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Preface

Micro�t 5.0 represents a major advance over the earlier versions of the package. It contains
many new features and covers a number of recent developments in the areas of multivariate
time series analysis and multivariate volatility modelling.

This volume describes how to install and run the software, use its various menus, op-
tions, formulae and commands. In addition, it contains detailed reviews of the underlying
econometric and computing methods, together with 86 tutorial lessons using more than 40
di¤erent data sets. It is hoped that this volume can serve as an interactive tool in the
teaching of time series econometrics, supplementing recent econometric texts.

Micro�t 5.0 is particularly suited for the analysis of macroeconomic and �nancial time
series data at di¤erent frequencies: daily, monthly, quarterly and yearly.

This volume is in six parts:

Part I (Chapters 1-2) provides an introduction to the package and shows how to install
and run it on personal PCs.

Part II (Chapters 3-5) deals with reading/saving of data and graphic �les, management
and processing of data, and preliminary data analysis.

Part III (Chapters 6-8) provides an account of the estimation menus and the various
single and multiple equation options that are available in Micro�t 5.0.

Part IV (Chapters 9-20) is devoted to tutorial lessons covering many di¤erent issues and
problems, ranging from data management and data processing to linear and non-linear
regressions, univariate time series analysis, GARCH modelling, Probit and Logit esti-
mation, unrestricted V AR modelling, cointegration analysis, and SURE estimation.

Part V (Chapters 21-23) provides a review of the underlying econometric techniques
for the analysis of single and multiple equation models.

Part VI (Appendices A-B) provides information on the size limitations of the package,
and tables of critical values.

In developing Micro�t 5.0 we have bene�ted greatly from comments and suggestions by
many Micro�t users, students, and colleagues, particularly those at Cambridge University,
University of Southern California, and the participants of the �Working withMicro�t�courses
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Chapter 1

Introduction

1.1 What is Micro�t?

Micro�t is an interactive econometric software package designed speci�cally for the econo-
metric modelling of time series data. It is suitable for classroom teaching of undergraduate
and post-graduate courses in applied econometrics. It has powerful features for data process-
ing, �le management, graphic display, estimation, hypothesis testing, and forecasting under a
variety of univariate and multivariate model speci�cations. These features make Micro�t 5.0
one of the most powerful menu-driven time series econometric packages currently available.

Micro�t generates output in carefully set out tables and graphs, virtually in a matter of
seconds. Output from Micro�t can be sent directly to a printer, saved on a disk �le to be
printed subsequently, or used in a text �le as part of a printed report.

Micro�t accepts ASCII and binary data �les, Excel worksheets, and data �les in a variety
of formats such as comma delimited (CVS), TXT and AREMOS (TSD) �les. It also readily
allows for extension, revision, and merging of data �les. Data on Micro�t�s workspace can
be exported to spreadsheet packages in the CSV and TSD formats. Other software in the
operating system can be accessed easily. For routine and repetitive data processing tasks,
Micro�t employs commands close to conventional algebraic notation.

The strength of the package lies in the fact that it can be used at di¤erent levels of
technical sophistication. For experienced users of econometric programs it o¤ers a variety of
univariate and multivariate estimation methods and provides a large number of diagnostic
and non-nested tests not readily available on other packages. The interaction of excellent
graphics and estimation capabilities in Micro�t allows important econometric research to be
carried out in a matter of days rather than weeks.

1.2 New features of Micro�t 5.0

Micro�t 5.0 represents a major advance over the earlier versions of the package. It makes
more intensive use of screen editors and window facilities for data entry, model speci�cation,
and for easy storage and retrieval of data and result �les. Using the new version you can run
regressions up to 102 regressors with an almost unlimited number of data points (5,000,000
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CHAPTER 1. INTRODUCTION 6

observations as compared to the 3,000 limit imposed in Micro�t 4.0 ). The time series
dimension of the observations can be adjusted dynamically. You can also move readily
between drives, directories, and sub-directories for retrieving and saving data input and
output �les. Scrolling within a result screen is also possible. Almost all �les created using
Micro�t 4.0 can be used in Micro�t 5.0.

The new options in Micro�t 5.0 include:

1. Virtually no limits on the data sizes being analyzed �given available PC memory.

2. Importing and exporting of Excel �les.

3. Much enhanced graphic module with the possibility of many types of graphs and an
almost unrestricted number of plots per screen.

4. Revamped interface �much more transparent instruction screens.

5. Enhanced help �les �online documentation.

6. Additional unit roots test Phillips-Perron, ADF -GLS, ADF -WS, and ADF -MAX.

7. Analysis of cointegrating V ARX models. This extends the popular cointegration mod-
ule to the case where the model contains weakly exogenous variables, essential for mod-
elling of small open economies, for example, used in modelling of global economy. This
option is also used for Global V AR (GV AR) modelling. See Pesaran, Schuermann,
and Weiner (2004) and Garratt, Lee, Pesaran, and Shin (2006).

8. Forecasting, impulse response analysis, persistence pro�les and error variance decom-
position for V ARX models.

9. Bootstrapped critical values for tests of over-identifying restrictions in cointegrated
models (very important in practical uses of the cointegrating options).

10. Small sample simulation of the critical values of unit roots and cointegration tests.

11. Bootstrapped error bounds for the impulse responses, persistence pro�les and error
variance decompositions for V AR, V ARX, and cointegrated V AR and V ARX options.

12. Multivariate GARCH models � this option allows modelling of volatilities of many
assets jointly based on Pesaran and Pesaran (2007). This option allows estimation
with Gaussian and multivariate t-distributed shocks (important for the analysis of
fat-tailed distributions) and would be particularly helpful in empirical �nance.

For data analysis, Micro�t 5.0 has a large number of additional time series and econo-
metric features, including new functions and commands, new single-equation options, and
new multivariate time series techniques.
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1.2.1 New functions and commands

New functions included in Micro�t 5.0 are:

- NONPARM computes nonparametric density estimation using Gaussian and Epanech-
nikov kernels with Silverman rule of thumb and least squares cross-validation band
widths.

- REC_MAX(X) and REC_MIN(X) compute the maximum and minimum of X
recursively over a speci�ed sample period.

- ROLL_MAX(X;h) and ROLL_MIN(X;h) compute the maximum and minimum
of X using rolling windows of size h over a speci�ed sample period.

- MAV(X; p) function, which computes a p-th order moving average of X.

- GDL(X,�) is the geometric distributed lag function with the lag coe¢ cient �.

New commands in Micro�t 5.0 are:

- DF_PP is the Phillips-Perron (due to Phillips and Perron (1988)) unit roots test.

- In addition to standard ADF statistics, it is also possible to computeADF_GLS (due
to Elliott, Rothenberg, and Stock (1996)), ADF_MAX (due to Leybourne (1995)),
and ADF_WS (due to Park and Fuller (1995)) statistics. Unit root tests can also be
carried out in the case of ADF regressions subject to known breaks.

- CCA performs canonical correlation analysis on two sets of variables, after controlling
for a third set of variables.

- FILL_FORWARD replaces current missing values by the last available observations.

- FILL_MISSING replaces current missing values with a value speci�ed by the user.

- PCA performs principal components analysis on a set of variables after �ltering out
the e¤ects of another set of variables.

1.2.2 Single equation estimation techniques

The single-equation options in Micro�t 5.0 include:

- Linear and non-linear OLS and Instrumental Variables (IV) regressions.

- Recursive and Rolling Regressions.

- Estimation of Regression Models with Autoregressive and Moving Average
Errors Cochrane-Orcutt, Maximum Likelihood and IV Procedures.
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- Estimation of Conditionally Heteroscedastic Models. Maximum likelihood es-
timation of regression models under a variety of conditionally heteroscedastic error
speci�cations, such as ARCH, GARCH, GARCH in mean,Absolute value GARCH,
absolute value GARCH in mean, exponential GARCH, exponential GARCH in mean.
The ARCH and GARCH models can be estimated for two di¤erent speci�cations
of the conditional distribution of the errors, namely normal and the Student�s t-
distributions.

- Logit and Probit Estimation.

- Phillips-Hansen�s Fully Modi�ed OLS Estimation. This procedure provides
single-equation estimates of the cointegrating relations.

- Autoregressive-Distributed Lag (ARDL) Estimation Procedure. This pro-
cedure provides estimates of a single cointegrating relation on the basis of an ARDL
model selected by means of model selection procedures such as Akaike, Schwarz, Han-
nan and Quinn, and �R2. This approach also readily allows for inclusion of time trends,
seasonal dummies and other deterministic/exogenous regressors in cointegrating rela-
tion. See Pesaran and Shin (1999) and Pesaran, Shin, and Smith (2001).

- Diagnostic and misspeci�cation test statistics.

- Non-nested tests. Tests of linear versus log-linear models, level-di¤erenced versus
log-di¤erenced models, and other non-linear speci�cations of the dependent variable.

1.2.3 System equation estimation techniques

Micro�t 5.0 provides an integrated tool-box for the analysis of multivariate time series mod-
els. The estimation and testing procedures cover the following models:

- Estimation of Unrestricted V AR Models. This option provides estimates of
the coe¢ cients in the V AR model, together with various diagnostic test statistics
for each equation in the V AR model, separately. It allows automatic order selection
in the V AR using Akaike, Schwarz, and likelihood-ratio procedures, Granger (1969)
block non-causality tests, orthogonalized and generalized impulse response in V AR
models (Sims (1980), Koop, Pesaran, and Potter (1996), Pesaran and Shin (1998)).
Orthogonalized and Generalized Forecast Error Variance Decomposition in unrestricted
and cointegrating V AR models. The generalized impulse responses are new and, unlike
the orthogonalized responses, do not depend on the ordering of the variables of the
V AR model.

- Estimation of Seemingly Unrelated Regression Equations. Estimation and
hypothesis testing in systems of equations by the Seemingly Unrelated Regression
Equations (SURE) method (Zellner 1962). ML estimation and hypothesis testing
in systems of equations subject to parametric restrictions. The restrictions could be
homogeneous or non-homogeneous, and could involve coe¢ cients from di¤erent rela-
tions (such as cross-equation restrictions).
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- Two-Stage and Three-Stage Least Squares.

- Two-Stage and Three-Stage Restricted Least Squares.

- New Cointegration Tests in V AR and V ARX Models. These tests allow for
deterministic linear trends in the underlying VAR model both with and without re-
strictions on the trend coe¢ cients, and enable the user to carry out the Cointegration
tests when one or more of the I(1) variables are exogenously determined. Micro�t 5.0
allows the users to simulate critical values at any desired level of signi�cance for the
cointegration tests.

- Long-Run Structural Modelling. This estimation procedure allows you to esti-
mate and test more than one cointegrating relations subject to identifying and over-
identifying restrictions on the long-run (or cointegrating) relations. The restrictions
can be homogeneous or non-homogeneous, and can involve coe¢ cients from di¤erent
cointegrating relations. The long-run structural modelling also allows analysis of sub-
systems where one or more of the I(1) variables are exogenously determined. See
Pesaran, Shin, and Smith (2000).

- Impulse Response Analysis and Forecast Error-Variance Decomposition.
The program now allows computations of orthogonalized and generalized impulse re-
sponse functions, and forecast error variance decomposition in the case of cointegrating
V AR models. It also produces estimates of the persistence pro�les for the e¤ect of
system-wide shocks on the cointegrating relations. See Pesaran and Shin (1996) and
Pesaran and Shin (1998).

- Computation of Multivariate Dynamic Forecasts. Multivariate dynamic fore-
casts for various horizons can be readily computed using Micro�t 5.0, both for un-
restricted and cointegrating V AR models, and for Seemingly Unrelated Regression
Equations with and without parametric restrictions.

1.3 Tutorial lessons

Important features of Micro�t are demonstrated throughout this manual by means of 82
tutorial lessons, using data �les supplied with the program. There are lessons in data man-
agement; data transformation; graphics (plotting time series, scatter diagrams, histograms);
displaying; printing and saving results; estimation; and hypothesis testing and forecasting,
using a variety of univariate and multivariate econometric models. These lessons and the
details of econometric methods provided in Chapters 21, 22 and 23 are intended to com-
plement the more traditional econometric texts used in quantitative economics courses, and
help further establish the concept of interactive econometric teaching in the profession.
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1.4 Other features of Micro�t 5.0

Many useful features ofMicro�t 4.0 have been either retained or have been greatly enhanced,
particularly as far as data inputs, interface and graphics are concerned. A summary of these
features follows.

1.4.1 Data management

Micro�t can be used to input data directly from the keyboard, from raw ASCII data �les,
csv, Excel spreadsheet �les, or from special Micro�t �les prepared and saved previously
by the package. The data can be input as undated series or as daily, monthly, quarterly,
half-yearly or yearly frequencies. Integral parts of the data management system of Micro�t
are the facilities provided for the extension, revision and merging of the data �les. These
data management facilities allow the user to extend an existing data �le by adding more
observations and/or more variables to it. It is also possible to input and output raw data
�les in ASCII, CSV and Excel spreadsheets to and from Micro�t.

1.4.2 Data transformations

Micro�t allows the user to compute new series as algebraic transforms of existing data
using standard arithmetic operators, such as + - / *, and a wide range of built-in functions
including MAX, MIN, SIGN, RANK, and ORDER. Time trends, seasonal dummies,
and random numbers fromUNIFORM andNORMAL distributions can also be generated
easily by Micro�t.

1.4.3 High-resolution graphics

Micro�t can be used to produce high-quality scatter diagrams and graphs of variables plotted
against time or against another variable, with the option of adding headings to the graph.
In Micro�t 5.0 there are no e¤ective limits on the number of time series plots that can be
shown on the same screen. A hard copy of the graphs can be produced on Laser and Laserjet
printers in black and white and in colour when available. Micro�t can also automatically
produce graphs of actual and �tted values, residuals, histograms with superimposed normal
and t-distribution in the case of the ARCH and GARCH options, as well as graphs of
forecasts and concentrated log-likelihood functions.

Micro�t 5.0 allows the graphs to be saved for importation into word-processing programs
such as Microsoft Word and Scienti�c Word.

1.4.4 Batch operations

Micro�t allows the user to run batch jobs containing formulae, samples, and simulation
commands. This facility is particularly useful when the same transformations of di¤erent or
revised data sets are required.
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1.4.5 General statistics

Micro�t allows the user to compute:

- Means and standard deviations.

- Skewness and kurtosis measures.

- The coe¢ cient of variation.

- Correlation coe¢ cients of two or more variables.

- Minimum and maximum of a series.

- The autocorrelation coe¢ cients and their standard errors.

- Estimates of the spectral density function and their standard errors using Bartlett,
Tukey and Parzen windows.

1.4.6 Dynamic simulation

Important facilities in Micro�t are the SIM and SIMB commands, which allow the user to
simulate dynamically any non-linear di¤erence equation both forwards and backwards.

1.4.7 Other single equation estimation techniques

Micro�t 5.0 estimates regression equations under a variety of stochastic speci�cations. The
estimation techniques carried over from Micro�t 3.0 include:

- Ordinary least squares.

- Generalized instrumental variables.

- Two-stage least squares.

- Recursive and rolling estimation by the least squares and instrumental variables meth-
ods.

- Non-linear least squares and non-linear two-stage least squares.

- Cochrane-Orcutt iterative technique.

- Maximum likelihood estimation of regression models with serially correlated errors
(both for AR and MA error processes).

- Instrumental variable estimation of models with serially correlated errors (both for AR
and MA error processes).

- Maximum likelihood estimation of ARMA or ARIMA processes.
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- Maximum likelihood estimation of cointegrated systems.

Models with autocorrelated errors of up to order 12 can be estimated, both when the
pattern of residual autocorrelation is unrestricted and when it is subject to zero restrictions.
The estimation results are compactly tabulated and provide parameter estimates and other
statistics of interest including t-statistics, standard errors, Durbin-Watson statistic, Durbin�s
h-statistic (when relevant), R

2
, and more.

Alternative estimates of the variance-covariance matrix of the parameter estimates, namely
White�s heteroscedasticity-consistent estimates and Newey-West adjusted estimates with
equal weights, Bartlett weights, and Parzen weights can also be obtained with Micro�t,
for the cases of linear and non-linear least squares and instrumental variables methods.

Micro�t enables the user to list and plot the actual and �tted values, as well as the
residuals. The �tted values and the residuals can be saved for use in subsequent econometric
analysis.

1.4.8 Model respeci�cation

The speci�cation of equations in Micro�t can be changed simply by using a screen editor
to add and/or delete regressors, or to change the dependent variable. The equations and
variable lists can be saved to a �le for later use. It is possible to re-estimate the same
regression equation over di¤erent time periods and under di¤erent stochastic speci�cations
simply by selecting the relevant items from the menus.

1.4.9 Diagnostic tests and model selection criteria

Micro�t supplies the user with an array of diagnostic statistics for testing residual autocorre-
lation, heteroscedasticity, autoregressive conditional heteroscedasticity, normality of regres-
sion disturbances, predictive failure and structural stability. It automatically computes:

- Lagrange multiplier tests for serially correlated residuals in the case of OLS and IV
estimation methods.

- Ramsey�s RESET test of functional form mis-speci�cation.

- Jarque-Bera�s test of normality of regression residuals.

- A heteroscedasticity test.

- Predictive failure test.

- Chow�s test of stability of regression coe¢ cients.

- Unit roots tests.

- ARCH test.

- The CUSUM , and the CUSUM of Squares tests for structural stability.
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- �R2, Akaike, Schwarz, and Hannan and Quinn model selection criteria.

- Generalized �R2 for models estimated by Instrumental Variables method (see Pesaran
and Smith (1994)).

1.4.10 Variable addition and variable deletion tests

Micro�t has options for carrying out variable addition and variable deletion tests. These
facilities are very helpful in the process of model constructions, and enable users to follow
either of the two basic modelling strategies, namely speci�c-to-general or general-to-speci�c.
The former facility is also particularly useful as it allows the user to carry out further
diagnostic tests, such as higher-orderRESET orARCH tests, or to test for the independence
between the disturbances and the regressors of the regression equation.

1.4.11 Cointegration tests

Micro�t provides a user-friendly method of testing for cointegration among a set of at most
12 variables by the Johansen�s Maximum Likelihood method. Both versions of Johansen�s
tests, namely the Maximal eigenvalue and the trace tests, are computed. These features are
extensively enhanced in Micro�t 5.0.

1.4.12 Testing for unit roots

Micro�t automatically computes a variety of Augmented Dickey-Fuller statistics and allows
the users to simulate the appropriate critical values at any desired level of signi�cance.

1.4.13 Tests of linear and non-linear restrictions

Tests of linear and non-linear restrictions on the parameters of the regression model (both the
deterministic and the stochastic parts of the model) can be carried out using Micro�t. It is
also possible to compute estimates of functions (possibly non-linear ones) of the parameters
of the regression model, together with their asymptotic standard errors for all the estimation
methods. This facility is particularly useful for the analysis of long-run properties, such as
estimation of long-run responses, mean lags, and computation of persistence measures.

1.4.14 Non-nested tests

Micro�t provides a number of non-nested statistics proposed in the literature for tests of non-
nested linear regression models. These include Godfrey and Pesaran�s small sample-adjusted
Cox statistic, Davidson and MacKinnon�s J-test, and the encompassing F -statistic based
on a general model. It also contains options for testing linear versus log-linear models, and
for testing ratio models versus log-linear and linear models. A number of important model
selection criteria such as Akaike�s information criterion, and Schwarz�s Bayesian criterion are
also computed in the case of non-nested models.
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1.4.15 Static and dynamic univariate forecasts

Micro�t generates one-period-ahead (static) and dynamic forecasts of single-equation regres-
sion models. It gives forecast errors and a number of useful summary statistics. If lagged
dependent variables are included in the regression, Micro�t automatically computes dynamic
forecasts, otherwise it generates static forecasts. The plot of actual and forecast values is
also provided, with the possibility of saving forecast values and forecast errors on a �le for
later analysis.

Missing values are fully supported by Micro�t, and when a transformation (including
leading and lagging) results or involves unde�ned values, the unde�ned values are set to
blank. At the Estimation/Testing/Forecasting stage Micro�t looks for blank �elds and
adjusts the speci�ed sample period automatically so that beginning and end periods with
missing values are discarded. If missing values are encountered in the middle of the estimation
and/or forecast periods the Estimation/Testing/Forecasting will use as sample the set of
observations from observation 1 to the observation preceeding the �rst encountered missing
value. The value *NONE* is displayed whenever the computations involve operations that
cannot be carried out, such as taking the square root or the logarithm of a negative number.

1.5 Installation and system con�guration

Micro�t can be easily installed both on personal computers and can be con�gured to suit
the taste and the needs of the user. It allows the user to alter the colour of text displayed on
the screen by choosing a combination of foreground and background colours. Micro�t needs
to be con�gured only once, at the time the package is installed on the PC, but can easily be
recon�gured at a later date.

1.6 System requirements for Micro�t 5.0

Micro�t 5.0 is available for Microsoft Windows 2000, XP and Vista operating systems.

- 1MB of Random Access Memory (RAM).

- At least 45MB of free hard disk.

- Microsoft mouse or compatible (optional).

- A printer for producing hard copies of graphs and regression results (optional).

Micro�t 5.0 allows running regressions with up to 102 regressors and up to 5,000,000
observations. In the case of the unrestricted V AR option Micro�t allows for up to 12
variables in the V AR model and a maximum order of 24. In the cointegration option it
allows a maximum of 12 endogenous I(1) variables and 5 exogenous I(1) variables, and 18
deterministic and/or exogenous I(0) variables. See Appendix A for further information on
the size limitations of the program.
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Installation and Getting Started

2.1 Installation

To install Micro�t 5.0, follow the installation instructions outlined below for a single user
(see Section 2.1.1) and for network installation (see Section 2.1.2).

2.1.1 Single user installation

Micro�t 5.0 is distributed on a single CD-ROM. Close all applications before inserting the
CD into your computer�s drive and wait for the setup program to launch automatically. If
the setup does not start automatically, navigate to the CD drive and click on the Setup icon
(SETUP.EXE). Follow the simple instructions indicated by the program.

2.1.2 Network installation

This involves the following two steps:

1. Server Installation by the System Operator. The network version of Micro�t 5.0 is
distributed on a single CD-ROM. The machine used for the server installation must be
a client machine and have internet access. Close all applications before inserting the CD
into a client computer�s drive and wait for the setup program to launch automatically.
If the setup does not start automatically, navigate to the CD drive and click on the
Setup icon (NETWORK_SETUP.EXE). The only action required is to browse to a
folder to be used for installation on the server.

2. Installation by a Client. The client browses to the server folder speci�ed in Step
1 above and starts the setup program (MICROFIT5_SETUP.EXE) and follows the
simple instructions (identical to the single user setup, see Section 2.1.1) indicated by
the program.

15
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2.2 Starting and ending a session

2.2.1 Running Micro�t

When you have successfully installedMicro�t 5.0 on your system, you can start it by double-
clicking the icon for M�t5 on your desktop or from the Programs menu. You can also upload
a special Micro�t data �le directly into the program by double-clicking on the Micro�t data
�le.

2.2.2 Quitting Micro�t

To quit Micro�t, do one of the following:

- Choose Exit from the File Menu.

- Double click on the left of the title bar.

- Click on the left of the title bar once and choose .

- Press ALT+F4.

You are warned that all unsaved data will be lost. If you are sure you have saved all your
data, choose Yes. If not, click No, save any unsaved data, and try quitting again.

2.3 Using windows, menus and buttons

You work your way through a Micro�t 5.0 session using a combination of windows, menus,
and buttons. At the heart of the application are several menus and sub-menus for processing
your data. Each menu or sub-menu contains a selection of up to 11 options with one of the
options (usually the most common) already selected.

A simple method of familiarizing yourself with Micro�t and what it can do is to learn
about its main menus and their interrelationships.

The rest of this volume describes the various options in these menus, show you how to
use them to input and process data, do preliminary data analysis, and estimate/test/forecast
using a number of univariate and multi-variate time series models.

2.3.1 The main window

The main window is your workspace. From here you can access all the main functions of the
program: the Variable window, the Data Editor, the Process window, the Single Equation
Estimation window, and the System Estimation window.

2.3.2 Main Menu bar

Many of the program�s functions are controlled using the menus of the main menu bar.
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File Menu

Open �le Opens an existing data �le saved in any of the following formats: ASCII (.DAT),
Micro�t (.FIT), Excel (.XLS) comma delimited values (.CSV), AREMOS time series data
(.TDS).

Open �le from tutorials data �les Opens an existing data �le saved in the tutorial
directory.

Input new data from the keyboard Allows you to enter a new data set from the
keyboard (see Section 3.2.1).

Input new data from clipboard Enables you to copy and paste a data set from the
clipboard (see Section 3.2.8).

Add 2 special Micro�t �les Allows you to load two Micro�t �les (see Section 3.3).
Add a special Micro�t �le to workspace Adds a Micro�t �le to existing data in

Micro�t (see Section 3.2.4).
Paste data from clipboard to workspace Enables you to paste data from the clip-

board to existing data in Micro�t workspace (see Section 3.2.9).
Save as Saves your data in a new �le in specialMicro�t, ASCII, Excel, CSV, or AREMOS

format (see Section 3.5).
Change the data dimension Allows you to change the dimension of the data (see

Section 3.1).
View a �le Opens a �le and allows you to examine its content (see Section 4.2.1).
Exit Quits the program.

