a function of a/R for some characteristic values
of the other parameters. These plots assume a zero reflectance, a small-body orbit
parameter A(1 − E2) equal to 1 AU, a spacecraft area to mass ratio of 30 kg/m2

(see Table 12.1 for a range of plausible values of this parameter) and a small body
bulk density of 2 g/cm3. With these values the equation for Λ becomes

tanΛ ∼ 1.5
R

√
a

R
(13.48)

To scale this result to other values of spacecraft reflectance multiply by (1 + ρ),
to other values of spacecraft mass to area ratio multiply by 30/BSC in units of
kg/m2, to scale to other values of small-body bulk density multiply by

√
2/σ in

units of g/cm3, and to scale to other values of small-body orbit parameter multiply
by 1/

√
P in units of AU.
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Fig. 13.4 Solar radiation pressure parameter Λ as a function of semi-major axis over small-body
radius, a/R, and small-body radius. Note that the plotted upper limits of the a/R values may
violate the limits for a bound orbit; see Fig. 12.8 to find these limits.

13.5 Discussion

The existence of this closed-form solution for averaged motion in the case of strongly
perturbed solar radiation pressure is quite remarkable. Although the fact that this
system can be integrated in closed form was known for some time, [106, 139, 156],
the explicit form of the solution given here, as applied to motion about an asteroid
or comet in a heliocentric orbit of arbitrary eccentricity, has only been known more
recently [161]. In addition to providing a relatively precise description of motion
for this case, it also provides a specific strategy to use when orbiting about a small
asteroid: place the spacecraft in the terminator plane with an eccentricity specified
as e = cos Λ with the appropriate direction of the argument of periapsis. Such
an orbit will then naturally follow the Sun and can be stable over extremely long
timespans, barring adverse interactions with the asteroid’s non-spherical gravity
field.



14. Small Bodies: Asteroid 25143 Itokawa

The previous two chapters are now applied to the specific problem of orbital me-
chanics about a small body. For definiteness we focus on the asteroid Itokawa (with
a mean radius of 160 meters), for which a shape model, rotation state and mass is
available. Itokawa was visited by the Hayabusa spacecraft which collected samples
from that body before its successful return to Earth in June 2010. That spacecraft
did not enter sustained orbit about the asteroid, but instead implemented a hov-
ering approach for all close proximity dynamics. Still, it is a question of practical
interest whether such an orbital approach could have been implemented at such a
small body. In this chapter we apply the theories outlined previously and derive
approximate limits for minimum orbit radii about such bodies. A general overall
question which this analysis poses is whether there are minimum size limits on an
asteroid beyond which it cannot be orbited. This question was recently investigated
by Shupe [177], where for a spacecraft modeled after the Orion crewed vehicle it
was found that the main barrier to achieving stable orbit was not solar radiation
pressure but the central-body gravity field and shape, and the size and shape of
the orbiting spacecraft.

14.1 Model of Itokawa

The necessary parameters and models for this analysis are the total mass of the
asteroid, the rotation period of the asteroid, its rotation pole, its heliocentric orbit
and the shape of the body (as we will apply a constant density approximation to
find its gravitational field). Also needed is the spacecraft mass-to-area ratio for the
SRP calculations.

The shape model of Itokawa used in this analysis was obtained from imaging
of the asteroid during the rendezvous mission. The highest precision version of the
shape model has a surface resolution of ∼10 cm, but we use a significantly lower-
resolution model for this work [45]. The shape model has again been transformed
into a triangular plate model centered at its volumetric center and oriented along
its principal axes of inertia (assuming constant density). For gravitational calcula-
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Table 14.1 Itokawa and Hayabusa parameters

Parameter Symbol Value Units

Itokawa Semi-Major Axis A 1.324 AU
Itokawa Eccentricity E 0.280 –
Gravitational Parameter μ 2.36 × 10−9 km3/s2

Rotation Period Tr 12.132 hours
Pole Declination δ ∼ −90 degrees
Mean Radius ro 0.162 km
Resonance Radius rs 0.484 km
Oblateness Gravity Coefficient R2

oC20 −8.513 × 10−3 km2

Ellipticity Gravity Coefficient R2
oC22 3.713 × 10−3 km2

Spacecraft Mass to Area Ratio B 30 kg/m2

tions outside of the circumscribing sphere of the asteroid we used a gravity field
expanded up to degree and order 16, while when close to the body we used the
polygonal gravitational field algorithm of Werner, described previously. For analyt-
ical calculations the analysis is restricted to the second-degree and -order gravity
field coefficients.

14.2 Maximum Orbital Stability Limits on Semi-Major Axis

The first item of discussion is the bounds under which a spacecraft is trapped in
orbit about a small asteroid, summarized in Chapter 12. The analysis by Dankowicz
yields a simple limit on semi-major axis that generally ensures escape from the
small body if violated [27]. If the semi-major axis is larger than aMax, given below,
escape will generally occur

aMax =
√

3
4

√
μB

(1 + ρ)P0
d (14.1)

Using a very different approach, Scheeres and Marzari develop a sufficient condition
for stability about a small body [171]. If the semi-major axis is less than aMin, then
escape is prohibited. In the general problem it is sometimes possible for the semi-
major axis to evolve from a value less than aMin to one larger than this limit

aMin =
1
4

√
μB

(1 + ρ)P0
d (14.2)

These limiting semi-major axes scale linearly with the small-body distance from
the sun. Thus, escape is most likely to occur at perihelion. Figure 14.1 shows an
example of an initial orbit that lies within this bound but, as the small body
approaches perihelion, crosses it and escapes. They are also proportional to

√
B,
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meaning that as the mass-to-area ratio of a body increases, its limiting semi-major
axis also increases. For Itokawa (assuming no photon reflection, or ρ = 0) the
semi-major axis for the necessary condition for the spacecraft to be bound to the
asteroid is ∼1 km at periapsis, while the sufficient distance for escape is ∼1.73 km,
and at this limit a spacecraft is barely bound. The numerically determined limit
for the spacecraft to be bound to the asteroid, assuming an initial orbit in the Sun
terminator plane, is found to be 1.75 km at perihelion. Lower bounds exist due to
gravitational interactions with the body mass distribution, and are discussed later.

Fig. 14.1 Spacecraft orbit about an asteroid in an elliptic orbit about the Sun. The orbit is
initially stable, but due to the decreasing asteroid–Sun distance becomes unstable and escapes.
The figures show the view down onto the asteroid orbit plane (left) and the view from the Sun

(right).

14.3 Nominal Stable Orbit Design

This chapter tacitly assumes that the spacecraft has been placed in one of the
stable frozen orbits about the asteroid discussed in Chapter 13. The specification
of these orbits are quite simple and are reviewed here. First, the orbiter is given
a semi-major axis less than the escape limit, and above the estimated lower limits
for stability. Second, the orbit plane is placed in the Sun terminator plane relative
to the asteroid. The eccentricity of the orbit is chosen to be e = cos Λ, where Λ is
computed in Eq. 13.29. For Hayabusa at Itokawa we find

tanΛ ∼ 21
√

a (14.3)
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Thus across the range of semi-major axis from 0.75–1.75 km, this yields an angle
of ∼86.8 to ∼87.9◦, meaning that the frozen orbit eccentricity is on the order of
0.055–0.037, all close to circular.

The argument of periapsis is chosen depending on whether the spacecraft’s angu-
lar momentum vector points towards or away from the Sun. If the angular momen-
tum vector points towards the Sun the argument of periapsis should point directly
above the orbital plane, in the direction of the asteroid’s heliocentric angular mo-
mentum vector, while if the spacecraft angular momentum vector points away from
the Sun the periapsis vector must point below the orbital plane. The ecliptic plane
frozen orbit solutions are not discussed here, as these become rectilinear for strong
SRP perturbations and thus are not preferred.

There exists a minimum semi-major axis for stability as well, although this
is more difficult to uniquely identify. The lower stability limit arises due to two
different effects, each related to the asteroid’s gravity field. First, the oblateness
of the asteroid can cause the spacecraft orbit to precess relative to its preferred
terminator plane orientation. If the precession is great enough it can overpower
the SRP precession rate, which then allows the eccentricity to go through much
larger variations, potentially impacting the asteroid surface or inducing the second
type of instability. The other instability is due to interaction of the spacecraft with
the C22 gravity field parameter, which can lead to large fluctuations in the orbiter
angular momentum and energy from orbit to orbit, as analyzed previously. In this
regime the semi-major axis and eccentricity begin to evolve chaotically and thus
may either impact with the asteroid, escape, or at least follow a path that is difficult
to predict due to its fluctuations. In Fig. 14.2 example orbits are presented at the
extreme orbit sizes for stability.

Fig. 14.2 Minimum and maximum orbit radii for stable terminator orbits about Itokawa. The
figure on the left shows the view perpendicular to the Sun-line from within the asteroid orbit
plane; the figure on the right shows the view from the Sun.
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14.4 Mass Distribution Perturbation and Averaging

Now the classical results for the averaged effect of a second-degree and -order
gravity field are reviewed. In order to relate this analysis to the SRP frame requires
that the oblateness effect be specified in a general orbit frame, and not one chosen so
that the inclination is measured from the symmetry axis. If the maximum moment
of inertia axis of the mass distribution is stipulated as p̂ and the mass is assumed
to have a symmetric distribution about this axis the perturbation function is

R20 = −μC20

2r3

[
1 − 3 (r̂ · p̂)2

]
(14.4)

The orbit frame does not need to be specified when stated in this form, yet averaging
can still be carried out (see Appendix C). Doing so yields

R̄20 =
n2C20

4(1 − e2)3/2

[
1 − 3

(
ĥ · p̂

)2
]

(14.5)

where ĥ is the unit vector along the orbit normal.
Analysis of this potential shows that R̄20 = constant, implying that ĥ · p̂ is

constant, which means that the orbit plane inclination relative to the rotation
pole p̂ is a fixed quantity. Also derivable from this form of the equations is that
the precession rate of the orbit plane about the orbit pole is a constant equal to
3nC20/2p2ĥ · p̂.

Now specify this potential in the frame of choice, assuming that the rotation
pole of the asteroid, p̂, is specified by its declination angle δ and its right ascension
α as p̂ = cos δ sinαx̂− cos δ cos αŷ + sin δẑ, where α is measured 90◦ in advance of
the projection of the rotation pole on the x̂–ŷ plane. The rotation pole is nominally
fixed in inertial space, thus as the asteroid travels about the Sun the right ascension
will vary as α−ν. Given this formulation and ĥ = sin i sinΩx̂−sin i cos Ωŷ+cos iẑ
the general potential in this frame becomes:

R̄20 =
n2C20

4(1 − e2)3/2

[
1 − 3 (sin δ cos i + cos δ sin i cos(Ω − α))2

]
(14.6)

14.5 Robustness of the Frozen Orbit Solutions

14.5.1 Stability of Relative Equilibria

To study the stability of the solar radiation pressure relative equilibria defined
above may seem to be a redundant exercise, given that the general solution for
motion in these systems has been defined and is oscillatory. However, it is important
to understand how these oscillations manifest themselves, especially when the effect
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of joint perturbations between the solar radiation pressure and mass distribution
effects are considered. For this stability analysis it is easier to work with the orbital
elements themselves, as they do not have the nonlinear constraints on magnitudes,
etc., that the angular momentum and eccentricity vectors inherit.

For completeness we consider the two frozen orbit solutions in turn. In both
cases the averaged potential is given in the form

R̄SRP = −3aeaSRP

2
d̂ · ê (14.7)

ê = [cos ω cos Ω − sinω sinΩ cos i] x̂
+ [cos ω sinΩ + sin ω cos Ω cos i] ŷ + sinω sin iẑ (14.8)

and the vector ê is stated in reference frame where d̂ = x̂. The independent variable
is not shifted to the true anomaly in the current discussion, as this would complicate
the inclusion of the asteroid oblateness perturbation later.

As a first step, restate the Lagrange equations for this perturbing potential
function

da

dt
= 0 (14.9)

de

dt
= −3aSRP

2na

√
1 − e2 [sinω cos Ω + cos ω sinΩ cos i] (14.10)

di

dt
= −3aSRP

2na

e√
1 − e2

cos ω sinΩ sin i (14.11)

dω

dt
= −3aSRP

2na

1
e
√

1 − e2

[
(1 − e2) cos ω cos Ω − sinω sinΩ cos i

]
(14.12)

dΩ

dt
= −3aSRP

2na

e√
1 − e2

sin ω sinΩ − ḟ (14.13)

dσ

dt
=

3aSRP

2na

1 + e2

e
[cos ω cos Ω − sinω sin Ω cos i] (14.14)

where this is stated in a rotating reference frame, captured by including the angular
rate, ḟ , of the asteroid about the sun.

14.5.2 Stability of Ecliptic Solutions

In the current orbit frame, ecliptic frozen orbit solutions have an inclination of 0
or π, which necessitates the use of the longitude of periapsis, � = ω ± Ω, the sign
depending on the inclination. Evaluate the Lagrange equations and this equation
assuming cos i = ±1

de

dt
= −3aSRP

2na

√
1 − e2 sin � (14.15)

di

dt
= 0 (14.16)
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d�

dt
= −3aSRP

2na

√
1 − e2

e
cos � ∓ ḟ (14.17)

dσ

dt
=

3aSRP

2na

1 + e2

e
cos � (14.18)

Given this, the frozen orbit solutions for this case are expressed as

cos(i) cos(�) = −1 (14.19)
e = sinΛ (14.20)

meaning that i = 0, � = π is one solution and i = π, � = 0 is another, both with
the same eccentricity. It can be easily verified that this solution yields stationary
values in all the orbit elements except for the mean anomaly rate.

Now linearize the Lagrange equations about this point to evaluate the equations
in the vicinity of this frozen orbit solution, with elements e, i, and � nominally
being the free variables. The inclination is nominally zero, however, if no out-of-
plane perturbations occur. Thus just focusing on the in-plane perturbation yields

dδe

dt
= −(±)�

3aSRP

2na
cos Λδ� (14.21)

dδ�

dt
= (±)�

3aSRP

2na

1
cos Λ sin2 Λ

δe (14.22)

(±)� = cos � (14.23)

and the local dynamics can be reduced to a harmonic oscillator in eccentricity

d2δe

dt2
= −

(
3aSRP

2na

)2 1
sin2 Λ

δe (14.24)

It can be shown that out-of-plane perturbations will yield a similar result.

14.5.3 Stability of Terminator Solutions

The terminator plane frozen orbit solution in the current frame is a bit easier to
specify as it does not correspond to a singular set of orbit elements

i = π/2 (14.25)
sinΩ sinω = −1 (14.26)

e = cos Λ (14.27)

Linearizing the Lagrange equations about this solution in terms of variables e, i,
ω, and Ω yields
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dδe

dt
= −3aSRP

2na
sin ΛδΩ (14.28)

dδi

dt
= −3aSRP

2na
cot Λδω (14.29)

dδω

dt
=

3aSRP

2na

1
sinΛ cos Λ

δi (14.30)

dδΩ

dt
=

3aSRP

2na

1
sin3 Λ

δe (14.31)

Thus, the system splits into two uncoupled harmonic oscillators again. Expressing
these in terms of eccentricity and inclination

d2δe

dt2
= −

(
3aSRP

2na

)2 1
sin2 Λ

δe (14.32)

d2δi

dt2
= −

(
3aSRP

2na

)2 1
sin2 Λ

δi (14.33)

with both having the same oscillation frequency. If true-anomaly is made the inde-
pendent variable the equations simplify to

δe′′ = − 1
cos2 Λ

δe (14.34)

δi′′ = − 1
cos2 Λ

δi (14.35)

with the oscillation period being 2π cos Λ, which is to be expected given the general
solution found for motion in this system.

Writing out the solutions for the terminator orbits in state-space form in the
time domain yields[

δe
δΩ

]
=
[

cos(σt) − sin2 Λ sin(σt)
1

sin2 Λ
sin(σt) cos(σt)

] [
δeo

δΩo

]
(14.36)[

δi
δω

]
=
[

cos(σt) − cos Λ sin(σt)
1

cos Λ sin(σt) cos(σt)

] [
δio
δωo

]
(14.37)

σ =
3aSRP

2na

1
sinΛ

(14.38)

These solutions are of use later.

14.5.4 Oblateness Perturbations

Now consider the effect of central body oblateness on these frozen orbits. A rea-
sonable assumption is that if the orbit semi-major axis is large, the effect of the
asteroid shape may be negligible. When the asteroid is small, however, the max-
imum semi-major axis becomes small and must lie close to the body, raising the
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possibility for a destabilizing interaction between the SRP and oblateness pertur-
bations. This interaction will be evaluated by assuming that the spacecraft lies in
a frozen orbit and then including the secular rates from oblateness as a constant
perturbation in the Lagrange equations. The resulting system can be solved to find
the maximum oscillation amplitude in the orbit element of interest, in this case the
eccentricity and inclination.

Of primary interest is the terminator frozen orbits, due to their favorable prop-
erties, and thus the effect of oblateness is only studied on this class of frozen orbit.
The rate of change of each of the orbit elements due to this perturbation at the
frozen orbit conditions, stated previously, are evaluated as

da

dt
= 0 (14.39)

de

dt
= 0 (14.40)

di

dt
= −3

4
nC20

a2 sin4 Λ
cos2 δ sin 2α (14.41)

dω

dt
=

3
4

nC20

a2 sin4 Λ

[
1 − 3 cos2 δ sin2 α

]
(14.42)

dΩ

dt
= (±)Ω

3
4

nC20

a2 sin4 Λ
sin 2δ sin α (14.43)

(±)Ω = sinΩ|Ω=±π/2 (14.44)

These nominally constant terms can be included on the right-hand side of Eqs. 14.28
to 14.31 to form a set of non-homogeneous equations of the form ẋ = Ax + B.
Assuming that the homogeneous system has a solution xH(t) = Φ(t)xo the full
solution is

x(t) = Φ(t)xo + Φ(t)
∫ t

0

Φ(−τ)B dτ (14.45)

Then, assuming zero initial conditions (i.e., evaluated at the frozen orbit condi-
tions), the general solution for these deviations due to oblateness can be found by
quadratures and will have the form

∫ t

0
Φ(t − τ)dτB. In the following assume that

the right ascension α is fixed (although it will really drift in time due to the motion
of the asteroid about the Sun).[

δi
δω

]
= − n2C20

2aaSRP sin3 Λ
(14.46)[

cos Λ(1 − 3 cos2 δ sin2 α)(1 − cos(σt)) + cos2 δ sin(2α) sin(σt)
1

cos Λ cos2 δ sin(2α)(1 − cos(σt)) − (1 − 3 cos2 δ sin2 α) sin(σt)

]
and [

δe
δΩ

]
= (±)Ω

n2C20

2aaSRP sin3 Λ
sin(2δ) sinα

[− sin2 Λ(1 − cos(σt))
sin(σt)

]
(14.47)
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These results can be used to evaluate the fluctuation amplitude in these orbit
elements from their nominal values, especially in eccentricity, in order to deter-
mine whether the variation is acceptable. If the amplitude becomes too large the
linearization assumptions made will be violated, and a full nonlinear evaluation
should be made. The amplitude of oscillation will change as the asteroid moves
about the Sun.

