Simple Applications of Nonlinear systems

Systems Lotka-Volterra
competition in closed ecosystems

Little and Big fishes

X : Population of big fishes in the ecosystem
Y : Population of little fishes

- Big fishes eat little fishes
- Little fishes eat plankton (unlimited quantity in the eco system)

Construction of the model

- Step 1 : There is no interaction between species

Little fish are continuously reproduced proportionally to their number (there is plenty of Plankton)

$$
\dot{Y}=a Y, \quad a>0
$$

The number of big fishes decreases quickly (big fishes do not eat little fishes since we assume no interaction)

$$
\dot{X}=-b X, \quad b>0
$$

- Step 2 : The species interact

The coefficient a of the reproduction of little fishes decreases as the number of big fishes increases

$$
a \rightarrow a-r_{1} X \quad\left(r_{1}>0\right)
$$

The coefficient b of the decreasing rate of big fishes decreases as the number of little fishes increases (there is sufficient food)

$$
b \rightarrow b-r_{2} Y \quad\left(r_{2}>0\right)
$$

- Equations of the system

$$
\begin{gathered}
\dot{X}=-b X+r_{2} X Y \\
\dot{Y}=a Y-r_{1} X Y
\end{gathered}
$$

- Reduction of the number of parameters by suitable choice of units (unit normalization)

1) We change the time scale as $t^{\prime}=b t$

$$
\begin{gathered}
\dot{X}=-X+\frac{r_{2}}{b} X Y \\
\dot{Y}=\frac{a}{b} Y-\frac{r_{1}}{b} X Y \\
\text { *derivatives with respect to } t
\end{gathered}
$$

2) Since $\left(r_{2} / b\right)>0$ we normalize the number of fishes with the new variable

$$
x=\left(\frac{r_{2}}{b}\right) X, \quad y=\left(\frac{r_{2}}{b}\right) Y, \quad \text { i.e. we set }(X, Y)=\left(\frac{b}{r_{2}}\right)(x, y) \text {, }
$$

Then the system of equations takes the form

$$
\begin{gathered}
\dot{x}=-x+x y \\
\dot{y}=\frac{a}{b} y-\frac{r_{1}}{r_{2}} x y
\end{gathered}
$$

MODEL 1

$$
\begin{gathered}
\dot{x}=-x+x y \\
\dot{y}=\gamma y-\mu x y
\end{gathered}
$$

where
$\gamma=\frac{a}{b}>0 \quad$: coefficient of ratio «increase-decay» in the absence of species interaction
$\mu=\frac{r_{1}}{r_{2}}>0:$ coefficient of the ratio of coupling coefficients

Fishes_model1

MODEL 2
Model 1 + saturation

The increasing number y of little fishes can't exceed a maximum number S_{0} (no plenty of food or limited capacity of the ecosystem)

$$
\gamma \rightarrow \gamma s, \quad s=\frac{S_{0}-y}{S_{0}}, \quad \begin{aligned}
& \lim _{y \rightarrow 0} s=1 \\
& \lim _{y \rightarrow s_{0}} s=0
\end{aligned}
$$

$S_{0}>1$: maximum number (normalized) of little fishes that can be supported by the ecosystem.

$$
\begin{gathered}
\dot{x}=-x+x y \\
\dot{y}=\gamma \frac{S_{0}-y}{S_{0}} y-\mu x y
\end{gathered}
$$

Fishes model2