Edit Menu

Cut, Copy, and Paste allow you to perform standard Windows editing functions.
Constant (intercept) term Creates a constant (see Section 4.1.1). Its button equiva-

lent is .

Time trend Creates a time trend (see Section 4.1.2). Its button equivalent is .

Seasonal dummies Creates seasonal dummies (see Section 4.1.3). Its button equivalents
are the , , and buttons.

Options Menu

European/US date format Allows you to set the format of the date, when reading
CSV/Excel �les with daily data or calendar dates in the �rst column.

Result printing Allows you to make choices about how results are printed out.
Editor defaults Speci�es the size, style, and colour of default.
Location of Acrobate PDF �le viewer enables you to �nd (automatically or manu-

ally) the location of Adobe Acrobate reader.
Location of default �les allows you to choose the location of default �les.
Location of temporary �les allows you to choose the location of temporary �les.
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Univariate Menu

This is the Single Equation Estimation Menu from which all the sigle-equation estimation
options may be accessed. These are discussed in detail in Chapter 6.

Multivariate Menu

This is the System Estimation Menu from which all the multiple equation estimation options
may be accessed. These are discussed in detail in Chapter 7.

Volatility Modelling Menu

From this menu all univariate and multivariate GARCH options may be accessed. These
are discussed in details in Chapter 8.

Help Menu

Accesses the program�s help functions (see Section 2.5.2).

2.3.3 Buttons

The buttons in the main window control the most common functions:
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Button Function
Switches to the Variable window where the current list of variables and

their descriptions are displayed and may be edited.
Moves to the Data window where you can edit your data.

Moves to the Process window where you can process your data.

Switches to the Single Equation Estimation window. The Single Equation

Estimation options can also be accessed from the univariate menu.
Switches to the System Equation Estimation window. The System

Estimation options can also be accessed from the Multivariate menu.
Switches to the Volatility Modelling window. The Volatility options can

also be accessed from the Volatility Modelling menu.

Runs a Batch �le you have saved earlier.

Displays the on-line help facility.

Saves the contents of the current editor to disk.

Loads a previously save LST or EQU �le into the current box editor.

Clears the contents of the current box editor.

Changes the font of the contents in the current box editor.

Finds a word in the current box editor.

Prints the contents of the current box editor.

Loads into Micro�t a graph in Olectra Chart format.

2.4 The Variables window

The Variables window displays the name of the variables and their descriptions in the
workspace, and can be accessed by clicking the button (see Figure 2.1 below).
Variable descriptions can be up to 80 characters long. If you wish to add or change a de-
scription for one variable, move to the corresponding description �eld and type in a title,
click and then . Note that you cannot undo the changes you have made to the

variable description if you click the button.
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Figure 2.1: The Variable window

2.5 The Data window

The Data window displays data in the workspace and can be accessed by clicking the

button (see Figure 2.2). In this window you can inspect and edit your data. Use the
horizontal and vertical scroll panes to move through the contents of the data windows.
When you have �nished editing your data, click and then . Once you press the

button, changes you have made to your data are permanent and cannot be undone.

You can also copy to clipboard a set of cells, by selecting the cells and pressing the
button. Micro�t will automatically add dates and column names to copied data.

2.5.1 Program options

Various aspects of the program may be customized to personal preference using Edit, Op-
tions, and Window Menus.
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Figure 2.2: The Data Editor

Printing of results

To specify how your results are printed out, choose Result Printing from the Options Menu.
When you �rst install Micro�t you are prompted to enter the name of the current researcher
(user). To edit or replace the name, click on the Name of Researcher �eld and edit (or delete)
the name as necessary.

Page numbers are added to your result printout by default. The date of your results
and the name of the researcher are added to results printouts by default. To exclude them,
uncheck the �Print date and researcher name�option.

Changing font

You have two choices when specifying how the contents of Micro�t editors and results win-
dows are displayed. You can either change the font in the current window, or change the font
for all editors and/or results windows. To change the font style, size or colour in which the
current editor or result window is displayed, click the button and choose an alternative

font, size, and/or colour from the Font dialogue. To change the default fonts, choose �Editor
defaults�from the Options Menu. The default font used in all Editor boxes is Courier New.
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The default colour and size are blue 16-point. To change the default font, click the button
�All Editor Boxes�and choose an alternative font, size, and/or colour from the Font dialogue
box. Then click . The changes you have made will be immediately implemented.

The default font used in all result windows is black Courier New 9-point. To change
the default font, click the button �All Result Windows�and choose an alternative font, size
and/or colour from the Font dialogue box. Then click . (To ensure the correct display

of results, only the �xed fonts available on your computer are listed).
To save the new font as default in Micro�t, check the �Save as defaults�checkbox in the

Options Menu.

2.5.2 Help

Micro�t has an extensive on-line help facility. For help on the part of the application you
are currently using, click the button or press F1. Alternatively, use the Help Menu.
This has several options:

Overview Shows general information on usingMicro�t help. Click on a topic highlighted
in green to move there.

Contents Shows a list of help topics. Click on a topic highlighted in green to move
there.

Help on functions Displays help on various functions available in Micro�t.
Help on commands Displays help on commands.
About Provides copyright information about Micro�t for Windows.

To access the help options in Micro�t 5.0 you need to have Acrobat Reader 6 or above
installed on your PC. Also before using the help options in Micro�t we recommend that you
ensure that your Acrobat Reader (or Adobe Acrobat if you have one installed) allows you
to access the internet from PDF �les.
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Processing and Data Management
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Chapter 3

Inputting and Saving Data Files

Data can be input into Micro�t directly from the keyboard, from ASCII �les, CSV �les,
or Excel �les, from special Micro�t �les saved previously, or from AREMOS (TSD) �les.1

Data on the workspace of Micro�t can be saved as ASCII/text �les, Excel sheet, as special
Micro�t �les, as TSD �les or as comma delimited (CSV) �les with descriptions of variables
in the second row. It is also possible to copy data sets from the clipboard to Micro�t.

To input and save data, use the options in the File Menu. You can also use the �Add a
Special Micro�t File to Workspace�option in the File Menu to add new variables (already
saved in a special Micro�t �le) to your current data set, or select �Add 2 Special Micro�t
Files�to combine two Micro�t �les containing the same variables.

3.1 Change data dimension

Before inputting data, make sure that the dimension of your data set does not exceed the
size limits of Micro�t. Micro�t 5.0 has a limit of 200 variables, and can run regressions up to
102 regressors, while it has no limits on the number of observations in the data. The default
maximum number of observations is 6,000, but it may be changed upwards or downwards.

You can change the default data/variable dimensions by clicking the �Change Data Di-
mension�option in the File Menu. You are presented with a window where you can set the
maximum number of observations, variables and regressors (see Figure 3.1). If you set the
option �Save as Defaults�, these numbers will be remembered and become the default setting
when you open Micro�t.

3.2 Inputting data

When you start a new session with Micro�t, you can either input a new data set directly
from the keyboard or load an existing data set.

1Excel is a trademark of Microsoft.
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Figure 3.1: Change the data dimension

3.2.1 Inputting data from the keyboard

Inputting data directly from the keyboard is the most basic method of entering data. Before
entering new data, make sure you know the frequency of your data (that is, whether your
data are undated, or have annual, quarterly, or monthly frequencies), the number of variables
in your data set, and the sample period of your observations.

To input a new data set, choose �Input new data from the keyboard�in the File Menu.
This opens a new data set dialogue. The data frequency �elds are at the top of the dialogue,
with �elds for start and end dates, and number of variables below. The following data
frequency options are available. To choose one, click the appropriate radio button

Undated

Annual

Half-yearly

Quarterly

Monthly

Entering undated observations: This option is often relevant for entering cross-sectional
observations, and when it is chosen Micro�t assumes that the observations are unordered,
and asks how many observations you have. An observation refers to the individual unit on
which you have data. For example, if you have cross-section data containing variables such
as employment, output, and investment on a number of �rms, then each �rm represents an
observation, and the number of observations will be equal to the number of �rms in your data
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set. If you have time series data covering the period from 1960 to 1970 inclusive and for one
reason or another you wish to enter them as undated data; then the number of observations
in your data set will be equal to 11.

Entering annual, half-yearly, quarterly, or monthly observations: If any of these
options are chosen, the program will supply the dates, and you will not need to type them
in. You are, however, asked to type the dates for the start and end of your data in the
appropriate �eld. For example, if your data are annual and cover the period 1960-1985
inclusive, when asked, you need to enter 1960 in the Start �eld and 1985 into the End �eld.
You can type the year in its full (1960) or abbreviated (60) form. However, if your data go
beyond the year 1999 you must enter the dates in their full forms, namely 2000, 2025 and so
on.

If your data are quarterly and cover the period from the �rst quarter of 1990 to the last
quarter of 2000 inclusive, you need to enter 1990 in the Start �eld and 1 in the adjacent
quarter �eld, then 2000 in the End �eld, specifying 4 as its quarter.

Similar responses will be required if your data are half-yearly or monthly.
Note: It is not possible to enter daily data directly from the keyboard. You can only

input them from an Excel �le or copy them from the clipboard. See Section (3.2.10) for
further information on how to input daily data.

Entering number of variables: This refers to the number of data items that you have
for each observation. Set as appropriate.

When you have �nished entering the information, click . This opens the Variables
window.

Entering variable names: The Variables window contains the default variable names
X1; X2; X3, ... For example, if you specify that you have 10 variables the screen editor
appears with the following default variable names

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

You can enter your own choice of variable names and/or add a description if you wish. Move
to the appropriate �eld and edit or add text using standard Windows editing functions.

A valid variable name is alphanumeric, can be at most 9 characters long, and must begin
with a letter. Lower- and upper-case letters are treated as equivalent. �_�underscore is also
allowed anywhere in a variable name. Examples of valid variable names are

GDPUK OUTPUT X2Y 3 DATA261 Y_1

Variable names such as $GDP; 123; 2X, W# are not allowed. Also, function and command
names used in the data processing stage cannot be used as variable names. The list of
function and command names can be found in Chapter 4.

Variable descriptions can be up to 80 characters long. You can return to the Variables
window at any stage, by clicking the button. Variables can also be given an optional
description of up to 80 characters in the Process window by means of the command ENTI-
TLE. See Chapter 4 on how to use this and other commands. When you are satis�ed with
the changes you have made, click .
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Warning: Note that until the Close button is pressed, the Undo button will restore
the variables or their descriptions to their original values. But once the Close button is
activated the Undo button will no longer function.

Entering data: When you have completed listing your variable names, you will be
presented with the Data window. This is where you enter the observations on your �rst
variable. Initially, all cells on this screen are set to blank, indicating missing values.

To enter your data, move to each cell in turn and type in your data. Continue until all
the observations are entered. If the observations do not �t on one screen use the PgUp and
PgDn keys to move between screens. To move to the top or bottom table, press Ctrl+Home
and Ctrl+End. When you have �nished entering your observations, click .

Warning: Note that until the Close button is pressed, the Undo button will restore
the data to their original values. But once the Close button is activated the Undo button
will no longer function.

3.2.2 Loading an existing data set

You can input data from an existing �le in any of the following formats: special Micro�t,
Excel sheet, Excel 4.0, ASCII, comma delimited (CSV), or AREMOS (TSD).

To load an existing �le, choose �Open �le�from the File Menu. This displays the Open
dialogue. Select one of the �le types from the drop-down list at the base of the dialogue,
choose your �le types from the appropriate drive and directory in the usual way. and click

. If the data are in Micro�t, Excel, CSV, or TDS �le formats, the data are loaded
automatically. If the data are in another �le format, you will be asked to con�rm how the
data are structured before they are loaded.

You are then presented with the Process window. To view or edit the variable names or
descriptions, click the button. To edit the data, click the button.

3.2.3 Inputting data from a raw data (ASCII) �le

An ASCII (plain text) �le may be extracted from an existing data bank, or typed in directly
using spreadsheets or other data processing packages, or after transfer from another computer
package. The �le is expected to contain only numbers. A missing value is represented by
the number 8934567.0.

Once you have speci�ed a �lename successfully (see Section 3.1), you will need to specify
the frequency of your data, their coverage, and the names for the variables that they contain.
These speci�cations are the same as those described above in Section 3.2.1, and require
similar action.

In addition, you need to specify whether its format is free or �xed.
Data is organized by variable: This option should be chosen if all the observations

on the �rst variable appear in the �le before the observations on the second variable are
entered, and so on.

Data is organized by observations: This option should be chosen if the �rst obser-
vations on all of the variables appear in the �le before the second observations are entered,
and so on.
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As an example, suppose you have the following data on variables V AR1 and V AR2, over
the period 1980 to 1983 inclusive on your �le

Period V AR1 V AR2
1980 23 45
1981 26 50
1982 30 52
1983 40 60

If your data appear on the �le as

23 26 30 40
45 50 52 60

then your data are organized by variable. But if your data appear on the �le as

23 45
26 50
30 52
40 60

then your data are organized by observation.
Free format: Choose this option if the data appear in the �le with one item separated

from another by a space, a comma, or end of line.
Fixed format: The only time you need to choose this option is when data are packed

into the �le without any such spacing, or have a particular layout speci�ed according to one
of the FORTRAN format statements. Users who are not familiar with formatted data are
advised to consult a FORTRAN manual.

Once you have made all your choices click . The program starts reading the data
from the �le and, if successful, presents you with the Process window. However, if the
information on the �le does not match what has been supplied, then you will get an error
message. Click to return to the Open dialogue and start again.

3.2.4 Inputting data from a special Micro�t �le saved previously

You are likely to choose this option on the second or subsequent time that you use Micro�t,
assuming that you have previously saved a �le as a special (non-text)Micro�t �le. If a correct
�lename is speci�ed, the �le is loaded and you are presented with the Process window.

Warning: A special Micro�t data �le must have the �le extension FIT. Special FIT �les
created on earlier versions of Micro�t can be read in Micro�t 5.0. Special Micro�t �les
created using the current version of the package can be read into Micro�t version 4.0 but
not into Micro�t version 3.0 to 3.24.

3.2.5 Inputting data from an Excel �le

Micro�t 5.0 can directly read Excel workbook �les (one sheet of the book at a time). Before
loading an Excel �le into Micro�t, make sure that you know in which sheet of the Excel
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workbook data are saved. Data should be organized so that the observations for the di¤erent
variables are arranged in columns, with variable names (up to nine characters) on the �rst
row. The variable names can be followed by their optional descriptions (up to 80 characters
for each variable), separated by spaces. Alternatively, descriptions of the variables can be
provided on the second row in the cells below the variable names.

The �rst column of the �le must contain dates or, if undated, the observation numbers.
Acceptable examples of dates are

1990, 70H1, 1983Q2, 76M12, 30/7/83, 30-7-2001, May-90, 951103

Once you have selected the �le, you will need to specify the sheet where data are saved.
Select the relevant sheet and click the button.

3.2.6 Inputting data from CSV �les

These �les are in ASCII (text) format and are usually created by spreadsheet packages.
Before they can be read into Micro�t they must have the following structure:

1. The �le should be organized so that columns are variables and rows are observations.

2. The �rst row of the �le must contain the variable names followed by optional descrip-
tions and separated by spaces. Alternatively, the �rst row could contain the variable
names, with their descriptions given on a second row immediately below the variable
names.

3. The �rst column of the �le must contain dates or, if undated, the observation numbers.

Note that the separator for the values/observations for each row in the above �les can
be a comma, a tab, or spaces.

3.2.7 Inputting data from AREMOS (TSD) �les

Files created by the AREMOS package are in the time series data (TSD) format.
Note that only TSD �les containing data with the same frequency, namely annual, quar-

terly, monthly and daily observations, can be read into Micro�t.

3.2.8 Input new data from the clipboard into Micro�t

Data copied from a standard Windows spreadsheet package, such as Microsoft Excel, can be
pasted from the clipboard into Micro�t. There are two possibilities: You can paste new data
sets from the clipboard into an empty Micro�t workspace, or you could augment existing
data on Micro�t workspace with additional data from the clipboard. For the former choose
the option �Input New Data from Clipboard�from the File Menu. The information on the
clipboard may contain the variable names on the �rst row, the descriptions of the variables
in the second row, and dates (or observation numbers in the case of undated data) in the
�rst column. See Figure 3.2.
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Figure 3.2: Pasting data from the clipboard

When pasting daily data, the information on the clipboard must contain dates in the
�rst column.

Note: Micro�t sets the precision of data equal to the number of places after the decimal
point displayed in the Excel worksheet. It is always possible to switch back and forth to the
spreadsheet application in order to inspect or change the contents of the clipboard so that
the necessary information can be supplied to Micro�t.

Data are pasted into the Data window. Move to the Data window (click ) to check

that data have been correctly formatted. If you are satis�ed, click . If not, try to paste
data again.

3.2.9 Adding data from the clipboard into Micro�t workspace

Provided a data set is already loaded intoMicro�t, it is possible to copy data (typically copied
from Excel) into clipboard and then add the contents of the clipboard to an existing Micro�t
data set. For this you need to select option �Add Data from Clipboard to Workspace�. For
this option the �rst row of the data to be added must contain variable names. each variable
name can be followed by a space and an optional description. Alternatively, the second row
can contain the descriptions. The �rst column of the data on the clipboard must contain
valid dates recognized by Micro�t. The periodicity of the added data must match that of
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the data already loaded into Micro�t.
Note that this option is particularly useful for adding daily data. You can also use this

option to load a new data set from clipboard into Micro�t. In this case �rst create a data set
using the �Input New Data from the Keyboard�from the File Menu and specify the number
of variables to be zero. You can then use this option to add data of the same frequency
which has been copied to the clipboard.

3.2.10 Inputting daily data

One important advance of Micro�t 5.0 over earlier versions of the package is that it can
handle daily observations.

You can only load daily data from a Micro�t special �le or from an Excel �le.
The �rst column of your data must contain dates, which can be expressed either in

European or in US format. Acceptable examples of dates in European dd/mm/yyyy format
are

30/5/05, 30-7-01, 02-May-99

while examples of US dates are

3/14/01, 01/25/2005

When Micro�t is installed it automatically detects the Windows regional settings of your
computer, and sets the appropriate date format as the default. To change the default date
format in Micro�t, go to the Options Menu and choose �European/US date format�. Then
select the preferred date format (either �European date format�or �US date format�) and
click .

Once the appropriate date format is selected, you can load in your data by selecting your
data �le (see Sections 3.2.2 for a description of how to load an existing data set). Once the
program has successfully read the data, it creates three new columns containing for each
observation the corresponding information on the day, month and year. If your data contain
more than 6,000 observations per variable you need to increase the maximum number of
observations after selecting the option �Change Data Dimensions�under File Menu. Make
sure to tick the box �Save as Defaults�to ensure a permanent change in the data dimensions
of Micro�t on your PC.

Note: There is no need to change the date format when data are saved in special Micro�t
�les. Dates contained in special Micro�t �les are automatically converted to the European
format, regardless of the settings of your computer.

3.3 Adding two data �les

You can add two Micro�t �les containing the same variables, or add the variables from one
Micro�t �le to another.

To add two �les containing the same variables, select the �Add 2 Special Micro�t Files�
option from the File Menu. Choose the �rst �le, click OK, and then choose the second
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�le from the Open dialogue. If the �les contain the same variables, data frequency, or any
number of undated observations, data are combined. The program appends the observations
from the second data set to those of the �rst data set and, when observations can be ordered,
sorts them.

To add two �les containing di¤erent variables but the same data frequency, load the �rst
�le into Micro�t in the usual way. Then select �Add a Special Micro�t File to Workspace�
from the File Menu, and choose the �le you want to add to your existing �le from the Open
dialogue.

If the data are incompatible, a warning message is displayed.

3.3.1 Adding two special Micro�t �les containing the same variables

Adding two data �les containing di¤erent observations on the same variables is particularly
useful for extension and/or revision of data in either direction (backward or forward), and for
stacking of undated (cross-sectional) data. In the case of �les containing dated and overlap-
ping observations the second �le that you specify should contain the most recent information.
The content of the �rst �le which overlaps with the second �le will be overwritten.

As an example suppose you have a special Micro�t �le (say, SET1.FIT) which contains
annual observations for the period 1970-1978 on the variables, C, S, and Y .

Obs C S Y
1970 57814.0 0.0908 63585.0
1971 59724.0 0.0747 64544.0
1972 63270.0 0.0989 70214.0
1973 66332.0 0.1163 75059.0
1974 65049.0 0.1215 74049.0
1975 60000.0 0.1429 70000.0
1976 60000.0 0.1429 70000.0
1977 60000.0 0.1429 70000.0
1978 60000.0 0.1429 70000.0

Consider now a second special Micro�t �le called SET2.FIT which contains revised and
updated observations on the same variables C, S, and Y over the period 1975 to 1980.

Obs C Y S
1975 64652.0 74005.0 0.1264
1976 64707.0 73437.0 0.1189
1977 64517.0 72288.0 0.1075
1978 68227.0 78259.0 0.1282
1979 71599.0 83666.0 0.1442
1980 17550.0 84771.0 0.1560

Using the �Add 2 Special Micro�t �les�option from the File Menu, and choosing SET1.FIT
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as �rst �le and SET2.FIT as second �le creates the following �combined�data set:

Obs. C Y S
1970 57814.0 63585.0 0.0908
1971 59724.0 64544.0 0.0747
1972 63270.0 70214.0 0.0989
1973 66332.0 75059.0 0.1163
1974 65049.0 74049.0 0.1215
1975 64652.0 74005.0 0.1264
1976 64707.0 73437.0 0.1189
1977 64517.0 72288.0 0.1075
1978 68227.0 78259.0 0.1282
1979 71599.0 83666.0 0.1442
1980 71550.0 84771.0 0.1560

Notice that the observations for the period 1975-1978 in the �rst �le (SET1.FIT) which over-
lap with the observations in the second �le (SET2.FIT) are overwritten by the corresponding
observations in the second �le. Also note that the order of variables in the combined data set
is the same as that of the second �le. Remember to save the combined data set as a special
Micro�t �le!

In the case of data �les with non-overlapping observations, the data gaps (if any) will be
shown by a blank �eld, indicating missing observations. For example, combining the �les

First File
Obs X1 X2
1960 2.0 10.0
1961 3.0 20.0
1962 4.0 30.0

Second File
Obs X1 X2
1965 10.0 25.0
1966 20.0 35.0
1967 22.0 45.0

produces the combined data set

Obs X1 X2
1960 2.0 10.0
1961 3.0 20.0
1962 4.0 30.0
1963
1964
1965 10.0 25.0
1966 20.0 35.0
1967 22.0 45.0

You can optionally �ll in the missing values in the Process window by means of the
commands FILL_MISSING and FILL_FORWARD. See Chapter 4 on how to use these
and other commands. In the case of data �les containing undated observations (cross-
sectional data), the use of this option has the e¤ect of stacking the observations in the
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two special Micro�t �les. This facility is particularly useful for pooling cross-section and
time series data. For example, combining the following two special Micro�t �les containing
undated observations

First File
Obs PU PS
1 3.0 66.0
2 3.0 66.0
3 9.0 62.0
4 9.0 64.0

Second File
Obs PU PS
1 16.0 71.0
2 25.0 64.0
3 24.0 64.0
4 22.0 64.0
5 12.0 70.0
6 13.0 66.0

results in the data set which appends the observations in the second �le at the end of the
observations in the �rst �le.

Only Micro�t �les with the same data frequencies can be combined. For example, a data
set containing annual observations cannot be combined with a data set containing quarterly
or monthly observations.

3.3.2 Adding two special Micro�t �les containing di¤erent variables

Combining two �les containing di¤erent variables but the same data frequency allows you
to add new variables to your current data set. The new variables should already have been
stored in a special Micro�t �le.

When using this option the following points are worth bearing in mind:

1. The current data set and the special Micro�t �le to be added to it should have the
same data frequencies, otherwise an error message will be displayed

2. The current data set and the special Micro�t �le need not cover the same time period

As an example, suppose your current data set contains

Obs X Y
1960 34.0000 76.0000
1961 25.0000 84.0000
1962 76.0000 90.0000

and you have a special Micro�t �le containing variables A and B over the period 1959 to
1963. The special Micro�t �le to be added to the current data set contains

Obs A B
1959 20.0000 72.0000
1960 40.0000 98.0000
1961 50.0000 76.0000
1962 30.0000 45.0000
1963 56.0000 87.0000
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If you now add the �les the above special Micro�t �le is added to your current data set, and
your new current data set is

Obs X Y A B
1959 20.0000 72.0000
1960 34.0000 76.0000 40.0000 98.0000
1961 25.0000 84.0000 50.0000 76.0000
1962 76.0000 90.0000 30.0000 45.0000
1963 56.0000 87.0000

Note: If you wish to add variables to your data set from the keyboard, you should use
the ADD command followed by the name of the variable in the Process window and then
press to add the variable name to the workspace. Once the new variable is added to

the workspace use the button to input values for the new variable just added to the
workspace.

3.4 Using the Commands and Data Transformations box

At various stages during the processing of your data you will need to enter text into an
on-screen editor box, such as the Commands and Data Transformation box. Text can be
edited in the usual way, using the Cut, Paste, and Copy options in the Edit Menu.