The variation in eccentricity from its nominal value, cosΛ, is bounded by:

|δe| <
n2|C20| sin(2δ) sinα

a sinΛ

Bd2

(1 + ρ)Po
(14.48)

As the asteroid draws closer to the Sun the deviations in eccentricity decrease,
and conversely increase as the asteroid travels farther from the Sun. This is due
to the contest between the restoring torque of the solar radiation pressure and
the perturbing torque of the oblateness on the orbit. When the solar radiation
pressure grows weak the oblateness can yield larger variations. The deviation in
eccentricity will also decrease as semi-major axis increases, due primarily to the
increased distance from the mass distribution. There is a limit on the size of the
semi-major axis, which allows us to identify the minimum perturbation due to
that term. The maximum effect occurs when the asteroid pole declination is at
±π/4, while the predicted fluctuations in eccentricity disappear for declinations of
0 and ±π/2. Finally, the fluctuation amplitude will also go through two extrema
and two zero periods through an asteroid year, as the right ascension α changes
relative to the Sun-line. The two asteroids visited to date, Eros and Itokawa, had
pole declinations of 0 and −90 degrees, respectively, and thus should not show a
significant eccentricity perturbation on the terminator orbits from the oblateness.

14.5.5 Perturbation from Ellipticity

For the ellipticity effect, or the influence of the C22 gravity coefficient, the numer-
ical analysis given in [73] is referenced, where it is empirically determined that
orbits outside of 1.5 resonance radii are not as subject to destabilization due to
the orbit ellipticity. The resonance radius is the orbit semi-major axis where the
orbit period equals the rotation period. Thus, for rapidly rotating bodies one can
in principle orbit more closely, while for slowly rotating bodies one must in general
maintain a greater distance. The stated 1.5 resonance radius limit does not make
any assumption about the orientation of the rotation pole, and is only sharp if
the orbit inclination is less than 45 degrees in general. For high inclination orbits,
especially for retrograde orbits with inclinations greater than 135 degrees, it be-
comes possible to orbit much more closely to the body without suffering any effects
from the ellipticity. In these situations, however, the oblateness becomes a major
perturbation.

Under these provisions the orbit limit to guard against ellipticity effects can be
stated as:

a >
3
2

(
T 2μ

4π2

)1/3

(14.49)
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where T is the rotation period of the asteroid. In general, once the orbit pole of
the asteroid is known it is possible to immediately map out when the terminator
orbits will have to take special care relative to their interaction with the asteroid
gravity field distribution.

To be more specific two plots from [71] are presented in Fig. 14.4 which show
the structure of stable and unstable orbits about a uniformly rotating asteroid
(in this case neglecting solar radiation pressure). In these plots the parameter
ωT = 2π/T , the rotation frequency of the asteroid. The standard relationship
between the moments of inertia of a body and its second-degree and -order gravity
field are

C20 = −1
2

(2Izz − Ixx − Iyy) (14.50)

C22 =
1
4

(Iyy − Ixx) (14.51)

A final definition, the parameter γ is defined in [73] as γ = (Iyy−Ixx)/(Izz−Ixx) =
−4C22/(C20 − 2C22), and is a measure of the body’s equatorial ellipticity. The
stability plots in Fig. 14.4 are derived by starting a large series of integrations at
each point on the plane. If the spacecraft orbit impacts or escapes, a dot is placed
and that initial state is unstable. If the orbit persists for some time, several orbits
in the [73] paper, then it is considered stable and an “X” is placed. For asteroid
Itokawa γ ∼ 1, (Izz − Ixx)/r2

s = 0.04 and rs =
(
μ/ω2

T

)1/3 ∼ 0.6 km, predicting
the onset of instability for a planar orbit at a distance of ∼0.75 km. Figure 14.3

Fig. 14.3 View from the Sun of an orbit started just inside the minimum orbit radius limit. The
closer proximity of the satellite to the asteroid’s mass distribution destabilizes the orbit, leading
to eventual escape.
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shows an orbit for the Hayabusa spacecraft at Itokawa started within this lower
limit on orbit stability. We clearly see that the previously stable orbit configuration
is destabilized by interaction with the body’s C22 gravity coefficient.

Fig. 14.4 Regions of stable and unstable orbital motion for uniformly rotating asteroids, taken

from [71]. The upper plot shows the diagram for γ = 1, while the lower shows it for γ = 0.5.



15. Comet Outgassing

This chapter discusses the interaction of a spacecraft orbiter at a comet using
simple models of comet outgassing. The current model assumes that outgassing
jets provide an impulse to an orbiter that acts mainly in the radial direction, based
on the classical model of comet outgassing. It must be noted that other comet
outgassing models have been developed more recently [163, 142], some of which
involving significant non-radial components. We acknowledge that these models
may be more precise, yet do not analyze them in detail here. An initial analysis
can be found in [115] which we recommend to the reader. It is significant to note
that our conception of comets and their outgassing environment is on the cusp
of a major evolution once the Rosetta spacecraft arrives at comet Churyumov-
Gerasimenko and characterizes this body during its active phase.

In the following we model the interaction of a spacecraft with two distinct “end
members” of cometary models, a continuously outgassing model and one with dis-
crete jets, both acting in a radial direction. For these simple analytical models
there are a number of results concerning how a spacecraft responds to this environ-
ment. There have been only a relative few analyses of spacecraft with outgassing
comets, essentially starting with Scheeres et al. [172], the thesis and related study
by Byram [21, 23, 22], and the more recent analyses by Mysen [115]. Once the
actual model for the comet outgassing environment is confirmed, the continuation
of these studies will be a fruitful area of analysis.

15.1 Continuously Outgassing Fields

Continuous field outgassing at a comet can be described by an acceleration term

aO =
μd

r2
[1 − α + α cos θ] (15.1)

where μd is the effective outgassing parameter, α ≤ 0.5 is the outgassing field
asymmetry parameter and θ is the spacecraft–comet–Sun phase angle. Figure 15.1
shows a cartoon of this model. Alternate models that allow for regions of zero
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outgassing in the shadowed portion of the comet are described in [21]. This model
is symmetric about the Sun-line, essentially assuming a low thermal inertia of
the comet surface. A higher value of thermal inertia will displace the maximum
outgassing point as a function of the rotation state of the comet relative to the Sun
and create an additional asymmetry about the Sun-line.

Fig. 15.1 Cartoons showing a simple radial outgassing field for a continuous distribution (top)

and a discrete jet (bottom).

The outgassing field and solar radiation pressure should be modeled simulta-
neously for this case. The solar radiation pressure is stated using the averaged
Lagrange equations derived previously and incorporates the outgassing accelera-
tion using the Gauss equations. Averaging these lead to the equations

da

dt
=

2COae

1 − e2
[sinω cos λ + cos i cos ω sin λ] (15.2)

de

dt
=
[
CO − CSRP

√
1 − e2

]
[sinω cos λ + cos i cos ω sin λ] (15.3)

di

dt
= − CSRP e√

1 − e2
sin i cos ω sin λ (15.4)

dλ

dt
= − CSRP e√

1 − e2
sin ω sin λ − ḟ (15.5)

dω

dt
=

1
e

[
CO − CSRP

√
1 − e2

]
[cos ω cos λ − cos i sin ω sin λ] − cos i

(
λ̇ + ḟ

)
(15.6)

where

CSRP =
3aSRP

2

√
a

μ
and CO =

αnμd

2μ



15.2 Jet Outgassing Fields 303

The semi-major axis is no longer constant, a fact which arises from the averaging
process in the Gauss equations.

It is instructive to consider what happens to the previously stable terminator
orbits in this model. To test this substitute i = π/2, λ = ±π/2 and ω = ∓π/2,
which orients the orbit according to the frozen orbit solution, to find

da

dt
= 0 (15.7)

de

dt
= 0 (15.8)

di

dt
= 0 (15.9)

dλ

dt
= ḟ

[
tanΛ

e√
1 − e2

− 1
]

(15.10)

dω

dt
= 0 (15.11)

Thus, for such a symmetric outgassing field the previously found stable terminator
orbit is still satisfied as a frozen orbit, with e = cos Λ nulling out the rate in the
relative node λ. An entirely analogous result holds for the ecliptic plane frozen
orbits discussed in Chapter 13.

This results solely from the symmetry of the above model, and inclusion of
an asymmetric model relative to the sub-solar point will destroy these results in
general. Still, the terminator environment of a comet is expected to be relatively
more benign than orbits that cross jets at low solar phase angles due to the weak
solar insolation of the surface.

15.2 Jet Outgassing Fields

A simple generalization of the continuous outgassing model can be made for appli-
cation to jets. The models discussed in [23] are more sophisticated, yet the following
captures the main items of interest (see Fig. 15.1).

aJ =
μd

r2
[1 − α + α cos θ] δ(βJ) (15.12)

where now δ(−) is the Dirac delta function and βJ is the jet–spacecraft angle. The
interpretation of μd is now a bit different, and it represents the total pressure force
that the jet delivers at a scaled distance of r = 1 at a given phase angle from the
Sun.

The corresponding Gauss equations can be stated with spacecraft true anomaly
as the independent parameter
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da

df
=

2aeμd

μ(1 − e2)
[1 − α + α cos θ] sin fδ(βJ) (15.13)

de

df
=

μd

μ
[1 − α + α cos θ] sin fδ(βJ) (15.14)

dω

df
= −μd

eμ
[1 − α + α cos θ] cos fδ(βJ) (15.15)

with only the jet model included.
It can be shown that dp/df = 0, which is expected as the jets are modeled as a

radial acceleration and thus will not affect the total angular momentum. Despite
this, there can still be substantial changes in semi-major axis and eccentricity.
Integrating these equations over an encounter yields

Δa =
2aoeoμd

μ(1 − e2
o)

[1 − α + α cos θo] sin fo (15.16)

Δe =
μd

μ
[1 − α + α cos θo] sin fo (15.17)

Δω = − μd

eoμ
[1 − α + α cos θo] cos fo (15.18)

Of specific interest is what happens to the periapsis radius during a jet fly-
through, as this determines whether the next orbit has a more intense interaction
with the body or not. Given q = a(1− e), considering change in this element yields
Δq = (1 − e)Δa − aΔe, which results in

Δq = −aoμd

μ

(
1 − eo

1 + eo

)
[1 − α + α cos θo] sin fo (15.19)

Thus, to ensure positive changes in periapsis radius requires jet flyovers to be situ-
ated such that sin fo < 0, or that the spacecraft should be transitioning from apoap-
sis towards periapsis. This level of control may not always be feasible, but could
be achieved if the active areas of the comet nucleus were mapped out. Whether
the mission would allow a spacecraft to fly through an active jet is another issue
entirely.

For this model again consider the robustness of a terminator orbit to cometary
outgassing jets. For the given model, and what usually occurs for all cometary out-
gassing models, the strength of outgassing is minimized at the sunrise terminator,
and may be reducing again at the sunset terminator. In the stated model this arises
from the cos θ term which may be zero on the night side of the comet, depending
on how α is chosen. Under this consideration, the spacecraft is expected to be more
robust to such jets if placed in a terminator orbit.



16. Planetary Satellites: Exact Analysis

This chapter considers orbital dynamics about planetary satellites, a topic distinct
from orbital dynamics relative to asteroids or comets. We cover this topic in the
remaining chapters as it represents another example of a strongly perturbed or-
bital system for spacecraft. Europa is chosen as the nominal central body for large
planetary satellites due to the great interest of sending an orbiter mission to this
body to probe its interior ocean, and due to the fact that its orbital dynamics
environment is quite interesting and has been considered in a number of papers
[167, 188, 186, 127, 126, 128, 146, 148, 147, 88, 89, 87] and theses [187, 125, 123].
At heart, the theory of large planetary orbiters is the study of dynamics in the
Hill problem, previously derived in Chapters 2 and 4. This chapter introduces a
number of different analyses that can be applied to this system, and provides the
tools for scaling these results to planetary satellites in general.

16.1 Model of Europa

To provide a physical context for the derivation of this model, the Europa environ-
ment model parameters are given in Table 16.1. These constants are approximate
and are taken from [167] and are for use in the current and following chapter.

Table 16.1 Europa orbital environment models.

Parameter Symbol Value Units

Europa Gravitational Parameter μE 3.201 × 103 km3/s2

Jupiter Gravitational Parameter μJ 1.267 × 108 km3/s2

Mass Ratio (μE/μJ )1/3 0.029 –
Europa Radius RE 1565 km
Europa Oblateness J2 1051.315 km2

Europa Orbit Period TE 3.552 days
Europa Orbit Rate NE 2.05 × 10−5 rad/sec
Orbiter Nominal Altitude h 200 km
Orbiter Nominal Period T 2.28 hours
Orbiter Nom. Orbit rate n 7.66 × 10−4 rad/sec
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16.2 Equations of Motion

The physical situation modeled consists of a spacecraft orbiting in the vicinity of
a planetary satellite which is in orbit about a larger planet (Fig. 16.1). Formally,
this can be written as a restricted three-body problem (assuming the planetary
satellite is in a circular orbit). However, this physical situation also has all the
elements necessary to apply the Hill approximation. Specifically, it can be assumed
that the planetary satellite is in a near-circular orbit about the primary, that the
orbiter is orbiting in the vicinity of the planetary satellite, and that the mass of
the planetary satellite is sufficiently small as compared to the planet’s mass. This
last condition is stated specifically as (MS/MP )1/3 � 1, and allows us to expand
the effect of the planet’s gravitational attraction up to second order in this small
parameter. For the Europa–Jupiter system this parameter equals ∼0.03, indicating
the validity of the smallness assumption.

Fig. 16.1 Graphic describing the geometry of a planetary satellite orbiter.

Then, the perturbing effect of the planet’s gravity can be stated in potential
form as

R =
3
2
N2

Sx2 − 1
2
N2

Sr2 (16.1)

where x is measured along the line from the planet to its satellite, r is the orbital
radius from the satellite center, and NS is the orbit angular rate of the planetary
satellite about the planet and is approximately

√
(μP /a3

S), where μP is the planet’s
gravitational parameter and aS is the semi-major axis of the planetary satellite’s
orbit about the planet. See Fig. 16.1 for a picture of the coordinate geometry. The
equations of motion of the orbiter can be specified in a Cartesian frame rotating
with the planetary satellite about the planet:

ẍ − 2NS ẏ = −μS

r3
x + 3N2

Sx

ÿ + 2NS ẋ = −μS

r3
y (16.2)

z̈ = −μS

r3
z − N2

Sz
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where μS is the gravitational parameter of the attracting satellite, x is measured
from the planetary satellite center away from the planet, z is measured from the
planetary satellite center out of its orbital plane, y completes the triad and points
in the direction of the planetary satellite’s motion, and r =

√
x2 + y2 + z2.

16.2.1 Normalized Equations of Motion

It is instructive to normalize these equations of motion, as this is the form in which
the Hill problem is usually presented, and as this also allows the applications of
these results to almost all planetary satellites in the solar system. First define a new
time parameter τ = NSt, so that d(−)/dt = NSd(−)/dτ . Physically, τ is just the
orbit angle that the planetary satellite makes around the planet. The length scale
for the Hill problem is different than the one used for the restricted three-body
problem, which is the distance between the primaries. Instead, the length scale is
the “resonance radius” for the mean motion of the planetary satellite relative to
the mass of the satellite,

(
μS/N2

S)1/3 = (MS/MP )1/3aS . Substitution of this as the
length scale then yields the non-dimensional equations of motion

ẍ − 2ẏ = − x

r3
+ 3x (16.3)

ÿ + 2ẋ = − y

r3
(16.4)

z̈ = −z − z

r3
(16.5)

The non-dimensional Hill problem has no parameter, and thus any dynamical result
from these equations of motion can be arbitrarily scaled to other systems modeled
by the Hill problem. However, not all motion in systems described by the Hill
problem is equivalent, as the initial conditions from these other systems must be
scaled into or out of the Hill problem. Thus, given an initial condition to a physically
defined system modeled by the dimensional Hill problem, the positions must be
divided by

(
μS/N2

S

)1/3 and the velocities by (μSNS)1/3. The combination of this
scaling along with the physical size of a planetary satellite can place very different
restrictions on the nature of motion in orbit about a body, or in its proximity.

To appropriately capture this, it is most instructive to provide the normalized
radius of a planetary satellite, computed by dividing the body’s mean radius by the
Hill length scale. The value of the normalized size of a planetary satellite provides a
direct indication of the regime of position space in the normalized equations where
an initial condition can be specified. In Table 16.2 a partial list of known planetary
satellites is presented which fit, or are close to fitting, the physical assumptions
needed to apply the Hill approximation. This table lists the main expansion crite-
rion for the Hill problem, that the mass ratio between the satellite and the planet
raised to the one-third power is small, the length and time scales for the system,
and the satellite radius in the normalized system. The normalized satellite radius
proves to be the most important physical parameter in the Hill problem, as it spec-
ifies the range of radii for “real” motion in a given system. Some satellites almost
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fully fill their Hill sphere, whose extent is delimited by the location of the libration
points along the x-axis at ±(1/3)1/3 ∼ ±0.69336. Similar scalings can be applied
to all of the planets relative to the Sun, as the physical assumptions to apply the
Hill approximation are all valid for these systems. In [116] a list of the normalized
planet radii are given and applied for spacecraft transfers in the solar system.

Table 16.2 Select planetary satellite orbit and Hill scaling parameters, including the scaled
radius of the body.

Planet Satellite Mass Ratio Length Scale Time Normalized
Criterion l Scale Radius(

MS
MP

)1/3 (
MS
MP

)1/3
aS 1/NS R/l

(km) (hours)

Earth Moon 0.2311 88.704E3 104.85 0.0196

Mars Phobos 0.0025 23.4 1.22 0.4734
Deimos 0.0014 32.8 4.81 0.1888

Jupiter Io 0.036 15.198E3 6.76 0.1199
Europa 0.0293 19.600E3 13.56 0.0796
Ganymede 0.0427 45.690E3 27.31 0.0576
Callisto 0.0384 72.307E3 63.75 0.0333
Amalthea 0.0015 271.5 1.90 0.3074
Thebe 0.00073 162.1 2.58 0.3042
Adrastea 0.00021 27.1 1.14 0.3027
Metis 0.00037 47.4 1.13 0.4540

Saturn Mimas 0.0043 797.7 3.60 0.2484
Enceladus 0.0051 1213.9 5.24 0.2077
Tethys 0.0109 3211.8 7.21 0.1659
Dione 0.0123 4642.0 10.45 0.1210
Rhea 0.0164 8643.5 17.26 0.0884
Titan 0.0619 75.631E3 60.91 0.0340
Hyperion 0.0031 4591.4 81.28 0.0294

Uranus Ariel 0.0249 4756.4 9.64 0.1217
Umbriel 0.0238 6337.9 15.88 0.0922
Titania 0.0343 14.951E3 33.25 0.0528
Oberon 0.0326 19.023E3 51.49 0.0400
Miranda 0.0092 1190.4 5.38 0.1981

Neptune Triton 0.0593 21.037E3 22.41 0.0643

Pluto Charon 0.6031 11.819E3 24.09 0.0511

1Formally violates mass restriction for the application of Hill’s approximation.

16.3 Classical Analysis of the Problem

The “classical” analysis of the Hill problem is first presented, which involves a
discussion of the Jacobi integral, zero-velocity curves, and the equilibrium points
and the dynamical structure in their vicinity.
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16.3.1 Jacobi Integral and Zero-Velocity Curves

The Jacobi integral for the Hill problem is computed as

J =
1
2
v2 − V (r) (16.6)

V (r) =
1
r

+
1
2
(
3x2 − z2

)
(16.7)

where v is the speed relative to the rotating frame and the normalized form of
the equations are used. The Jacobi integral can be restated in terms of Keplerian
energy and angular momentum

J = E − G +
1
2
(
r2 − 3x2

)
(16.8)

where E is the Keplerian energy, G is the z-component of the angular momentum
relative to the planetary satellite, and the additional term is just a function of
position relative to the planetary satellite.

