Nonlinear Autonomous Dynamical systems of two dimensions

Part C Limit Cycles From equilibrium points

to **isolated** periodic trajectories

Example 1.

$$\begin{aligned}
polar coord (x = r \cos \theta, y = r \sin \theta) & x^{2} + y^{2} = r^{2} \\
y' x = \tan \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = \tan \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = \tan \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = \tan \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = \tan \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t = \theta \\
x^{2} + y^{2} = r^{2} \\
y' x = t^{2} \\
y' x = r^{2} \\
y' x = t^{2} \\
y' y = r^{2} \\
y' x = t^{2} \\
y' y = r^{2} \\
y' y = r$$

 (x_{0}, y_{0})

Example 2. Harmonic oscillator with damping

A stable limit cycle (LC) is an isolated closed phase space trajectory (or an isolated periodic solution) which is included in a domain D such that $\forall (x_0, y_0) \in D$ the corresponding solution (x(t), y(t)) tends asymptotically, as $t \rightarrow \infty$, to the solution of the LC.

- The vector field is smooth on the solution of LC
- The domain included inside the LC should contains at least one equilibrium point (focus or node)

* if the solution (x(t),y(t)) tends asymptotically to the LC as $t \rightarrow -\infty$, the LC is called **unstable**

example : the van der Pol equation

$$\ddot{x} = \mu(1 - x^2)\dot{x} - x$$
 $x \sim V_{AB}$, $\mu = \mu(R, L, C,)$

cmath68.nb

Production of electrical oscillation from a DC input.

Non-Existence of a limit cycle solution

- No equilibrium points \Rightarrow No limit cycle solution (for 2D systems!) $\dot{x} = x^2 + y^2 + 1$ $\dot{y} = x^2 - y^2$
- The negative criterion of Bendixson

there does not exist a limit cycle solution which is located completely in the domain *D*

Example
$$\dot{x} = x^3 - y^3$$

 $\dot{y} = -3x + 2y + y^3$ \rightarrow $div\mathbf{f} = 3x^2 + 3y^2 + 2 > 0$ $\forall (x, y) \in \mathbb{R}^2 \rightarrow$ no Limit Cycle

(0,0): equilibrium

$$\dot{x} = f(x, y)$$
$$\dot{y} = g(x, y)$$

Existence of a limit cycle solution

The Poincare – Bendixson theorem

We consider a bounded single connected domain $D \subset \mathbb{R}^2$. If a phase space trajectory with initial conditions $(x_0, y_0) \in D$ is bounded as $t \to +\infty$ (or $t \to -\infty$) in the domain D then

- The trajectory is closed (periodic solution) or
- The trajectory tends to a closed trajectory (limit cycle) as $t \rightarrow +\infty$ (or $t \rightarrow -\infty$) or
- The trajectory tends to an equilibrium point $P \in D$ as $t \rightarrow +\infty$ (or $t \rightarrow -\infty$)

If we can define a **ring** with borders C₁ and C₂ such that
i) the ring does not contain an equilibrium
ii) the flow is directed outward at the inner border C₁
iii) the flow is directed inward at the outer border C₁

then there exist a limit cycle in the ring

 $\cos \varphi = \frac{\mathbf{n} \cdot \mathbf{F}}{|.|} \rightarrow \frac{\mathbf{n} \cdot \mathbf{F} < 0}{\mathbf{n} \cdot \mathbf{F} > 0} \quad outward \; direction$

$$\dot{x} = x + y - x(x^2 + 2y^2)$$
$$\dot{y} = -x + y - y(x^2 + 2y^2)$$

example

(0,0) : equilibrium, $\lambda = \mu \pm i$

μ