To scroll through the contents of the current editor, use the mouse or the cursor keys.
To scroll up or down a screen page, press PgUp or PgDn. To scroll to the top or bottom of
the editor text, press Ctrl+Home, or Ctrl+End.

When you have �nished using the current editor, click the button. You can change

the font of the text displayed in the box editors using the button. To clear a box

editor completely, click .

3.5 Saving data

You can save your current data set (the data in the Micro�t workspace), in several di¤erent
formats: in an ASCII (text) format, in a specialMicro�t format for use in subsequentMicro�t
sessions, in a comma delimited (CSV) �le, in an AREMOS �le or in an Excel format.

To save your current data �le, click �Save as� from the File Menu and select in the
sub-menu the type of �le in which you want to save your data.

A �Save as�dialogue appears, choose the drive and the directory in which you want to
save the data, and type in a �lename in the usual way. Click .

3.5.1 Save as a special Micro�t �le

You can save your data in a specialMicro�t �le, for use in subsequent sessions. In addition to
data, special Micro�t �les also contain other important information, namely data frequency,
time periods, and variable names and their description (if any).
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Notes

1. If you specify a �le that already exists, you will be prompted to con�rm that you wish
to overwrite it.

2. Micro�t automatically a¢ xes the �le extension .FIT to �les saved as special Micro�t
�les. An alternative cannot be used.

3. Special Micro�t �les saved using the earlier version of Micro�t (versions 4.0 and lower)
can still be used in Micro�t 5.0. Special Micro�t �les created in this version of Micro�t
can be used in Micro�t 4.0 but not in earlier versions.

3.5.2 Save as an Excel sheet

You can save your data in Excel format. The Excel �le created by Micro�t 5.0 contains
in the �rst column the dates or the observation numbers, and in the �rst row the variable
names and their optional descriptions.

3.5.3 Save as a comma separated values (CSV) �le

This �le format is useful when you wish to export the data from a Micro�t workspace to
spreadsheet packages such as Microsoft Excel.

If you select the option �Comma Separated Values File�from the Save As Menu, Micro�t
saves data as a CSV �le. The CSV �le created byMicro�t 5.0 contains information in ASCII
(raw text) on data frequency (undated, yearly, quarterly, and so on), the variable names and
their optional descriptions given in the �rst row.

Alternatively, if you select the option �CSV File with Descriptions in 2nd Row�, data are
saved with the description of the variables given in the second row, immediately below the
variable names.

Micro�t 5.0 also allows you to save data as a CSV �le, excluding rows with missing
values. This is particularly useful when you want to estimate a regression model, but there
are missing values in the middle of the estimation period, since in this case Micro�t does not
carry out the estimation (see Chapter 11). You can create a new �le that excludes the rows
with missing values, by choosing the option �CSV, Descriptions in the 2nd Row, Excludes
Rows with Missing Values, Undated and Daily Data Only�. Note that this option is only
valid for undated and daily data.

After selecting the format in which you want to save your data, type in the �lename and
click OK. Micro�t automatically gives the �le an extension .CSV. An alternative extension
cannot be used.

Notes

1. The start and the �nish of the subset of observations to be saved should fall within the
speci�ed range (between the minimum and the maximum values).



CHAPTER 3. INPUTTING AND SAVING DATA FILES 37

2. A raw data �le does not contain any information on the frequency of your data, variable
names or their descriptions. It only contains numbers, or �raw�data.

3. When saving raw data �les Micro�t replaces missing data, namely a blank �eld, by
the number 8934567.0

3.5.4 Save as an AREMOS (TSD) �le

You can save data from Micro�t�s workspace as a Time Series Data (TSD) �le for export
into the AREMOS package. The �le extension .TSD is assigned by default. An alternative
extension cannot be used.

3.5.5 Save as a raw data (numbers only) �le

You can save your data in an ASCII (text) �le for the purpose of exporting it to other
programs or computers that are not capable of reading CSV �les (see Section 3.5.3). If you
choose this option you are asked to type the start and �nish of the subset of observations to
be saved, whether you want to save your data variable by variable or by observations, and
whether you want to save your data in �xed of free format.

Notes

1. The start and the �nish of the subset of observations to be saved should fall within the
speci�ed range (between the minimum and the maximum values).

2. Micro�t will automatically a¢ x the extension .DAT to �les saved as raw data �les.

3. A raw data �le does not contain any information on the frequency of your data, variable
names or their descriptions. It only contains numbers, or �raw�data.

4. When saving raw data �les Micro�t replaces missing data, namely a blank �eld, by
the number 8934567.0

3.6 Starting with a new data set

Suppose you wish to abandon your current data set and start with a new data set without
exiting Micro�t. To enter your data from keyboard, choose �Input New Data from the
Keyboard�from the File Menu. To open an existing �le, choose �Open File�or �Open File
from Tutorials Data Files�from the File Menu.

Warning: Before starting with a new data set make sure that your current data set is
saved. To save your data, use the �Save as�option from the File Menu.



Chapter 4

Data Processing and Preliminary
Data Analysis

When your data has been successfully read in Micro�t, the program opens the Process
window. This is Micro�t�s gateway to data transformations and preliminary data analyses.
To return to the Process window if this is not displayed on screen, click the button.
Various buttons appear along the top and the base of the Process window.

The rectangular buttons across the top of the Process window are used to access other
parts of the application.

To view your variables, and edit their names and/or descriptions, click the button.

To return to the Data window to edit your data, click the button.

To access the Single Equation Estimation window, click the button. The Single
Equation Estimation options can also be accessed directly using the Univariate Menu on the
main menu bar (for more information on these estimation options see Chapter 6).

To access the System Estimation window, click the button. The System Estima-
tion functions can also be accessed directly using the Multivariate Menu on the main menu
bar (for more information on these estimation options see Chapter 7).

To access the Volatility Modelling window, click the button. These functions can

also be accessed directly using the Volatility Modelling Menu on the main menu bar (for
more information on these estimation options see Chapter 8).

The buttons along the base of the screen, on the right, allow you to create constants,
time trends, and seasonal dummies. These functions can also be accessed via the Edit Menu;
they are described in Section 4.1.

The Process window is divided into two panes the Variables box, which lists the variable
names in the workspace, and the Commands and Data Transformations box, where you enter
your commands. You can move up, down and side ways in these boxes by using the PgUp
and PgDn and the cursor keys "!# .

You can type formulae and commands directly in the Commands and Data Transforma-
tions box (see Section 4.2). The di¤erent formulae need to be separated by semicolons (;).
You can see lists of available functions and commands using the drop-down lists above the

38
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Figure 4.1: The Process window

Process window. Click on the appropriate box to view its list. To select a function or a
command, click on it in the list. Functions and Commands are discussed in Sections 4.3 and
4.4.

4.1 Creating constant terms, time trends and seasonal dum-
mies

The buttons along the base of the Process window allow you to create constants, time trends,
and seasonal dummies. Equivalent options are found in the Edit Menu. These options enable
you to create a constant (or an intercept) term, a linear time trend, or seasonal dummies
with the frequency of your choice, for use with quarterly or monthly observations.
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Click here to create a constant.

To create a time trend, use this button.

Click this button to create (0,1) seasonal dummies.

Creates centred seasonal dummies.

Creates seasonal dummies relative to the last period.

4.1.1 Creating a constant (intercept) term

To create a constant (intercept) term click the button or choose Constant (intercept)

term from the Edit Menu. Micro�t creates a constant term (a variable with all its elements
equal to unity) and asks you to supply a name for it.

4.1.2 Creating a time trend

If you click or choose �Time trend�from the Edit Menu, Micro�t creates a time trend
and asks you to supply a name for it. The time trend variable begins with the value of 1 at
the start of the sample and increases in steps of 1.

4.1.3 Creating (0,1) seasonal dummies

To create traditional seasonal dummies, click the button or choose �Seasonal dummies

(0,1)� from the Edit Menu. Each seasonal dummy created will have the value of unity in
the season under consideration and zeros elsewhere. In the case of quarterly observations,
seasonal dummies created by this option will be

Obs. S1 S2 S3 S4
80q1 1 0 0 0
80q2 0 1 0 0
80q3 0 0 1 0
80q4 0 0 0 1
81q1 1 0 0 0
81q2 0 1 0 0
81q3 0 0 1 0
81q4 0 0 0 1

When you choose this option, you will be asked to specify the periodicity of your seasonal
variables. When your data are undated, or are ordered annually, you can choose any peri-
odicity. But for other data frequencies the program automatically creates seasonal dummies
with periodicity equal to the frequency of your data, and presents you with a screen editor
containing default names for the seasonal dummies. For example, for half-yearly data the
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periodicity will be 2 and the default variable names S1 and S2; for quarterly data the pe-
riodicity will be 4 and the default variable names S1; S2; S3, and S4; and for monthly data
the periodicity will be 12, and the default variable names, S1; S2; :::; S12.

In the case of daily data you will be asked to specify the periodicity of your seasonal
variables.

Notice that in each case the sum of the seasonal dummies will add up to unity, and
their inclusion in a regression equation containing an intercept (constant) term will cause
regressors to be perfectly multicollinear. To avoid this problem one of the seasonal dummies
can be dropped, or use the seasonal dummies created using the button (see Section

4.1.5).

4.1.4 Creating centred seasonal dummies

Clicking the button, or choosing the �Seasonal Dummy, Centred�option from the Edit
Menu, generates seasonal dummies centred at zero. For example, in the case of quarterly
observations the centred seasonal dummies will be

Obs. SC1 SC2 SC3 SC4
80q1 0.75 -0.25 -0.25 -0.25
80q2 -0.25 0.75 -0.25 -0.25
80q3 -0.25 -0.25 0.75 -0.25
80q4 -0.25 -0.25 -0.25 0.75
81q1 0.75 -0.25 -0.25 -0.25
81q2 -0.25 0.75 -0.25 -0.25
81q3 -0.25 -0.25 0.75 -0.25
81q4 -0.25 -0.25 -0.25 0.75

When you choose this option you will be presented with a screen editor containing the default
names SC1, SC2, and so on. Click to accept or edit the default variable names and

then click .

4.1.5 Creating seasonal dummies relative to the last season

Clicking the button, or choosing �Seasonal Dummies Relative to Last Season�from the
Edit Menu, creates seasonal dummies relative to the last season, which are transformations
of (0; 1) seasonal dummies. For example, in the case of quarterly observations it generates
the following seasonal dummies

SR1 = S1� S4
SR2 = S2� S4
SR3 = S3� S4

where S1; S2; S3; S4 are the (0,1) dummies, created using the button. These relative

seasonal dummies can be included along with an intercept (constant) term in a regres-
sion equation, and their coe¢ cients provide estimates of the �rst three seasonal e¤ects (say



CHAPTER 4. DATA PROCESSING AND PRELIMINARY DATA ANALYSIS 42

�1; �2;and �3). The e¤ect of the last season can be computed as �(�1 + �2 + �3). This
procedure restricts the sum of the seasonal e¤ects to be zero. A similar logic also applies to
monthly or half-yearly observations. For monthly observations, 11 relative seasonal dummies
de�ned as SR1 = S1 � S12; SR2 = S2 � S12; :::. will be created. Once again S1; S2; :::
are (0,1) monthly seasonal dummies, which can be created using, for example, the

button (see Section 4.1.3).

4.2 Typing formulae in Micro�t

The Process window is automatically displayed when a data set is opened. To return to the
Process window from another part of the application, click the button. One or more
formulae or commands can be typed in the Commands and Data Transformations box. The
di¤erent formulae need to be separated by semi-colons (;).

When entering information in the Commands and Data Transformations box you can
quickly add one or more variables by highlighting their names and dragging them from the
Variables box into the editor while holding down the mouse button.

The formula can be as complicated as you wish and, with the help of nested parentheses,
you can carry out complicated transformations on one line, using standard arithmetic oper-
ators such as +; �; =; �; and a wide range of built-in functions. For example, to create a
new variable (say, XLOG) which is the logarithm of an existing variable (say, X) you need
to type

XLOG = LOG(X)

in the Functions box. You can then execute the formula by clicking the button. This
operation places the natural logarithm of X in XLOG. The program will show the extra
variable (XLOG) in the list of variables. The program adds the extra variable (XLOG) to the
list of variables in the Variables box shown above the Commands and Data Transformations
box, if there is enough space. Otherwise you need to move to the Variables box and use
the cursor keys or the PgUp and PgDn keys to see all your variables. To view the values
for XLOG, click the button. Scroll through the data to �nd the new variable if
necessary.

In this version of Micro�t it is also possible to enter two or more formulae/commands in
the Functions box before carrying out the operations. Suppose you have annual observations
on US output over the period 1950-1994, but you wish to compute the percentage rate of
change of the variable USGDP , and compute its mean and standard deviations over the
period 1970 to 1990. You need to type the following operations in the Functions box:

G = 100 � (USGNP � USGNP (�1))=USGNP (�1);
SAMPLE 1970 1985; COR G

and then press the button to carry out the required operations. Notice that mistakes
can be readily corrected at little cost. Micro�t does not automatically clear the Functions
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box and so you can edit any mistakes that you �nd without having to type all the formulae
or commands. Also you can save the content of the Commands and Data Transformations
box in a �le for later use by clicking the button, at the base of the screen.

The following points are worth bearing in mind when entering formulae/command:

1. The upper- and lower-case letters are equivalent. So, the above operation could be put
into e¤ect by typing

XLOG = LOG(X)

2. The new variable XLOG is added to the list of the variables in the workspace, but
needs to be saved as a special Micro�t �le if you wish to use it in subsequent sessions
(see Section 3.5.1 on how to save a �le as a special Micro�t �le).

3. If one or more observations of X are negative the program still creates the new variable
XLOG but enters the missing value indicated by a blank �eld for negative observations.

4. If you attempt to take the logarithm of a non-existent variable you will see the error
message

Error in formula or command or �;�missing

Examples of other data transformation are as follows:

Y = 2 �X + (Z=3)� 5

This creates a new variable called Y which is equal to twice X plus a third of Z minus 5.
An error message is generated if X and/or Z do not exist.

Y = X^3:25

This raises X to the power 3.25 and places the result in Y (on some keyboards the symbol
" is used in place of ^).

X1 = X(�1)

This generates �rst-order lagged values of X and places the results in the variable X1. The
initial value, if unde�ned, will be set to blank, i.e. missing. For higher-order lagged values
of X, you need to specify the order in parenthesis. For example, to create third-order lagged
values of X in X3, you should type

X3 = X(�3)

It is also possible to generate lead values of a variable of any arbitrary order. For example,

XF2 = X(+2)

creates the second-order lead of X and places the results in variable XF2. In this example
the unde�ned �nal two observations of XF2 will be set to blank.
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INPT = 1

This creates an intercept (or a constant) term called INPT with all its elements equal to 1.
You can also create linear or quadratic time trends in the Process window. Suppose you

have a set of monthly observations over the period 1965(1)-1995(12), and you wish to create
a linear trend variable, say T , starting with the value of 1 in January 1974. Type

SAMPLE 1974m1 1995m12; T = CSUM(1)

The variable T now contains the values of 1; 2; 3; ::: for the months 74m1, 74m2, 74m3, and
so on. The values in T for the months prior to 1974 will be set to blank, unless you specify
otherwise. CSUM(�) is the �cumulative sum function�described below in Section 4.3.4.

4.2.1 Printing, saving, viewing, and copying �les

You can save the content of the Commands and Data Transformations box in a �le for later
use by clicking the button. Such a �le will be saved with the extension .EQU or

.LST. To load a �le saved previously, click the . You are presented with an Open �le
dialogue displaying the �les with the extensions .EQU and .LST. Choose the location and the
name of the �le in the usual way. To view, copy, or save the contents of a saved �le (without
loading it into the editor) choose the �View a File�option from the File Menu. Choose the
�le you want from the dialogue in the usual way. It is displayed in the File View window.

You can copy text from the File View window to the clipboard or to a new �le of the
same type. First, highlight the text you want to copy. To save it to a �le, click the
button and specify a name and a location for your saved �le. To copy it to the clipboard,
click the button.

To edit the font of the text displayed in the window, click the button. A standard

windows font dialogue is displayed. Make your choices in the usual way and click .

4.3 Using built-in functions in Micro�t

Standard mathematical functions, namely LOG (logarithm function), EXP (exponential
function), COS (cosine function), SIN (sine function), SQRT (square roots operator), and
ABS (absolute value operator) can also be used in a formula.

In addition to the above standard functions, several other functions can also be used in a
formula. A brief description of these functions is given in Sections 4.3.1 to 4.3.30. For a list
of available functions, click the Functions �eld above the Process window and scroll through
the drop-down list. To copy a function from the list to the Functions box in the Process
window, click on it.
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4.3.1 Function ABS

Absolute value function. For example,

Y = 2 + 3 �ABS(X)

4.3.2 Function COS

The cosine function. Example:

Y = 2 + 3:5 �COS(5 + 2 �X)

4.3.3 Function CPHI

This is the cumulative standard normal function so that CPHI(X) represents the integral
between minus in�nity to X of the standard normal distribution. For examples,

Y = CPHI(0:0)

returns the value of 0.5 for Y,

Y = CPHI(W + 2 � (Z1=Z2))

�rst computes the expression inside the brackets, and then returns the values of the integral
of the standard normal distribution from minus in�nity to W + 2 � (Z1=Z2).

4.3.4 Function CSUM

This function, when applied to a variable X, calculates the cumulative sum of X. For
example, if X = (6; 2;�1; 3; 1), then typing the formula

Y = CSUM(X)

will result in Y = (6; 8; 7; 10; 11):
The argument X can itself be a function of other variables as in the following example:

Y = CSUM((z � (SUM(z)=SUM(1))2)

Here SUM(�) is the function SUM described below. See Section 4.3.29.
Warning: Before using this command you need to make sure that there are no missing

values in the variable X.

4.3.5 Function EXP

This function takes the exponential of the expression that follows in the brackets. For
example,

Y = 2 + 3:4 �EXP(1:5 + 4:4 �X)

The general form of EXP(�) is given by

EXP(x) = 1 + x+ x2=2! + x3=3! + ::::
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4.3.6 Function GDL

This is the geometric distributed lag function and has the form

Y = GDL(X;�)

It computes Y as
SIM Y = � � Y (�1) +X

over the sample in which it is in e¤ect. � is the parameter of the distributed lag function,
and SIM is the SIM command (see Section 4.4.25). The initial value is set equal to the
value of X at the start of the selected sample period. For example, suppose you wish to
compute geometric distributed lag of X over the period 1950-1980, with � = 0:8, you need
to type

SAMPLE 1950 1980; Y = GDL(X; 0:8)

The value of Y in 1950 will be set equal to the value of X in 1950.
Warning: Before using this command you need to make sure that there are no missing

values in the variable X.

4.3.7 Function HPF

This function has the form
Y = HPF(X;�)

and runs the variable X through a Hodrick-Prescott (HP) �lter using the parameter �. In
this function X is a vector, and � is a non-negative scalar (a vector with all its elements equal
to � � 0). This �lter is used extensively in the real business cycle literature as a de-trending
procedure (see Hodrick and Prescott 1997)

The choice of � depends on the frequency of the time series, X. For quarterly observations
Hodrick and Prescott set � = 1; 600. The argument X could also be speci�ed to be a function
of other variables in the variable list. Harvey and Jaeger (1993) show that for � = 1; 600 the
transfer function for the HP �lter peaks around 30:14 quarters (approximately 7.5 years).
This suggests using the value of � = 7 for annual observations, and � = 126; 400 for monthly
observations.1 But, in general, the optimal choice of � will depend on the particular time
series under consideration.

For example, suppose USGNP contains quarterly observations on US aggregate output.
The trend series (in logarithms) are given by

Y T = HPF(LOG(USGNP ); 1600)

To compute the �ltered, or de-trended, series you need to type

Y D = LOG(USGNP )� Y T

1We are grateful to Micheal Binder for the estimates of � in the case of annual and monthly observations.
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4.3.8 Function INVNORM

This function computes the inverse of the cumulative standard normal distribution, so that
for a given probability p, Y =INVNORM(p) computes Y such that the area under the
standard normal curve between minus in�nity to Y is equal to p:

Y = INVNORM(0:975)

In this example, Y will be set to 1:9600, the 95 per cent critical value of the standard normal
distribution. Note that 0 < p < 1.

4.3.9 Function LOG

The function takes logarithm to the base e (natural logarithm) of the expression that follows
in brackets. For example

Y = 2:4 + 3:5 � LOG(X + 3)

For negative or zero values of X, this function returns missing values.

4.3.10 Function MAX

This function has the form
Y =MAX(X;Z)

and places the maximum of X and Z in Y . For example, if X = (1; 7; 2; 3; 6) and Z =
(6; 2;�1; 3; 1), then Y will be set to (6; 7; 2; 3; 6).

4.3.11 Function MAV

This function has the form
Y =MAV(X; p)

and places the pth order moving-average of the variable X in Y , namely

Yt =
1

p
(Xt +Xt�1 + :::+Xt�p+1)

Variable X could be any of the variables on the workspace or a function of them. If p is not
an integer Micro�t chooses the nearest integer to p in order to carry out its computations.
If p is negative this function returns a missing value (a blank �eld).

4.3.12 Function MEAN

This function, when applied to a variable X, calculates the mean of X over the speci�ed
sample period. For example,

SAMPLE 1970 1995; Y = (X �MEAN(X))
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generates deviations of variableX from its mean computed over the sample period 1970-1995,
inclusive.

Note that the value of MEAN(X) will be set to missing if one or more values of X are
missing over the speci�ed sample period.

4.3.13 Function MIN

This function has the form

Y =MIN(X;Z)

and places the minimum of X and Z in Y . The arguments X and Z themselves could be
functions of other variables, as in the following example:

y =MIN((G1=G2) + 1; (H1=H2)� 1)

4.3.14 Function NORMAL

This function can be used to generate independent standardized normal variates (i.e. with
zero means and unit variances). The function should be used in the form of NORMAL(j)
within a formula, where j represents the �seed� for the quasi-random numbers generated,
and it must be an integer in the range 0 < j < 32000. By changing the value of j, di¤erent
quasi-random number series can be generated. Examples of the use of this function are:

X = NORMAL(1); Y = 2 + 3:5 �NORMAL(124) + Z

Warning : The function UNIFORM and NORMAL must not be used in SIM or
SIMB commands!

4.3.15 Function ORDER

This function has the form

Y = ORDER(X;Z)

and orders X according to the sorting implied by Z, where Z is sorted in an ascending order.
The results is placed in Y . For example, if X = (1; 7; 2; 3; 6) and Z = (6; 2;�1; 3; 1), then Y
will be set to (2; 6; 7; 3; 1).

Clearly, as in the case of other functions, the arguments of the function, namely X and
Z, could themselves be functions of other variables.

4.3.16 Function PHI

This function gives the ordinates of the standard normal distribution for the expression that
follows in brackets. For example,

Y = 0:5 � (1=PHI(0)) ^2
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Y = PHI(1)

Z = PHI(1 + 0:5 �W )

The general formula for the PHI function is given by

PHI(X) = ((2 � �)^(�0:5)) �EXP(�0:5 �X^2)

where EXP is the exponential function (see Section 4.3.5), and �=3.14159.

4.3.17 Function PTTEST

This function has the form

T = PTTEST(Y;X)

and returns the Pesaran and Timmermann (1992) statistic for a non-parametric test of
association between the variables Y and X. Under the null hypothesis that X and Y are
distributed independently, PTTEST(X;Y ) has a standard normal distribution in large
samples. For example, for a two-sided test, the hypothesis that Y and X are statistically
independent will be rejected if PTTEST is larger than 1.96 in absolute value.

4.3.18 Function RANK

This function, when applied to a variable X, gives the ranks associated with the elements of
X, when X is sorted in an ascending order. For example, if X = (6; 2;�1; 3; 1) then typing
the formula

Y = RANK(X)

will give Y = (5; 3; 1; 4; 2).

4.3.19 Function RATE

This function has the form
PIZ = RATE(Z)

It computes the percentage rate of change of Z and places the result in PIZ. More speci�-
cally, PIZ will be computed as

PIZ = 100 � (Z � Z(�1))=Z(�1)

with its initial value set to blank.
An alternative approximate method of computing rate of change in a variable would be

to use changes in logarithms, namely

PIZX = 100 � (LOG(Z=Z(�1))
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It is easily seen that both approximations are reasonably close to one another for values of
PIZ and PIZX around 20 per cent or less.

The argument of this function, namely Z, can itself be a function of other variables, as
in the following example

Y = RATE(W + U=V )

4.3.20 Function REC_MAX

This function, when applied to a variable X, returns for each observation j the maximum
value of X over the interval that goes from the start of the sample to the jth observation.
For example, if X = (2; 1; 3; 0; 4), then typing

Y = REC_MAX(X)

will return Y = (2; 2; 3; 3; 4).
Warning: Before using this command you need to make sure that there are no missing

values in the variable X.

4.3.21 Function REC_MIN

This function, applied to a variable X, returns for each observation j the minimum value
of X over the interval from the start of the sample to the jth observation. If, for example,
X = (2; 1; 3; 0; 4), then typing

Y = REC_MIN(X)

will set Y = (2; 1; 1; 0; 0).
Warning: Before using this command you need to make sure that there are no missing

values in the variable X.