In the rotating frame it becomes possible to discuss the zero-velocity curves, or
specifically those regions where motion is allowed for a give value of J . To delineate
these regions rewrite the Jacobi integral in terms of the speed, 1

2v2 = J +V (r) ≥ 0
and note that this must be strictly zero or positive. Thus, for positive values of J
all planar regions of space are accessible to a spacecraft. For negative values of J ,
however, there are restrictions. First take the case of J → −∞. For the inequality
to hold either r → 0 or x → ±∞. Thus the limiting curves are a circular region
about the planetary satellite or two vertical lines perpendicular to the x-axis and
at an arbitrarily far distance from the origin. Figure 16.2 shows the zero-velocity
curves for the Hill problem at a range of energies.

As the value of J increases from this extreme, the circular region around the
planetary satellite expands and the vertical lines approach the planetary satellite.
As this happens one can show that the vertical lines preferentially distort towards
the satellite and that the circular region distorts away from the satellite towards the
vertical lines. Due to this the zero-velocity curves first intersect each other along
y = 0 symmetrically about the origin. At the point of intersection the equation
J = −V (r) has multiple solutions in its vicinity and thus its linear expansion
about this point is zero, or Vr = 0, yielding an equilibrium point.

As J continues to increase, the zero-velocity curves pull back from the x-axis
and begin to recede along the ±y-axis till, at J = 0, they disappear. Note that
in the z-direction that as long as J < 0 that there exists a region, far from the
origin, where the ±z regions are connected to each other through the x–y plane.
At J = 0 this connection disappears and there are disjoint regions where motion
cannot occur along the z regions. For J positive, there always exist regions in the
±z regions where motion is not allowed, although these regions become arbitrarily
far from the z = 0 plane as J grows large.
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Fig. 16.2 Zero-velocity curves for the Hill three-body problem.

16.3.2 Equilibrium Points

The Hill problem has two equilibrium points defined for it, analogous to the L1

and L2 points in the restricted three-body problem, except in the Hill problem
these points are exactly symmetric about the body. These occur at the location
where the zero-velocity curves intersect, corresponding to the gradient of V being
singular, and can be solved for exactly

x1,2 = ±
(

1
3

)1/3

(16.9)

y1,2 = z1,2 = 0 (16.10)

In our derivation convention the planet is off to the left and hence the subscript 1
corresponds to the L1 point which has the negative sign, and the L2 point has the
positive sign. In the dimensional equations the x coordinates are equal to

x1,2 = ±
(

μS

3μP

)1/3

aS (16.11)

Thus they scale linearly with the distance between the planet and the satellite.
It is interesting to note that these solutions equal the first-order solutions for the
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expansion formula for the location of the L1,2 equilibrium points in the restricted
three-body problem.

16.3.3 Local Motion about Equilibria

Motion in the vicinity of the equilibrium points is analyzed through a stability anal-
ysis. The stability of these points are computed by forming the linearized equations
of motion about these points and studying their characteristics. The second-order
linear equations about these equilibrium points is

δr̈ + 2

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ δṙ =

⎡⎣9 0 0
0 −3 0
0 0 −4

⎤⎦ δr (16.12)

with an associated characteristic equation of(
λ2 + 4

) (
λ4 − 2λ2 − 27

)
= 0 (16.13)

The out-of-plane eigenvalues are λ = ±2i, where i is the imaginary unit. These
represent oscillations that are decoupled with the in-plane motion and yield oscil-
latory motion with a frequency twice that of the satellite’s orbit about the planet,
or of half the period. Thus, for an out-of-plane oscillation about the Europa L1,2

equilibrium points their period will be on the order of 1.75 days, half the 3.5-
day period of Europa about Jupiter. The position eigenvectors of this mode are
u±z = [0, 0, 1] and the corresponding velocity eigenvectors are u±ż = [0, 0,±2i]
and thus consist of pure oscillation along a one-dimensional position manifold in
the out-of-plane direction. The full solution for out-of-plane motion is then con-
structed as δz = δzo cos(2τ) + 1

2δżo sin(2τ).
The in-plane eigenvalues decouple into a pair of imaginary eigenvalues,

λ = ±i

√√
28 − 1 ∼ ±2.071i

and a positive and negative real pair

λ = ±
√

1 +
√

28 ∼ ±2.508

The imaginary roots represent a center manifold of periodic orbits that enclose the
equilibrium points with frequency ωC = 2.071 and thus period slightly shorter than
the out-of-plane oscillations. The real eigenvalues correspond to stable and unstable
one-dimensional manifolds that emanate from the equilibria. The characteristic
time of these manifolds is τc ∼ 0.399 time units. Since 2π time units represent one
orbit period of the satellite about the planet, this corresponds to a characteristic
time that is ∼6% of the orbit period. Thus, for Europa the characteristic time along
these manifolds is a short 0.22 days, or 5.3 hours. This is much more rapid than
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the corresponding characteristic times at the Earth–Moon L1,2 points (1.7 days)
or the Sun–Earth L1,2 points (22 days).

The position eigenvectors for the in-plane oscillation modes are

u±C =

⎡⎢⎣ 1

±i2
√√

28−1√
28−4

0

⎤⎥⎦ ∼
⎡⎣ 1
±i3.208

0

⎤⎦ (16.14)

Resolving this into motion as a function of initial conditions yields

δx(τ) = cos(ωCτ)δxo +
1

3.208
sin(ωCτ)δyo (16.15)

δy(τ) = cos(ωCτ)δyo − 3.208 sin(ωCτ)δxo (16.16)

with the initial velocities found by time differentiation. Thus the motion along these
periodic orbits are centered on an ellipse with semi-major axes of 1:3.208 along the
x:y-direction, respectively.

The eigenvectors along the unstable and stable manifolds are found to be

u± =

⎡⎢⎣ 1

∓
√√

28+1√
7+2

0

⎤⎥⎦ ∼
⎡⎣ 1
∓0.540

0

⎤⎦ (16.17)

with the upper sign corresponding to unstable motion and the lower to stable
motion. Resolving the motion along these manifolds yields

δx(τ) = e±τ/τcδxo (16.18)
δy(τ) = ∓0.540 e±τ/τcδxo (16.19)

with the initial velocity again found by time differentiation. The unstable and stable
manifolds make an angle of ∓28.4◦ with respect to the x-axis direction, respectively.

16.3.4 Periodic Orbits in the Hill Problem

Given that it is simple to specify and has a range of applications, yet remains a non-
integrable dynamical problem, the Hill Problem is a natural system to be studied
using advanced tools such as are found in celestial mechanics. One of the prime
methods of analysis is the study of periodic orbits in such a system. There have been
classical studies of the Hill problem using these techniques, most notably the paper
by Hénon studying planar families of periodic orbits in the Hill problem [67, 68].
Hénon defines 5 distinct classes of periodic orbits in the planar Hill problem, and
studies their stability properties along with their analytic approximation in some
specific regimes.

When considering the three-dimensional, or non-planar, Hill problem there are
additional families of periodic orbits that can be found and studied. A good
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overview of these can be found in [146], where they use the restricted three-body
problem, but have mass ratios so small that their results are similar to the Hill
problem. As an example, we present a description of halo orbits in the Hill prob-
lem. These are orbits that bifurcate from planar Lyapunov orbits, defined above
for linear variations about the equilibria, when they grow large. In the following
figures the evolution of the halo orbit family is shown as a function of Jacobi

integral values from their bifurcation from the planar family up to larger values.
These are presented to specifically point out a few points of interest regarding the
intersection of periodic orbits with other families and stability transitions due to
extrema with respect to the Jacobi integral values. In Fig. 16.3 several halo orbits
are shown, selected from the computed family. Note that associated with every
motion in the Hill problem, and hence with every periodic orbit, are symmetric
orbits reflected about the z-axis and about the origin in the x-axis.

Fig. 16.3 Halo orbits in the Hill problem.
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Figures 16.4 and 16.5 present a portion of a halo periodic orbit family and a
planar periodic orbit family, from where they intersect to higher values of the Jacobi
constant and, for the halo orbit family, through one extremum of that family. The
surface of section for the halo orbit family computation is along the y = 0 plane
with the ẏ coordinate used to eliminate the Jacobi integral unity eigenvalue. Thus,
to define a halo orbit in this situation requires a state with 4 terms, x, z, ẋ, ż and
a Jacobi constant value. Due to the symmetry of the Hill problem and the halo
orbits, the ẋ and ż states are both zero when these orbits cross the y = 0 plane. The
same surface of section technique is used for the planar problem, except now the
z components are uniformly zero. Thus, Fig. 16.4 completely defines the different

Fig. 16.4 x and z coordinates of the periodic orbit families as a function of Jacobi constant.
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members of these periodic orbit families. Two distinctive points along these plots
are denoted, where the halo orbit has unity eigenvalues in its monodromy matrix
(visible in Fig. 16.5). One is where the two families intersect with each other, and
the other where the halo orbit family goes through a local extremum in the Jacobi
integral.

Fig. 16.5 Eigenvalue magnitudes as a function of Jacobi constant. Detail of the halo orbit
eigenvalues around the Jacobi value extremum.
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At the family intersection the eigenvalues follow the general rules outlined pre-
viously in Chapter 5, thus the halo and planar orbits each have one set of unity
eigenvalues, with eigenvectors in the out-of-plane direction. Note that the in-plane
eigenvalues are strongly unstable at these points; however, the halo orbit retains
one set of eigenvalues on the unit circle (hence with unity magnitude). The planar
orbits remain unstable in the out-of-plane direction, hence their eigenvalues are
only unity at the intersection point and leave along the real axis after that. The
halo orbit family has a decrease in their eigenvalue magnitudes, hence becoming
less unstable as their Jacobi values increase. As the family reaches its extremum
in the Jacobi integral they must converge to (1, 0) in the complex plane and break
off onto the unit circle. This leads to an interval of halo orbits which are stable,
with all of their eigenvalues on the unit circle. This does not persist as two of these
unit eigenvalues migrate over to the negative x-axis and converge to (−1, 0) on the
complex plane and become unstable. This instability corresponds to an intersec-
tion with a family of orbits of twice the period. Thus, for a short interval after
the extremum these orbits are stable but eventually lose their stability through a
period doubling bifurcation.

Figure 16.6 plots the periods of these periodic orbits as a function of the Jacobi
integral. When families reach an extremum in the Jacobi integral, its value cannot
be simply used as a continuation parameter as the families take on two distinct
values in the neighborhood of the extrema. The period of the halo orbit family
is well defined through this value and thus can still be used as a continuation
parameter. To carry this out, one must shift from the Jacobi integral value to period

Fig. 16.6 Period of the periodic orbit families as a function of Jacobi constant.
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as the independent parameter. In [31] this fact is used to develop an extremely
general continuation scheme for periodic orbit families that relies on the intrinsic
geometry of the families to trace them out.

16.4 Advanced Dynamics in the Hill Three-Body Problem

The planetary satellite orbiter problem as defined above is of the same cardinality as
the circular restricted three-body problem (CR3BP), in that it is a non-integrable
problem with the same degrees of freedom. In some ways, due to the absence of any
parameter in the reduced form of this problem, it can be more difficult to analyze
than the CR3BP as one cannot assume a small parameter to find a nominally
integrable problem in the limit. For the H3BP one can only find integrable problems
by treating the initial conditions as parameters. This leads to the classical Clohessy–
Wiltshire equations for linearized motion about a circular orbit when |y| 
 1 and
the two-body problem when |r| � 1. Another point concerning this problem is
that in the full derivation of the H3BP it is not necessary to make the assumption
that one of the three bodies is infinitesimally small, and thus these solutions also
represent the dynamics of two bodies of arbitrary relative mass with respect to each
other, mutually orbiting about a larger body [155]. The current applications still
tacitly make the assumption that the orbiter’s mass is infinitesimal with respect to
the planetary satellite.

Due to the complexity of the H3BP, we do not attempt to provide a complete
description of dynamics in this problem. However, in the next subsections two
novel approaches to characterizing and understanding dynamics of an orbiter in
this problem are described, motivated by the analyses found in [187, 125, 123].

16.4.1 Transit, Capture and Escape

In Chapter 5 Poincaré maps were defined, and in particular the Poincaré periapsis
map was introduced as a way to reduce the dimensionality of dynamical systems.
In this reduction, only the closest approach of a trajectory to a particular body is
tracked, and can be easily represented as the coordinates of the periapsis (techni-
cally defined as the point where ṙ = 0 and r̈ > 0). In the planar problem, given the
two coordinates and the Jacobi constant for the trajectory the total speed can be
computed and, as the point is defined at closest approach, the orientation of the
velocity vector is automatically known (perpendicular to the radius) fully defining
the state. For the three-dimensional problem it is also necessary to track the rota-
tion of the velocity vector around the radius vector (see [125]). The discussion here
will only focus on the planar problem.

The following examples are from the thesis of Marci Paskowitz [125]. The dynam-
ics of sets of trajectories that enter into the zero-velocity region close to the central
body are shown by tracking their Poincaré periapsis maps. Figure 16.7 shows a sin-
gle trajectory that enters the central region and has a number of periapsis passages
relative to the body. Of interest is the totality of all trajectories that enter into the
central zone at a given energy level and their subsequent orbital evolution. Figure
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16.8 shows the first periapsis passage of all trajectories entering the central region
from the right. The set that remains close to the entry point are associated with the
Lyapunov orbit that exists for the given energy level in the throat region. Of those
close to the neck, some will escape at the next iteration while others will continue
down into the central region. Figure 16.9 shows multiple iterations of the map, with
black being the first passage, blue the second, red the third and green the fourth.
There exists a “following set” that comes from the throat region yet lands within
the similar groups. Not shown are those trajectories that start near the throat and
escape. It is important to note that all of the trajectories that come within this
region cannot escape immediately and must follow the different mapping sets.

Fig. 16.7 Trajectory close to the central body in the Hill three-body problem. Note that the
closest approaches between the particle and the central body are well defined. Credit: [125].

The previous figures are shown for a single Jacobi constant value. As the Jacobi
constant is adjusted to larger or smaller values, the extent of the entry region and,
correspondingly, the set of the periapsis points, will expand or contract. When the
Jacobi constant is chosen to equal the value at the equilibrium points, there is
only a single manifold that emanates from that point into the interior region of
the zero-velocity curve (forward in time). As the constant value is increased, the
entry region expands along with the volume of initial states, shown in Fig. 16.10.
Due to the varying Jacobi constant levels, the subsequent trajectory groups will
have different dynamics, although they follow the same general pathway around
the central body as is evident in Fig. 16.9. There is a peculiarity associated with
the Europa system, the lowest Jacobi constant that emanates from the equilibrium
point (i.e., the unstable manifold of the equilibrium point) has its first periapsis
passage at the surface of Europa. For higher values of the constant a large portion
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Fig. 16.8 First periapsis passages of all trajectories entering the central zero-velocity region.
Most trajectories have their first passage close to the central body, but a significant portion have
their first passage near the throat. The central circle represents the radius of Europa. Credit: [125].

Fig. 16.9 Multiple periapsis passages. Black = first passage, blue = second passage, red = third
passage, green = fourth passage. Credit: [125].

of the initial set continues to have their first periapsis passage beneath the asteroid
surface.

There are several symmetries in the Hill problem which make it simple to take the
current periapsis Poincaré maps and understand other pathways and trajectories
through the system. In the planar problem there are two main symmetries. First,
changing (x, y, ẋ, ẏ, t) → (−x,−y,−ẋ,−ẏ, t) transforms solutions across the origin.
To prove that the solutions have this property, one needs to show that the equations
of motion remain satisfied by the transformation. In Fig. 16.11 this transformation
of the initial periapsis set is represented by the set across the central body in
Quadrant IV. This set will move forward in time and shadow the sets already
presented in Fig. 16.9, and indeed represents the set of all trajectories entering the
interior zone from the left.

The other symmetry of interest transforms (x, y, ẋ, ẏ, t) → (−x, y, ẋ,−ẏ,−t), and
in conjunction with the previous transform also yields (x, y, ẋ, ẏ, t) →
(x,−y,−ẋ, ẏ,−t). These solutions go “backwards” in time and represent the so-
lutions that escape, or leave, from the central zone. Given the uniqueness of the
periapsis maps, whenever two sets intersect with each other, the trajectories must
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Fig. 16.10 First periapsis passage maps for varying levels of the Jacobi constant. The circle
represents the surface of Europa. Credit: [125].

be consistent and follow each other either forward or backwards in time. Thus,
when a forward in time set intersects with a backwards in time set, the region of
overlap must escape from the system in the requisite number of maps. This can be
seen explicitly in Fig. 16.12, where on the second (blue) iteration of the forwards
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Fig. 16.11 The sets of all first and last periapsis passages for a given Jacobi constant, found by
applying the symmetry transformations to the initially computed periapsis set. Credit: [125].

Fig. 16.12 The set of forward periapsis sets (entering from the right) and backwards periapsis
sets (exiting on the left) over four iterations. Note that the existence of overlap regions implies
that some of the trajectories will transit. Credit: [125].
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and backwards periapsis sets that there is a region of overlap. Thus, this region of
overlap must then map to a red region (forwards in time) that intersects with a
black region (backwards in time), meaning that in the next iteration it will escape
from the central region (in this case to the left). Figure 16.13 shows an explicit
trajectory from this overlap set.

Fig. 16.13 A specific trajectory that enters from the right and exits on the left after 4 periapsis
passages. For this Jacobi constant level this is the minimum number of orbits before transit can
occur. Credit: [125].

As the periapsis sets define unique points in phase space, they can also be used
to define and delineate the final outcomes in a unique way. This is shown in Figure
16.14, where the impacting orbits (red) and escaping orbits (black) are delineated
across the entire first periapsis plot region. Continuing the iterations will divide
the region into finer and finer delineations, providing targets that are guaranteed
to be “safe” over some finite timespan.

16.4.2 Higher-Order Expansion

As the second example for the Hill problem consider the higher-order expansion
theory presented earlier in Chapter 6. Writing the normalized Hill equations into
the standard form of ẋ = fx(x) yields

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3 0 0 0 2 0
0 0 0 0 −2 0
0 0 −1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦x +

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
0

Ur

⎤⎥⎥⎥⎥⎥⎥⎦ (16.20)
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Fig. 16.14 Trajectory outcomes indicated on the first periapsis set. Red denotes impact at some
future point, black denotes escape, evaluated over several iterations. Credit: [125].

where x = [r,v] and U = 1/r. From this form of the equations, it is simple to note
all of the higher-order expansions of the equations of motion

fr,r = 0 (16.21)
fr,v = I (16.22)

fv,r =

⎡⎣ 3 0 0
0 0 0
0 0 −1

⎤⎦+ Ur (16.23)

fv,v =

⎡⎣ 0 2 0
−2 0 0
0 0 0

⎤⎦ (16.24)

Thus, the only higher-order expansions that must be considered are

fv,r···r = Urr···r (16.25)

and all other higher-order partials are identically zero. Thus, the equations of mo-
tion for the higher-order state transition tensors have a simplification and do not
require all orders of the internal expansions to be computed.

In his thesis and a related series of papers, Park investigated the use of these
higher-order expansions for describing motion in the vicinity of a nominally inte-
grated trajectory in the Hill three-body problem [123, 124]. Some of those results
are presented here as an example of this method for describing the local dynamics
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about a nominal trajectory to higher order. Figure 16.15 shows a nominal trajec-
tory in position and velocity space for a trajectory in close proximity to Europa.
The trajectory extends over 6.5 days (almost two Europa orbit periods) and con-
sists of several orbits about the primary, with a strongly changing orbit due to the
Jovian perturbations.