4.3.22 Function ROLL_MAX

This function has the form

Y = ROLL_MAX(X;h)

where h is the window length. It returns the maximum value of X over successive rolling
periods of a �xed length. For each observation j, this function computes the maximum value
of X over the interval that goes from the (j � h)th to the jth observation. The �rst h � 1
observations are set to missing. If for example X = (2; 1; 3; 0; 4; 3), then

Y = ROLL_MAX(X; 2)

will set Y = ( ; 2; 3; 3; 4; 4).
Warning: Before using this command you need to make sure that there are no missing

values in the variable X.
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4.3.23 Function ROLL_MIN

This function takes the form

Y = ROLL_MIN(X;h)

It returns, for each observation j, the minimum value of X over the sample from the (j � h)th
to the jth observation, with the �rst h � 1 observations set to missing. If, for example,
X = (2; 1; 3; 0; 4; 3), then

Y = ROLL_MIN(X; 2)

will set Y = ( ; 1; 1; 0; 0; 3).
Warning: Before using this command you need to make sure that there are no missing

values in the variable X.

4.3.24 Function SIGN

This function, when applied to a variable X, returns the value of 1 when X is positive and
0 when X is zero or negative. For example, if X = (3;�4; 2; 0; 1:5), then typing

Y = SIGN(X)

will return Y = (1; 0; 1; 0; 1). Another example is

Y = SIGN(X � 2)

which will return Y = (1; 0; 0; 0; 0):

4.3.25 Function SIN

This function takes sine of the expression that follows in the brackets. For example,

Y = 2 + 3 � SIN(5 + 7 �X)

4.3.26 Function SORT

This function, when applied to a variable X, will sort X in an ascending order. For example,
if X = (6; 2;�1; 3; 1) then typing

Y = SORT(X)

will set Y = (�1; 1; 2; 3; 6), while

Z = �SORT(�X)

will sort X in descending order in Z so that Z = (6; 3; 2; 1;�1):
In the example

Y = SORT(2 + w=z)

the expression 2+w=z will be �rst computed, and the resultant expression will be sorted in
Y as above.
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4.3.27 Function SQRT

This function takes the square-root of the expression that follows in brackets. For example:

Y = 3 + 5 � SQRT(X)

For negative values of X, this function returns the missing values.

4.3.28 Function STD

This function, when applied to a variable X, calculates the standard deviation of X over the
speci�ed sample period. For example,

SAMPLE 1970 1995;
Z = (X �MEAN(X))=STD(X)

places the standardized values of X over the period 1970-1995 (inclusive) in the variable Z.
Warning: The value ofSTD(X) will be set to missing (blank) if one or more values of

X are missing over the speci�ed sample period.

4.3.29 Function SUM

This function �rst calculates the expression speci�ed within closed brackets immediately
following it, and then computes the sum of the elements of the result over the relevant
sample period. Examples of the use of this function are:

SAMPLE 1960 1970; XBAR = SUM(X)=SUM(1);
XD = X �XBAR; Y BAR = SUM(Y )=SUM(1); Y D = Y � Y BAR;
BYX = SUM(XD � Y D)=SUM(XD �XD)

In the above examples, SUM(X) is a vector with all its elements equal to the sum of the
elements of X over the period 1960-70. SUM(1) is equal to the number of observations
in the sample period (namely, 11). XBAR is, therefore, equal to the arithmetic mean of
X, computed over the speci�ed sample period. XD and Y D are deviations of X and Y
from their respective means and BYX is the ordinary least squares (OLS) estimates of the
coe¢ cients of X in the regression of Y on X (including an intercept term).

4.3.30 Function UNIFORM

This function can be used to generate independent random numbers from a uniform distrib-
ution within the range 0 and 1. The function should be used in the form of UNIFORM(j)
within a formula, where j represents the �seed� for the quasi-random numbers generated,
and must be an integer in the range 0 < j < 32000. By changing the value of j, di¤erent
quasi-random number series can be generated.

Examples of the use of this function are:
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X = UNIFORM(1)

Y = 2 + 3:5 �UNIFORM(124) + Z

Warning : The functions UNIFORM and NORMAL must not be used in SIM or
SIMB commands!

4.4 Using commands in Micro�t

For a list of available commands, click the Commands �eld above the Process window and
scroll through the drop-down list. To select a command from the list and copy it to the
Functions box, click on it.

4.4.1 Command ADD

This command enables you to add a new variable to the list in the Variables box. The form
of this command is

ADD XNEW

where XNEW is the name of the new variable.
The variable is added to the variables list, and a new empty column appears on the

extreme right-hand side of the Data window. To add a description to your variable, click
to move to the Variables window and type in your description. To insert the values

for your variable, click the button to move to the Data window, then click on each
of the relevant cells in turn and type in the value you want.

Note that this command allows you to add one new variable at a time. If you want to
add the variables from an existing Micro�t �le to your current data set, you should use the
�Add�option from the File Menu instead.

Remember to save the data set with the added variable(s) as a special Micro�t �le if you
wish to use it in subsequent Micro�t sessions.

4.4.2 Command ADF

This command, when followed by a variable name, displays the Dickey-Fuller (DF ) and the
augmented Dickey-Fuller (ADF ) statistic for testing the unit root hypothesis together with
the associated critical values. See Dickey and Fuller (1979), and Lesson 12.1.

For example,
SAMPLE 75Q1 87Q1; ADF X

computes the DF and the ADF test statistics of up to order 4 (the periodicity of the data)
for the variable X, and displays the statistics together with their 95 per cent critical values
on screen for the following models:
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Case I: No intercept and no trends. The ADF test statistic is computed as the t-ratio of
� in the ADF (p) regression

�Xt = �Xt�1 +

pX
i=1

i�Xt�i + ut (4.1)

where �Xt = Xt �Xt�1, and p is the order of augmentation of the test.

Case II: With intercept but without a trend. The pth order ADF test statistic is given
by the t-ratio of � in the ADF (p) regression

�Xt = a0 + �Xt�1 +

pX
i=1

i�Xt�i + ut (4.2)

Case III: With an intercept and a linear time trend. The pth order ADF test statistic is
the t-ratio of � in the regression

�Xt = a0 + a1Tt + �Xt�1 +

pX
i=1

i�Xt�i + ut (4.3)

where Tt is a linear time trend.
Micro�t computes the ADF statistic for cases I, II and III, and also provides Akaike

information and Schwarz Bayesian criteria for selecting the order of augmentation in the
ADF tests. The 95 per cent critical values for the test computed using the response surface
estimates given in (MacKinnon 1991, Table 1), are provided at the foot of the result tables
only for p = 0, for cases I and II.

Micro�t 5.0 also presents the possibility of computing simulated critical values for unit
roots tests by bootstrapping. Click on the rectangular button . You
will be presented with a window that allows you to set the number of replications, the
maximum number of observations used for simulating critical values, and the signi�cance
level. Check the �Simulate Critical Values�checkbox and click . The rectangular button
will turn green, indicating that, when running unit roots tests, the result table will display
a new column, CV , containing the simulated critical values of ADF tests for each order of
augmentation, for cases I, II and III.

Note that simulation of critical values could take a long time if your sample size is large
(for example, more than 400 units) and you use all observations in the simulation. To control
the computational time, reduce the maximum number of observations used for simulations
(for example, to 400).

The ADF command can also be used to compute the augmented Dickey-Fuller test
statistics, up to an order of augmentation speci�ed by the user. The desired order should be
speci�ed in parentheses immediately after the variable name. For example,

ADF X(12)
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gives the ADF test statistics for the variable X up to the order 12, assuming, of course, that
there are enough observations.

Finally, ADF tests can be applied to a series after controlling for a set of determinis-
tic/exogenous variables. This can be achieved by using the ADF command in combination
with &. For example

ADF Y & Z1 Z2

allows performing unit roots tests on residuals computed from a regression of Y on Z1 and
Z2. Notice that in this case Micro�t only reports ADF statistics and associated critical
values for Case 1, the no intercept and no trends case. Intercept and/or trends can be
included in the set of exogenous variables after &. Di¤erent orders of augmentation can also
be computed as before by issuing the command

ADF Y (4) & Z1 Z2

in the case of a 4th order ADF test. This option is particularly useful in testing for unit
roots in the presence of structural breaks. For example, to allow for an intercept shift at a
known point in time �rst construct a dummy variable, say DUM1, that takes the value of
zero before the break and unity after, and then issue the following command

ADF Y (4) & INPT DUM1

Also see Lessons 12.5 and 12.6.

Warning (sample selection for computation of ADF statistics): The actual sample period
used by the ADF command is based on the sample period speci�ed by the user and the lag
order, p, of the ADF test. If data on X is available over the sample 1 to 100 (inclusive)
and the sample is speci�ed by the user is from 20 to 100 and p = 2, ADF regressions are
run over the period 2 to 100 and observations 18 and 19 are used as initial values. But if
the selected sample is 1 to 100 (and no other data exists before the �rst observation), then
ADF regressions are run using observations 3 to 100, with X1 and X2 used as initial values.
The same also applies to the other ADF statistics set out below.

4.4.3 Command ADF_GLS

This command, applied to a variable X, takes the form

ADF_GLS X

It computes the GLS augmented Dickey-Fuller test statistic due to Elliott, Rothenberg, and
Stock (1996) of up to order p (the periodicity of the data) for testing the unit root hypothesis
for cases I, II and III. The 95 per cent critical values for the test have been computed by
Pantula, Gonzalez-Farias, and Fuller (1994) and by Elliott, Rothenberg, and Stock (1996),
and are given at the base of the Result Tables for cases II and III. If you choose the option
�Simulate Critical Values�, Micro�t also provides the simulated critical values for the test for
each order of augmentation (see Section 4.4.2).
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The ADF_GLS command can also be used to compute the GLS augmented Dickey-
Fuller test statistics up to an order of augmentation speci�ed by the user, putting the order
in parentheses immediately after the variable name, namely, by issuing the command

ADF_GLS X(p)

where p is the order of augmentation (p � 12).
This command cannot be used in conjunction with & to include additional variables when

carrying out the test. To control for breaks or other exogenous e¤ects when carrying out unit
root tests use the ADF, ADF_MAX or ADF_WS commands. Also see the discussion and
the warning regarding the sample period used for computation of ADF statistics in Section
4.4.2.

4.4.4 Command ADF_MAX

This command computes the Maximum Augmented Dickey-Fuller statistic for testing the
unit root hypothesis in models of type I to III. The test is due to Leybourne (1995), in which
further details can be found.

This test is given by the maximum between the usual ADF statistic and the ADF
statistic computed on the reverse time series, in a regression with an intercept and a time
trend. When applied to a variable X this command has the form

ADF_MAX X

Switch on the button Simulation of Critical Values for Unit Root Tests, to obtain the simu-
lated critical values for the test for an arbitrary signi�cance level (see Section 4.4.2).

The ADF_MAX command can also be used to compute the Maximum augmented
Dickey-Fuller test statistics up to an order of augmentation speci�ed by the user, putting
the order in parentheses immediately after the variable name. This command can also be
used in combination with & (see Section 4.4.2 for more information).

Examples of this command are

ADF_MAX X(p)

ADF_MAX X(p) & Z1 Z2

where p (p � 12) is the order of augmentation and Z1 and Z2 are deterministics such as
intercepts, time trends of dummy variables representing breaks in intercepts or the trend
coe¢ cients.

Also see the discussion and the warning regarding the sample period used for computation
of ADF statistics in Section 4.4.2.
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4.4.5 Command ADF_WS

This command computes the Weighted Symmetric ADF (WS-ADF ) statistic, for testing
the unit root hypothesis advanced by Park and Fuller (1995), in which further details can be
found. Critical values of the test statistic for a given level of signi�cance (to be selected by
the user) can be obtained via stochastic simulations. For this purpose the option �Simulate
Critical Values�need to be switched on. see also Section 4.4.2.

The ADF_WS command can also be used in combination with & to control for e¤ect
of a set of exogenous variables (see Section 4.4.2 for more information). It can also be used
to compute the weighted-symmetric augmented Dickey-Fuller test statistics up to an order
of augmentation speci�ed by the user, putting the order in parentheses immediately after
the variable name. Examples of this command are

ADF_WS X(p)

ADF_WS X(p) & Z1 Z2

where p (p � 12) is the order of augmentation and Z1 and Z2 are deterministics such as
intercepts, time trends of dummy variables representing breaks in intercepts or the trend
coe¢ cients.

Also see the discussion and the warning regarding the sample period used for computation
of ADF statistics in Section 4.4.2.

4.4.6 Command BATCH

This command has the form
BATCH

or
BATCH < filename >

If you enter the command BATCH on its own, the names of the batch �les in your default
directory will appear on the screen. Select the appropriate batch �le, and when prompted
press .

When the batch command is followed by a �le name the instructions in the �le will be
carried out on the variable in the workspace. A batch �le must have the extension .BAT as
a part of its name.

This command allows you to place a number of commands in a �le so that they are
subsequently obeyed in batch mode. The legitimate instructions can either be one or more
mathematical formulae and/or commands: SAMPLE, DELETE, KEEP, ENTITLE,
SIM, SIMB, REORDER, RESTORE, and $. When you use the command ENTITLE
in batch mode you need to enter the descriptions of the variables on separate lines in exactly
the same order that the variables are typed after the command. You can also write in
comments in your BATCH �le by starting your comments with the dollar sign, $. Anything
entered on the same line after the $ sign in the BATCH �le will be ignored.
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An example of a simple BATCH �le is given below:

$ Space for comments
SAMPLE 70M1 78M5
INPT = 1
Z = X + LOG(Y )
W = X � Y
SAMPLE 75M1 78M5
ENTITLE X Y
Consumption Expenditures
Labour Income
$ The end ofBATCH�le

Running this �le with the BATCH command creates variables INPT , Z, and W from the
data series X and Y , and assigns the title �Consumption Expenditures�and �Labour Income�
to the variables X and Y , respectively.

This is a useful command enabling you to carry out the same operations on di¤erent data
sets or on revisions of the same data set.

Notice that in Micro�t, the commands COR, LIST, SPECTRUM, HIST, PLOT,
XPLOT, SCATTER,ADD,ADF,EDIT, andTITLE cannot be included in the BATCH
�le.

4.4.7 Command CCA

This command enables you to perform a canonical correlation analysis on two sets of vari-
ables, controlling for a third set of variables. Suppose in your workspace you have T observa-
tions on three sets of variables named (Y 1; Y 2; :::;Y n); (X1; X2; :::; Xs) and (Z1; Z2; :::; Zg).
Then to obtain the canonical correlations and the associated canonical variates between Y
and X, controlling for Z, type

CCA Y 1 Y 2 :::: Y n & X1 X2 :::: Xs & Z1 Z2 ::: Zg

Micro�t reports the squared canonical correlations �21 � �22 � :::: � �2k � 0, with k =
min(n; s); and the canonical variates, uit and vit for t = 1; 2; :::; T and i = 1; 2; :::; k, for
the two sets of variables Y 1; Y 2; :::;Y n; and X1; X2; :::; Xs, once these have been �ltered
by the variables Z1 Z2 ::: Zg. The �ltering is carried out by running regressions of Y i
and Xi on Z1; Z2; :::; Zg and then using the residuals from these regressions to compute the
canonical correlations. Micro�t also reports the trace statistic for testing the independence
of the two sets of variables.

Under the null hypothesis of independence and certain regularity conditions, the trace
statistic is distributed as a chi-squared variate with (n� 1) (s� 1) degrees of freedom. See
Section 22.13 for further details on canonical correlation analysis and references to the liter-
ature. For tutorial lessons see 10.17 and 16.8.
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4.4.8 Command COR

This command has di¤erent e¤ects depending on whether it is followed by one variable or
more. When only one variable is speci�ed after COR, as in the example

SAMPLE 1 20; COR X

Summary statistics for X (mean, standard deviation, coe¢ cient of variation, skewness, kur-
tosis, minimum, and maximum values) and its auto-correlation coe¢ cients of up to the order
of a third of the number of speci�ed observations will be shown on the screen. If you have a
graphics adaptor, the plot of the auto-correlation function will also be displayed.

The COR command can also be used to compute auto-correlation coe¢ cients up to an
order speci�ed by the user. The desired order should be speci�ed in parentheses immediately
after the variable. For example,

COR X(12)

gives the auto-correlation coe¢ cients for the variable X up to the order of 12 (assuming, of
course, that there are enough observations). When the COR command is followed by two
or more variables, as in the example

COR X Y Z

then summary statistics and the correlation coe¢ cients for these variables, over the speci�ed
sample period, will be provided.

For the relevant formulae and appropriate references to the literature, see Section 21.1.

4.4.9 Command DELETE

This command enables you to delete one or more variables from the list of your existing
variables in your workspace. The names of the variables to be deleted should follow the
command, separated by spaces. For example,

DELETE X Y Z

deletes the variables X;Y; and Z from the list of your existing variables. If you wish to delete
a single variable, you can also type

X =

This operation has the e¤ect of deleting variable X.

4.4.10 Command DF_PP

This command, applied to a variable X, takes the form

DF_PP X(h)
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It computes the Phillips-Perron unit roots test due to Phillips and Perron (1988) using a
window of length h. This test attempts to correct for the e¤ect of residual serial correlation
in a simple DF regression with an intercept both with and without a time trend, using non-
parametric estimates of the long-run variance. If you do not specify the window length in
parentheses, Micro�t automatically select it as in the command SPECTRUM (see Section
4.4.27). The command DF_PP can also be used in combination with & to control for a set
of exogenous variables. For example,

DF_PP Y & INPT Z1 Z2

allows performing unit roots tests on residuals from a regression of Y on the variables INPT ,
Z1, Z2 (see Section 4.4.2 for more information).

The 95 per cent critical values for the test are the same as DF critical values, and are
provided at the foot of the Result table. Critical values for an arbitrary signi�cance level can
also be obtained via simulation, setting the option �Simulate Critical Values� (see Section
4.4.2).

See Phillips and Perron (1988) for further information on this test.

4.4.11 Command ENTITLE

This command allows you to enter or change the description of one or more of the variables
in your workspace. For example, if you type

ENTITLE

the Variable window opens and you can add the titles (or descriptions) of the variables you
require. Note that the description of a variable can be at most 80 characters. If you type in
a title which is more than 80 characters long, only the �rst 80 characters will be saved.

When a new variable is generated using the data transformation facilities, the �rst 80
characters after the equality sign will be automatically used as the title of the generated
variable. Also, when a variable XNEW is created by the formula

XNEW = XOLD

the title of the variable XOLD; if any, will be passed on to the new variable, XNEW .

4.4.12 Command FILL_FORWARD

This command allows you to replace missing values of a given variable or all the variables in
the workspace. For example, if you type

FILL_FORWARD X

the program replaces any existing missing value of the variable X by the last available
observation in X. If you type the command on its own, namely

FILL_FORWARD
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for each variable in the workspace the program replaces the missing values by the last avail-
able observation for that variable.

Note: It makes sense to use this command only when observations can be ordered. In case
of undated observations, the use of FILL_MISSING command is preferable (see Section
4.4.13).

4.4.13 Command FILL_MISSING

This command, when applied to a variable X, replaces any existing missing value of X with
a value speci�ed by the user. For example,

FILL_MISSING X 10

replaces all missing values in the X variable with 10.

4.4.14 Command HIST

This command will only work on computers with a graphics facility. When followed by a
variable name, this command displays the histogram of the variable. For example,

SAMPLE 1 20; HIST X

The number of bands is automatically chosen between 6 and 15 according to the formula

Min f15; Max(n=10; 6)g

where n is the total number of observations.
This command can also be used to plot the histograms for any numbers of intervals chosen

by the user. The desired number of classes should be speci�ed in parentheses immediately
after the variable. For example,

HIST X(12)

In the Graph window you can specify a di¤erent period over which you wish to see the
histogram of the variable. Click the Start and Finish �elds and scroll through the drop down
lists to select the sample period, and then press the button �Refresh graph over the above
sample period�.

Use the Help Functions at the foot of the displayed graph for information about the
various options available for saving and printing the displayed graph. Also see Section 5.2
on how to add text, print, save and retrieve graphs.

To exit the graphic routine, click the button.
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4.4.15 Command KEEP

This command deletes all the variables in the workspace except those speci�ed. For example,
suppose you have 10 variables named X1; X2; :::; X10 in your workspace, and you wish to
keep only the variables X1 and X2, then type

KEEP X1 X2

by which only the variables X1 and X2 will be kept. Also see the command DELETE:

4.4.16 Command KPSS

This command allows you to compute the stationarity test, developed by Kwiatkowski,
Phillips, Schmidt, and Shin (1992), for a simple DF regression with an intercept and a linear
time trend. Note that the null hypothesis in this test is that the time series is stationary.
The command takes the form

KPSS X(h)

where the number in parentheses is the window size. If you type

KPSS X

a window size is automatically selected as in the command SPECTRUM (see Section
4.4.27). You can obtain simulated critical values for this test by setting on the option
�Simulate Critical Values�(see Section 4.4.2).

For further information on this test see Kwiatkowski, Phillips, Schmidt, and Shin (1992),
in which appropriate critical values are also provided.

4.4.17 Command LIST

This command allows you to inspect your data on screen and/or to save them in a �le to be
printed out later. If the command LIST is typed on its own followed by , then the values
of all the variables will be displayed over the current sample period set by the SAMPLE
command. If the command LIST is followed by one or more variable names, then only the
values of the speci�ed variables will be listed.

For example,
SAMPLE 1940 1980;
LIST

displays all the existing variables over the period 1940-80.

SAMPLE 80Q1 85Q2;

LIST X Y Z

displays the observations on the variables X;Y; Z over the period from the �rst quarter of
1980 to the second quarter of 1985, inclusive.

See Chapter 5 on how to print or save the displayed observations in a result �le.
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4.4.18 Command NONPARM

The command NONPARM provides non-parametric estimates of the density function of a
set of n observations set out as x = (x1; x2; :::; xn). The command has the general form

NONPARM 1 2 3 4 X Z h

where the integers 1 to 4 indicates the combination of kernel functions and band width to
be used from the following choices:

k = 1: Gaussian kernel and Silverman rule of thumb band width
k = 2: Gaussian kernel and least squares cross-validation band width
k = 3: Epanechnikov kernel and Silverman rule of thumb band width
k = 4: Epanechnikov kernel and least squares cross-validation band width

We refer to Section (21.2) for the description of the above kernel functions and band width,
and references to the literature. The vector Z contains the values at which the nonparametric
function is to be evaluated and h gives the choice of the band width imposed by the user.

When h is set to zero the band width is selected automatically according to Silverman
rule of thumb if k = 1 or 3, and by the least squares cross-validation procedure if k = 2 or
4. If h is set to a (small) positive number the badwith will be �xed at that value and only
the choice of the kernel is governed by the speci�ed value(s) of k: The optimum value of h
under the cross-validation procedure is computed on a grid covering 101 values of h in the
range [0:25hsilverman; 1:5hsilverman], where hsilverman is given by (21.1).

The command computes the values of �tted density at n points uniformly distributed over

the range
h
xmin � ĥ; xmax + ĥ

i
, where xmin =Min(x1; x2; :::; xn), xmax =Max(x1; x2; :::; xn),

and ĥ is the value of the bandwith (either speci�ed by the user or automatically automati-
cally).

In applications where n is relatively large (larger than 1000), the computation of the
least squares cross-validation band width could take considerable amount of time. In such
cases the user has the option of specifying

NONPARM 1 3 X Z h

or
NONPARM 1 X Z h

In the case of these commands the nonparametric densities will be computed only for the
values of k speci�ed.

Also it is not necessary to specify the variable Z. For example, the command can be
issued as

NONPARM 1 X h

In this case the density of x evaluated at n points uniformly distributed over the rangeh
xmin � ĥ; xmax + ĥ

i
, where ĥ is either the value of h speci�ed by the user or automatically

computed by Micro�t.
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If the user wishes to use an automatically computed band width the following simple
form of the command can be used.

NONPARM 1 X

This will have the same e¤ect as issuing the command

NONPARM 1 X 0

Finally, if the integer values k = 1; 2; 3; 4 are dropped from the command, Micro�t assumes
that all the four options is to be computed. Namely the following commands will have the
same e¤ects

NONPARM 1 2 3 4 X 0

NONPARM X 0

See Section (21.2) for the mathematical details and the references to the literature. See 10.15
for a tutorial lesson.

4.4.19 Command PCA

This command takes the form

PCA X1 X2 :::: Xn & Z1 Z2 ::: Zs

and computes the principal components of the variables X1 X2 :::: Xn after �ltering
out the e¤ects of Z1 Z2 ::: Zs. The �ltering is carried out by regressing Xi, for each i,
on Z1 Z2 ::: Zs (if any speci�ed), with the residuals from these regressions used in the
principal component analysis. Typically Zi, i = 1; 2; :::; s, would include intercept or linear
trends, although other variables can also be included amongst the Zi variables.

The PCA command generates the eigenvalues of the correlation matrix of �ltered vari-
ables and the associated eigenvectors and principal components. The eigenvalues are reported
in descending order together with the list of cumulative and percent cumulative eigenvalues,
and the list of eigenvectors associated with non-zero eigenvalues. If you close the output
screen, you are presented with the Principal Components Analysis Menu, where you can
decide to plot eigenvalues and percent cumulative eigenvalues. You can also save a selected
number of principal components as CSV or FIT �les, or into workspace. Eigenvectors (or
factor loadings) can also be saved, but only in a CSV �le.