Fig. 16.15 Nominal trajectory used for the computation of higher-order expansions for the
theory. Credit: [123].

Figures 16.16 and 16.17 present two computations made with expansions up to
fourth order integrated along the nominal trajectory. Both of these examples are
computed at 5.74 days, near the end of the trajectory and taken at a point where
the higher-order expansions are crucial for capturing the local dynamics accurately.
Figure 16.16 shows the projected propagation of a set of initial conditions that
consist of a simple circle drawn in position space at a radius of 10 km relative
to the nominal solution, and with zero velocity offset. At this later epoch the
position extent has grown to hundreds of kilometers and several meters per second
in velocity. The different lines on the plot represent different-order contributions to
the solution, with the black line representing the numerically integrated solution
taken at several hundred points around the initial circle. It can be explicitly seen
how the higher order terms of the solution correct the lower-order terms. Classical
spacecraft navigation theory relies on linear expansions about a nominal trajectory
for describing relative motion (represented here as the blue line). It is significant
to note how far off the mark the linear expansion is, whereas even the second-
order terms show a much stronger convergence to the true orbital motion. Once
the state transition tensors are computed they can be used to generate the relative
trajectories of arbitrary initial distributions without recomputing the expansion
terms again.

With such an analytic representation of the solution, it is also possible to di-
rectly compute the mean, covariance and higher-order statistical moments of the
trajectory assuming some initial distribution [124]. The nonlinear mapping of the
dynamics allows one to capture the non-zero mean of the true statistical trajectory,
and provides a much more robust description of the orbit covariance. Figure 16.17
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Fig. 16.16 Relative dynamics of a set of initial conditions consisting of a line of radius 10 km
drawn about the initial position, with zero deviations in initial velocity. The blue line represents
the first-order (linear) expansion, red the second-order, green the third-order, cyan the fourth-
order, and black a set of directly integrated points. Credit: [123].

shows the projection of the computed orbit means and covariance ellipsoids relative
to the nominal trajectory at the same point in the orbit as chosen for the previ-
ous figure. Here the initial distribution is assumed to be Gaussian with a spherical
covariance of radius 10 km in position and 0.1 m/s in velocity with no initial cor-
relation. The total extent of the position and velocity covariance is increased by
a few orders of magnitude after the mapping, and at this point of the orbit the
higher-order expansion terms are starting to exhibit some divergence from the true

Fig. 16.17 Projections of the mean and covariance of an initially Gaussian distribution consisting

of a spherical distribution of radius 10 km in position and a spherical distribution of 0.1 m/s in
velocity, with no initial correlation. The blue line represents the first-order (linear) expansion, red
the second-order, green the third-order, cyan the fourth-order, and black the mean and covariance
computed using a Monte Carlo computation. Credit: [123].
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value (earlier computations are highly convergent in general for this example). In
this plot the blue is the linear mean and covariance (note that the mean remains
at zero, i.e., does not deviate from the nominal), a generic property of linearly
mapped Gaussian distributions. This example shows how the actual mean deviates
by over 200 km in position and by tens of m/s in velocity from the nominal, and is
accurately captured by the higher-order expansions. The black lines correspond to
a Monte Carlo computation of the mean and covariance, consisting of thousands
of points drawn from the initial distribution and mapped forward in time. Again,
the analytical theory can be immediately applied to any initial covariance desired,
whereas the numerical result must be re-run for even the smallest changes in the
initial distribution.



17. Planetary Satellites:
Averaged Analysis

This chapter studies the orbit dynamics of low-altitude, near-circular orbits above
an oblate planetary satellite. The mathematical model used in the analysis includes
the tidal perturbation from the planet and the effect of the planetary satellite’s
oblateness and, as such, corresponds to the investigation of a particular “region”
of initial condition space of the classical Hill problem with the modification of an
oblate central body. The analysis described in the following is largely taken from
[167].

17.1 Motivation and Model

The motivation for this analysis is the proposed Europa orbiter mission, which has
been contemplated for over two decades as of the writing of this book. The dy-
namics of low-altitude orbiters about Europa are found to be quite complex where
orbits with inclinations within ∼50◦ of polar can suffer impacts with that planetary
satellite’s surface in timespans of days to weeks. This strong instability is actually
found for all planetary satellites, with the characteristic time to impact controlled
by the orbit period of the planetary satellite and the scaled radius of the planetary
satellite defined in the previous chapter. In Figs. 17.1 to 17.3 numerical integrations
of a low-altitude Europa orbiter are shown, started at a polar inclination. It can
be explicitly seen that the orbital dynamics suffer an instability that would cause
the orbiter to impact with the Europa surface within a short time span.

This dynamical instability can be completely explained using an approximate,
averaged model for the motion of a satellite about a planetary satellite, and is
described herein. The averaging techniques applied in this chapter are relatively
simple and of first-order only. Others have performed detailed, higher-order averag-
ing analysis (see [87]), which are of great interest and utility for the mission design
and analysis of dynamics in this class of problem. The interested reader wishing to
delve deeper into an analytical understanding of the dynamics of planetary orbiters
is encouraged to consult these texts.

DOI 10.1007/978-3-642-03256-1_17, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 17.1 Radius of a Europa orbiter started in a circular orbit at an altitude of 200 km. If
uncontrolled, impact occurs in a little over 50 days.
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Fig. 17.2 Eccentricity of a Europa orbiter started in a circular orbit at an altitude of 200 km.
The eccentricity increases exponentially while the semi-major axis is approximately constant,
leading to impact.
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Fig. 17.3 Argument of periapsis of a Europa orbiter started in a circular orbit at an altitude
of 200 km. The argument of periapsis is asymptotic to a constant value, defined as the unstable
manifold emanating from a circular orbit.

17.2 Dynamics of Planetary Satellite Orbiters

17.2.1 Tidal Perturbation Model

The fundamental equations of motion and the application of the Hill approximation
were discussed in Chapter 16. Of primary interest for the current analysis is the
tidal perturbation potential, stated as

R =
3
2
N2

Sx2 − 1
2
N2

Sr2 (17.1)

where x is measured along the line from the planet to its satellite, r is the orbital
radius from the satellite center, and NS is the orbit angular rate of the planetary
satellite about the planet. Figure 16.1 presents a picture of the coordinate geometry.

In terms of inertially referenced orbital elements the coordinate x is:

x = r [cos(ω + f) cos(λ) − sin(ω + f) sin(λ) cos i] (17.2)
λ = Ω − NS(t − to) (17.3)

where ω is the argument of periapsis, f is the true anomaly, i is the inclination, Ω
is the longitude of the ascending node relative to an inertial frame, t is the time,
to is an initial epoch, and λ is the longitude of the ascending node relative to the
rotating coordinate frame. Using these definitions the perturbing potential can be
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expressed in terms of osculating orbital elements alone

R =
N2

Sr2

2

{
3 [cos(ω + f) cos(λ) − sin(ω + f) sin(λ) cos i]2 − 1

}
(17.4)

This potential can be used in the Lagrange planetary equations to compute the
effect of the tidal acceleration on the osculating orbital elements.

17.2.2 Averaging Assumptions

To simplify the analysis of this problem one can concentrate only on secular changes
in the orbital elements. The secular effect of the tidal perturbation can be found by
averaging the perturbing potential over the orbit mean anomaly, and then substitut-
ing this averaged potential into the Lagrange equations. The perturbing potential
expressed in inertial orbital elements has a time variation in the longitude of the
ascending node corresponding to the motion of the planetary satellite about the
planet. Thus, in addition to the “smallness” assumption of the perturbing acceler-
ation (which is valid here in general) also assume that the orbiter’s mean motion
about the planetary satellite, n =

√
μS/a3, where a is the semi-major axis of the

spacecraft, is much greater than the planetary satellite’s mean motion NS . This im-
plies that in the time it takes the orbiter to make one revolution about the satellite,
the satellite will only have moved a relatively small angle about the planet. The
ratio of Europa’s mean motion over a low-altitude Europa orbiter’s mean motion
is ∼0.02, implying that Europa will move an angle of only 7◦ over one period of
the orbiter.

Average the potential over one spacecraft orbit, assuming that Ω (or the term
NSt) is constant

R =
1
2π

∫ 2π

0

RdM (17.5)

To perform the averaging transform from mean anomaly to true anomaly and write
the averaged potential as:

R =
1
2π

a2(1 − e2)4N2
S

4
√

1 − e2

∫ 2π

0

1
(1 + e cos f)4

{(
1 − 3 sin2 λ sin2 i

)
+3

(
cos 2λ + sin2 λ sin2 i

)
cos 2(f + ω) − 3 sin 2λ cos i sin 2(f + ω)

}
df (17.6)

The expression 1/(1 + e cos f)4 can be expanded as a cosine series:

1
(1 + e cos f)4

=
∞∑

m=0

bm cos(mf) (17.7)

where closed-form expressions of its coefficients are given in Appendix B. Of specific
interest are the coefficients
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bo =
√

1 − e2

(1 − e2)4

(
1 +

3
2
e2

)
(17.8)

b2 = 5
√

1 − e2

(1 − e2)4
e2 (17.9)

Using these results the quadrature can be completed to find:

R =
N2

Sa2

4

[(
1 − 3

2
sin2 i +

3
2

cos 2λ sin2 i

)(
1 +

3
2
e2

)
+

15
4

e2 cos 2ω
{
sin2 i + cos 2λ

(
1 + cos2 i

)}
−5e2 sin 2ω sin 2λ cos i

]
(17.10)

While the averaged potential is now simplified, it still has a time-varying term (λ)
due to the motion of the planetary satellite. A further simplification can be made
by averaging the potential over one orbit about the planet. For the Europa orbiter
problem this second averaging is justified as there are order of magnitude differences
between the period of the Europa orbiter and the period of Europa about Jupiter
(3.5 days). This second averaging is motivated more by intuitive reasoning than
by mathematical argument and in [167] was justified by comparing the results of
the following analysis with precision numerical integrations. Performing this second
averaging yields a time invariant potential:

R̃ =
1
2π

∫ 2π

0

R̄d(NSt) (17.11)

=
N2

Sa2

4

[(
1 − 3

2
sin2 i

)(
1 +

3
2
e2

)
+

15
4

e2 cos 2ω sin2 i

]
(17.12)

Since the dynamics of a low-altitude orbiter are being considered, the effect of
planetary satellite oblateness may also be an important element. The form of this
perturbing potential can be averaged over a single orbit to yield

RJ2 =
μSJ2

2a3(1 − e2)3/2

(
1 − 3

2
sin2 i

)
(17.13)

where J2 is the Europa oblateness term, given here in dimensional units of km2. Due
to the linearity of the Lagrange planetary equations with respect to the potential,
this perturbing potential can be added to the doubly-averaged tidal perturbation
potential to yield the final, secular, perturbing potential.
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17.2.3 The Secular Lagrange Equations

These equations are first stated only incorporating the tidal term (Eq. 17.12).

da

dt
= 0 (17.14)

di

dt
= −15

16
N2

S

n

e2

√
1 − e2

sin 2i sin 2ω (17.15)

dΩ

dt
= −3

8
N2

S

n

cos i√
1 − e2

[
2 + 3e2 − 5e2 cos 2ω

]
(17.16)

de

dt
=

15
8

N2
S

n
e
√

1 − e2 sin2 i sin 2ω (17.17)

dω

dt
=

3
8

N2
S

n

1√
1 − e2

[
5 cos2 i − 1 + 5 sin2 i cos 2ω + e2 (1 − 5 cos 2ω)

]
(17.18)

The semi-major axis is constant, as is the usual case for secular perturbations
arising from a potential. The longitude of the ascending node, Ω, is ignorable in
that its motion does not affect any other secular element. Similarly, the modification
of the mean anomaly is ignorable and is not presented here. Thus, the secular
effect of the tidal perturbation creates a coupled evolution of the orbit inclination,
eccentricity, and argument of periapsis.

Since only low-altitude orbiters are considered, the analysis can be restricted to
small eccentricities. Specifically, assuming that the semi-major axis of the orbit is
expressed as RS + h, where RS is the satellite radius and h is the altitude, then
the eccentricity of the orbit is constrained by:

e <
h

RS + h
(17.19)

which is small, given the assumption on h. Neglecting higher orders of eccentricity
in the coupled motion of i, e and ω yields

di

dt
∼ O(e2) (17.20)

de

dt
∼ 15

8
N2

S

n
e sin2 i sin 2ω + O(e2) (17.21)

dω

dt
∼ 3

8
N2

S

n

[
4 − 5 sin2 i + 5 sin2 i cos 2ω

]
+ O(e2) (17.22)

Thus, the inclination should be constant on average (to O(e)), reducing this to a
two-dimensional problem.

At this point the effect of the planetary satellite oblateness in incorporated.
Classical analyses of the J2 effect on low-altitude orbits show that, on average,
the semi-major axis, inclination, and eccentricity will not be affected, and that the
longitude of the ascending node and argument of periapsis will have a constant
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secular change due to this term. As before, the longitude of the ascending node
is ignorable as it has no effect on the remaining elements and is not considered
further. The effect of J2 on the argument of periapsis is represented as:

ω̇J2 =
3nJ2

p2

(
1 − 5

4
sin2 i

)
(17.23)

Including the effect of J2 on the argument of periapsis and ignoring higher orders
of eccentricity yields the final form of the secular Lagrange equations for a Europa
orbiter

de

dt
=

15
8

N2
S

n
e sin2 i sin 2ω (17.24)

dω

dt
=

3
8

N2
S

n

[
4 − 5 sin2 i + 5 sin2 i cos 2ω

]
+

3nJ2

p2

(
1 − 5

4
sin2 i

)
(17.25)

For notational convenience the equation for the argument of periapsis are rewritten
as:

ω̇ =
15
8

N2
S

n
sin2 i [cos 2ω + α] (17.26)

α = (1 + 2χ)
4 − 5 sin2 i

5 sin2 i
(17.27)

χ =
(

n

NS

)2
J2

a2
(17.28)

This form of the equation is valid only for non-equatorial orbits (i 	= 0, π), but
neither of these inclinations will be considered in the following. For a Europa orbiter
the parameter χ ∼ 0.47 for an altitude of 200 km. Note that the parameter χ is not
necessarily small, for example the same quantity evaluated for a low-Earth orbiter
considering the tidal perturbation of the Sun yields a value of χ ∼ 1.9 × 104; for a
geosynchronous orbit it yields a value of χ ∼ 3.

17.2.4 Analytical Integration of the Equations

As a linear, time invariant system, Eqn. 17.26 for the argument of periapsis can be
solved to find (note that λ is redefined here)

tanω =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1 + α

1 − α
tanh (λt + φ) α2 < 1

λt + tan(ωo) α = 1√
α + 1
α − 1

tan (λt + φ) α2 > 1

(17.29)
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λ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

15
8

N2
S

n
sin2 i

√
1 − α2 α2 < 1

15
4

N2
S

n
sin2 i α = ±1
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φ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
tanh−1

[√
1 − α

1 + α
tan(ωo)

]
α2 < 1

tan−1

[√
α − 1
α + 1

tan(ωo)

]
α2 > 1

(17.31)

Note that the solution for the case α < 1 can also be described by replacing
all instances of tanh with coth, either one yielding an appropriate solution. This
duality exists to allow all possible values of ω to occur. Similarly, for the case when
α = −1 the functions tan(ω) can be replaced with cot(ω).

This result clearly shows different behavior as a function of the parameter α.
Specifically, for α2 < 1 the argument of periapsis approaches the limiting value:

ω = tan−1

√
1 + α

1 − α
(17.32)

while for α2 > 1 the argument of periapsis circulates.
Given this solution for ω it is possible to solve for e as well

e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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√
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cosh 2φ − α
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eo

√
1 + (tanωo + λt)2

1 + tanω2
o

α = 1

eo

√
α − cos 2(λt + φ)

α − cos 2φ
α2 > 1

(17.33)

Again, there is a change in solution properties as a function of the parameter α.
When α2 > 1 the eccentricity will oscillate while when α2 < 1 the eccentricity will
grow exponentially. Thus, this explicitly shows that it is possible for eccentricity to
evolve in an unstable fashion, which could lead to impact of a low-altitude orbit with
the planetary satellite surface. For this case impact with the surface will usually
precede eccentricity becoming so large as to violate the smallness assumptions made
earlier.
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17.2.4.1 Solution in Terms of h and k

Although the derivation of the solution is simpler in terms of orbital elements ω
and e, the form and interpretation of the solution is eased in terms of the orbit
elements:

h = e sin ω (17.34)
k = e cos ω (17.35)

For α2 < 1 the solution is

h =
eo√
1 − α

[√
1 + α cos ωo sinh(λt) +

√
1 − α sinωo cosh(λt)

]
(17.36)

k =
eo√
1 + α

[√
1 + α cos ωo cosh(λt) +

√
1 − α sinωo sinh(λt)

]
(17.37)

while for α2 > 1 the solution is

h =
eo√
α − 1

[√
α + 1 cos ωo sin(λt) +

√
α − 1 sinωo cos(λt)

]
(17.38)

k =
eo√
α + 1

[√
α + 1 cos ωo cos(λt) +

√
α − 1 sinωo sin(λt)

]
(17.39)

and for α = 1 the system degenerates to

h = eo [sinωo + cos ωoλt] (17.40)
k = eo cos ωo (17.41)

Figure 17.4 shows a sketch of the evolution of eccentricity and argument of
periapsis for the main cases. For α2 > 1 circular orbits correspond to stable, fixed
points of the secular equations. Conversely, for α2 < 1 circular orbits correspond
to unstable, fixed points of the secular equations. Thus the system and solutions
can also be viewed in context of the stability of circular orbits at low altitudes.

e cos(ω)

e sin(ω)

Stable Motion: α > 1

e cos(ω)

e sin(ω)

Unstable Motion: α < 1

Fig. 17.4 Qualitative sketches of linearized motion relative to the nominal orbit for stable and
unstable solutions.
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17.2.5 Stability and Time-to-Impact

From these solutions it is possible to explicitly determine the stability conditions for
an orbiter, and for the unstable case determine the time-to-impact. The stability
condition is obviously α2 > 1 which can be reduced to a set of limits on the
inclination of the orbiter:

sin2 i <
2
5

(
1 + 2χ

1 + χ

)
(17.42)

or

sin2 i >
2
5

(
1 + 2χ

χ

)
(17.43)

The χ term is due to the oblateness of the planetary satellite and involves the
semi-major axis of the orbit and the mean motion of the planetary satellite about
the planet. The second condition cannot occur if χ < 2, meaning that it does not
come into play for the Europa orbiter; however, it does come into play for plane-
tary orbiters where (as noted) the values of χ can become large. If the oblateness
term is neglected (χ ∼ 0) the stability condition becomes independent of physical
parameter values and reduces to:

sin2 i < 2/5 (17.44)

which corresponds to inclinations in the regions: 0≤ i<39.23 and 140.77<i≤180.
As χ increases from zero the range of these stability intervals will increase.