Notice that there is no need to standardize the variables before carrying out the principal
component analysis. However, if you do not standardize them, it is advisable to set Z1 = 1.
For technical details and references to the literature see Section 22.12. For a tutorial lesson
see 10.16.
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4.4.20 Command PLOT

This command produces a line graph of up to a maximum of 100 variables against time. You
must specify at least one variable name. For example

SAMPLE 1950 1970;

PLOT X

produces a plot of variable X against time, over the period 1950-70.

PLOT X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

produces a plot of the ten variables X1; X2; :::; X10 against time.
If you type

PLOT X1X2X3 & Z1Z2 Z3

Micro�t shows the Y axis of the �rst set of variables X1X2X3 on the left of the screen,
and those of Z1Z2 Z3 to the right of the screen. Speci�cally, left Y-axis reports the values
of X1X2X3, while the right Y-axis reports the values of Z1Z2 Z3.

In the Graph window you can specify a di¤erent period over which you wish to see the
plots. Click the Start and Finish �elds and scroll through the drop-down lists to specify the
sample period and then press the �Refresh graph over the above sample period�button.

See Section 5.2 on how to alter the display of graphs.

4.4.21 Command REORDER

This command enables a complete reordering of all the observations in the workspace ac-
cording to the ordering of the variable that follows the command. For example,

REORDER X

produces a reordering of observations according to the ordering of the observations in variable
X. This command is particularly useful when analyzing cross-sectional observations where
the investigator wishes to carry out regression analysis on a sub-set of the observations. The
exact nature of the particular sub-set of interest is de�ned by the ordering of the observations
in the variable X:

As an example, suppose that the undated observations on the workspace refer to both
male and female indexed by 0 and 1, respectively, stored in the variable SEX. Issuing the
command

REORDER SEX

reorders the observations in the workspace so that observations referring to females appear
�rst. The number of such observations is equal to SUM(SEX). See the SUM function
above.
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4.4.22 Command RESTORE

This command should be used after the REORDER command, and restores the ordering
of the observations to their original state (before REORDER was used).

4.4.23 Command SAMPLE

This command can be used to change the sample period for subsequent data analysis in
the data processing stage, but does not carry over to the other parts of the program. An
example of the use of this command for undated observations is

SAMPLE 3 26

For annual observations
SAMPLE 1972 1986

For half-yearly data
SAMPLE 50H2 72H1

For quarterly data
SAMPLE 75Q1 78Q2

For monthly data
SAMPLE 70M1 80M11

For daily data
SAMPLE 03-May-85 25-May-85

4.4.24 Command SCATTER

This command can be used to produce a scatter diagram of one variable against another.
When issuing this command, you must specify exactly two variable names. For example,

SCATTER X Y

produces a scatter plot of the variable X against the variable Y .
See Section 5.2 for details concerning adding text, saving, retrieving and printing graphs.

4.4.25 Command SIM

This is a simulation command, and enables you to solve numerically any general univariate
linear or non-linear di¤erence equation. For example, to solve the non-linear di¤erence
equation

X(t) = 0:2X(t� 1) + 0:7Log(X(t� 2)) + Z
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for t = 3; 4; :::; 20, with initial values X(1) = 0:05 and X(2) = 0:10, you need to issue the
following commands

SAMPLE 1 1; X = 0:05;
SAMPLE 2 2; X = 0:10;
SAMPLE 3 20; SIM X = 0:2 �X(�1) + 0:7 � LOG(X(�2)) + Z;
SAMPLE 1 20; PLOT X

The �rst four commands in the above example set the initial values for X, which are used
to simulate the values of X for observations 3, 4, ...., 20.

The following points should be borne in mind when using the SIM command:

1. When the SIM command is used, the values of the simulated variable will be overwrit-
ten. To avoid this problem, one possibility would be to create a new variable called,
say XNEW , which contains the appropriate values, but is otherwise unde�ned for
other periods. The SIM command can then be applied to XNEW over the sample
period for which XNEW is unde�ned. A typical example of this procedure would be
(assuming that the speci�ed sample period runs from 1950 to 1980)

SAMPLE 1950 1950; XNEW = 0:05;
SAMPLE 1951 1980;
SIM XNEW = 4 �XNEW (�1) � (1�XNEW (�1))

The above will solve the well-known chaotic bifurcation equation

Xt = 4Xt�1(1�Xt�1)

starting with the initial value X1950 = 0:05 over the period 1951-1980.

2. Choose your sample period carefully and make sure that well-de�ned initial values exist
for the simulation, otherwise all the values of the variable being simulated will be set
to missing.

3. In the case of unstable di¤erence equations, the use of the SIM command may cause
an over�ow. When the value of the simulated variable exceeds 10 to the power 50, to
prevent the program from crashing, all the subsequent values will be set to missing.

4.4.26 Command SIMB

This is a simulation command which allows you to solve numerically any general univariate
linear or non-linear di¤erence equation involving lead (not lagged) values of the left-hand
side variable. The di¤erence equation is solved backwards over the speci�ed sample period.
For example, to solve the linear di¤erence equation:

X(t) = 1:2 �X(t+ 1) + Z(t); for t = 20; 19; ::::; 1
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with a terminal value of 30:5 at observation 20, the following commands should be issued:

SAMPLE 20 20; X = 30:5;
SAMPLE 1 19; SIMB X = 1:2 �X(+1) + Z;
SAMPLE 1 20; PLOT X

For more information, see the description of the SIM command in Section 4.4.25.

4.4.27 Command SPECTRUM

This command, when followed by a variable name, displays the estimates of the standardized
spectral density function of the variable and their estimated standard errors using Bartlett,
Tukey and Parzen lag windows as in the following example:

SAMPLE 1 120; SPECTRUM X

The window size will be taken to be twice the square root of the number of speci�ed obser-
vations. If you have a graphics adaptor, the plot of the di¤erent spectral density functions
and the associated standard error bands will also be displayed.

The SPECTRUM command can also be used to estimate the spectrum for a window
size speci�ed by the user. The desired window size should be speci�ed in parentheses after
the variable. For example,

SPECTRUM X(12)

See Section 5.2 on how to alter the display of graphs.
The algorithms used to compute the di¤erent estimates of the spectral density and the

relevant references to the literature are given in Section 21.3.

4.4.28 Command TITLE

This command generates a list of the names of your variables, together with their description,
if any. If you type

TITLE

the variable names and the descriptions (if any) of all your variables will be displayed.

4.4.29 Command XPLOT

This command can be used to plot up to a maximum of 100 variables against another variable.
When issuing this command you must specify at least two variable names. For example,

XPLOT X Y

produces a plot of the variable X against the variable Y .

XPLOT X1 X2 X3 X4 X5 X6 Y

produces a plot of the variables X1; X2; X3; X4; X5; and X6 against the variable Y .
See Section 5.2 for details concerning how to add text, save, retrieve and print graphs.



Chapter 5

Printing/Saving Results and
Graphs

Output from Micro�t appears on your screen in the form of texts and graphs. These can be
output to a variety of printers attached to your PC, or can be saved as a �le to be printed
at a later stage or for importation into Word-processing packages such as Microsoft Word
or Scienti�c Word. Micro�t 5.0 also allows to save regression results in equation format,
suitable for use with modelling or simulation packages.

5.1 Result screens

Text output of Micro�t is displayed inside a result window. You can scroll through the win-
dow in the usual way using the mouse and scroll bar and/or the PgUp/PgDn, Ctrl+Home/End
keys.

Use standard Windows editing functions to edit the contents of the results window if you
wish. To copy text to the clipboard, highlight the text you want by clicking and dragging
with mouse, and click the button.

To edit the font of text displayed in the window, highlight the text you want to change,
and click the button. A standard Windows font dialogue is displayed. Make your

choices in the usual way and click .

To exit the result window, click .

5.1.1 On-line printing of results

The content of each result screen can be printed, separately, by clicking on the icon.

Make any choice about the number of copies and so on. and click .

69
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5.1.2 Saving results

When saving results you can save them either in �report �le� format, or in �model �le�
format. The former saves the content of the result screen in a text (ASCII) �le for use with
word-processing editors. The latter saves only the estimated coe¢ cients in the form of a
linear/non-linear regression equation.

Saving results to a report �le. To save your results in a result �le, click the

button and select the �Save to Existing/New Result File�option. When the �Save as�dia-
logue appears, specify a �lename, drive and directory. Result �les in Micro�t are given the
extension .OUT, and if you have any such �les in your default directory you should see them
in the list.

Suppose now that you have already opened a result �le called RESULT.OUT. To add the
results displayed on the screen to this existing report (or output) �le, click the button

and select the �Add to Current Result File� option, or choose the �Save to Existing/New
Result File�option and select the RESULT.OUT �le.

To view the contents of a result �le, use the �View a File�option from the File Menu.
The result �les created in Micro�t are in ASCII (text) format and can be edited/printed
using text editing or word-processing packages.

Saving equation speci�cation to a model or an equation �le. This function applies
only when the displayed results contain coe¢ cients of an estimated relation/model.

To save your results in a model or an equation �le, click the button and select

the option �Save to Existing/New Model File�. A menu appears giving you a choice of model
�le types; choose the type most suited to the package into which you want to import the �le.
Four di¤erent model �le formats are allowed:

1. Micro�t model �le format. This is internal to Micro�t and may not be compatible
with model speci�cation formats used by other packages.

2. Winsolve model �le format. This is the format used in the model solver program,
Winsolve, developed by Richard Pierse of the Department of Economics, University of
Surrey, England.

3. National Institute model �le format. This is the equation format used by the National
Institute of Economic and Social Research (NIESR), London.

4. London Business School model �le format. This is the equation format currently used
in the London Business School (LBS) forecasting model.

5.2 Print/save/retrieve graphs

The graphic facilities in Micro�t 5.0 are considerably enhanced in comparison with earlier
versions of the package. In order to take full advantage of these facilities you need at least
a laser-jet or a PostScript printer.
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5.2.1 Altering the display of graphs

The default graph display may be edited using the Chart Control facility. Select the chart
options from the Edit Menu or click the button below the graph to access it. Chart
Control contains numerous options for adjusting the background, colour, axes, style, title,
and so on, of your graph. Each option (such as �Background�) has its own property page;
click the appropriate page tab to view it. Page tabs contain one or more inner tabs that
group related properties together. Some tabs also contain a list that selects a speci�c object
to edit. The property changes are immediately applied unless the option �IsBatched�in the
Control page tab is set. When this option is set click the Apply button to display property
changes. To exit Graph Control without implementing our changes, click CANCEL. To
minimize the graph window and reduce it to an icon, click the MINIMIZE button. To close
the window click CLOSE.

The most common functions you may want to use with Micro�t are described here.
For more information, visit the web site
http://helpcentral.componentone.com.

Titles: A graph can have two titles, called the header and footer. You can use this page
to set the text alignment, positioning, colours, border style and font used for the header
and/or footer. For example, to change or insert a title select Titles from the Edit and then
select Label in the �2D Chart Control Properties�screen that follows. To edit the �Title at
the Header�select Header in the left window insert. You can also change the location of the
titles on the graph, add Border to them or change their fonts.

Legends. In this screen you can decide the positioning, border, colours and font used for
the legend. Use the Anchor property in the General tab to specify where to position the
legend relative to the ChartArea. When the IsDefault property is used, the chart automati-
cally positions the legend. You can also remove the legends by switching o¤ IsShowing. Use
the Title property to specify the legend title.

Colours. Using this option you can set the line thickness, pattern and colour for each line
in the graph, separately. For example, to change the pattern/colour of the �rst line in the
graph select Colours under Edit and in the �2D Chart Control Properties�select Style1 under
ChartGroup 1 then change Pattern, Width and Colour using the right panel of this screen
insert. To do the same for the second line in the graph select Style 2 in ChartGroup 1 and
repeat the process.

Variable names. This option allows you to change the variable names of the displayed
graphs. For example, if you have plotted the variables Y and P and you wish to change
their names in the graph select Variable Names under Edit and in the �2D Chart Control
Properties� screen select the variable name that you wish to change and then type in the
new name in the text box provided.

http://helpcentral.componentone.com
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Other options of the graph menu. To access the other options of �2D Chart Control
Properties�select �All Chart Options�from the Edit Menu. For example you can change the
Y (vertical) and X (horizontal) axes, decide whether or not to display them, show them in
logarithmic scales or reverse the way they are displayed.

Axes. This page allows you to modify the annotation method, the scale and the style of
axes and to give a title to axes. The Scale tab in this page allows you to frame the graph at
speci�c data values (using �Data Min�and �Data Max�options) and/or at speci�c axis values
(using �Max�and �Min�options), and to control the placement of the origin point. Use the
TitleRotation property to rotate the axis title to either 90 or 270 degrees counterclockwise.
In the Axis/Grid Lines tab you can change the properties of axes lines or display a grid on
a graph. Use the tick length property to choose the length of the tick marks on the axis,
or use the IsStyleDefault axis line property to allow the graph to set it automatically. Use
the gridlines Spacing property to change the grid spacing for an axis. In the AxisStyle and
GridStyle tabs you can control the line pattern, thickness, and colour properties of the axis
lines and ticks and of the grid, respectively.

View 3D. Graphs can be enhanced with a 3D e¤ect. Use the Depth property to set the
visual depth of the 3D e¤ect, as a percentage of the chart width. The maximum value is
500. Use the Elevation property to set the distance above the X-axis for the 3D e¤ect, in
degrees. This can be from �45 to 45 degrees. Use the Rotation property to set the distance
right of the Y-axis for the 3D e¤ect, in degrees. This cannot be higher than 45 or lower than
�45. Use the Shading property to set the shading method for the 3D areas of the chart.

5.2.2 Printing graphs

To obtain a hard copy of the displayed graph on the default printer click the button.

Make any choices about the number of copies and so on, and click .

5.2.3 Saving graphs

A displayed graph can be saved in a variety of formats: as an Olectra Chart (OC2), as a
Bitmap (BMP), Windows meta�le (WMF), Enhanced meta�le (EMF), JPEG or Portable
Network Graphics (PNG) �le.

The Olectra Chart format is useful if you want to load the graph into Micro�t at a later
stage for further editing (see Section 5.2.4). To save the graph as an OC2 �le, select the
�Save the Chart (Olectra Chart Format)�option from the File Menu in the Graph window.
Enter the �lename and location for your �le and click .

To save the graph in BMP, WMF, EMF, JPEG or PNG format, select the �Save as�
option from the File Menu or click the button. Choose the �le type you want from

the drop-down list and enter the �lename and location for your �le before clicking .
The graph�s image only will be saved.
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5.2.4 Retrieval of graphic �les

To retrieve a graphic �le, click the button at the base of the screen. In the Open
dialogue, select Graph �les from the List of types box, �nd the location and name of the �le
you want, and click . Only graphs saved in Olectra Chart (OC2) format can be loaded
into Micro�t.

5.2.5 Capturing graphs onto the clipboard

It is possible to capture the displayed graph onto the Windows clipboard. Click the
button. From the clipboard the graph may be pasted into another application in the usual
way, using the special Paste option available in word-processing packages such as Microsoft
Word or Scienti�c Word.

5.3 Exercises using graphs

5.3.1 Exercise 5.1

Carry out Lesson 10.5, copy the plot of C and Y to the clipboard and then past the graph
into Microsoft Word or Scienti�c Word. When you see the graph on the screen type some
text around it, resize and print.

Note that any text that you wish to add to the graph must be done in Micro�t. Once
a graph is imported into a word-processing package you cannot add text inside the graphic
box. You can only give it a title.

5.3.2 Exercise 5.2

Carry out Lessons 10.9 and 10.10, and save the results from both lessons in one �le. Add
titles and other descriptions to this result �le by editing it, and then print the �le.
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Chapter 6

Single-Equation Options

In this chapter we show how Micro�t can be used to estimate a large number of single-
equation econometric models, compute diagnostic statistics for them, carry out tests of
linear or non-linear restrictions on their parameters, and use them in forecasting. First we
review brie�y the classical linear regression model and the likelihood approach that underlie
the various estimation options in Micro�t. The more technical details of the econometric
methods and the computational algorithms used are given in Chapter 21, where further
references to the literature can also be found.

6.1 The classical normal linear regression model

The econometric model underlying the linear regression estimation options in Micro�t is the
classical linear regression model. This model assumes that the relationship between yt (the
dependent variable) and x1t, x2t, ..., xk (the k regressors) is linear

yt =

kX
i=1

�ixit + ut; t = 1; 2; :::; n (6.1)

where ut�s are unobserved �disturbance�or �error�terms, subject to the following assumptions.

A1 Zero mean assumption. The disturbances ut have zero means

E(ut) = 0; t = 1; 2; :::; n

A2 Homoscedasticity assumption. The disturbances ut have a constant conditional
variance

V (ut jx1t; x2t; :::; xkt) = �2; for all t

A3 Non-autocorrelated error assumption. The disturbances ut are serially uncorre-
lated

Cov(ut; us) = E(utus) = 0; for all t 6= s

75
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A4 Orthogonality assumption. The disturbances ut and the regressors x1t; x2t; ::: xkt
are uncorrelated

E(ut jx1t; x2t; :::; xkt) = 0; for all t

A5 Normality assumption. The disturbances ut are normally distributed.

Adding the �fth assumption to the classical model yields the classical linear normal
regression model. The latter model can also be derived using the joint distribution of yt, x1t,
x2t, ..., xkt, and by assuming that this distribution is a multivariate normal with constant
means, variances and covariances. In this setting the regression of yt on x1t, x2t, ..., xkt,
is de�ned as the mathematical expectation of yt conditional on the realized values of the
regressors, will be linear in the regressors. The linearity of the regression equation follows
from the joint normality assumption and need not hold if this assumption is relaxed. Both
of the above interpretations of the classical normal regression model have been used in the
literature (see, for example, Spanos 1989).

In time-series analysis, the critical assumptions are A3 and A4. Assumption A3 is par-
ticularly important when the regression equation contains lagged values of the dependent
variable, namely yt�1, yt�2,::: . However, even if lagged values of yts are not included among
the regressors, the breakdown of assumption A3 can lead to misleading inferences; a problem
recognized as early as the 1920s by Yule (1926), and known in the econometrics time-series
literature as the spurious regression problem.1 The orthogonality assumption, A4, allows the
empirical analysis of the relationship between yt and x1t, x2t,...,xkt to be carried out without
fully specifying the stochastic processes generating the regressors, or the �forcing�variables.
Assumption A1 is implied by A4, if a vector of ones is included among the regressors. It
is therefore important that an intercept is always included in the regression model, unless
it is found to be statistically insigni�cant. Assumption A2 speci�es that uts have constant
variances both conditionally and unconditionally. The assumption that the error variances
are constant unconditionally is likely to be violated when dealing with cross-sectional regres-
sions. The assumption that the conditional variance of ut is constant is often violated in
analysis of �nancial and macroeconomic time-series, such as exchange rates, stock returns
and interest rates. The normality assumption A5 is important in small samples, but is not
generally required when the sample under consideration is large enough. All the various
departures from the classical normal regression model mentioned here can be analysed using
the options that are available in Micro�t.

6.1.1 Testing the assumptions of the classical model

Micro�t enables the user to test the assumptions that underlie the classical model in a simple
and straightforward manner. This type of diagnostic testing is an essential component of any
applied econometric research. However, it is important that the outcomes of such diagnostic
testing exercises are properly interpreted and acted upon.

1Champernowne (1960), and Granger and Newbold (1974) provide Monte Carlo evidence of the spurious
regression problem, and Phillips (1986) establishes a number of theoretical results.



CHAPTER 6. SINGLE-EQUATION OPTIONS 77

Guidelines

You may �nd the following broad guidelines useful when working with Micro�t :

1. Rejection of an hypothesis against an alternative does not necessarily imply that the
alternative hypothesis is acceptable or that it should be necessarily adopted. Rejection
of a given hypothesis could be due to a number of di¤erent interlocking factors, and it
is therefore important that a variety of nested and non-nested alternative explanations
are considered before a �rm conclusion, as to the appropriate choice of the alternative
hypothesis, is reached. For example, when assumption A3 (the non-autocorrelated
error assumption) is rejected it may be due to any one or a mixture of the following
model mis-speci�cations: omitted variables, structural change, mis-speci�ed dynamics,
or aggregation across heterogenous groups. Rejection of the normality assumption may
be due to the presence of outliers or non-linearities. Rejection of the orthogonality
assumption could arise because of simultaneity, expectational e¤ects, omitted variables
and/or mis-speci�ed dynamics.

2. A regression equation that passes all the diagnostic tests generated by Micro�t is not
necessarily a statistically adequate model, and should not be regarded as the �true�
data-generating process! It is quite possible for two rival (or non-nested) models to
pass all the diagnostic tests produced by Micro�t, but yet one of the models could be
rejected by the other and not vice versa.2 The non-nested test options in Micro�t can
be used to deal with such eventualities. Even then there could be other possible models
that may not have been considered or thought out by the investigator. A satisfactory
econometric model should satisfy a number of quantitative and qualitative criteria, and
can at best represent a reasonable approximation of one or more aspects of the reality
that the investigator is interested in analyzing. Pesaran and Smith (1985) summarize
these di¤erent criteria under the heading �relevance�, �consistency�and �adequacy�.

3. The t-tests on individual regression coe¢ cients should be carried out with great care,
particularly when the regressions exhibit a high degree of collinearity. It is good prac-
tice to combine the t-tests on individual coe¢ cients with F -tests of joint restrictions on
the coe¢ cients. It is important that the results of the individual t -tests (also known
as separate-induced tests) and the joint tests are not in con�ict. Otherwise, inferences
based on individual t-tests can be misleading. For a demonstration of this point see
Lesson 10.4 on the multicollinearity problem.

6.1.2 Estimation of the classical linear regression model

Under the classical assumptions (A1 to A4), the estimation of the regression coe¢ cients, �1,
�2,..., �k is carried out by minimizing the sum of squares of the errors, ut, with respect to
�1, �2,...,�k. Writing (6.1) in matrix notations we have

y = X� + u (6.2)
2As an example, see the comparative empirical analysis of the Keynesian and the Neo-Classical explana-

tions of US unemployment in Pesaran (1982b), Pesaran (1988b) and Rush and Waldo (1988).
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where

y
n� 1 =

0BBB@
y1
y2
...
yn

1CCCA ;
u

n� 1 =

0BBB@
u1
u2
...
un

1CCCA
X

n� k =

0BBB@
x11 x21 : : : xk1
x12 x22 : : : xk2
...

...
...

x1n x2n : : : xkn

1CCCA
and � = (�1; �2; :::; �k)

0 is a k� 1 vector of unknown coe¢ cients. The sum of squares of the
errors can now be written in matrix notations as

Q(�) =
nX
t=1

u2t = u
0u = (y �X�)0(y �X�) (6.3)

The �rst-order conditions for minimization of Q(�) with respect to � are given by

@Q(�)

@�
= �2X0(y �X�) (6.4)

The Ordinary Least Squares (OLS) estimator of � is obtained by solving the normal equa-
tions in b�OLS

X0(y �Xb�OLS) = 0
For these equations to have a unique solution it is necessary that X0X has a unique inverse,
(X0X)�1. When X is rank de�cient, any one of the columns of X can be written as exact
linear combinations of the other columns, and it is said that the regressors are perfectly
multicollinear. In what follows we make the following assumption:

A6: The observation matrix X has a full column rank: Rank(X) = k.

Under this assumption the OLS estimator of � is given by

b�OLS = (X0X)�1X0y (6.5)

Under the classical assumptions (A1 to A4), b�OLS is unbiased (E(b�OLS) = �), and among
the class of linear unbiased estimators it has the least variance. (This result is known as the
Gauss Markov Theorem.).

Under the normality assumption A5, the Maximum Likelihood (ML) estimator of � is
identical to the OLS estimator, and the log-likelihood function is given by

L(�; �2) = �n2 log(2��
2)� 1

2�2
(y �X�)0(y �X�) (6.6)
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where �2 denotes the variance of ut. The ML estimator of �2 is given by

~�2 = n�1(y �X�OLS)0(y �X�OLS) (6.7)

and is biased. In fact

E(~�2) =

�
n� k
n

�
�2 (6.8)

The unbiased estimator of �2, which we denote by �̂2, is de�ned by

�̂2 = (n� k)�1 (y �X�OLS)0 (y �X�OLS) (6.9)

The variance matrix of b�OLS , together with a number of useful summary statistics for
regression analysis, are given in Section 21.6.1.

6.1.3 Testing zero restrictions and reporting probability values

Consider the problem of testing the �null�hypothesis that

H0 : �i = �0i

against
H1 : �i 6= �0i

where �i is the ith element of � in (6.2). The relevant test statistic is given by the t-ratio

ti =
b�i � �0iqbV (b�i) (6.10)

where b�i is the ith element of b�OLS , and bV (b�i) is the estimator of the variance of b�i and
is given by the ith diagonal element of the variance matrix de�ned by (21.6). Since the
alternative hypothesis, H1, is two-sided, the absolute value of ti should be compared with the
appropriate critical value of the Student-t distribution with n�k degrees of freedom. Micro�t
reports the probability of falsely rejecting the null hypothesis that �i = 0 against �i 6= 0, in
square brackets next to the t-ratios. These probability values are valid under assumptions
A1 to A5 for two-sided tests, and provide an indication of the level of signi�cance of the
test. For example, if the probability value reported for �i is equal to 0:025, it means that
the probability of falsely rejecting �i = 0 is at most equal to 0:025. Therefore, the null
hypothesis that �i = 0 against �i 6= 0 is rejected at the 2:5 per cent signi�cance level. The
probability values are applicable even if the normality assumption is violated, provided that
the sample is large enough.

6.2 The maximum likelihood approach

Many of the estimation options in Micro�t compute estimates of the regression coe¢ cients
when one or more of the classical assumptions are violated. For example, the AR and the
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MA options, discussed in Sections 6.8-6.11 below, compute estimates of � under a variety
of assumptions concerning the autocorrelation patterns in the disturbances. To deal with
such departures, Micro�t makes use of two general principles: the Likelihood Principle, and
the Instrumental Variables Method which is a special case of the Generalized Method of
Moments (GMM). Here we brie�y review the likelihood principle.

Let L(�) be the likelihood function of the k � 1 vector of unknown parameters, �, as-
sociated with the joint probability distribution of y = (y1; y2; :::; yn)0; conditional (possibly)
on a set of predetermined variables or regressors. Assume that L(�) is twice di¤erentiable
and satis�es a number of regularity conditions. See, for example, Chapter 8 in Davidson and
MacKinnon (1993).

The Maximum Likelihood (ML) estimator of � is that value of � which globally max-
imizes L(�). Let e� be the ML estimator of �, then it must also satisfy the �rst-order
condition

@ logL(�)

@�

����
�=e� = 0

6.2.1 Newton-Raphson algorithm

The computation of theML estimators inMicro�t is generally carried out using the Newton-
Raphson algorithm. Denote the estimator of � in the jth iteration by e�(j�1), then the
iterative algorithm used is given by

e�(j) = e�(j�1) + d ��@2 logL(�)@�@�0

��1
�=e�(j�1)

�
@ logL(�)

@�

�
�=e�(j�1) (6.11)

where d is a scalar �dumping factor�. In cases where convergence of the numerical algorithm
may be problematic, Micro�t allows the user to start the iterations with di¤erent choices
for the initial estimates, e�(0), and the value of the damping factor in the range [0:01� 2:00].
The iterations are terminated if

kX
i=1

���e�i;(j) � e�i;(j�1)��� < k�

where e�i;(j) is the ith element of e�(j), and � is a small positive number usually set equal to
1=10; 000. In some cases the program also checks to ensure that at termination the maximized
value of the log-likelihood function is at least as large as the log-likelihood values obtained
throughout the iterations.

6.2.2 Properties of maximum likelihood estimators

The optimum properties of ML estimators are asymptotic; that is, they are valid in large
samples. Assuming that certain regularity conditions are satis�ed, and in particular yt, is a
stationary process, then e�, the ML estimator of �, has the following properties:3

3Many of these properties continue to hold even if the stationary assumption is relaxed. For general results
in the case of the ML estimation of models with unit root processes see Chapters 7 and 22.
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1. e� is a consistent estimator of � = (�1; �2; :::; �k)0 that is
lim
n!1

Pr
n���e�i � �i0��� < �

o
= 1; for i = 1; 2; :::; k

where �i0 is the true value of �i and �(> 0) is a small positive number.

2. Asymptotically (as n!1),
p
n
�e� � �0� has a multivariate normal distribution with

zero means and the variance matrix
P
, where

P�1 = E

�
� 1
n
� @

2 logL(�)

@�@�0

�
or

P�1 = plim
n!1

�
� 1
n
� @

2 logL(�)

@�@�0

�

3. e� attains the Cramer-Rao lower bound asymptotically.
4. e� is an asymptotically unbiased estimator of �, that is

lim
n!1

E(e�) = �0
5. e� is an asymptotically e¢ cient estimator. That is, e� has the lowest asymptotic variance
in the class of all asymptotically unbiased estimators.

6.2.3 Likelihood-based tests

There are three main likelihood-based test procedures that are commonly used in economet-
rics for testing linear or non-linear parametric restrictions on a maintained model. They
are:

1. The Likelihood Ratio (LR) approach.

2. The Lagrange Multiplier (LM) approach.

3. The Wald (W ) approach.

All these three procedures yield asymptotically valid tests, in the sense that they will
have the correct size (the type I error) and possess certain optimal power properties in large
samples. They are asymptotically equivalent, although they can lead to di¤erent results
in small samples. The choice between them is often made on the basis of computational
simplicity and ease of use.
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The Likelihood Ratio test procedure

Suppose that the hypothesis of interest to be tested can be written as a set of r independent
restrictions (linear and/or non-linear) on �. Denote these r restrictions by4

�1(�1; �2; :::; �k) = 0
�2(�1; �2; :::; �k) = 0
...

...
�r(�1; �2; :::; �k) = 0

which can be written compactly in vector notations as

H0 : �(�) = 0

where �(�) is an r�1 twice di¤erentiable function of the k�1 parameter vector, �. Consider
the two-sided alternative hypothesis

H1 : �(�) 6= 0

The log-likelihood ratio (LR) statistic for testing H0 against H1 is de�ned by

LR = 2
n
log
h
L(e�U )i� log hL(e�R)io (6.12)

where e�U is the unrestricted ML estimator of �, and e�R is the restricted ML estimator
of �. The latter is computed by maximizing L(�) subject to the r restrictions �(�) = 0.
Under the null hypothesis, H0, and assuming that certain regularity conditions are met, the
statistic LR is asymptotically distributed as a chi-squared variate with r degrees of freedom.
The hypothesis H0 is then rejected if the log-likelihood ratio statistic, LR, is larger than the
relevant critical value of the chi-squared distribution.

The LR approach requires that the maintained model, characterized by the likelihood
function L(�), be estimated both under the null and the alternative hypotheses. The other
two likelihood-based approaches to be presented below require the estimation of the main-
tained model either under the null or under the alternative hypothesis, but not under both
hypotheses.

The Lagrange Multiplier test procedure

The Lagrange Multiplier (LM) procedure uses the restricted estimators, e�R, and requires
the computation of the following statistic:

LM =

�
@ logL(�)

@�0

�
�=e�R

�
�@

2 logL(�)

@�@�0

��1
�=e�R

�
@ logL(�)

@�0

�
�=e�R (6.13)

4The assumption that these restrictions are independent requires that the r � k matrix of the derivatives
@�=@�0 has a full rank, namely that Rank(@�=@�0) = r.
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where
n
@ logL(�)

@�

o
�=e�R and

n
@2 logL(�)
@�@�0

o
�=e�R are the �rst and the second derivatives of the

log-likelihood function which are evaluated at e� = e�R, the restricted estimator of �. Recall
that e�R is computed under the null hypothesis, H0, which de�nes the set of restrictions to
be tested. The LM test was originally proposed by Rao (1948) and is also referred to as
Rao�s score test, or simply the �score test�.

The Wald test procedure

The Wald (W ) test makes use of the unrestricted estimators, e�U , and is de�ned by
W = �0(e�U )nbV h�(e�U )io�1�(e�U ) (6.14)

where bV h�(e�U )i is the variance of �(e�U ) and can be estimated consistently by
bV h�(e�U )i = �@�(�)

@�0

�
�=e�U

�
�@

2 logL(�)

@�@�0

��1
�=e�U

�
@�(�)

@�

�
�=e�U (6.15)

Asymptotically (namely as the sample size, n, is allowed to increase without a bound), all
the three test procedures are equivalent. Like the LR statistic, under the null hypothesis,
the LM and the W statistics are asymptotically distributed as chi-squared variates with r
degrees of freedom. We can write

LR
a� LM

a� W

where a� denotes �asymptotic equivalence�in distribution functions.
Other versions of the LM and the W statistics which replace�

@2 logL(�)

@�@�0

�
in (6.13) and (6.15) by a consistent estimate of

n plim
n!1

�
n�1

@2 logL(�)

@�@�0

�
are also used in Micro�t. This would not a¤ect the asymptotic distribution of the test
statistics, but in some cases could simplify the computation of the statistics.

The various applications of the Likelihood Approach to single equation econometric mod-
els are reviewed in Chapter 18.

6.3 Estimation menus in Micro�t

Micro�t�s gateway to econometric analysis consists of the Single Equation Estimation Menu
(shortened to Multivariate Menu on the menu bar), the System Estimation Menu (shortened
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to Multivariate Menu on the menu bar), and the Volatility Modelling Menu. The Univariate
Menu opens the Single Equation Estimation Menu (see Section 6.4) which provides a large
number of options for estimation of linear and non-linear single equation models.

The Multivariate Menu opens the System Estimation Menu (see Section 7.3) which al-
lows you to estimate unrestricted vector autoregressive (V AR), cointegrating V AR models
with exactly identifying and over-identifying restrictions on the long-run relations, cointe-
grating V ARX, and system of seemingly unrelated equations (SURE), with and without
restrictions.

The Volatility Modelling Menu allows you to estimate univariate and multivariateGARCH
models (see Chapter 8).

Alternatively, use the , or buttons to move to Single Equation Esti-
mation window, the System Estimation window, or the Volatility Modelling window respec-
tively. The window opens with the last menu option chosen (or the �rst option in the menu)
selected by default.

Before any of these estimation options are used, it is important that the data are correctly
entered, and that all the variables to be included in the regression equation, such as the
intercept (the constant term), time trends, seasonal dummies, or transformations of your
existing variables (for example, their �rst di¤erences or logarithms). See the data processing
functions described in Chapter 4.

6.4 Single Equation Estimation Menu

The Single Equation Estimation Menu (abbreviated to Univariate Menu in the menu bar)
contains the following options:

1. Linear Regression Menu.

2. Recursive Linear Regression Menu.

3. Rolling Linear Regression Menu.

4. Non-linear Regression Menu.

5. Phillips-Hansen Estimation Menu.

6. ARDL Approach to Cointegration.

7. Logit and Probit Models.

In Micro�t each of these options is regarded as a menu on its own.
When you choose any of these options, or their submenu options, you will be asked to

enter the speci�cation of your econometric model in the editor window on the screen.
Option 1 allows you to estimate linear regression models by a variety of methods: ordi-

nary least squares (OLS), instrumental variables (IV ) or two-stage least squares (TSLS),
maximum likelihood (ML) estimates for regression models with serially correlated errors
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(AR, CO, MA), and IV estimates of regression models with serially correlated errors
(IV=AR and IV=MA options)

Options 2 and 3 compute recursive and rolling regressions estimated by the OLS and
the IV methods.

Option 4 enables you to estimate non-linear regression equations by the least squares
or the two-stage least squares methods.

Option 5 can be used to obtain fully-modi�ed OLS (FM -OLS) estimators of a single
cointegrating relation proposed by Phillips and Hansen (1990).

Option 6 implements the Autoregressive-Distributed Lag (ARDL) approach to estima-
tion of a single long-run relationship advanced by Pesaran and Shin (1999), with automatic
order selection using any one of the four model selection criteria, namely �R2, the Akaike
information criterion (AIC), the Schwartz Bayesian criterion (SBC), and the Hannan and
Quinn criterion (HQC).

Option 7 can be used to estimate univariate binary quantitative response models for
normal and logistic probability distributions (namely, the Probit and Logit models).

6.5 The Linear Regression Menu

This is the main menu for estimation of single equation linear regression models. It contains
the following options

1. Ordinary Least Squares.
2. Gen. Instr. Var. Method.
3. AR Errors (Exact ML) J<=12.
4. AR Errors (Cochran Orcutt) J<=12.
5. AR Errors (Gauss-Newton).
6. IV with AR Errors (Gauss-Newton).
7. MA errors (Exact ML) J<=12.
8. IV with MA Errors J<=12.

The options in this menu can be used to compute estimates of a linear regression equation
under a number of di¤erent stochastic speci�cations of the disturbances. To start your
calculations once they have been set up, click . All the options in this menu assume

that the observation matrix of the regressors has a full rank (that is, that Assumption A6
is satis�ed and the speci�ed regressors are not perfectly multicollinear). If this condition is
not satis�ed Micro�t gives an error message and invites you to click .

To access the Linear Regression Estimation Menu choose option 1 in the Single Equation
Estimation Menu (see Section 6.4), and then follow the instructions below to specify your
regression equation and the estimation period.
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6.5.1 Speci�cation of a linear regression equation

When you choose options 1 to 3 in the Single Equation Estimation Menu (see Section 6.4)
you will be asked to type the name of your dependent variable followed by the list of your
regressors, separated by spaces, in the box editor that appears on the screen. For example,
to specify the regression

Y FOODt = a0 + a1XLt + a2XCt + ut

you need to type
Y FOOD INPT XL XC

where Y FOOD is the dependent variable and INPT; XL; and XC are the regressors. The
variable INPT here denotes for the intercept (or constant) term and can be created either
by using the button (see Section 4.1), or by typing the formula

INPT = 1

into the Functions box. Before running this regression you must ensure that all the four
variables Y FOOD ; INPT; XL; andXC are in the variable list by clicking the button

(see Chapter 4).
In specifying the regression equation the following points are worth bearing in mind:

1. It is possible to specify lagged or lead values of the dependent variable or other variables
as regressors by including the order of lags or leads enclosed within brackets immedi-
ately after the relevant variables. For example, to specify the regression equation

yt = �+ �1yt�1 + �2yt�2 + �3yt+1 + �0xt + �1xt�1 + ut

when asked to list your regression equation you can type

Y INPT Y (�1) Y (�2) Y (+1) X X(�1)

where INPT stands for an intercept term (a vector of ones), Y (�1) and Y (�2) repre-
sent the �rst and second-order lags of the dependent variable (Y ), respectively, Y (+1)
stands for the �rst-order lead of Y , and X(�1) is the �rst-order lag of X. The variables
Y (�1), Y (�2), Y (+1), and X(�1) are created temporarily for use only in the esti-
mation/testing/forecasting stage of the program. This is a useful facility and allows
you to include lags of variables in the regression equation without having to create
them explicitly as new variables in the Process window. When the speci�ed equation
contains lagged variables, the information in the order of lags will also be used in the
calculation of dynamic forecasts (see the forecast option in the Post Regression Menu
in Section 6.20). However, if lagged values of the dependent variable are created in the
Process window, before entering the estimation/testing/forecasting stage, these lagged
values will be treated like any other regressors, and static forecasts will be calculated.
For example, suppose Y 1, Y 2, and X1 are created in the Process window as

Y 1 = Y (�1); Y 2 = Y (�2); X1 = X(�1)
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The regression of Y on
INPT Y 1 Y 2 X1

will generate the same results as the regression of Y on

INPT Y (�1) Y (�2) X(�1)

except for the forecasts; which will be static (see options 8 and 9 in Section 6.20).

2. Also, in the regression of Y on

INPT Y (�1) X

the program recognizes that only the �rst-order lag of the dependent variable, namely
Y (�1), is speci�ed amongst the regressors, and automatically includes Durbin�s h-
statistic in the OLS regression results. But if the regression is speci�ed as Y on
INPUT Y 1 X the program treats Y 1 like any other regressor and does not report
the h-statistic.

3. In specifying distributed lag functions it is often convenient to use the facility that
allows the user to include a number of lagged values of a variable without having to
type all of their names in full. For example to include the variables

xt; xt�1; xt�2; xt�3; xt�4; xt�5; zt�10; zt�11; zt�12

among your regressors you simply need to type

Xf0� 5g Zf10� 12g

As another example, if you wish to include the following regressors in your model

wt; wt�2; wt�5; wt�8; wt�9; wt�10

you need to type
Wf0 2 5 8� 10g

4. Note that except for Phillips-Hansen�s Fully Modi�ed OLS estimator (item 5 in the
Single Equation Estimation Menu), Micro�t does not automatically include an inter-
cept term in the regression equation, and you need to include it explicitly amongst
your regressors.

6.5.2 Speci�cation of the estimation period

You need to specify the estimation period once you have set up the model (see Section
6.5.1). By default, all available observations will be chosen, and the start and �nish for the
estimation period will be the same as the minimum and maximum dates (or observations)
displayed on the screen.
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You may, however, wish to choose a subset of available observations for estimation,
perhaps saving some of the observations for the predictive failure and structural stability
tests, or for forecasting. In this case you should enter the start and �nish of your estimation
period, by clicking on the Start and End boxes in turn and choosing a date from the drop-
down list.

If there are observations at the end of the sample period which have not been included
in the estimation period, in the case of the OLS option you will also be asked to specify the
number of observations to be used in the predictive failure/structural stability tests. You will
be presented with a window stating: �Number of observations for predictive failure/structural
stability tests(s) (Min 0 Max < >)� . Enter your desired number of observations between
zero and the maximum number speci�ed, and press .

In specifying the estimation period the following points are worth bearing in mind:

1. The estimation period cannot fall outside the period de�ned by the minimum and
maximum dates (or observations).

2. The program automatically adjusts the chosen estimation period to allow for missing
observations (blank �elds) at the beginning and at the end of the sample period. For
example, if the available observations run from 1960 to 1980, but the observations on
the dependent variable and/or one of the regressors are missing for the years 1960,
1961, and 1980, then the default estimation period will be 1962-1979.

3. If one or more observations on the dependent variable and/or on the regressors are
missing in the middle of the speci�ed estimation period, estimation will be carried out
on a shorter sample period with no missing values (if possible).

6.6 Ordinary Least Squares option

This option computes the Ordinary Least Squares (OLS) estimates of � together with the
corresponding standard errors, t-ratios, and probability values. (See Sections 6.1.2 and
6.1.3). It also computes a number of summary statistics and diagnostic test statistics (with
probability values) aimed at checking for possible deviations from the classical normal as-
sumptions (A1 to A5). The summary statistics include R2, �R2, Akaike information criterion
(AIC), Schwartz Bayesian criterion (SBC), residual sum of squares, standard error of re-
gression, and the maximized value of the log-likelihood function. The formulae used for the
computation of these and other statistics are given in Sections 21.6 and 21.7.

The diagnostic statistics included in the OLS regression results are for testing the fol-
lowing hypotheses:

- Residual serial correlation.

- Functional form misspeci�cation.

- Normality of residuals.
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- Heteroscedasticity.

- Predictive failure.

- Structural stability.

For each of these hypotheses the program computes two test statistics: a Lagrange mul-
tiplier (LM), or score statistic, and an F statistic. The LM statistic is asymptotically
distributed as a chi-square (�2) variate. For a comprehensive review of the use of LM tests
in econometrics, see Godfrey (1988). The F -statistic, also known in the literature as �LM
F�or �modi�ed LM�statistic, is taken approximately to have the F distribution: see Harvey
(1981), p. 277. The LM and the F statistics have the same distribution asymptotically.
But, on the basis of Monte Carlo results, Kiviet (1986) has shown that in small samples
the F version is generally preferable to the LM version. In what follows we provide a brief
account of these diagnostic tests. For further details of the econometric methods involved
and the relevant references to the literature, see Section 21.6.2.

6.6.1 Tests of residual serial correlation

The program provides the following tests of the non-autocorrelated error assumption, A3:

- Durbin-Watson test (Durbin and Watson (1950), Durbin and Watson (1951)).

- Durbin�s h-test (Durbin (1970))5.

- Lagrange multiplier (LM) tests6.

The program always supplies the DW statistic, but reports the h-statistic only when the
regression equation is explicitly speci�ed to include a single, one-period lag of the dependent
variable. The LM statistic is included in the diagnostic tests table, and is applicable to
models with and without lagged dependent variables (Godfrey 1978b, 1978c). It is applicable
in testing the hypothesis that the disturbances, ut, are serially uncorrelated against the
alternative hypothesis that they are autocorrelated of order p (either as autoregressive or
moving average processes). In the diagnostic tests table the following values are chosen for
p:

p = 1 for undated, annual and daily data
p = 2 for half-yearly data
p = 4 for quarterly data
p = 12 for monthly data

Other values for p can be speci�ed using option 1 in the Hypothesis Testing Menu (see
Section 6.23).

5See also Godfrey (1978a).
6For example, see Godfrey (1978b), Godfrey (1978c), Breusch and Pagan (1980), and Breusch and Godfrey

(1981).



CHAPTER 6. SINGLE-EQUATION OPTIONS 90

6.6.2 Ramsey�s RESET test for functional form misspeci�cation

The RESET test (Ramsey 1969) reported in the diagnostic tests table refers to the simple
case where only the square of �tted values (ŷ2t ) are included in the extended regression of
et = yt � x0tb� (or ŷt) on xt and ŷ2t . A pth order RESET test can be carried out by using
Option 6 in the Hypothesis Testing Menu (Section 6.23), with ŷ2t ; ŷ

3
t ; : : : ; ŷ

p
t speci�ed as

additional variables. Notice that to carry out such a test, you �rst need to save the �tted
values of the regression of y on X by means of Option 7 in the Display/Save Residuals and
Fitted Values Menu (see Section 6.21).

6.6.3 The normality test

This is the test proposed by Jarque and Bera (1980) for testing the normality assumption,
A5, and is valid irrespective of whether or not the regression equation includes an intercept
term.

6.6.4 Heteroscedasticity test

This is a simple test of the (unconditional) homoscedasticity assumption, A4, and provides
an LM test of  = 0 in the model

E
�
u2t
�
= �2t = �2 + 

�
x0t�

�2
; t = 1; 2; :::; n

See Koenker (1981), where it is also shown that such a test is robust with respect to the
non-normality of the disturbances.

6.6.5 Predictive failure test

This is the second test discussed in Chow (1960), and is applicable even if the number of
available observations for the test is less than the number of unknown parameters. As shown
in Pesaran, Smith, and Yeo (1985) the predictive failure test can also be used as a general
speci�cation error test.

6.6.6 Chow�s test of the stability of regression coe¢ cients

This is the �rst test discussed in Chow (1960), and tests the equality of regression coe¢ cients
over two sample periods conditional on the equality of error variances. In the statistics
literature this test is known as the analysis of covariance test: see Sche¤e (1959). The
program computes this test if the number of observations available after the estimation
period is greater than k, the number of regressors included in the model.
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6.6.7 Measures of leverage

In the classical linear regression model (6.2), the leverage (or the in�uence) of points in the
regression design is measured by the diagonal elements of the matrix7

A = X(X0X)�1X0 = (aij) (6.16)

The relevance of the leverage measures, aii; i = 1; 2; :::; n in regression analysis has been
discussed in detail by Belsley, Kuh, and Welsch (1980) Chapter 2, and Cook and Weisberg
(1982) Chapter 2.

The program provides plots of aii; i = 1; 2; :::; n, and allows you to save them for subse-
quent analysis. In the plot of the leverage measures, the average value of aii, which is equal
to k=n, is also displayed.8

The leverage measures also provide important information on the extent of small sample
bias that may be present in the heteroscedasticity-consistent estimators of the covariance
matrix of �̂OLS (Section 21.22). As shown by Chesher and Jewitt (1987), substantial down-
ward bias can result in the heteroscedasticity-consistent estimators of the variance of the
least squares estimators, if regression design contains points of high leverage.

6.7 Generalized instrumental variable method option

Option 2 (the IV or 2SLS option) in the Linear Regression Estimation Menu (see Section 6.5)
enables you to obtain consistent estimates of the parameters of the regression model when the
orthogonality assumption A4 is violated.9 The breakdown of the orthogonality assumption
could be due to a variety of problems, such as simultaneity, measurement errors or sample
selection bias, or could be because actual values are used as a proxy for expectational variables
under the rational expectations hypothesis. For example, see Sargan (1958), McCallum
(1976), Wickens (1982), and Pesaran (1987b). A uni�ed account of the IV method can be
found in Pesaran and Smith (1990).

The IV option can also be used to compute two-stage least squares (2SLS) estimates of
a single equation from a simultaneous equation system. Notice, however, that the computa-
tions of the 2SLS estimates require that all the predetermined variables of the simultaneous
equation model be speci�ed as instrumental variables.

When you choose this option, you will be asked to list your instrumental variables sep-
arated by spaces. The number of instruments should be at least as large as the number of
regressors. In the case of exact collinearity amongst the instruments and/or the regressors,
the program displays an error message and invites you to click to continue.

If you specify fewer instruments than regressors, the program shows the minimum number
of required instruments (i.e. the number of regressors) and asks you to try again.

7Since matrix A maps y into ŷ = Ay, the matrix A is also known in the literature as the �hat�matrix.
8Note that since Tr(A) =

Pn
i=1 aii = k; then the simple average of aii; i = 1; 2; :::; n will be equal to k=n.

9A test of the orthogonality assumption can be carried out by computing Wu-Hausman statistic T2, (Wu
1973 and Hausman 1978), using the variable addition test option in the Hypothesis Testing Menu (see Section
6.23). See also Lesson 11.10.
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The estimation results for the IV option are summarized in two tables. The �rst table
gives the parameter estimates, their estimated asymptotic standard errors, and t-ratios,
as well as Sargan�s statistic for a general test of misspeci�cation of the model and the
instruments. This test statistic is asymptotically distributed as �2 with s � k degrees of
freedom, where s represents the number of instruments and k the number of the regressors
(s > k). (See Section 21.10.3). This table also reports probability values, the values of
the IV minimand, R2, R

2
; GR2; GR

2
; F , and DW statistics, and a few other summary

statistics. But, note that these statistics in the case of the IV option do not have the
usual OLS interpretations. For example, R2, R

2
are not valid for regressions estimated by

the IV method, and can produce misleading results. Appropriate measures of overall �t
for IV regressions are given by the Generalized R-Bar-Squared statistics (GR2; and GR

2
)

proposed in Pesaran and Smith (1994) (see Section 21.10.2). The same also applies to the
DW statistic. For tests of residual serial correlation the appropriate statistics is the LM
statistic reported in the Diagnostic Tests Table. Finally, note that the probability values
reported are only valid asymptotically.