For χ > 2 the second condition (Eq. 17.43) becomes active and creates an
additional stability region symmetrically placed about a polar orbit (i = 90◦).
If χ 
 1 then these stability intervals approach each other and leave the stability
condition as sin2 i 	= 4/5. This situation occurs when NS is extremely small, such as
a planet orbiting about the Sun where the period is on the order of years, or when
the J2 perturbation dominates over the tidal perturbation. Thus, the analogous
eccentricity instability for a low Earth orbiter would lie in small intervals around
the critical inclinations of 63.43◦ and 116.56◦. For a geosynchronous orbit where
χ ∼ 3 this interval of unstable inclinations would range from 56.8◦ to 75◦ and
from 105◦ to 123.2◦. It is important to note, however, that the time constant of
this instability for an orbiter about the Earth will be extremely long, on the order
of 39 years for a geosynchronous satellite. In the remainder of the chapter only
the case when χ < 2 is considered, effectively eliminating planetary orbiters from
consideration.

The solution for eccentricity can also predict the time-to-impact for an unstable
orbiter. Assume a near-circular orbit above the planetary satellite with semi-major
axis a = h + RS , where h is the altitude and RS is the radius of the planetary
satellite (or the top of its atmosphere). Since the semi-major axis is constant on
average, the condition for impact is that the periapsis radius drop below RS , or
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a(1 − e) ≤ RS . Solving for the eccentricity at impact yields:

eimp =
h

RS + h
(17.45)

Then, from Eq. 17.33, the corresponding time-to-impact can be explicitly computed
as:

Timp =
1
2λ

{
cosh−1

[
α +

(
eimp

eo

)2

(cosh 2φ − α)

]
− 2φ

}
(17.46)

This gives an explicit prediction of impact time as a function of initial eccentricity,
orbit altitude, inclination, and argument of periapsis. Plotted in Figs. 17.5 and
17.6 are predicted times-to-impact as a function of altitude, eccentricity, inclination
and argument of periapsis. These estimates are not necessarily precise, but provide
useful relative and qualitative predictions for impact times. The details of impact
times are strongly influenced by the short-term oscillations seen in Figs. 17.1 to 17.3.
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Fig. 17.5 Time-to-impact as a function of altitude at different initial eccentricities. Assumes an
inclination of 90◦ and an initial argument of periapsis of 0◦.

An interesting phenomenon can be noted in Eq. 17.33 as, by inspection of
Eq. 17.46, it can be deduced that the time-to-impact can be maximized by choosing
φ → −∞. With this value for an initial condition it will ideally take an infinite
length of time for the ratio e/eo to increase. The condition for φ → −∞ is
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Fig. 17.6 Time to impact as a function of inclination at different initial argument of periapsis.
Assumes an altitude of 200 km and an initial eccentricity of 0.001.

tanωo = −
√

1 + α

1 − α
(17.47)

= − tanωlim (17.48)
ωo = −ωlim, π − ωlim (17.49)

Thus, choosing the initial argument of periapsis according to this relation can
theoretically increase the time-to-impact of the orbiter. Figure 17.7 plots these
“optimal” initial arguments of periapsis as a function of inclination for an orbiter
about Europa at a 200 km altitude.

In terms of the elements h and k the solution for this special case reduces to:

h∗ = ∓ eo√
2

√
1 + α e−λt (17.50)

k∗ = ± eo√
2

√
1 − α e−λt (17.51)

The argument of periapsis is:

tanω∗ = h∗/k∗

= −
√

1 + α

1 − α
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Fig. 17.7 Initial argument of periapsis to prolong the time to impact.

and does not change from its initial value. The eccentricity becomes:

e∗ =
√

h∗2 + k∗2

= eo e−λt (17.52)

and asymptotically reduces to zero.
Even though this particular solution is asymptotically stable to a zero eccentric-

ity, the neighborhood of this solution does not have this stability property, and in
fact small perturbations will excite the unstable manifold and cause the eccentric-
ity to eventually increase exponentially in time. Thus, while it is possible to use
this result to gain additional time before an impact occurs, an uncontrolled orbit
will eventually become unstable and impact. Should active control of the orbit be
possible, a reasonable approach (based on this solution) would be to occasionally
reset the orbit argument of periapsis to a value close to this asymptotic solution.
In [126] these manifolds are derived incorporating higher-order gravity field coeffi-
cients and used to design longer-life orbits suitable for the design of science orbits
about a planetary satellite.
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17.3 Extension to Other Planetary Satellite Orbiters

Given the simple form and the universality of the analytic results, it is fitting
that they be applied to a larger range of solar system bodies. To perform these
comparisons we took a published list of planetary satellites for which mass estimates
exist and computed a number of relevant constants for them.

The basic Hill assumptions only require a near-circular orbit for the planetary
satellite and a relative mass ratio (MS/MP )1/3 � 1. These conditions are satisfied
for almost all planetary satellites in the solar system, exceptions being Earth’s
Moon and Pluto’s moon Charon, for which the mass ratios are not small. The
averaging assumption made is that the ratio of the planetary satellite orbit mean
motion over the spacecraft orbit mean motion is a small number, or (NS/n) � 1. To
enable comparison between different bodies the spacecraft mean motion is evaluated
at the surface of the planetary satellite, designated as nS =

√
μS/R3

S . This can be
scaled to higher altitudes with the relation:

n = nS (1 + h/RS)−3/2 (17.53)

∼ nS

(
1 − 3h

2RS

)
(17.54)

To compute a measure of the importance of this instability for near-polar orbits
the characteristic exponent λ (Eq. 17.30) of a polar orbit (i = 90◦) is computed
for each body. For these computations we assume χ = 0 and i = 90◦ leading to
α = −1/5, which gives a characteristic exponent of:

λ =
3
√

6
4

(
NS

nS

)
NS (17.55)

∼ 1.837 . . .

(
NS

nS

)
NS (17.56)

Thus, whenever the condition (NS/nS) � 1 holds, the condition λ/NS � 1 should
also hold – this assumption was explicitly made when the second averaging was
performed for elimination of the longitude of the ascending node. Of specific in-
terest is the characteristic time of the eccentricity instability, τ = 1/λ. From these
relations it can be seen that the characteristic time of the instability is a function
only of the planet’s mass parameter, the satellite’s orbit radius, and the ratio of the
satellite’s mass parameter with the planet’s mass parameter and the ratio of the
satellite’s physical radius with the satellite’s orbit radius. The characteristic time
can also be expressed in terms of satellite orbital revolutions about the planet

τ/(2π/NS) =
2

3π
√

6
nS

NS
(17.57)

and the characteristic time measured in satellite orbit periods is only a function of
the ratio of mass parameters and the ratio of the satellite’s physical radius with its
orbital radius.
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Table 17.1 presents the results of these computations for orbiters about a number
of planetary satellites of interest. For each planet with satellites, the moons, the
averaging conditions (NS/nS), the orbit period of the moons (2π/NS), and the
characteristic times of the instability at the surface of the planetary satellite (τS) are
listed. When the averaging conditions are violated the modeling assumptions will
begin to break down and coupling between the time variations can begin to become
important. Included in the table for completeness are some planetary satellites of
interest which do not satisfy these conditions. From the table it is apparent that
this instability can be a significant concern for most planetary satellite orbiters.
Of specific interest is that the instability for a Titan orbiter is relatively mild, on
the order of 220 days, meaning that it may only become significant over longer
periods of time and that it may be easily controlled by occasional maneuvers. In
contrast, an orbiter about Enceladus has a characteristic instability time of ∼1.3
days, and thus would most likely require frequent control maneuvers to maintain
a given near-polar orbit.
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Table 17.1 Summary of select planetary satellite quantities of interest for planetary satellite
orbiters [167]. The mean motion ratio is computed for a satellite orbiter at the surface of the
planetary satellite. The characteristic instability time is computed for a polar orbit at the surface
of the planetary satellite.

Planet Satellite Mean Motion Satellite Orbit Characteristic
ratio Period Instability Time

(NS/ns) 2π/NS τS

(day) (day)

Earth Moon 0.00274 27.45 880.19

Mars Phobos 0.33281 0.32 0.08
Deimos 0.0806 1.26 1.35

Jupiter Io 0.04123 1.77 3.72
Europa 0.0225 3.55 13.66
Ganymede 0.0138 7.15 44.87
Callisto 0.00604 16.69 239.11
Amalthea 0.19311 0.497 0.22
Thebe 0.17631 0.676 0.33
Adrastea 0.20891 0.299 0.12
Metis 0.27621 0.296 0.09

Saturn Mimas 0.12141 0.943 0.67
Enceladus 0.0944 1.371 1.26
Tethys 0.0669 1.888 2.44
Dione 0.042 2.737 5.64
Rhea 0.0263 4.518 14.85
Titan 0.00627 15.946 220.28
Hyperion 0.00548 21.28 336.19

Uranus Ariel 0.04225 2.525 5.18
Umbriel 0.0281 4.157 12.82
Titania 0.0121 8.705 62.28
Oberon 0.008 13.48 145.81
Miranda 0.0893 1.408 1.36

Neptune Triton 0.0163 5.867 31.20

Pluto Charon 0.0112 6.307 48.70

1Formally violates the frequency condition for application of the second averaging assumption.
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We finish with perhaps one of the most challenging dynamical environments that
can be encountered. That of a planetary satellite which has a strongly non-spherical
shape. The prototypical examples of such satellites are the Martian moons Pho-
bos and Deimos. These bodies are also of significant scientific interest, if for no
other reason than their formation and subsequent evolution persists as a signifi-
cant scientific mystery. These bodies exist in a dynamical environment where both
the strong tidal perturbations from the planet and their own non-spheroidal grav-
ity fields combine to place stringent limits on feasible orbital operations at these
bodies.

Orbital mechanics about the Martian planetary satellite Phobos has been of
considerable interest to researchers for some time, with some of the earliest papers
discussing dynamics about strongly non-spheroidal bodies occurring for this body.
The earliest study of dynamics about Phobos was given by Dobrovolskis [32], where
he pointed out many interesting features of this system relevant to understanding
its current state and presumed natural evolution. Wiesel published the first de-
tailed study of spacecraft orbital dynamics in the vicinity of Phobos [196]. More
recently, the Russian Phobos-Grunt mission [98], which had a failed orbit inser-
tion after its launch in November 2011 planned to visit the Martian moon Phobos
and place instruments on its surface for its detailed scientific study. Associated
with these plans were studies of the orbital mechanics about this specific system
[176, 2].

The satellite Deimos has also been of interest to space scientists, and has even
been proposed as a potential way-station for astronauts leading up to a visit to
the surface of Mars. In this chapter we provide a discussion of the peculiar dy-
namics encountered at the Martian moon Deimos. While the environment of this
moon is not as strongly perturbed as that of Phobos, the same essential dynamics
are encountered at both bodies. Given that orbital dynamics about Deimos has
not been explicitly studied in the published literature, it is fitting to focus the fi-
nal analysis of this book on this particular body. The following work was largely
performed in support of earlier NASA Discovery mission proposals to this specific
body. While none of these missions have been supported for further development
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to date, missions to Deimos remain a perennial contender for space science mission
proposals.

18.1 Model of Deimos

The main parameters used for the current analysis are the shape model of Deimos,
its gravitational parameter and its spin period. Deimos is locked in synchronous
rotation with its orbit about Mars, and thus its rotation period and orbit period
are equal. Due to this we assume it has a zero obliquity angle with respect to its
orbit plane and that it rotates about its maximum moment of inertia. In Table
18.1 we present the basic information needed for this study. The shape model is
available at the PDS-SBN [117]. The gravity field is modeled using the Deimos
shape model with a uniform density assumption to provide the total gravitational
parameter listed in Table 18.1. When sufficiently far from the surface of the asteroid,
nominally outside of 10 km from its center of mass, a 16× 16 gravity field is used.

Table 18.1 Deimos parameters.

Parameter Symbol Value Units

Gravitational Parameter μ 1.354 × 10−4 km3/s2

Rotation Period T 32.2986 hours
Rotation Rate � 5.404 × 10−5 rad/s
Mean Radius Ro 6.234 km
Oblateness Gravity Coefficient R2

oC20 −4.208 km2

Ellipticity Gravity Coefficient R2
oC22 1.251 km2

18.2 Equations of Motion

The equations of motion of a particle about Deimos are modeled by the Hill model
developed in Chapter 16 with the addition of a general gravity field instead of
a point potential. The dimensional version of the equations are exclusively used
for the current analysis. In the following the x-axis is aligned with the minimum
moment of inertia of Deimos and is pointed towards Mars, the z-axis is aligned
with the maximum moment of inertia and is normal to the orbit plane, and the
y-axis completes the triad. The equations of motion in scalar form are then

ẍ − 2�ẏ = 3�2x + Ux (18.1)
ÿ + 2�ẋ = Uy (18.2)

z̈ = −�2z + Uz (18.3)

where � is the rotation rate and U(x, y, z) is the gravitational potential.
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We consider one approximation to this model when discussing retrograde peri-
odic orbits, related to the neglect of the attraction of Deimos. Specifically, when far
from Deimos the gravitational attraction quickly becomes negligible relative to the
tidal accelerations. For a specific example, consider displacing a particle along the
x-axis away from Deimos. The tidal and gravitational accelerations will balance at
a distance

(
μ/3�2

)1/3 ∼ 25 km. As the distance of the particle from Deimos is dou-
bled to ∼50 km, the tidal acceleration doubles and the gravitational acceleration
decreases by a factor of 4, yielding a relative change between the two accelerations
of a factor of 8. A further doubling to 100 km makes the tidal acceleration a factor
of 64 larger than the gravitational acceleration, etc. Thus, as one considers orbits
far from Deimos, on the order of hundreds of kilometers, the gravitational attrac-
tion of Deimos becomes negligible and can be ignored. Applying the approximation
(Ux ∼ 0, etc.) yields a simplified set of equations

ẍ − 2�ẏ = 3�2x (18.4)
ÿ + 2�ẋ = 0 (18.5)

z̈ = −�2z (18.6)

which are sometimes called the Hill equations (not to be confused with the Hill
problem derived previously in this book) or the Clohessy–Wiltshire equations, es-
pecially when applied to satellites. These equations, as given above, represent the
linearized motion of a particle relative to a circular orbit, written in the frame ro-
tating with the nominal circular orbit about the planet. As these are time invariant,
linear equations they can be solved in closed form.

18.3 Dynamics about Deimos

In the following several different aspects of orbital motion in the Deimos system
are considered. All of the following is based on numerical evaluation of algebraic
equations and numerical integration of the dynamical equations of motion, except
as noted.

18.3.1 Zero-Velocity Curves and Equilibrium Points

As the equations of motion are time invariant a Jacobi integral exists for this
system. A traditional way to derive this integral directly from the equations of
motion is to multiply them by ẋ, ẏ and ż, respectively, and add them. The Coriolis
acceleration terms cancel and the resulting quantity can be reduced to an exact
differential. Integrating this then yields the Jacobi integral

J =
1
2
(
ẋ2 + ẏ2 + ż2

)− 1
2
�2

(
3x2 − z2

)− U(x, y, z) (18.7)
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As has been discussed earlier, this can be used to define zero-velocity surfaces
that separate regions of allowable motion. For a specified value of J = C the
constraint is

C +
1
2
�2

(
3x2 − z2

)
+ U(x, y, z) ≥ 0 (18.8)

In Fig. 18.1 the zero-velocity curves for Deimos are presented along the z = 0 plane.
Note that they are similar to the zero-velocity surfaces in the Hill problem (Fig.
16.2), although they have some asymmetry due to the Deimos mass distribution.

Fig. 18.1 Zero-velocity curves for Deimos along the z = 0 plane.

Evident in the figure are the equilibrium points along the x-axis, analogous to
the equilibrium points in the Hill problem. It is relevant to point out that Deimos
has no equilibrium points along the y-axis, unlike its uniformly rotating counterpart
Eros. The tidal potential of Mars provides a sufficiently large perturbation so that it
effectively destroys these equilibrium points. While this is clear in the Hill problem
derivation, it is still a bit surprising when applied to a uniformly rotating general
shape. The two Deimos equilibrium points share the same stability properties as
those in the Hill problem, and given our complete discussion in Chapter 16 we do
not consider them in detail here.
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18.3.2 General Trajectories

To start our more detailed discussion of orbits about Deimos, we first point out
the strongly unstable nature of motion at this body. The location of the equilib-
rium points, and hence the Hill radius for Deimos, is approximately 25 km. From
numerical and analytical studies carried out in the restricted three-body problem
it has been shown that direct orbits outside of half the Hill radius have a strong
tendency to escape [61]. Thus, in the following initially circular orbits of radius
10–15 km were considered.

Starting these orbits with an inclination ranging between 0 and 90 degrees, they
generally will escape or impact with Deimos in less than a single orbit period.
A detailed analysis of these dynamics would require a combination of techniques,
including the discrete maps developed for the analysis of Eros in Chapter 7 and
the conditions for escape found for the Hill problem in Chapter 12. As there is
seemingly little hope for developing long-term direct stable orbits about this body,
these topics are not pursued further. As an example, Fig. 18.2 shows two different
initially circular, polar orbits about Deimos. The only difference between the two
is that one has its line of nodes along the y-axis and escapes from the body after
a few orbits, and the other has its line of nodes along the x-axis and impacts.

As inclination is further increased, regions of orbital stability are found. In gen-
eral, if the orbital inclination maintains a sustained value above ∼140 degrees, then
an orbit can persist for long periods of time. If the inclination is lower than this,
however, the eccentricity tends to grow and impact usually ensues. It is signifi-
cant to note that this inclination limit is consistent with the averaged analysis in
Chapter 17 for when the eccentricity becomes unstable (i > 140◦, specifically).
Retrograde orbiters take advantage of having their orbital motion go against the
rotation of the mass distribution, and thus can maintain stability if not destabilized
by the tide. Figure 18.3 plots two orbits with an initial inclination of 135 degrees.
One has its node situated so that the inclination increases to a higher value, while
the other’s inclination decreases to a lower value and is seen to impact rapidly. As
orbital inclinations are moved to higher values, including retrograde, these initially
circular orbits are stable in general, and are candidates for sustained spacecraft
orbits.

18.3.3 Periodic Orbits

Moving from general initial conditions for orbits, it is instructive to consider peri-
odic orbits about Deimos. In the following we present some example direct orbits,
all unstable, that exhibit some interesting geometry. Following these examples, a
discussion and analysis of retrograde periodic orbits is provided, as these are of
most interest for space science missions to such bodies.

The following periodic orbits about Deimos were computed using the compu-
tational algorithm for periodic orbits presented in Chapter 6. The y = 0 plane is
taken to be the surface of section and the ẏ velocity is eliminated using the Jacobi
integral.
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Fig. 18.2 Initially polar, circular orbits about Deimos with semi-major axis of 15 km. Top: View
looking down the Deimos z-axis. Bottom: Eccentricity of the orbits as a function of time.
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Fig. 18.3 Initially 135◦ inclination, circular orbits about Deimos with semi-major axis of 15 km.
Top: Eccentricity as a function of time. Bottom: Inclination as a function of time.
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18.3.3.1 Direct Orbits

First consider a family of direct periodic orbits close to Deimos, with members
shown in Fig. 18.4. This particular family is interesting as on either end of the
family, the members of these orbits impact onto Deimos. From their morphology,
they can be identified with the g family of periodic orbits described by Hénon in
[67]. Despite their similarity, the current family has significantly different stability
characteristics from the family described by Hénon. In the Hill problem this family
becomes stable at lower values of radius, scaled to our problem at a distance of
∼10 km, and at this point the family has a bifurcation into the g’ family, which is
elliptic with a their line of apses aligned with the x-axis. About Deimos, however,
this g-like family is unstable for all of its members and does not intersect with any
other family. Furthermore, scaling the g’ family to Deimos indicates that most of
its members would have their periapsis beneath the body, and thus do not form a
viable periodic orbit family in this situation. This serves as an excellent reminder
of how the scaled size of the planetary satellite in the Hill problem can significantly
modify conclusions and shape viable orbital strategies for planetary satellites.