The second table supplies diagnostic statistics (with the associated probability values) for
the tests of residual serial correlation, functional form misspeci�cation, non-normal errors,
and heteroscedasticity. The tests of residual autocorrelation and functional form misspeci�-
cation are both based on the statistics in equation (21.69), originally due to Sargan (1976),
using di¤erent speci�cations for theW matrix. In the case of the test of residual autocorre-
lation, theW matrix is de�ned by equation (21.70), with p, the order of the test, being

p = 1 for undated, annual and daily data
p = 2 for half-yearly data
p = 4 for quarterly data
p = 12 for monthly data

Other values for p can be speci�ed using option 1 in the Hypothesis Testing Menu (see Section
6.23). The statistic for the test of functional form misspeci�cation is computed using (21.69)
with theW matrix specialized to

W = (ŷ21;IV ; ŷ
2
2;IV ; :::; ŷ

2
n;IV )

0

where ŷt;IV = x0tb�IV are the IV �tted values.
The statistics for normality and the heteroscedasticity tests are computed as in the OLS

case, with the di¤erence that the IV �tted values and the IV residuals are used in place of
the OLS ones (see Section 21.6.2).

The details of the algorithms used to compute the IV estimators and the associated test
statistics are given in Section 21.10.

6.8 AR errors (exact ML) option

Option 3 in the Linear Regression Estimation Menu (see Section 6.5) computes exact max-
imum likelihood estimators of the regression equation (6.1) under the assumption that the
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disturbances, ut, follow a stationary autoregressive process with stochastic initial values.
This option di¤ers from the Cochrane-Orcutt option (option 4 in the Linear Regression
Menu), which estimates the AR error regression model under the assumption of �xed ini-
tial values. The idea of allowing for initial values in the estimation of AR(1) error models
was �rst put forward in econometrics by Hildreth and Lu (1960). The method was then
subsequently extended to higher-order AR error models by Pesaran (1972), and Beach and
MacKinnon (1978). See Section 21.11 for more details.

When you click the button to begin your calculation you need to specify the order

of the AR error process. You can either choose the AR(1) speci�cation

AR(1) : ut = �ut�1 + �t

or the AR(2) speci�cation

AR(2) : ut = �1ut�1 + �2ut�2 + �t

For example, to choose the AR(2) speci�cation, when prompted, type 2 and click .
The estimation results are displayed in a table in two parts. At the top are the estimates of
the regression coe¢ cients, their (asymptotic) standard errors, and other summary statistics
such as R2, �R2, standard errors of regression (�̂�), are given. At the bottom (use the scroll
bar if necessary) is the second part of the results, which gives the parameter estimates of
the AR error process, together with the associated t-ratios computed on the basis of the
(asymptotic) standard errors (see Sections 21.11.1 and 21.11.2 for the relevant formulae).
The program also reports the log-likelihood ratio statistics for the test of AR(1) against the
non-autocorrelated error hypothesis, and for the test of the AR(2) error speci�cation against
the AR(1) error speci�cation. The latter statistic is reported only in the case of the AR(2)
option. These statistics are computed according to the formulae set out in Section 21.11.4

In case of the AR(1) option, you will also be given the opportunity to see the plot of the
concentrated log-likelihood function in terms of the parameter of AR(1) error process over
the range j�j < 1 (see equation (21.77) in Section 21.11.1). The plot of the concentrated
log-likelihood function is particularly useful for checking the possibility of multiple maxima.

Notes

1. In the case of this option the standard errors (and hence t-ratios) reported for the
estimates of the regression coe¢ cients and the parameters of the AR-error process are
valid (asymptotically) if the regression equation does not contain lagged dependent
variables. When your equation includes lagged dependent variables try other AR
options, namely options 4 to 6 in the Linear Regression Menu.

2. The iterations, if convergent, always converge to a stationary solution. This is a partic-
ular feature of the exact ML=AR option and does not apply to the other AR options.

3. If the estimation method fails to converge within 40 iterations, a sub-menu will be
displayed. The options in this sub-menu allow you to terminate the iterations and
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start with a di¤erent set of initial parameter estimates, or to increase the number of
iterations in steps of 20 until convergence is reached. If you choose option 0 (abandon
estimation), you will be presented with another menu with which to specify a new set of
initial parameter estimates and another chance to try the iterations (see Section 6.13.1
for more details). In situations where the convergence cannot be attained even after,
say, 100 iterations, and for di¤erent sets of initial parameter estimates, it is perhaps
best to terminate the iterations and try other AR options in the Linear Regression
Menu. Notice, however, that in the case of option 3 where a �rst-order error process
is speci�ed, the iterations are certain to converge (see Section 21.11.1).

6.9 AR errors (Cochrane-Orcutt) option

Option 4 in the Linear Regression Menu computes estimates of the regression equation (6.1)
under the following AR(m) error process (m � 12)

AR(m) : ut =

mX
i=1

�iut�i + �t (6.17)

using a generalization of the Cochrane and Orcutt (1949) iterative method. This method
assumes that the initial values u1; u2; :::; um are given (or �xed). Notice, however, that if the
AR(m) process is stationary, the Cochrane-Orcutt (CO) option yields estimates that are as-
ymptotically equivalent to the exactML estimators that explicitly allow for the distribution
of the initial values.

The results for the CO option are summarized in a table, the top half giving the estimates
of the regression equation (6.1), and the bottom half giving the estimates of the error process
(6.17). The details of the computations can be found in Section 21.12.

Notes

1. For the case where m = 1, the program provides you with the option of seeing the plot
of concentrated log-likelihood function, given by equation (21.102) in Section 21.12.

2. The estimated standard errors computed under the CO option are valid (asymptoti-
cally) even if the regression equation contains lagged values of the dependent variable.

3. The program displays a warning if the estimates of �1; �2; :::; �m result in a non-
stationary error process. In such a case, inferences based on the reported standard
errors can be misleading.

4. The program allows you to increase the number of iterations interactively or to change
the choice of the initial parameter estimates for the start of the iterations, if the method
fails to converge within 40 iterations (for details see note 3 in Section 6.8.)
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6.10 AR errors (Gauss-Newton) option

Option 5 in the Linear Regression Menu (see Section 6.5) provides estimates of equations
(6.1) and (6.17) when the AR(m) process is subject to zero restrictions. For example, it
allows estimation of equation (6.1) under

ut = �4ut�4 + �t; (6.18)

or under
ut = �1ut�1 + �4ut�4 + �15ut�14 + �t: (6.19)

When this option is chosen you will be prompted to type the non-zero lags in the AR
error process (6.17) in an ascending order separated by space(s). To choose, for example,
speci�cation (6.18), you need to type 4 and then click on the button. To choose

speci�cation (6.19) you need to type
1 4 15

then click . In the case of example (6.18), the order of the AR error process is m = 4,
but there is only one unknown parameter in the AR error process. Similarly, in example
(6.19), m = 15, but the number of unknown parameters of the AR error process is equal to
r = 3. The following restrictions apply:

r � 12

and
n > m+ k + r

where
n � the number of observations in the chosen sample period.
k � the number of regressors in the regression equation.
m � the order of the AR-error process.
r � the number of non-zero coe¢ cients in the AR-error process.

See Section 21.13 for more details. Notice, however, that in the case of this option, the plot
of the concentrated log-likelihood function can be obtained if r = 1, irrespective of the value
speci�ed for m.

6.11 IV with AR errors (Gauss-Newton) option

Option 6 in the Linear Regression Menu is appropriate for the estimation of a regression
equation with autocorrelated disturbances when one or more of the regressors are suspected
of being correlated with the disturbances. The estimation method which is due to Sargan
(1959) is, however, applicable if there exists a su¢ cient number of instrumental variables
that are uncorrelated with the current and past values of the transformed disturbances, �t
in equation (6.17), but at the same time are asymptotically correlated with lagged distur-
bances, ut�1; ut�2; ::; ut�m. This option also enables you to compute IV=AR estimates when
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the AR-error process is subject to zero restrictions. See Section 21.13.1 for details. The
econometric methods underlying this option are brie�y described in Section 21.14. Other
relevant information can be found in Sections 21.14.1 and 21.14.2.

When you click you will be asked �rst to type the non-zero lags in the AR process

(as in Section 6.10). You will then be presented with a screen editor to type the list of your
instruments. At least k+m instruments are needed for this option. The program provides a
number of useful error messages if the instruments and/or regressors are exactly collinear or
if the number of instruments supplied is insu¢ cient (see also Section 6.7). You can retrieve
a list of instruments previously saved as an .LST �le using the button, or save your

instrument lists for use in subsequent sessions using the button.

Notes

1. In the absence of adequate initial observations, the program automatically adjusts
the estimation period to allow for the speci�cation of lagged values of the dependent
variable and/or the regressors as instruments. In the case of the IV regressions only
the Generalized R2 measures are appropriate for this option.

2. The Sargan misspeci�cation test statistic reported in the case of this option is computed
using (21.111), and is useful as a general test of misspeci�cation. It is asymptotically
distributed as a chi-squared variate with s � k � r degrees of freedom, where s is the
number of speci�ed instruments, k is the number of regressors, and r is the number of
unknown parameters of the AR error process (see Section 21.14.1).

3. The R2, �R2, GR2, and GR
2
statistics reported for this option are based on adjusted

residuals and prediction errors, respectively. The relevant formulae are given in Section
21.14.2. Notice that in the case of the IV regressions only the Generalized R2 measures
are appropriate for this option.

4. When r = 1, the program gives you the option of plotting the minimized values of the
IV minimand (21.109), in terms of the unknown parameter of the AR process. This
is useful for checking the possibility of multiple minima.

5. The program enables you to increase the number of iterations interactively if the
method fails to converge within 40 iterations. (For details see note 3 in Section 6.8).

6. The program gives a warning if the method converges to a non-stationary AR process
(see note 3 in Section 6.9).

7. In the case of this option the estimated standard errors are valid (asymptotically) even
if the regression equation contains lagged values of the dependent variable.
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6.12 MA errors (exact ML) option

Option 7 in the Linear Regression Menu allows you to estimate the regression equation (6.1)
under the following MA(q) error speci�cation

ut =

qX
i=0

i�t�i; 0 = 1 (6.20)

Like option 5, this allows you to impose zero restrictions on the MA parameters, i. The
estimation is carried out by the exact ML method described in Pesaran (1988a), and does
not require the MA process to be invertible. For a description of the method see Section
21.15. TheMA option can also be used to estimate univariate ARMA or ARIMA processes.

Notes

1. The estimation of high-order MA error processes (with q > 6) can be time-consuming,
especially in the case of regression equations with a large number of regressors and
observations.

2. The standard errors of the parameter estimates obtained under theMA (or the IV=MA)
options are valid asymptotically so long as the estimatedMA process is invertible; that
is, when all the roots of

Pq
i=1 iz

i = 0 fall outside the unit circle. Micro�t displays a
warning if the estimated MA process is non-invertible.

See also the notes in Section 6.11.

6.13 IV with MA errors option

This is the MA version of the IV=AR option described in Section 6.11. It di¤ers from the
IV=AR option in two important respects:

1. Following Hayashi and Sims (1983), the IV=MA estimates are computed using �for-
ward �lter�transformation of the regressors and the dependent variable (but not the
instruments) to correct for the residual serial correlation. In e¤ect, the IV=MA option
is an iterated version of the Hayashi-Sims procedure: see Pesaran (1987b), Section
7.6.2. It is particularly useful for the estimation of linear rational expectations models
with future expectations of the dependent variable, where the u0ts may be correlated
with the future values of the instruments.

2. The IV minimand for the IV=MA option contains an additional Jacobian term. Al-
though in the case of invertible processes this additional term is asymptotically neg-
ligible, our experience suggests that its inclusion in the IV minimand helps the con-
vergence of the iterative process when the roots of the MA part are close to the unit
circle. The details of the algorithm and the rationale behind it can be found in Pe-
saran (1990). A similar procedure has also been suggested by Power (1990) for the
�rst-order case. A description of the underlying econometric method can be found in
Section 21.16.
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3. The R2, R
2
, GR2 and GR

2
statistics are computed using the formulae in Section

21.16.1. Only the Generalized R2 statistics are appropriate for this option.

6.13.1 Speci�cation of initial estimates for the parameters of the AR/MA
error process

When you choose the AR=MA options in the Linear Regression Menu and click , you

will be presented with a menu10 which gives you a choice between starting the iterations
with initial estimates supplied by the program or the initial estimates to be supplied by you.
In the case of the AR and MA options with r = 1 (when the error process depends only on
one unknown parameter), you will also be presented with an option to see the plot of the
concentrated log-likelihood function or the IV minimand.

To enter the initial estimate for the �rst-order lag coe¢ cient, type your choice and move
the cursor to the AR lag 2 position. Repeat this process until all the initial estimates are
supplied. Then click to start the iteration.

Since there is no guarantee that the iterative procedures will converge on the global
maximum (minimum) of the likelihood function (the IV minimand), we recommend that
you check the computations by starting the iterations from a number of di¤erent initial
values. In the case of error processes with only one unknown parameter, the plot of the
concentrated log-likelihood function or the IV minimand can be used to determine whether
the global optimum has been achieved.

6.14 Recursive regression options

Option 2 in the Single Equation Menu (See Section 6.4) is the Recursive Linear Regression
Menu with the following options:

1. Recursive Least Squares
2. Two-Stage Recursive Least Squares

Option 1 enables you to estimate a linear regression equation recursively by the OLS
method.

Option 2 allows you to estimate a linear regression equation recursively by the 2SLS
(or the IV ) method. When you choose this option you will be prompted to list at least as
many instruments as there are regressors in your model.

Specify the estimation period and your linear regression equation as described in Sections
6.5.1 and 6.5.2. Set the number of observations you want to use for updating recursive
estimation. When the computations are completed you will be presented with the Recursive
OLS (or IV ) Regression Results Menu described in Section 6.14.1. For the details of the
algorithms used in carrying out the necessary computations see Section 21.17.

10There is an exception. The AR(1) error speci�cation in Option 3 of the Linear Regression Menu does
not give you a choice for the speci�cation of the initial parameter value of the AR(1) process. The iterative
method used does not require it, and is always sure to converge.
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6.14.1 Recursive OLS Regression Results Menu

This menu has the following options

0. Move to Backtracking Menu
1. Plot recursive coe¢ cients and their standard errors
2. Plot standard errors of recursive regressions
3. Save recursive coe¢ cients
4. Save standard errors of recursive coe¢ cients
5. Save standard errors of the recursive regressions
6. Save standardized recursive residuals
7. Save recursive predictions based on existing regressors
8. Save recursive predictions based on variables to be speci�ed
9. Save adaptive coe¢ cients

Option 0 takes you back to the Commands and Data Transformations box.
Option 1 allows you to plot the recursive coe¢ cients, �̂r; r = r�; r� + 1; :::; n, and their

standard error bands (computed as �̂r plus or minus twice their standard errors). To avoid
the large uncertainties that are associated with the initial estimates, only the �nal 34 of the
estimates for each coe¢ cient are displayed: namely, r� is set equal to 1

4n+
3
4(k + 1). When

you choose this option you will be presented with the variable names for your regressors
and will be asked for the name of the regressor whose coe¢ cient estimates you wish to see
plotted. See Sections 21.17.3 and 21.17.5.

Option 2 plots the standard errors of the recursive regressions, de�ned by �̂2r ; r =
r�; r� + 1; :::; n, computed using equations (21.138) and (21.143) for the OLS and the IV
options, respectively. To avoid the uncertain initial estimates the plots are displayed for
r� = 1

4n+
3
4(k + 1).

Options 3, 4 and 5 allow you to save all the estimated recursive coe¢ cients, their
standard errors, and the standard errors of the recursive regressions as variables in Micro�t�s
workspace.

Option 6 enables you to save standardized recursive residuals de�ned by equations
(21.136) and (21.141) for the OLS and the IV options, respectively.

Option 7 enables you to save recursive predictions and their standard errors. See Section
21.17.8.

Option 8 allows you to save recursive predictions and their standard errors obtained with
respect to the variable wt, which may di¤er from the regressors, xt. See equation (21.146)
in Section 21.17.8. When you choose this option you will be prompted to list the variable
names in wt to be used in the calculations of the recursive predictions. You must specify
exactly the same number of variables as there are regressors in your regression equation.

Option 9 enables you to save adaptive coe¢ cients de�ned by equation (21.144).



CHAPTER 6. SINGLE-EQUATION OPTIONS 100

6.15 Rolling Linear Regression Menu

Option 3 in the Single Equation Menu (see Section 6.4) is the Rolling Linear Regression
Menu. The menu has the following options

1. Rolling least squares
2. Rolling two-stage least squares

Option 1 allows you to estimate the coe¢ cients of a linear regression equation by the
OLS method over successive rolling periods of a �xed length.

Option 2 allows you to estimate the coe¢ cients of a linear regression equation by the
two-stage least squares (or IV ) method over successive rolling periods of a �xed length (set
using option 1). If you choose this option you will be prompted to list at least as many
instruments as there are regressors in your equation.

Specify the estimation and your regression equation as usual. You will be asked to specify
the length of the window to be used in the estimation, and to set the number of observations
you want to use for updating the estimation.

6.15.1 Rolling Regression Results Menu

This menu has the following options

0. Move to Backtracking Menu (Rolling Regression)
1. Plot rolling coe¢ cients and their standard errors
2. Plot standard errors of rolling regressions
3. Save rolling coe¢ cients
4. Save standard errors of rolling coe¢ cients
5. Save standard errors of rolling regressions
6. Plot one-step-ahead rolling forecasts
7. Save one-step-ahead rolling forecasts
8. Save standard errors of rolling forecasts

Option 0 takes you back to the Commands and Data Transformations box.
Option 1 allows you to plot the rolling regression coe¢ cients and their standard errors.

See also the description of option 1 in the Recursive Regression Results Menu in Section
6.14.1.

Option 2 allows you to plot the standard errors of the rolling regressions.
Options 3, 4 and 5 enable you to save the rolling coe¢ cients, their standard errors, and

the standard errors of the rolling regressions on Micro�t�s workspace.
Options 6, 7 and 8 allow you to plot and save one-step-ahead rolling forecasts and their

standard errors
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6.16 Non-Linear Regression Menu

The Non-Linear Regression Menu is option 4 in the Single Equation Estimation Menu (Uni-
variate Menu: see Section 6.4). It contains the following option

1. Non-linear least squares
2. Non-linear 2-stage least squares

Option 1 allows you to estimate your speci�ed non-linear equation by the least squares
method.

Option 2 allows you to estimate your speci�ed non-linear equation by the 2SLS (or
IV ) method. When you choose this option you will be prompted to list at least as many
instruments as there are unknown parameters in your non-linear model.

Notes

1. See Section 6.16.1 on how to specify/modify a non-linear equation

2. Special care needs to be exercised with respect to the choice of initial parameter esti-
mates. An appropriate choice of initial estimates can hamper the convergence of the
iterative process, and may lead to error messages which can be di¢ cult to decipher at
�rst. For example, suppose you are interested in estimating the following non-linear
equation:

Ct = A0 +A1 exp (Yt=A2)

where C is real consumption expenditure, Y is the real disposable income and A0, A1,
and A2 are unknown parameters. If you start the iteration with A2 = 0, you will see
an error message stating that there are insu¢ cient observations to estimate. This is
because with A2 initially set equal to zero, all the values of Yt=A2, being unde�ned,
will be set to blank. Another problem that arises frequently in the estimation of non-
linear regression models concerns the scaling on the regressors. In the case of the above
examples, unless the Yts are reasonably small, exponentation of Yt can result in very
large numbers, and the computer will not be able to handle the estimation problem.
When this arises you will see an error message on the screen.

3. A similar problem can arise when initial values chosen for A2 are very small, even if
the Yts are reasonably small. In some applications the use of zero initial values for the
parameters can result in an error message. It is always advisable to think carefully
about the scale of your regressors and the choice of the initial parameter values before
running the non-linear regression option.

4. When estimating a linear regression equation via the non-linear regression option, it is
acceptable to use zeros as initial values for the parameters
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5. The least squares and the IV options in the Non-Linear Regression Menu allow you to
estimate a linear or a non-linear regression, subject to linear or non-linear parametric
restrictions. For example�to estimate the ARDL model

yt = �+ �yt�1 + �1xt + �2xt�1 + ut

subject to the common factor restrictions

�1�+ �2 = 0

you need to type the following formula.

Y = A0 +A1 � Y (�1) +A2 �X �A1 �A2 �X(�1)

6. The non-linear 2SLS option can also be used to estimate Euler equations, namely the
�rst-order conditions for intertemporal optimization problems under uncertainty. For
an example, see Lesson 13.2.

6.16.1 Speci�cation of a non-linear regression equation

Enter the speci�cation of the non-linear equation, and type the formula for the equation in
the box editor provided on the screen. You can type your formula using standard arithmetic
operators such as +, �, =, and �, and any one of the built-in functions set out in Section
4.2. For example, suppose you are interested in estimating the following Cobb-Douglas
production function with additive errors:

Yt = AL�t K
�
t + ut

where Yt is output, Lt and Kt are labour and capital inputs, and ut is a disturbance term.
The unknown parameters are represented by A, � and �. Then you need to type

Y = A0 � (L^A1) � (K^A2)

As another example, suppose you wish to specify the following non-linear regression:

zt = �1e
�1x1t + �2e

�2x2t + ut

In the box editor that appears on the screen you need to type

Z = a1 �EXP(b1 �X1) + a2 �EXP(b2 �X2)

When specifying a non-linear regression, the following points are worth bearing in mind:

1. In the case of the above two examples, it is assumed that the variables (Y , K, and
L), and (z, x1 and x2) are in the variable list and that A0; A1; A2; B1 and B2 are
parameters to be estimated, and are not, therefore, in your list of variables. (Note that
in Micro�t upper- and lower-case letters are treated as identical.)
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2. You need to watch for two important types of mistake: using an existing variable
name to represent a parameter value, and including a non-existent variable in the
speci�cation of the non-linear equation. Micro�t is not capable of recognizing these
types of mistake. But you should be able to detect your mistakes at a later stage
when you will be asked to provide initial estimates for the unknown parameters of
your equation (see Section 6.16.2). If, by mistake, you use a variable name to present
a parameter, you will not be asked to supply an initial estimate for the parameter in
question, and most likely the computations will fail to converge. In the opposite case,
where a non-existent variable is included in the regression equation, Micro�t treats
the non-existent variable as an unknown parameter and asks you to supply an initial
estimate for it! To reduce the probability of making such mistakes we recommend that
you reserve the names A0; A1; A2... and B0; B1; B2; :::: for parameter values, and try
not to use them as names for the variables on the workspace.

3. Mistakes in typing the regression formula are readily detected by Micro�t. But you
need to �x the problem by carefully checking the non-linear formula that you have
typed, and by ensuring that you have not inadvertently mixed up variable names and
parameter values!

4. The list of variables speci�ed under the various estimation options, including the non-
linear equation speci�ed under option 4, can be saved in a �le for use at a later stage
using the button. The variable lists are saved in �les with extension .LST, and
the non-linear equations are saved in �les with the extension .EQU. To retrieve a �le
you saved earlier, click .

6.16.2 Speci�cation of initial parameter estimates

The non-linear estimation option, and the other estimation methods that use iterative tech-
niques, will require the users to supply initial values for the unknown parameters in their
speci�ed econometric model. In such cases you will be presented with a screen containing
the names of the known parameters, all of which are initially set equal to zero. You can
change these initial settings by moving the cursor to the desired position and typing your
own choice of the initial estimate. These initial parameter values can be readily changed if
the estimation method fails to converge.

6.16.3 Estimation results for the non-linear regression equation

Once the estimation of the non-linear equation is successfully complete, you will be presented
with the estimation results in a format similar to that given for the OLS and the IV options
in the case of linear regression (see Section 6.5). Micro�t also automatically computes
diagnostic statistics for tests of residual serial correlation, functional form mis-speci�cation,
non-normality of disturbances, and heteroscedasticity in the case of non-linear equations
estimated by the least squares or the IV methods. These statistics are computed using
the same procedures as outlined in Sections 21.6.2 and 21.10, with the matrix X replaced
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by the matrix of �rst derivatives (of the non-linear equation with respect to the unknown
parameters) evaluated at the parameter estimates obtained on convergence. The non-linear
options do not compute statistics for structural stability and predictive failure tests.

The relevant formulae for the non-linear estimation options are given in 21.21.