Fig. 18.4 Members of the direct family of periodic orbits about Deimos.
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18.3.3.2 Retrograde Periodic Orbits

To end this chapter we focus on retrograde periodic orbits. Per the previous dis-
cussion on general trajectories, we expect that retrograde orbits may be stable and
could serve as safe and viable candidate orbits for missions to planetary satellites.
This is definitely the case. We find an entire family of stable periodic orbits, nomi-
nally called the f family by Hénon, that exist about Deimos. When far from Deimos,
these orbits degenerate to periodic solutions of the Clohessy–Wiltshire equations
given above in Eqs. 18.4 to 18.6, and are identified as the larger orbits in Fig. 18.5
which describe a 2:1 ellipse centered on Deimos. These all travel retrograde in the
rotating frame, and retrograde relative to Deimos, but they are still direct orbits
about Mars. As these orbits come closer to Deimos, the mass of the body begins
to affect the dynamics and they become more circular. The entire family is stable,
down to the lowest orbit radii shown in Fig. 18.5. At these close orbits, however,
the mass distribution of Deimos starts to significantly affect the dynamics. Note
that they become tilted out of the plane and actually orbit at a radius closer than
the maximum radius of Deimos (Fig. 18.6). The stability of this family across all
orbital distances is contrasted with the stability of retrograde orbits about Eros,
studied in Chapter 7. There it was seen that destabilizing resonances occurred at
some close orbit distances. For the current problem the strength of the Mars tidal
accelerations apparently prevents these resonant instabilities from occurring.

Fig. 18.5 Members of the retrograde family of periodic orbits about Deimos viewed from the
z-axis.

As a final point of discussion, we also show plots of the orbit period and x-axis
crossing speed of the retrograde periodic orbit family, parameterized by its x-axis
crossing value. Figure 18.7 shows the period of the family members, and we note
that as the orbit becomes large the period approaches that of Deimos about Mars.
Figure 18.8 shows the speeds of the family members at their closest approach to



352 18. Small Planetary Satellites: Deimos

Fig. 18.6 Members of the retrograde family of periodic orbits about Deimos viewed from the
y-axis (left) and the x-axis (right).

Deimos. We note that the speed is non-monotonic as the crossing comes closer to
Deimos.

Now consider the periodic orbits when far from Deimos. As mentioned previ-
ously, as the distance from the body increases, the relative strength of its gravitation
attraction becomes insignificant as compared to the tidal effects. This enables the

Fig. 18.7 Retrograde periodic orbit periods compared to Deimos’s orbit period.



18.3 Dynamics about Deimos 353

Fig. 18.8 Retrograde periodic orbit speeds at closest approach to Deimos. Top: Shows the entire
family. Bottom: Shows details for the closest orbits.

Clohessy–Wiltshire equations to be used to analyze the motion. We set z = 0 and
only consider planar motion in the following.
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Equation 18.5 corresponds to an integral of motion for this system, and can be
immediately integrated once to find

ẏ + 2�x = D (18.9)

Substituting this into Eqn. 18.4 to eliminate ẏ yields the second-order differential
equation

ẍ + �2x = 2�D (18.10)

This is just a simple harmonic oscillator with a constant forcing term. Evaluating
its solution yields

x(t) = A cos(�t) + B sin(�t) +
2
�

D (18.11)

We note that x(t) is completely periodic with a period of 2π/�, equal to the orbit
period of Deimos about Mars. Substituting this solution back into Eqn. 18.9 yields
a first-order differential equation

ẏ = −2A� cos(�t) − 2B� sin(�t) − 3D (18.12)

For the motion of the particle to be periodic, it is clear that the constant D
must equal zero. Otherwise, if it is non-zero there will be a secular drift associated
with the orbit and the y component will change secularly, taking the particle away
from Deimos. Enforcing this condition then provides the necessary condition for
the orbit to be periodic

ẏo = −2�xo (18.13)

where the condition can be evaluated at any point of the motion, but is usually
computed at the x-axis crossing. Figure 18.8 shows the correct dependence pre-
dicted by this formula as xo grows large. With this proscription, the corresponding
orbit is then periodic with a period equal to the Deimos orbit period, which in turn
is consistent with Fig. 18.7.



Part IV

Appendices



A. Two-Body Orbit Relations

The following is a collection of useful relationships relating position, velocity and
time within an orbit for the two-body problem, using both true anomaly and ec-
centric anomaly. The main application of these relationships is to averaging, and
many of these are used in the following appendix. Due to this only results relevant
to elliptic orbits are shown, although most of these results will have analogues for
parabolic and hyperbolic orbits.

Mean, Eccentric and True Anomaly

Following are the basic relations between mean, M , eccentric, E, and true, f
anomaly. Note the usual symbolic definition of the semi-major axis, a, and the
eccentricity, e.

M = E − e sinE (A.1)

tan
1
2
E =

√
1 − e

1 + e
tan

1
2
f (A.2)

cos E =
e + cos f

1 + e cos f
(A.3)

sinE =
√

1 − e2 sin f

1 + e cos f
(A.4)

cos f =
cos E − e

1 − e cos E
(A.5)

sin f =
√

1 − e2 sinE

1 − e cos E
(A.6)
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Next are the associated differential relationships between these quantities

dM = (1 − e cos E) dE (A.7)

dM =
(1 − e2)3/2

(1 + e cos f)2
df (A.8)

dE =
√

1 − e2

1 + e cos f
df (A.9)

df =
√

1 − e2

1 − e cos E
dE (A.10)

Scalar Kinematic Quantities

Following are the main scalar kinematic quantities of interest, these being the radius
r, speed v, and flight path angle γ. Each are expressed both in terms of true and
eccentric anomaly.

r =

⎧⎪⎪⎨⎪⎪⎩
a(1 − e2)
1 + e cos f

a(1 − e cos E)

(A.11)

v =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
μ

a(1 − e2)
(1 + 2e cos f + e2)

√
μ

a

(
1 + e cos E

1 − e cos E

) (A.12)

cos γ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + e cos f√

1 + 2e cos f + e2

√
1 − e2

1 − e2 cos2 E

(A.13)

sin γ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e sin f√

1 + 2e cos f + e2

e sinE√
1 − e2 sin2 E

(A.14)

tan γ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e sin f

1 + e cos f

e√
1 − e2

sin E

(A.15)
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Vector Kinematic Quantities

Next the main vector kinematic quantities of interest are expressed, these primarily
being the position and velocity vectors as well as the defining orientation integrals
of the two-body problem – the eccentricity and angular momentum vectors. First
the fundamental vectors are presented, specified using the classical orbit elements
relative to an inertial frame.

Ĥ = sinΩ sin ix̂ − cos Ω sin iŷ + cos iẑ (A.16)
ê = (cos ω cos Ω − cos i sin ω sinΩ) x̂

+ (cos ω sinΩ + cos i sinω cos Ω) ŷ

+ sinω sin iẑ (A.17)

ê⊥ = ĥ × ê (A.18)
= − (sinω cos Ω + cos i cos ω sinΩ) x̂

− (sinω sinΩ − cos i cos ω cos Ω) ŷ

+ cos ω sin iẑ (A.19)

These reference directions are all conserved in the two-body problem and can be
used to specify the position and velocity vectors.

r =

⎧⎨⎩
r [cos f ê + sin f ê⊥]

a
[
(cos E − e) ê +

√
1 − e2 sin Eê⊥

] (A.20)

v =

⎧⎪⎨⎪⎩
√

μ
a(1−e2) [− sin f ê + (e + cos f) ê⊥]

√
μa

r

[
sinEê +

√
1 − e2 cos Eê⊥

] (A.21)



B. Fourier Series Expansions
of Radius Functions

Following are a simple set of results that are of use in carrying out averaging,
the expansion of quantities of the form rn and 1/rn in terms of Fourier series
coefficients, taken from [152].

(1 + e cos τ)n =
∞∑

m=0

an
m cos(mτ) (B.1)

1
(1 + e cos τ)n

=
∞∑

m=0

bn
m cos(mτ) (B.2)

where the coefficients are defined as follows:

an
0 = cn

0 (B.3)

an
k = 2

(e

2

)k

cn
k (B.4)

bn
0 =

√
1 − e2

(1 − e2)n
fn
0 (B.5)

bn
k = (−1)k2

(e

2

)k
√

1 − e2

(1 − e2)n
fn

k (B.6)
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The coefficients cn
k and fn

k have the general definitions:

cn
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[(n−k)/2]∑

l=0

n!
l!(l + k)!(n − k − 2l)!

(e

2

)2l

n ≥ k

0 n < k

(B.7)

fn+1
k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(n − k)!(n + k)!

n!2

[(n−k)/2]∑
l=0

n!
l!(l + k)!(n − k − 2l)!

(e

2

)2l

n + 1 > k

n − k

n
(1 − e2)fn

k + 2fn+1
k−1 n + 1 ≤ k

(B.8)

f1
k =

(
2

1 +
√

1 − e2

)k

(B.9)

where [a] denotes the integer part of a. Note that to compute fn+1
k for n + 1 ≤ k

the recursion relation stated above must be solved.



C. Averaging Results

In orbital dynamics averaging is defined as an operator that computes the time
average of a quantity over one orbit period while keeping all other orbit elements
constant. The periodicity implies that averaging is only taken for elliptic orbits,
and for consistency the averaging is performed over mean anomaly. Thus given a
quantity f(æ, M), defined as a function of mean anomaly M in addition to other
orbit elements represented as æ, the average is defined as

f̄(æ) =
1
2π

∫ 2π

0

f(æ, M) dM (C.1)

where f̄(æ) is independent of mean anomaly but still a function of the other orbit
elements. Although the average is defined with respect to mean anomaly, it is often
more convenient to compute averages using the true or eccentric anomaly, using
the differential relationships given in Appendix A.

First consider powers of the radius rn for n ≥ 0.

rn =
1
2π

∫ 2π

0

rn dM (C.2)

=
an

2π

∫ 2π

0

(1 − e cos E)n+1 dE (C.3)

Using the Fourier series expansion in Eq. B.1 this equals

rn = ancn+1
0 (e) (C.4)

= an

[n+1
2 ]∑

l=0

(n + 1)!
l!l!(n + 1 − 2l)!

(e

2

)2l

(C.5)

where [n + 1/2] denotes the integer part of the expression.
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Next, consider 1/rn for n ≥ 2.

1
rn

=
(1 − e2)3/2

2πpn

∫ 2π

0

(1 + e cos f)n−2 df (C.6)

Using the Fourier series expansion in Eq. B.1 again yields

1
rn

=
(1 − e2)3/2

pn
cn−2
0 (e) (C.7)

=
(1 − e2)3/2

pn

[n−2
2 ]∑

l=0

(n − 2)!
l!l!(n − 2 − 2l)!

(e

2

)2l

(C.8)

Finally, for the special case of 1/r the average is

1
r

=
1
a

(C.9)

A few specific examples from the above general formula are

r = a

(
1 +

1
2
e2

)
(C.10)

1
r2

=
1

a2
√

1 − e2
(C.11)

1
r3

=
1

a3(1 − e2)3/2
(C.12)

More complex averaging needs to occur when gravitational fields are considered.
For the most general results it becomes necessary to average inverse powers of radius
times the dot product of r̂ with an arbitrary unit vector p̂. One can always choose
the canonical ẑ axis to be aligned with the given unit vector, with the result that
r̂ · p̂ = sin i sin(ω + f). If averaging over the true anomaly eliminates the argument
of periapsis, resulting in sin i terms in the final average, these can be re-expressed

using the unit vector and the unitized angular moment as sin i =
√

1 − (p̂ · Ĥ)2.
In other cases when the argument of periapsis remains in the averaged expression,
it can be related to the dot product of the eccentricity vector with the unit vector.
As the average is ultimately expressed in terms of vectors again, the final result
is independent of any particular coordinate system. Applying this approach yields
the following
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(
(p̂ · r̂)2

r3

)
=

1
2a3(1 − e2)3/2

[
1 − (p̂ · Ĥ)2

]
(C.13)(

(p̂ · r̂)
r4

)
=

1
a4(1 − e2)5/2

e · p̂ (C.14)(
(p̂ · r̂)3

r4

)
=

3
4a4(1 − e2)5/2

e · p̂
[
1 − (p̂ · Ĥ)2

]
(C.15)

Finally, consider the direct averaging of vectors and their combinations. Here
the explicit description of the radius and velocity vectors in terms of orbit elements
found in Appendix A are used. Carrying out the averaging operations yields(

r̂r̂

r3

)
=

1
2a3(1 − e2)3/2

[êê + ê⊥ê⊥] (C.16)

=
1

2a3(1 − e2)3/2

[
U − ĤĤ

]
(C.17)

where the second equation was simplified using the identity U = êê+ê⊥ê⊥+ĤĤ.
Next, averaging the position and velocity vectors and some of their dyad products
yields

r = −3
2
ae (C.18)

v = 0 (C.19)

rr =
1
2
a2
[
(1 + 4e2)êê + (1 − e2)ê⊥ê⊥

]
(C.20)

rv = −1
2
H̃ (C.21)

where H denotes the angular momentum vector. The final averaging result for rv
is difficult, and so it described below.

The dyad product of these two vectors can be reduced to the following dyadic

rv = H [cos f(tan γ cos f − sin f)êê

+ sin f(tan γ sin f + cos f)ê⊥ê⊥
+ cos f(tan γ sin f + cos f)êê⊥
+ sin f(tan γ cos f − sin f)ê⊥ê] (C.22)

Noting that tan γ and sin(mf) are both odd functions in true anomaly the factors
of êê and ê⊥ê⊥ will ultimately be odd in true anomaly, and hence will average to
zero. The same is not true of the other factors. Applying trigonometric identities
these factors can be rewritten as

1
2
H

[
(êê⊥ − ê⊥ê) +

cos(2f) + e cos f

1 + e cos f
(êê⊥ + ê⊥ê)

]
(C.23)
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The first term can be identified with the dyadic − 1
2H̃, and thus is a constant.

The second term can be averaged over true anomaly and, using the Fourier series
expansions, be shown to equal

H

2
e2

1 − e2

[
1
2
f3
2 − f3

1

]
(êê⊥ + ê⊥ê) (C.24)

where the f functions are defined in Eq. B.9. Computation of the factors yields
f3
2 = 3! and f3

1 = 3!/2, and hence the term in Eq. C.24 is identically zero, proving
the result.



D. Canonical Transformations

The theory of canonical transformations lies at the heart of Hamiltonian dynamics.
They serve as an equivalence principle between solutions and coordinate changes in
these systems, and in essence make entire classes of Hamiltonian dynamical systems
of similar order equivalent. It is important to note that there remains fundamental
differences between Hamiltonian systems that are integrable and those that are
non-integrable, a topic that goes beyond the current text.

Symplectic Matrix Properties

Define the symplectic unit matrix J2n ∈ R2n×2n as

J2n =
[

0n In

−In 0n

]
(D.1)

where In and 0n are n × n identity and zero matrices, respectively. The 2n sub-
script is suppressed, as the dimension will usually be obvious. This matrix is skew-
symmetric, JT = −J . Also note that JJ = −I and that it is orthonormal, or,
JJT = JT J = I.

A real matrix M ∈ R2n×2n is defined as a symplectic matrix if it satisfies the
equation

J = MT JM (D.2)

Based on this definition a series of equivalent statements and identities for sym-
plectic matrices can be recounted. The following list is compiled from [132].

• J is a symplectic matrix.
• I is a symplectic matrix.
• If M is symplectic, then so is MT , −M , and M−1.
• If M1 and M2 are symplectic, then M1M2 is symplectic.
• The determinant of a symplectic matrix always equals 1, hence an inverse always

exists.
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• The inverse of a symplectic matrix M is M−1 = −JMT J .
• From the previous statements it can be proven that the symplectic matrices of

a fixed size form a group.
• Assume a matrix M has the following form:

M =
[

A B
C D

]
(D.3)

where each of the sub-matrices is an n×n matrix. Then M is a symplectic matrix
if and only if the following identities hold: (i) AT C and BT D are symmetric, (ii)
DT A − BT C = I, the identity.

• If M is a 2×2 matrix, then it is a symplectic matrix if and only if its determinant
equals unity.

• The characteristic equation of a symplectic matrix, ‖λI−M‖ = 0, is a symmetric
polynomial in λ.

• The eigenvalues of a symplectic matrix come in inverse pairs, i.e., if λ is an
eigenvalue (possibly complex), then so is λ−1. As M is a real matrix, the complex
conjugates of the eigenvalues must also be eigenvalues. Thus if λ is an eigenvalue,
then so must λ−1, λ̄, and λ̄−1. Note that in some cases λ = λ̄ or λ̄ = λ−1. In
these cases the eigenvalues only need come in pairs.

• If u is a right eigenvector of a symplectic matrix with eigenvalue λ, then v = −Ju
is a left eigenvector with eigenvalue λ−1.

Tests for Canonical Transformations

There are a number of fundamental tests for whether a transformation is canonical,
and thus whether it will transform the Hamiltonian equations of motion back into
a similar form. We list a few common tests in the following. Assume an initial
Hamiltonian system denoted as x = [q, p], and a candidate transformation X(x) =
[Q(x), P (x)] that will be tested for whether it is canonical.

• The transformation is canonical if the Jacobian of the transformation, M =
∂X/∂x, is a symplectic matrix.

• The Lagrange brackets are defined for a transformation Q(u, v) ∈ Rn and
P (u, v) ∈ Rn by the operator:

[u, v] =
n∑

i=1

(
∂Qi

∂u

∂Pi

∂v
− ∂Pi

∂u

∂Qi

∂v

)
(D.4)

A transformation X(x) is canonical if and only if the following Lagrange bracket
values hold

[qj , qk] = 0 (D.5)
[pj , pk] = 0 (D.6)
[qj , pk] = δjk (D.7)
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where δjk is the Kronecker delta function. Note that Lagrange brackets are for-
mally only a function of the original variables. Recall that the Lagrange brackets
were also used in the derivation of the Lagrange planetary equations.

• The Poisson brackets can be considered to be the inverse of the Lagrange brack-
ets, and are defined for a transformation u(q,p) and v(q, p) by the operator:

{u, v} =
n∑

i=1

(
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

)
(D.8)

A transformation X(x) is canonical if and only if the following Poisson bracket
values hold

{Qj , Qk} = 0 (D.9)
{Pj , Pk} = 0 (D.10)
{Qj , Pk} = δjk (D.11)

Note that the Poisson brackets are formally only a function of the new variables.
Recall that the Poisson brackets were also used in the definition of the time
derivative of a scalar quantity for a Hamiltonian dynamical system.

• Another important test of whether a proposed transformation is canonical is
through the definition of the generating functions. Specifically, given a transfor-
mation of the form given above, it is a canonical transformation if and only if the
following differential forms are exact after replacement of Q and P as functions
of q and p.

P · dQ − p · dq (D.12)
Q · dP + p · dq (D.13)
P · dQ + q · dp (D.14)
Q · dP − q · dp (D.15)

These conditions can all be rigorously related to each other (see [132, 56]). If
such a condition is exact, then it equals the differential of a scalar function,
called a generating function.

As a simple application of the above tests, consider a Hamiltonian system defined
by coordinates q and momenta p and the proposed transformation P = −q and
Q = p, which swaps the roles of the coordinates and momenta.

The Jacobian of this transformation can be easily shown to be J , the symplec-
tic unit matrix. As this is a symplectic matrix, the transformation is seen to be
canonical.

For the Lagrange and Poisson bracket tests, it suffices to only consider one of
the elements, say Q1 = p1 and P1 = −q1. The first two conditions of each test are
trivially satisfied, and the third yields
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[q1, p1] =
∂p1

∂q1

∂(−q1)
∂p1

− ∂(−q1)
∂q1

∂p1

∂p1
= 1 (D.16)

{Q1, P1} =
∂Q1

∂(−P1)
∂P1

∂Q1
− ∂Q1

∂Q1

∂P1

∂(−P1)
= 1 (D.17)

Since the identity transformation is obviously canonical, the above result also shows
that just swapping one coordinate-momentum pair is also a canonical transforma-
tion.

For the exactness tests, we find the following:

P · dQ − p · dq = −d(q · p) (D.18)
Q · dP + p · dq = 0 (D.19)
P · dQ + q · dp = 0 (D.20)
Q · dP − q · dp = −d(q · p) (D.21)

all of which are exact differentials and thus canonical.



E. Legendre Polynomials
and Associated Functions

The associated Legendre functions are defined by the simple rule

Plm(x) = (1 − x2)m/2 dm

dxm
(Pl0(x)) (E.1)

The Pl0(x) are the Legendre polynomials and are defined as

Pl0 =
1

2ll!
dl

dxl
(x2 − 1)l (E.2)

These functions and polynomials arise in various expansions of interest, both for the
perturbation of a third body and in the spherical harmonic gravity field expansion.

A list of these polynomials and functions up to degree and order 4 are given
below:

P00(x) = 1
P10(x) = x

P11(x) =
√

1 − x2

P20(x) =
1
2
(3x2 − 1)

P21(x) = 3x
√

1 − x2

P22(x) = 3(1 − x2)

P30(x) =
1
2
(5x3 − 3x)

P31(x) =
3
2
(5x2 − 1)

√
1 − x2

P32(x) = 15x(1 − x2)

P33(x) = 15(1 − x2)
√

1 − x2
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P40(x) =
1
8
(35x4 − 30x2 + 3)

P41(x) =
5
2
(7x3 − 3x)

√
1 − x2

P42(x) =
15
2

(7x2 − 1)(1 − x2)

P43(x) = 105x(1 − x2)
√

1 − x2

P44(x) = 105(1 − x2)2



F. Elliptic Functions and Integrals

The following sections briefly cover some of the essential qualities and definitions
of elliptic functions and integrals. There is a wealth of material pertaining to these
quantities not discussed here as it is not needed in the current analysis. See Refer-
ences [34] and [24] for complete discussions of these functions and integrals.

Elliptic Integrals

There are three types of Jacobi elliptic integrals. They are called elliptic integrals
of the 1st, 2nd and 3rd kind. The elliptic integral of the 1st kind can be represented
as:

F (x, k) =
∫ x

0

dy√
(1 − y2)(1 − k2y2)

(F.1)

or its equivalent (assuming x = sinφ)

F (φ, k) =
∫ φ

0

dθ√
1 − k2 sin2 θ

(F.2)

where k2 < 1. This elliptic integral is called complete if x = 1 or φ = π/2, and is
then denoted as:

K(k) = F (1, k) (F.3)
= F (π/2, k) (F.4)

= π/2
∞∑

n=0

(
(2n)!

22n(n!)2

)2

k2n (F.5)
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The elliptic integral of the 2nd kind can be represented as:

E(x, k) =
∫ x

0

√
(1 − k2y2)
(1 − y2)

dy (F.6)

or its equivalent (assuming x = sinφ)

E(φ, k) =
∫ φ

0

√
1 − k2 sin2 θ dθ (F.7)

where k2 < 1. This elliptic integral is called complete if x = 1 or φ = π/2, and is
then denoted as:

E(k) = E(1, k) (F.8)
= E(π/2, k) (F.9)

= π/2
∞∑

n=0

(
(2n)!

22n(n!)2

)2
k2n

2n − 1
(F.10)

The elliptic integral of the 3rd kind is can be represented as:

Π(x, n, k) =
∫ x

0

dy

(1 + ny2)
√

(1 − y2)(1 − k2y2)
(F.11)

or its equivalent (assuming x = sinφ)

Π(φ, n, k) =
∫ φ

0

dθ

(1 + n sin2 θ)
√

1 − k2 sin2 θ
(F.12)

where k2 < 1, and there are no conditions on n. Again the integral is called complete
if x = 1 or φ = π/2, although there are no simple expansions as there are for the
complete elliptic integrals of the 1st and 2nd kind.

The above integrals will be briefly reconsidered in the following section.

Elliptic Functions

The elliptic functions may be defined as the inverse of the elliptic integral of the
first kind. Consider the elliptic integral of the 1st kind F (x1, k). Then the elliptic
function denoted by sn(τ, k) = sn(τ) is defined by the relation:

x1 = sn[F (x1, k)] (F.13)

or, more suggestively:

F (sn(τ), k) =
∫ sn(τ)

0

dx√
(1 − x2)(1 − k2x2)

(F.14)
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The function sn(τ) is periodic with a real period 4K(k), so that sn (τ + 4K(k)) =
sn(τ). Also note that sn(τ, k = 0) = sin(τ), sn(τ, k = 1) = tanh(τ), and |sn(τ)| ≤ 1.

There are three other related elliptic functions, denoted as cn(τ), dn(τ) and
tn(τ). These are easily defined given sn(τ) as:

cn(τ) = ±
√

1 − sn2(τ) (F.15)

dn(τ) =
√

1 − k2sn2(τ) (F.16)

tn(τ) =
sn(τ)
cn(τ)

(F.17)

Note that the proper sign of cn must be chosen, and that 0 ≤ dn ≤ 1.
It is instructive to rewrite the elliptic integrals in terms of elliptic functions. The

elliptic integral of the 1st kind is then simply:

F (τ) =
∫ τ

0

dτ (F.18)

which appears to be, and is, trivial.
The elliptic integral of the 2nd kind is then:

E(τ) =
∫ τ

0

dn2(τ) dτ (F.19)

and the elliptic integral of the 3rd kind is:

Π(τ, n) =
∫ τ

0

dτ

1 + nsn2(τ)
(F.20)

Note that the dependence of the integrals on the k parameter has been suppressed.
In the above definition of the elliptic integrals, there is no a priori bound on the

value of τ , and indeed τ may increase arbitrarily. Note that due to the periodicity
of the elliptic functions, the integrands will always cycle through the same values,
although the total integral will continue to increase with τ . This property of the
elliptic integrals is not evident in the usual definitions given in the previous section,
where the parameter x can never be greater than 1. Due to this property, the
elliptic integrals must be carefully evaluated to ensure that the total integral is
being computed, and not just the principal value.
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68. M. Hénon. Numerical exploration of the restricted problem. VI. Hill’s case: Non-periodic
orbits. Astronomy and Astrophysics, 9:24–36, November 1970.

69. K.A. Holsapple. Spin limits of Solar System bodies: From the small fast-rotators to 2003
EL61. Icarus, 187:500–509, April 2007.

70. K.C. Howell. Three-dimensional, periodic, halo orbits. Celestial Mechanics, 32:73–+, Jan-
uary 1984.

71. W. Hu. Orbital Motion in Uniformly Rotating Second Degree and Order Gravity Fields.
PhD thesis, The University of Michigan, 2002.

72. W. Hu and D.J. Scheeres. Spacecraft motion about slowly rotating asteroids. Journal of
Guidance, Control, and Dynamics, 25(4):765–775, 2002.

73. W. Hu and D.J. Scheeres. Numerical determination of stability regions for orbital motion
in uniformly rotating second degree and order gravity fields. Planetary and Space Science,
52:685–692, July 2004.

74. W.-D. Hu and D.J. Scheeres. Periodic orbits in rotating second degree and order gravity
fields. Chinese Journal of Astronomy and Astrophysics, 8:108–118, February 2008.

75. R.S. Hudson and S.J. Ostro. Shape of Asteroid 4769 Castalia (1989 PB) from inversion of
radar images. Science, 263:940–943, February 1994.

76. R.S. Hudson and S.J. Ostro. Shape and non-principal axis spin state of Asteroid 4179 Tou-
tatis. Science, 270:84–86, October 1995.

77. R.S. Hudson, S.J. Ostro, and D.J. Scheeres. High-resolution model of Asteroid 4179 Toutatis.
Icarus, 161:346–355, February 2003.

78. M. Kaasalainen and J. Torppa. Optimization methods for asteroid lightcurve inversion. I.
Shape determination. Icarus, 153:24–36, September 2001.

79. M. Kaasalainen, J. Torppa, and K. Muinonen. Optimization methods for asteroid lightcurve
inversion. II. The complete inverse problem. Icarus, 153:37–51, September 2001.

80. W.M. Kaula. Theory of Satellite Geodesy. Applications of Satellites to Geodesy. Waltham,
MA: Blaisdell, 1966.

81. J. Kawaguchi, S. Aida, and H. Morita. Hayabusa, detailed guidance and navigation opera-
tions during descents and touchdowns. In Astrodynamics Specialist Conference. American
Institute of Aeronautics and Astronautics, 2006. Paper AIAA 2006-6536.

82. T. Kominato, M. Matsuoka, M. Uo, T. Hashimoto, and J. Kawaguchi. Optical hybrid naviga-
tion and station keeping around Itokawa. In Astrodynamics Specialist Conference. American
Institute of Aeronautics and Astronautics, 2006. Paper AIAA 2006-6535.

83. A.S. Konopliv, J.K. Miller, W.M. Owen, D.K. Yeomans, J.D. Giorgini, R. Garmier, and

J.-P. Barriot. A global solution for the gravity field, rotation, landmarks, and ephemeris of
Eros. Icarus, 160:289–299, December 2002.

84. T. Kubota, M. Otsuki, T. Hashimoto, N. Bando, H. Yano, M. Uo, K. Shirakawa, and
J. Kawaguchi. Touchdown dynamics for sampling in Hayabusa mission. In Astrodynam-

ics Specialist Conference. American Institute of Aeronautics and Astronautics, 2006. Paper
AIAA 2006-6539.

85. T. Kubota and T. Yoshimitsu. Intelligent rover with advanced mobility for minor body
surface exploration. In H. Ayanna and E.W. Tunstel, editors, Intelligence for Space Robotics,
chapter 6. San Antonio, TX: TSI, 2006.



References 381

86. M. Lara, A. Deprit, and A. Elipe. Numerical continuation of families of frozen orbits in the
zonal problem of artificial satellite theory. Celestial Mechanics and Dynamical Astronomy,
62:167–181, June 1995.

87. M. Lara, J.F. Palacián, and R.P. Russell. Mission design through averaging of perturbed Ke-
plerian systems: the paradigm of an Enceladus orbiter. Celestial Mechanics and Dynamical

Astronomy, 108:1–22, September 2010.
88. M. Lara and R.P. Russell. Computation of a science orbit about Europa. Journal of Guid-

ance, Control, and Dynamics, 30(1):259–263, 2007.
89. M. Lara, R.P. Russell, and B. Villac. Classification of the distant stability regions at Europa.

Journal of Guidance, Control, and Dynamics, 30(2):409–418, 2007.
90. M. Lara, J.F. San-Juan, and S. Ferrer. Secular motion around synchronously orbiting plan-

etary satellites. Chaos, 15:043101, 2005.
91. M. Lara and D.J. Scheeres. Stability bounds for three-dimensional motion close to asteroids.

Journal of the Astronautical Sciences, 50(4):389–409, 2002.
92. J. Laskar. Accurate methods in general planetary theory. Astronomy and Astrophysics,

144:133–146, March 1985.
93. P. Lee. Dust levitation on asteroids. Icarus, 124:181–194, November 1996.
94. W.D. MacMillan. Dynamics of Rigid Bodies. McGraw-Hill, 1936.
95. W.D. Macmillan. The Theory of the Potential. Dover, 1958.
96. C. Magri, S.J. Ostro, D.J. Scheeres, M.C. Nolan, J.D. Giorgini, L.A.M. Benner, and J.-L.

Margot. Radar observations and a physical model of Asteroid 1580 Betulia. Icarus, 186:152–
177, January 2007.

97. C. Marchal. The Three-Body Problem. Studies in Astronautics, Studies in Aeronautics,
4. Amsterdam: Elsevier, 1990.

98. M.Y. Marov, V.S. Avduevsky, E.L. Akim, T.M. Eneev, R.S. Kremnev, S.D. Kulikov,
K.M. Pichkhadze, G.A. Popov, and G.N. Rogovsky. Phobos-Grunt: Russian sample return
mission. Advances in Space Research, 33(12):2276–2280, 2004.

99. B.G. Marsden, Z. Sekanina, and D.K. Yeomans. Comets and nongravitational forces. V.
Astronomical Journal, 78:211–+, March 1973.

100. J.M. Maruskin, D.J. Scheeres, and A.M. Bloch. Dynamics of symplectic subvolumes. SIAM
Journal on Applied Dynamical Systems, 8:180–201, 2009.

101. M. Maruya, H. Ohyama, M. Uo, N. Muranaka, H. Morita, T. Kubota, T. Hashimoto, J. Saito,
and J. Kawaguchi. Navigation shape and surface topography model of Itokawa. In Astro-
dynamics Specialist Conference. American Institute of Aeronautics and Astronautics, 2006.
Paper AIAA 2006-6659.

102. M.S. Matthews, R.P. Binzel, and T. Gehrels, editors. Asteroids II. Univ. Arizona Press,
1989.

103. C.R. McInnes. Solar Sailing. Technology, Dynamics and Mission Applications. Springer,
London (UK), 1999.

104. J. McMahon and D.J. Scheeres. New radiation pressure force model for navigation. Journal
of Guidance, Control and Dynamics, 33(5):1418–1428, 2010.

105. W.J. Merline, L.M. Close, C. Dumas, C.R. Chapman, F. Roddier, F. Menard, D.C. Slater,
G. Duvert, C. Shelton, and T. Morgan. Discovery of a moon orbiting the asteroid 45 Eugenia.
Nature, 401:565–+, October 1999.
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142. A.V. Rodionov, J.-F. Crifo, K. Szegő, J. Lagerros, and M. Fulle. An advanced physical model
of cometary activity. Planetary and Space Science, 50:983–1024, August 2002.

143. S.D. Ross and D.J. Scheeres. Multiple gravity assists, capture, and escape in the restricted
three-body problem. SIAM Journal on Applied Dynamical Systems, 6(3):576–596, 2007.

144. D.P. Rubincam. Yarkovsky thermal drag on small asteroids and Mars–Earth delivery. Jour-

nal of Geophysical Research, 103:1725–1732, January 1998.
145. D.P. Rubincam. Radiative spin-up and spin-down of small asteroids. Icarus, 148:2–11,

November 2000.
146. R.P. Russell. Global search for planar and three-dimensional periodic orbits near Europa.

Journal of the Astronautical Sciences, 54(2):199–226, 2006.
147. R.P. Russell and A.T. Brinckerhoff. Circulating eccentric orbits around planetary moons.

Journal of Guidance, Control, and Dynamics, 32(2):423–435, 2009.
148. R.P. Russell and T. Lam. Designing ephemeris capture trajectories at Europa using unstable

periodic orbits. Journal of Guidance, Control, and Dynamics, 30(2):482–491, 2007.
149. N.H. Samarasinha and M.J.S. Belton. Long-term evolution of rotational stress and nongrav-

itational effects for Halley-like cometary nuclei. Icarus, 116:340–358, August 1995.
150. N.H. Samarasinha, B.E.A. Mueller, M.J.S. Belton, and L. Jorda. Rotation of Cometary

Nuclei. In Comets II, pages 281–299. Univ. Arizona Press, 2004.

151. S. Sawai, D.J. Scheeres, and S. Broschart. Control of hovering spacecraft using altimetry.
Journal of Guidance, Control and Dynamics, 25(4):786–795, 2002.

152. D.J. Scheeres. On Symmetric Central Configurations with application to satellite Motion
about Rings. PhD thesis, The University of Michigan, 1992.

153. D.J. Scheeres. Dynamics about uniformly rotating triaxial ellipsoids: Applications to aster-

oids. Icarus, 110:225–238, August 1994.

154. D.J. Scheeres. Analysis of orbital motion around 433 Eros. The Journal of the Astronautical
Sciences, 43:427–52, 1995.



384 References

155. D.J. Scheeres. The restricted Hill four-body problem with applications to the Earth–Moon–
Sun system. Celestial Mechanics and Dynamical Astronomy, 70:75–98, February 1998.

156. D.J. Scheeres. Satellite dynamics about small bodies: Averaged solar radiation pressure
effects. The Journal of the Astronautical Sciences, 47:25–46, 1999.

157. D.J. Scheeres. Stability of hovering orbits around small bodies. In Spaceflight Mechanics
1999, Part II; Advances in the Astronautical Sciences Series, volume 102, pages 855–875.
Univelt, San Diego, 1999. AAS Paper 99-159.

158. D.J. Scheeres. The effect of C22 on orbit energy and angular momentum. Celestial Mechanics
and Dynamical Astronomy, 73:339–348, January 1999.

159. D.J. Scheeres. Changes in rotational angular momentum due to gravitational interactions
between two finite bodies. Celestial Mechanics and Dynamical Astronomy, 81:39–44, 2001.

160. D.J. Scheeres. Relative equilibria for general gravity fields in the sphere-restricted full 2-body
problem. Celestial Mechanics and Dynamical Astronomy, 94:317–349, March 2006.

161. D.J. Scheeres. Orbit mechanics about small asteroids. In 2009 AAS/AIAA Space Flight
Mechanics Meeting, Savannah, Georgia, February 2009. Paper AAS 09-220.

162. D.J. Scheeres and J. Bellerose. The restricted Hill full 4-body problem: Application to
spacecraft motion about binary asteroids. Dynamical Systems: An International Journal,
20(1):23–44, 2005.

163. D.J. Scheeres, S. Bhargava, and A. Enzian. A navigation model of the continuous outgassing
field around a comet. Interplanetary Network Progress Report, 142:1–19, April 2000.

164. D.J. Scheeres, D.W. Dunham, R.W. Farquhar, C.E. Helfrich, J.V. McAdams, and W.M.
Owen. Mission design and navigation of NEAR’s encounter with Asteroid 253 Mathilde. In
Spaceflight Mechanics 1998; Proceedings of the AAS/AIAA Space Flight Mechanics Meet-
ing, Monterey, CA, pages 1157–1173, 1998.

165. D.J. Scheeres, E.G. Fahnestock, S.J. Ostro, J.-L. Margot, L.A.M. Benner, S.B. Broschart,
J. Bellerose, J.D. Giorgini, M.C. Nolan, C. Magri, P. Pravec, P. Scheirich, R. Rose, R.F. Jur-
gens, E.M. De Jong, and S. Suzuki. Dynamical configuration of Binary Near-Earth Asteroid
(66391) 1999 KW4. Science, 314:1280–1283, November 2006.

166. D.J. Scheeres, R. Gaskell, S. Abe, O. Barnouin-Jha, T. Hashimoto, J. Kawaguchi, T. Kubota,
J. Saito, M. Yoshikawa, N. Hirata, T. Mukai, M. Ishiguro, T. Kominato, K. Shirakawa,
and M. Uo. The actual dynamical environment about Itokawa. In Astrodynamics Specialist
Conference. American Institute of Aeronautics and Astronautics, 2006. Paper AIAA 2006-

6661.
167. D.J. Scheeres, M.D. Guman, and B. Villac. Stability analysis of planetary satellite orbiters:

Application to the Europa Orbiter. Journal of Guidance, Control and Dynamics, 24(4):778–
787, 2001.

168. D.J. Scheeres, D. Han, and Y. Hou. Influence of unstable manifolds on orbit uncertainty.
Journal of Guidance, Control and Dynamics, 24(3):573–585, 2001.

169. D.J. Scheeres, C.M. Hartzell, P. Sánchez, and M. Swift. Scaling forces to asteroid surfaces:
The role of cohesion. Icarus, 210:968–984, December 2010.

170. D.J. Scheeres, B. Khushalani, and R.A. Werner. Estimating asteroid density distributions
from shape and gravity information. Planetary and Space Science, 48:965–971, August 2000.

171. D.J. Scheeres and F. Marzari. Spacecraft dynamics far from a comet. The Journal of the
Astronautical Sciences, 50(1):35–52, 2002.

172. D.J. Scheeres, F. Marzari, L. Tomasella, and V. Vanzani. ROSETTA mission: satellite orbits

around a cometary nucleus. Planetary and Space Science, 46:649–671, February 1998.
173. D.J. Scheeres, S.J. Ostro, R.S. Hudson, E.M. Dejong, and S. Suzuki. Dynamics of orbits

close to Asteroid 4179 Toutatis. Icarus, 132:53–79, March 1998.
174. D.J. Scheeres, S.J. Ostro, R.S. Hudson, and R.A. Werner. Orbits close to Asteroid 4769

Castalia. Icarus, 121:67–87, May 1996.

175. D.J. Scheeres, B.G. Williams, and J.K. Miller. Evaluation of the dynamic environment of an
asteroid: Applications to 433 Eros. Journal of Guidance, Control and Dynamics, 23:466–475,

2000.



References 385

176. V.A. Shishov. Determination of spacecraft and Phobos parameters of motion in the Phobos-
Grunt project. Solar System Research, 42(4):319–328, 2008.

177. N.C. Shupe. Orbit options for an Orion-class spacecraft mission to a near-Earth object.
Master’s thesis, The University of Colorado, 2010.

178. Solar System Dynamics Group, Jet Propulsion Laboratory, July 2011.
http://neo.jpl.nasa.gov/neo/.

179. V.G. Szebehely. Theory of Orbits. Academic Press, 1967.
180. Y. Takahashi and D.J. Scheeres. Small body post-rendezvous characterization via slow hy-

perbolic flybys. Journal of Guidance, Control and Dynamics, in press, 2011.
181. P.C. Thomas. Gravity, tides, and topography on small satellites and asteroids – Application

to surface features of the Martian satellites. Icarus, 105:326–+, October 1993.
182. P.C. Thomas and M.S. Robinson. Seismic resurfacing by a single impact on the asteroid 433

Eros. Nature, 436:366–369, July 2005.
183. P.C. Thomas, J. Veverka, M.J.S. Belton, A. Hidy, M.F. A’Hearn, T.L. Farnham, O. Groussin,

J.-Y. Li, L.A. McFadden, J. Sunshine, D. Wellnitz, C. Lisse, P. Schultz, K.J. Meech, and
W.A. Delamere. The shape, topography, and geology of Tempel 1 from Deep Impact obser-
vations. Icarus, 187(1):4–15, 2007.

184. Y. Tsuda and D.J. Scheeres. Computation and applications of an orbital dynamics symplec-
tic state transition matrix. Journal of Guidance, Control and Dynamics, 32(4):1111–1123,
2009.

185. J. Veverka, P.C. Thomas, J.F. Bell, III, M. Bell, B. Carcich, B. Clark, A. Harch, J. Joseph,
P. Martin, M. Robinson, S. Murchie, N. Izenberg, E. Hawkins, J. Warren, R. Farquhar,
A. Cheng, D. Dunham, C. Chapman, W.J. Merline, L. McFadden, D. Wellnitz, M. Malin,
W.M. Owen, Jr., J.K. Miller, B.G. Williams, and D.K. Yeomans. Imaging of asteroid 433
Eros during NEAR’s flyby reconnaissance. Science, 285:562–564, July 1999.

186. B. Villac and D.J. Scheeres. Escaping trajectories in the Hill three body problem and ap-
plications. Journal of Guidance, Control and Dynamics, 26(2):224–232, 2003.

187. B.F. Villac. Dynamics in the Hill Problem with Applications to Spacecraft Maneuvers. PhD
thesis, The University of Michigan, 2003.

188. B.F. Villac and D.J. Scheeres. On the concept of periapsis in Hill’s problem. Celestial Me-
chanics and Dynamical Astronomy, 90:165–178, September 2004.

189. S.J. Weidenschilling. How fast can an asteroid spin? Icarus, 46(1):124–126, 1981.

190. R.A. Werner. The gravitational potential of a homogeneous polyhedron or don’t cut corners.
Celestial Mechanics and Dynamical Astronomy, 59:253–278, July 1994.

191. R.A. Werner. Spherical harmonic coefficients for the potential of a constant-density polyhe-
dron. Computers & Geosciences, 23(10):1071–1077, 1997.

192. R.A. Werner. Evaluating descent and ascent trajectories near non-spherical bodies. Technical
report, Jet Propulsion Laboratory, 2010. Report Number: NPO-46697.

193. R.A. Werner and D.J. Scheeres. Exterior gravitation of a polyhedron derived and compared
with harmonic and mascon gravitation representations of Asteroid 4769 Castalia. Celestial
Mechanics and Dynamical Astronomy, 65:313–344, 1997.

194. R.A. Werner and D.J. Scheeres. Mutual potential of homogeneous polyhedra. Celestial Me-
chanics and Dynamical Astronomy, 91:337–349, March 2005.

195. E.T. Whittaker. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th
edition. Cambridge, 1988.

196. W.E. Wiesel. Stable orbits about the martian moons. Journal of Guidance Control Dynam-
ics, 16:434–440, 1993.

197. L.L. Wilkening, editor. Comets. Univ. Arizona Press, 1982.
198. D.K. Yeomans. Comets. A Chronological History of Observation, Science, Myth, and Folk-

lore. New York: Wiley, 1991.

199. D.K. Yeomans, J.-P. Barriot, D.W. Dunham, R.W. Farquhar, J.D. Giorgini, C.E. Helfrich,
A.S. Konopliv, J.V. McAdams, J.K. Miller, W.M. Owen, Jr., D.J. Scheeres, S.P. Synnott,

and B.G. Williams. Estimating the mass of Asteroid 253 Mathilde from tracking data during

the NEAR flyby. Science, 278:2106–+, December 1997.



386 References

200. M. Yoshikawa, H. Ikeda, H. Yano, J. Saito, T. Kubota, T. Hashimoto, A. Fujiwara,
J. Kawaguchi, T. Kominato, M. Matsuoka, K. Shirakawa, T. Ohnishi, S. Abe, T. Mukai,
R. Gaskell, and D. Scheeres. Astrodynamics science about Itokawa, gravity and ephemeris. In
Astrodynamics Specialist Conference. American Institute of Aeronautics and Astronautics,
2006. Paper AIAA 2006-6658.

201. T. Yoshimitsu, J. Kawaguchi, T. Hashimoto, T. Kubota, M. Uo, H. Morita, and K. Shi-
rakawa. Hayabusa-final autonomous descent and landing based on target marker tracking.
In Astrodynamics Specialist Conference. American Institute of Aeronautics and Astronau-
tics, 2006. Paper AIAA 2006-6537.

202. M. Ziebart. Generalized analytical solar radiation pressure modeling algorithm for spacecraft
of complex shape. Journal of Spacecraft and Rockets, 41(5):840–848, 2004.



Index

Arecibo Radio Antenna, 5, 16, 39

Asteroid Classifications

Binary Asteroids, 41

Centaur, 28

Main Belt, 4, 6, 27

Near-Earth, 4, 9, 26

Near-Earth Subgroups, 26

Rubble Pile, 34

Trans-Neptunian, 28

Trojan, 23, 28

Asteroids

1999 JU3, 11

1999 KW4, 5, 36, 39, 41, 215–229, 238

1999 RQ36, 10, 231

Betulia, 39, 193

Braille, 7

Castalia, 5, 39

Ceres, 4, 8, 27, 39

Dactyl, 6, 7

Eros, 8, 32, 38–41, 175–198, 233–242, 251,
259, 272, 298, 347, 351

Gaspra, 6, 39

Ida, 6, 7, 39

Itokawa, 8, 9, 32, 38–41, 52, 231, 233–243,

247, 259, 272, 289–300

Lutetia, 7, 39

Mathilde, 7, 39

Steins, 7, 39

Toutatis, 39, 89, 201–214

Vesta, 8, 39

Astrodynamics, 4, 185, 215

Attitude Specification

Euler Angles, 81

Rotation Dyadic, 74

Rotation Matrix, 81

Averaging

Doubly-Averaged, 166, 208, 331

Keplerian Motion, 363–366

Secular Equations, 161–166

Short-Period, 164, 180, 183

Specific Examples

Complex Rotator, 206

Planetary Satellite, 332

Planetary Satellite + Oblateness, 333

Solar Radiation Pressure, 279, 281

Zonals, 178–184

Brillouin Sphere, 47

Canonical Transformations

Definition, 94, 367

Solution Flow, 95–96, 107

Tests, 95, 368–370

Carlson Elliptic Integrals, 50, 219

Comet Classifications

Dormant, 30

Extinct, 30

Kreutz, 30

Long-Period, 30

Main Belt, 30

Near-Earth, 26, 30

Short-Period, 28, 29

Comet Outgassing Models, 12, 57–59, 301–304

Comets

Borrelly, 12, 39

Churyumov-Gerasimenko, 11–13, 41, 59,

255, 301

Encke, 201

Halley, 12, 29, 201

Hartley-2, 11–13, 39

Hyakutake, 11

Tempel-1, 11–13, 39, 41, 259, 272

Tuttle, 11

Wild-2, 12, 39, 41

Wirtanen, 255, 259, 264, 272

387



388 Index

Coordinate Frames

Body-Fixed, 74, 77, 87, 89, 176, 203, 244,
249

Inertial, 20, 65, 74, 87, 244, 245

Orbit-Fixed, 89, 244, 245, 258, 281

Deep Space Network, 5, 16

Equations of Motion

Gauss’ Equations, 101

Hamilton’s Equations, 93

Lagrange Planetary Equations, 97

Lagrange’s Equations, 88

Newton’s Equations, 87

Equations of Rotation

Euler’s Equations, 75, 218

Rotation Kinematics, 74

Equilibrium Points

Computation, 147–150

Definition, 116

Specific Examples

Asteroid Surface, 237

Binary Asteroid, 220–223

Hovering, 243–252

Planetary Satellite, 310–312, 346

Solar Radiation Pressure, 259, 263–267

Uniform Rotator, 193

Stability, 116, 119, 150

European Space Agency (ESA), 11, 14

Floquet Theory, 122–125, 134, 246

Fourier Series Expansions, 361

Frozen Orbits, 206–208, 211, 280, 283–284,
293, 303, 335

Stability, 294, 295

General Trajectory, 127

Stability, 179, 300, 347

Generating Functions, 160, 369

Goldstone Radio Antenna, 5, 16, 39

Gravitational Potentials

Definition, 41, 42

Ellipsoid, 48–50

Ellipsoidal Harmonics, 47

Geopotential, 40, 232–234, 237, 239

Gravity Coefficients, 44, 50, 52

Hill Approximation, 92, 258, 307, 329

Logarithmic, 53

Mascon, 52

Polyhedron, 50–52

Sphere, 48

Spherical Harmonics, 42–47

Gravitational Problems

Circular Restricted Three-Body, 114,
317

Elliptic Hill Three-Body, 259

Elliptic Restricted Three-Body, 90, 92, 259

Full Two-Body, 215–217

Hill Three-Body, 54, 92, 150, 266, 268, 305,
307–327, 340, 344–347, 350

Restricted Full Three-Body, 215, 219

Restricted Three-Body, 109, 150, 158, 215,
310, 311, 347

Two-Body, 63–73

Compilation of Results, 357–362

Hamiltonian

Function, 101, 105–141, 144, 148, 151

System, 93, 100, 105–141, 144, 146–148,
151, 160

Time Invariant, 105–107, 114, 122, 130,
148

Time Periodic, 121, 122, 131

Hansen Coefficients, 186

Hovering

Body-Fixed, 249

Near-Inertial, 245

Integrals of Motion

Angular Momentum, 64

Energy, 64

Jacobi Constant, see Jacobi Integral

Jacobi Energy, see Jacobi Integral

Jacobi Integral, 106, 114, 127, 132, 136, 138,
147, 151, 166, 168

Asteroid Surface, 232

Binary Asteroid, 220

Planetary Satellite, 309, 345

Solar Radiation Pressure, 258, 269

Uniform Rotator, 177, 191

Local Initial Conditions, 114

Rotational Angular Momentum, 74, 75

Rotational Kinetic Energy, 75

Translational Momentum, 64

Jacobi Elliptic Functions and Integrals, 77–84,
373–375

Japanese Exploration Agency (JAXA), 8, 11

Keplerian Solution, see Two-Body Solution

Kuiper Belt, 28, 41

Lagrange Bracket, 98, 99

Lagrangian

Function, 88–90, 93, 105, 114, 144, 176, 203

System, 88, 93, 105, 133, 144, 146, 148, 151,
176

Time Invariant, 148, 177, 215, 345

Time Periodic, 89, 203, 259



Index 389

Legendre

Associated Functions, 43, 371, 372

Polynomials, 46, 54, 371, 372

Transformation, 93, 94, 114, 145

Libration Points, see Equilibrium Points

Light Curve Observations, 4, 40

Linearized Dynamics

Clohessy-Wiltshire Equations, 317, 345

Hill Equations, 345

Linear Integrals, 115, 120

Monodromy Matrix, 134, 135, 138, 151, 211

State Transition Matrix, 96, 109, 116–119,
128, 145, 147, 151, 266, 280, 283

Time Invariant, 126

Solution, 116

Time Periodic, 122

Solution, see Floquet Theory

Lyapunov Characteristic Exponents, 128, 246

Lyapunov Stability, 116, 118, 247

Mass, 31, 41

Density, 31

Volume, 31

Mass Moments

Center of Mass, 44

Inertia Dyadic, 73, 74

Inertia Matrix, 74

Moments of Inertia, 34, 35, 45, 73

Principal Moments of Inertia, 75, 76

Products of Inertia, 45, 73

Relation to Gravity Coefficients, 44, 45

Mathematical Notation and Definitions

Differential Equations and Solutions, 21

Functions, 21

Gradients, 20

Time Derivatives, 20

Vectors, Dyadics and Tensors, 17

Matrix

Eigenstructure, 110, 117, 120, 134

Eigenvalue, 111, 117–119, 227–229, 246, 267,
314, 315

Eigenvector, generalized, 126

Eigenvector,left, 110, 112, 120, 126, 148

Eigenvector,right, 110, 112, 120, 126, 148

Ortho-Normal, 280, 283

Symplectic, 95, 96, 110–113, 145, 147, 367,
369

MBAs (Main-Belt Asteroids), see Asteroid
Classifications

Missions, future and planned

Hayabusa-2, 11

Marco Polo-R, 11

OSIRIS-REx, 10, 231

Phobos-Grunt, 16, 343

Missions, past and current

Cassini-Huygens, 14

DAWN, 8, 10

Deep Impact, 11, 12

Galileo, 6, 7, 14

Hayabusa, 8, 9, 52, 231, 243

Mars Express, 14

Mars Reconnaissance Observer, 14

NEAR, 8, 50, 175

Rosetta, 7, 11, 12

Viking, 14

National Aeronautics and Astronautics
Administration (NASA), 8, 10, 14, 16,
36, 175, 343

NEAs (Near-Earth Asteroids), see Asteroid
Classifications

NEOs (Near-Earth Objects), see Comet
Classifications, Asteroid Classifications

Orbit Anomalies

Eccentric Anomaly, 71, 73, 357

Hyperbolic Anomaly, 72

Mean Anomaly, 72, 357

True Anomaly, 68, 69, 357

Orbit Elements

Classical, 99, 103

Argument of Periapsis, 68, 70

Eccentricity, 68, 70

Epoch of Periapsis Passage, 71, 72

Inclination, 65, 69

Longitude of the Ascending Node, 65, 69

Orbit Parameter, 68, 70

Semi-Major Axis, 69, 70

Delaunay, 100

Eccentricity Vector, 67, 68

Energy, 69

General, 97, 98, 101, 102

Laplace Vector, 67

Non-Singular, 103

Osculating, 97, 101

Orbit Plane Orientation

Direct, 189, 194, 195, 225, 227, 350

Ecliptic, 283, 294

Out-of-Plane, 199

Polar, 179–184, 340, 341, 347

Retrograde, 189, 194, 197, 225, 228, 298,

347, 351

Terminator, 274, 284, 286, 288, 291, 295,
303, 304

Periodic Orbits

Computation, 150

Definition, 121, 134

Families, 127, 136, 155

Specific Examples



390 Index

Binary Asteroid, 225–228
Complex Rotator, 211, 212
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Planetary Satellite, 312–317, 347–354
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Planetary Satellites, List of, 308, 342
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Periodic, 78, 89, 203, 204
Quasi-Periodic, 84
Short-axis Mode (SAM), 77–79, 82
Synchronous, 35, 344
Uniform, 34, 175, 232

Shape
Ellipsoid, 40
Ellipticity, 193, 298
Oblateness, 178, 296, 327, 336
Polyhedron, 50

Shape Formats

Latitude/longitude grid, 36

Polyhedron, 37, 231
Quadrilateral, 37

Solution Methods

Analytic Continuation, 159
Discrete Orbit Updates, 167, 185–190
Lie-Deprit Method, 160
Numerical Integration, 144–147
Semi-Analytical Expansions, 156, 322
von Zeipel Method, 160

Spacecraft
Rosetta, 41, 59, 255, 259, 264, 272
Cassini, 14
Hayabusa, 38, 231, 259, 272, 289–291, 300
NEAR-Shoemaker, 7, 32, 197, 249, 259, 272
New Millennium DeepSpace-1, 7, 12

Spacecraft Mass to Area Ratio, 56, 274, 275,
287, 289

Stability against Escape, 261, 274, 290, 317,
323

Stability against Impact, 190, 323
Stereo Photoclinometry, 40
Surface Environment

Escape Speed, 241–242
Geopotential, 232–234
Guaranteed Return Speed, 239–241
Normal Accelerations, 234–236
Roche Lobe, 239
Slopes, 234–236

Surface of Section, 125, 130–134, 151, 153, 154

Taylor Series, 95, 156, 159
State Transition Tensors, 157, 322

Torque-Free Rotation Solution, 73–86
Angular Velocity, 77–81
Dynamic Inertia, 76
Effective Spin Rate, 76
Euler Angles, 81–84

Two-Body Solution, 63–73, 357–362
Flight Path Angle Equation, 69, 358
Hyperbolic Kepler’s Equation, 72
Hyperbolic Orbit, 70
Kepler’s Equation, 72, 357
Parabolic Orbit, 69
Position Vector Equation, 359
Radius Equation, 69, 358
Speed Equation, 69, 358
Velocity Vector Equation, 359
Zero Angular Momentum, 73

Yarkovsky Effect, 28, 55

YORP Effect, 34, 55

Zero-Velocity Surface, 168, 191, 270, 317
Specific Examples

Asteroid Surface, 239

Binary Asteroid, 222

Planetary Satellite, 309, 346
Solar Radiation Pressure, 261, 269
Uniform Rotator, 190
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