6.17 Phillips-Hansen Estimation Menu

This menu allows you to estimate the parameters of a single cointegrating relation by the
fully-modi�ed OLS (FM -OLS) procedure proposed by Phillips and Hansen (1990). The
underlying econometric model is given by

yt = �0 + �
0
1xt + ut; t = 1; 2; :::; n (6.21)

where yt is an I(1) variable, and xt is a k � 1 vector of I(1) regressors, assumed not to be
cointegrated among themselves.11 It is also assumed that xt has the following �rst-di¤erence
stationary process

�xt = �+ vt; t = 2; 3; :::; n (6.22)

where � is a k � 1 vector of drift parameters, and vt is a k � 1 vector of I(0), or stationary
variables. It is also assumed that �t = (ut;v

0
t)
0 is strictly stationary with zero mean and a

�nite positive-de�nite covariance matrix, �.
The OLS estimators of � = (�0;�

0
1)
0 in (6.21) are consistent even if xt and ut (equiv-

alently vt and ut) are contemporaneously correlated: see, for example, Engle and Granger
(1987), and Stock (1987). But in general the asymptotic distribution of the OLS estimator
involves the unit-root distribution and is non-standard, and carrying out inferences on �
using the usual t-tests in the OLS regression of (6.21) will be invalid. To overcome these
problems, appropriate corrections for the possible correlation between ut and vt and their
lagged values is required. The Phillips-Hansen fully-modi�ed OLS (FM -OLS) estimator
takes account of these correlations in a semi-parametric manner. But it is important to
recognize that the validity of this estimation procedure critically depends on the assumption
that xts are I(1) and are not themselves cointegrated. For Monte Carlo evidence on small
sample properties of the FM -OLS estimators see Pesaran and Shin (1999). For details of
the computational algorithms see Section 21.18.

To access this menu, select option 5 in the Single Equation Estimation Menu (see Section
6.4). It contains the following options

1. None of the regressors has a drift
2. At least one regressor is I(1) with drift

You need to choose option 1 if � in (6.22) is zero. Otherwise you should select option 2.
List the dependent variable, yt, followed by the I(1) regressions, x1t, x2t,..., xkt in the box
11A variable is said to be I(1) if it must be di¤erenced once before it can be rendered stationary. A random

walk variable is a simple example of an I(1) variable. A set of I(1) variables are said to be cointegrated if
there exists a linear combination of them which is I(0), or stationary. For further details see, for example,
Engle and Granger (1991).
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editor on the screen. Do not include intercept or time trends among the regressors. Specify
your estimation period and the length of your lag window. When you click , you will
be presented with the following menu for selecting the lag window for the estimation of the
long-run variances used in the estimation procedure

0. Move to Backtracking Menu
1. Equal weights lag window
2. Bartlett lag window
3. Tukey lag window
4. Parzen lag window

The use of the equal weights (or uniform) lag window may result in negative standard
errors, and when this happens you need to choose one of the other three lag windows. We
recommend the Parzen lag window.

Once the lag window is chosen you will be asked to specify the length of the lag window,
and are then presented with the estimation results. You can also carry out tests of linear
and non-linear restrictions on the cointegrating coe¢ cients � =

�
�0;�

0
1

�0, using the options
in the Post Regression Menu (see Section 6.20).

6.18 ARDL approach to cointegration

Option 6 in the Single Equation Estimation Menu (Univariate Menu: see Section 6.4) allows
you to estimate the following ARDL(p; q1; q2; :::; qk) models

�(L; p)yt =

kX
i=1

�i(L; qi)xit + �
0wt + ut (6.23)

where

�(L; p) = 1� �1L� �2L2 � :::� �pLp;
�i(L; qi) = 1� �i1L� �i2L2 � :::� �iqiL

qi ; for i = 1; 2; :::; k (6.24)

L is a lag operator such that Lyt = yt�1, and wt is a s� 1 vector of deterministic variables
such as the intercept term, seasonal dummies or time trends, or exogenous variables with
�xed lags. Micro�t �rst estimates (6.23) by the OLS method for all possible values of
p = 0; 1; 2; :::;m, qi = 0; 1; 2; :::;m, i = 1; 2; :::; k; namely a total of (m+ 1)k+1 di¤erent
ARDLmodels. The maximum lag, m, is chosen by the user, and all the models are estimated
on the same sample period, namely t = m+ 1;m+ 2; :::; n.

In the second stage the user is given the option of selecting one of the (m+ 1)k+1 es-
timated models using one of the following four model selection criteria: the �R2 criterion,
Akaike information criterion (AIC), Schwartz Bayesian criterion (SBC) and the Hannan
and Quinn criterion (HQC).12 The program then computes the long-run coe¢ cients and

12These model selection criteria are described in Section (21.7).
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their asymptotic standard errors for the selected ARDL model. It also provides estimates
of the error correction model (ECM) that corresponds to the selected ARDL model. For
further details and the relevant formulae for the computation of the long-run coe¢ cients and
the associated Error Correction Model (ECM) see Section 21.19.

6.18.1 Speci�cation of an ARDL regression equation

Specify the estimation period and maximum lag order m (m < 24) for your ARDL speci�-
cation before specifying your equation. The list of the variables to be included in the ARDL
model should be typed followed by deterministic regressors such as the intercept term, time
trends, and regressors with �xed lags; separating the two sets of variables by &. The de-
pendent variable should be the �rst variable in the list. The �rst set of variables should not
appear in lagged or lead form, and it should not contain an intercept term or time trends.

As an example, suppose you wish to specify the following ARDL model:

�(L; s)yt = �0 + �1Tt + �2zt + �1(L; s)x1t

+�2(L; s)x2t + ut

where � (L; s), �i (L; s), i = 1; 2 are polynomial lag operators of the maximum order equal
to s, Tt is a deterministic time trend, and zt is an exogenous regressor. Once presented with
the box editor you need to type

Y X1 X2 & INPT T Z

It is important to note that even in the case of ARDL models with a small number of
regressors (say k = 2), the number of ARDL models to be estimated could be substantial,
if m is chosen to be larger than 6. In the case where k = 2, and m = 6, the total number
of ARDL models to be estimated by the program is equal to (6 + 1)3 = 343. If this number
of ARDL models to be estimated exceeds 125 you will be presented with a warning that
computation may take a long time to complete. If you choose to go ahead, Micro�t carries
out the necessary computations and presents you with the ARDL Order Selection Menu (see
Section 6.18.2).

6.18.2 ARDL Order Selection Menu

This menu has the following options

0. Move to Backtracking menu
1. Choose maximum lag to be used in model selection
2. R-BAR Squared
3. Akaike information criterion
4. Schwartz Bayesian criterion
5. Hannan-Quinn criterion
6. Specify the order of the ARDL model yourself
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Option 1 allows you to change the maximum lag order, s, to be used in the computations
Option 2 selects the orders of the ARDL(p; q1; q2; :::; qk) model, namely the values of

p; q1; q2:::; qk using the R
2
criterion.

Option 3 selects the orders of the ARDL model using the Akaike information criterion.
Option 4 selects the orders of the ARDL model using the Schwartz Bayesian criterion.
Option 5 selects the orders of the ARDL model using the Hannan and Quinn criterion.
Option 6 allows you to specify your own choice of the lag-orders, p; q1; q2; :::; qk. When

you choose this option you will be asked to specify exactly k + 1 integers representing the
order of the lag on the dependent variable, followed by the order(s) of the lag(s) on the k
regressor(s). Micro�t works out the maximum value of these orders that can be chosen by
the user given the sample size available.

Once the orders p; q1; q2; :::; qk are selected either by one of the model selection criteria
(options 2 to 5) or by specifying them yourself (option 6) you will be presented with the Post
ARDL Selection Menu (see Section 6.18.3).

6.18.3 Post ARDL Model Selection Menu

This menu has the following options

0. Return to ARDL Order Selection Menu
1. Display the estimates of the Selected ARDL regression
2. Display long run coe¢ cients and their asymptotic standard errors
3. Display Error Correction Model
4. Compute forecasts from the ARDL model

Option 0 returns you to the ARDL Order Selection Menu (see Section 6.18.2).
Option 1 gives the estimated coe¢ cients of the ARDL model, together with the asso-

ciated summary and diagnostic statistics. This option also allows you to make use of all
the options available under the OLS method, for hypothesis testing, plotting �tted values,
residuals, leverage measures, and so on (See Section 6.6).

Option 2 presents you with a table giving the estimates of the long-run coe¢ cients, their
asymptotic standard errors, and the associated t-ratios. The orders p̂; q̂1; q̂2; :::; q̂k selected
for the underlying ARDL model are also speci�ed at the top of the table.

Option 3 displays a result table containing the estimates of the error correction model
(ECM) associated with the selected ARDL model. These estimates are computed using
the relations in Section 21.19, and allow for possible parametric restrictions that may exist
across the long-run and the short-run coe¢ cients. The estimated standard errors also take
account of such parametric restrictions.

Option 4 computes forecasts based on the selected ARDL model, and asks you whether
you wish to see forecasts of the levels or the �rst-di¤erences of yt. You will then be presented
with the ARDL Forecast Menu (see Section 6.18.4).
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6.18.4 ARDL Forecast Menu

This menu appears on the screen if you choose option 4 in the Post ARDL Model Selection
Menu (see Section 6.18.3). It contains the following options

0. Choose another variable
1. Display forecasts and forecast errors
2. Plot of in-sample �tted values and out of sample forecasts
3. Save in-sample �tted values and out of sample forecasts

Option 0 enables you to alter your choice of the levels or the �rst-di¤erences of yt that
you may wish to forecast.

Option 1 displays the forecasts and the forecast errors for yt (or �yt) computed on
the basis of the selected ARDL model. It also provides a number of summary statistics
computed both for the estimation and the prediction periods.

Option 2 plots the actual values of yt (or �yt), and the �tted and forecast values of yt
(or �yt) over the estimation and the forecast periods, respectively.

Option 3 allows you to save the �tted values of yt (or �yt) over the estimation period,
and the forecast values of yt (or �yt) over the forecast period.

6.19 Logit and Probit models

The Logit and Probit options are appropriate when the dependent variable, yi, i = 1; 2; :::; n
takes the value of 1 or 0. In econometrics such models naturally arise when the economic
agents are faced with a choice between two alternatives. (For example, whether to use public
transportation, or to purchase a car), and their choice depends on a set of k explanatory
variables or factors. The models are also referred to as �qualitative�or �limited dependent�
variable models. In the biological literature they are known as �quantal variables�, or as
�stimulus and response models�.

Comprehensive surveys of the literature on binary response models can be found in
McFadden (1976) and Amemiya (1981). Other useful references are Maddala (1983), Judge,
Gri¢ ths, Hill, Lütkepohl, and Lee (1985) Chapter 18, Cramer (1991), and Greene (2002)
Chapter 19.

6.19.1 Speci�cation of the Logit/Probit model

To access the Logit and Probit estimation options choose option 7 in the Single Equation
Estimation Menu (see Section 6.4). You will then be asked to list the dependent variable,
yi, followed by the regressors (or the explanatory) variables, xi1; xi2; :::; xik. The dependent
variable must contain only ones and zeros. The explanatory variables could contain both
continuous and discrete variables. Once you have completed the speci�cation of the model
you will be asked to select a sample period for estimation. If the dependent variable in your
model contains values other than ones and zeros you will be presented with an error message
to that e¤ect; click to continue. This will take you to the Backtracking Menu for the

Logit/Probit Estimator.
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6.19.2 Logit/Probit Estimation Menu

The Logit/Probit Estimation Menu contains the following options

1. Logit
2. Probit

Option 1 computes ML estimates of the coe¢ cients assuming the logistic probability
model

Pr(yi = 1) = �(�
0xi) =

e�
0xi

1 + e�
0xi
; i = 1; 2; :::; n (6.25)

where � = (�1; �2; :::; �k)
0 is the k�1 vector of unknown coe¢ cients, and xi is a k�1 vector

of explanatory variables, possibly containing a vector of ones (the intercept term). The e¤ect
of a unit change in the jth element of xi on Pr(yi = 1) is given by

@ Pr(yi = 1)

@xij
= �j�i(1� �i); for j = 1; 2; :::; k and i = 1; 2; :::; n (6.26)

where �i = �(�0xi). TheML estimation is carried out using the iterative method of Scoring
(see (21.182)).

Option 2 computes ML estimates of the coe¢ cients assuming the normal probability
model

Pr (yi = 1) = �
�
 0xi

�
=

Z 0xi

�1

1p
2�
exp

�
�12 t

2
	
dt; (6.27)

where as in option 1 above,  is a k � 1 vector of unknown coe¢ cients and xi is a k � 1
vector of explanatory variables. In the case of this option the e¤ect of a unit change in the
jth element of xi on Pr(yi = 1) is given by

@ Pr(yi = 1)

@xij
= �j�

�
�0xi

�
; for j = 1; 2; :::; k, and i = 1; 2; :::; n; (6.28)

where � (�) stands for the standard normal density

�
�
�0xi

�
= (2�)�

1
2 exp

n
�12
�
�0xi

�2o
6.19.3 Estimation results for Logit and Probit options

The estimation results for both the Logit and Probit options are set out in a table with two
parts. The top part gives the ML estimates of coe¢ cients together with their (asymptotic)
standard errors and the t-ratios. The bottom part of the table gives the factor
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needed to compute the marginal e¤ects (6.26) and (6.28) for di¤erent coe¢ cients evaluated
at sample means, a number of summary statistics, test statistics and model selection criteria.
Here �x refers to the sample mean of the regressors. The details of these are given in Section
21.20.3. Since under both probability models the log-likelihood function is concave, the
computations usually converge very quickly to the unique ML estimators (when they exist).
Also note that the variances of the logistic and normal distributions that underlie the Logit
and Probit options di¤er and are given by �2=3 and 1, respectively. As a result, to ensure
comparability of theML estimates obtained under these two options theML estimates using
the Probit option must be multiplied by �=

p
3 � 1:814 to make them comparable with those

computed using the Logit option.
The problem of choosing between the Probit and Logit models can be approached either

by application of the model selection criteria such as Akaike information criterion or the
Schwartz Bayesian criterion, or by means of non-nested hypothesis testing procedures. In
cases where the Logit and Probit options are used on the same set of regressors, xi the
applications of the various model selection criteria reduced to a simple comparison of the
maximized log-likelihood values. In practice these log-likelihood values will be quite close,
particularly if the estimates of �0xi (or  0xi) lie in the range (�1:6; 1:6). In these circum-
stances the application of the non-nested testing methods is more appropriate: see Pesaran
and Pesaran (1993).

6.19.4 Logit/Probit Post Estimation Menu

You will be presented with this menu when you have �nished with the estimation results
tables (see above). This menu has the following options:

0. Quit Logit/Probit Estimation
1. Display results again
2. List actual and �tted values, and �tted probabilities
3. Plot actual values and �tted probabilities
4. Save �tted probabilities (and forecasts if any)
5. Wald test of linear/non-linear restrictions
6. Estimate/test functions of parameters of the mode
7. Compute forecasts

Option 0 takes you back to the Commands and Data Transformations box (see Section
6.19.2).

Option 1 enables you to see the ML estimation results again (see Section 6.19.3).
Option 2 lists actual values (yi), the �tted values (ŷi), and the �tted probability values

�(b�0xi) and �(b�0xi) for the Probit and Logit options, respectively. (See Section 21.20.2).
Option 3 plots actual values (yi) and the �tted values, �(b�0xi) and �(b�0xi) for the

Probit and Logit options, respectively.
Option 4 allows you to save �tted probability values and their forecasts (if any). Use

Option 7 below to compute forecasts of probability values.
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Option 5 enables you to carry out Wald tests for linear and non-linear restrictions on
the coe¢ cients �. Also see Option 7 in the Hypothesis Testing Menu (see Section 6.23). For
the relevant formulae see Section 21.25.

Option 6 allows you to estimate linear and non-linear functions of the coe¢ cients �.
Also see Option 5 in the Post Regression Menu in Section 6.20. For the relevant formulae
see Section 21.24.

Option 7 computes forecasts of the probability values and the associated forecasts of y
using the formulae in Section 21.20.4. This option also gives a number of summary statistics
computed over the estimation and forecast periods.

6.20 Post Regression Menu

This menu appears on the screen immediately after the estimation results for the single
equation linear and the non-linear estimation options. The Probit and Logit estimation
option has its own Post Estimation Menu. (See Section 6.19.4). The Post Regression Menu
contains the following options

0. Move to Backtracking Menu
1. Display regression results again
2. Move to Hypothesis Testing Menu
3. List/plot/save residuals and �tted values
4. White and Newey-West adjusted variance menu
5. Estimate/Test (possibly non-linear) functions of parameters
6. Plot the leverage measures of the regression (OLS)
7. Save the leverage measures of the regression (OLS)
8. Forecast
9. Plot of forecast values only

These options enable you to study the properties of your speci�ed regression equation in
more detail. The highlighting in this menu is initially placed on option 2 in the case of the
least squares and the IV methods; otherwise the highlighting is placed on option 1.

Option 0 takes you back to the Commands and Data Transformations box, where a new
estimation period and/or a regression equation can be speci�ed.

Option 1 enables you to see your regression results again.
Option 2 takes you to the Hypothesis Testing Menu (see Section 6.23)
Option 3 takes you to the Display/Save Residuals and Fitted Values Menu (see Section

6.21).
Option 4 takes you to the menu for the computation of alternative estimators of the

variance matrices (see Section 6.22).
Option 5 allows you to estimate linear or non-linear functions of the parameters of

your regression model. In the case of linear regressions Micro�t assigns A1, A2, ..., to the
regression coe¢ cients and B1, B2,... to the parameters of the AR=MA error processes. For
non-linear regression Micro�t works directly in terms of the parameter names that you have



CHAPTER 6. SINGLE-EQUATION OPTIONS 112

speci�ed. When you choose this option you will be asked to type your functions one at a time
in the box editor that appears on the screen, separating the functions by a semicolon (;).
The program computes and displays the estimates of the functions and the estimates of their
(asymptotic) variance-covariance matrix. The relevant formula for the variance-covariance
matrix of the parameter estimates is given in Section 21.24.

Option 6 provides plots of the measures of the leverage (or the in�uence) of points in
the regression design, together with a horizontal line representing the average value of the
leverage measures (see Section 6.6.7 for more details and relevant references to the literature.)

Option 7 allows you to save the leverage measures for subsequent analysis
Option 8 computes static or dynamic forecasts of the dependent variable conditional on

the observed values of the regressors over the forecast period, if any, together with forecast
errors, and the standard errors of the forecast. Dynamic forecasts will be computed if the
lagged value of the dependent variable are explicitly included among the regressors (see note
4 in Section 6.5.1). When you choose this option you will be asked to specify the �nal
observation in your forecast period. Type in the observation number, or the relevant date,
and click . To choose all the available observations in the forecast period you only need

to click (see Section 21.26 for details of the computations).
Option 9 provides a plot of actual and forecast values. The emphasis in this plot is

on the forecast values, and in contrast to the plot provided under Option 8, it does not, in
general, cover the whole of the estimation period.

6.21 Display/Save Residuals and Fitted Values Menu

This is a sub-menu of the Post Regression Menu and contains the following options

0. Return to Post Regression Menu
1. List residuals and �tted values
2. Plot actual and �tted values
3. Plot residuals
4. Plot the autocorrelation function and the spectrum of residuals
5. Plot the histogram of residuals
6. Save residuals (and forecast errors if any)
7. Save �tted values (and forecasts if any)

Option 0 takes you back to the Post Regression Menu (see Section 6.20).
Option 1 displays on the screen the residuals and �tted values together with the actual

values of the dependent variable. In the case of the AR and MA options (options 3 and 8
in the Linear Regression Menu), adjusted residuals and �tted values are reported.

Option 2 provides a plot of actual and (adjusted) �tted values.
Option 3 provides a plot of (adjusted) residuals, together with a standard error band.

The band represents �2�̂�, where �̂� is the estimated standard error of the regression.
Option 4 displays graphs of the autocorrelation function and the standardized spectral

density function of the residuals estimated using the Parzen window. To obtain estimates
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that utilize other windows or to compute the standard errors of these estimates, you can
apply the COR and the SPECTRUM commands to the residuals, after saving them using
option 6 in this menu.

Option 5 displays a histogram of the residuals. If you wish to produce a histogram with
a di¤erent number of bands, save the residuals using Option 6 in this menu and then apply
the HIST command to the saved residuals at the data processing stage.

Option 6 allows you to save the residuals and forecast errors (if any) in a variable for use
in subsequent analyses. When you select this option, you will be asked to specify a variable
name for the residuals to be saved. Type in the variable name followed by an optional
description and click .

Option 7 allows you to save �tted and forecast values (if any) in a variable for use in
subsequent analyses (see previous option above in this menu for more details).

6.22 Standard, White and Newey-West Adjusted Variance
Menu

This menu has the following options

0. Return to Post Regression Menu
1. Standard variance-covariance matrix
2. White heteroscedasticity adjusted
3. Newey-West adjusted with equal weights
4. Newey-West adjusted with Bartlett weights
5. Newey-West adjusted with Tukey weights
6. Newey-West adjusted with Parzen weights

Option 0 returns you to the Post Regression Menu.
Option 1 displays the conventional variance-covariance matrix of the estimated coef-

�cients. This option applies to all the methods available for the estimation of linear and
non-linear regression models. It also computes and displays the covariance matrix of the
regression coe¢ cients and the parameters of the AR and MA error processes.

Option 2 computes and displays a �degree of freedom adjusted�version of White (1980)
and White (1982) heteroscedasticity-consistent estimates of the variance-covariance matrix
of the parameter estimates in the case of the OLS, the IV , the non-linear least squares and
the non-linear IV options. (See Section 21.22 for the relevant formulae). If you click ,
you will be presented with the following choices:

0 Return to White and Newey-West Adjusted Variance Menu
1. Display regression results for the adjusted covariance matrix
2. Display the adjusted covariance matrix
3. Wald test of restrictions based on adjusted covariance matrix
4. Estimate/test functions of parameters based on adjusted matrix
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The options in this sub-menu allow you to test hypotheses on the regression coe¢ cients
using the heteroscedasticity-consistent estimates of the variance-covariance matrices.

Options 3 to 6 compute a �degree of freedom adjusted�version of the Newey and West
(1987) heteroscedasticity and autocorrelation consistent estimates of the variance-covariance
matrix of the parameter estimates in the case of the linear and non-linear least squares and
IV options for di¤erent choices of lag windows (see Section 21.23). Newey and West use
the Bartlett weights, but in general the Parzen weights are preferable. The �equal weights�
options is relevant when the residual serial correlation can be approximated by a �nite order
MA process. When you choose any of these options you will be prompted to specify the
size of the lag window. We recommend that you do not specify a window size which is in
excess of one third of the available observations. Micro�t then computes and displays the
estimates of the Newey-West adjusted variance-covariance matrices. If you click you

will be presented with the same choices as in the case of option 2 (White heteroscedasticity
adjusted variance-covariance matrix) set out above.

Note: The formula for the White standard errors is a special case of the Newey-West
formula, and can also be obtained using Options 3 to 6 by setting the window size equal to
zero.

6.23 Hypothesis Testing Menu

This menu contains the following options

0. Return to Post Regression Menu
1. LM tests for serial correlation (OLS, IV , NLS, & IV �NLS)
2. Autoregressive conditional heteroscedasticity tests (OLS & NLS)
3. Unit root tests for residuals (OLS & NLS)
4. CUSUM and CUSUMSQ tests (OLS)
5. Variable deletion test (OLS & IV )
6. Variable addition test (OLS & IV )
7. Wald test of linear/non-linear restrictions
8. Non-nested tests against another linear regression (OLS)
9. Non-nested tests by simulation for log-linear ratios etc (OLS)

and allows you to subject your chosen linear and non-linear regression model to additional
tests.

Option 0 takes you back to the Post Regression Menu (see Section 6.20)
Option 1 allows you to carry out a pth order test of residual serial correlation (p � 12).

In the case of the least squares option (OLS and NLS) it provides (asymptotic) t-ratios
for individual coe¢ cients of the AR error process as well as the LM , the F , and the log-
likelihood ratio statistics. When this option is chosen you will be asked to specify the order
of the test. Type in your answer (an integer between 1 and 12) and click . In the case
of the least squares options, the program computes the LM and the F -version of Godfrey�s
test statistic given respectively by equations (21.19) and (21.21). For the IV options, the
program computes Sargan�s test statistic given by (21.69).
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Option 2 allows you to compute the autoregressive-conditional heteroscedasticity (ARCH)
test statistic due to Engle (1982). For an (ARCH) test of order p, the program computes
the LM statistic for the test of �i = 0, i = 1; 2; :::; p in the auxiliary regression

e2t = intercept+
pX
i=1

�ie
2
t�i + Error

estimated over the period t = p+ 1; p + 2; :::;m, where et are the OLS residuals. See also
Section 23.1.7.

Option 3 allows you to carry out the Dickey-Fuller and Augmented Dickey-Fuller tests
of the unit root hypothesis in the residuals (see the ADF command for more details).13 This
test has been discussed in Engle and Granger (1987) and Engle and Yoo (1987) as a test of
cointegration. The program also displays the 95 per cent critical values, using the results
in MacKinnon (1991). Note that these critical values di¤er from those supplied with the
ADF command, and depend on the number of I(1) variables in the underlying regression
(excluding the intercept term and the time trend), and whether or not the regression model
includes a time trend. Micro�t checks the regressions and reports the correct critical values.
If an intercept term is not included in the original regression, a warning is displayed. It is
important to note that in view of the above considerations, a direct application of the ADF
command to saved residuals will generate incorrect critical values for the test, and must be
avoided.

Option 4 enables you to carry out the cumulative sum (CUSUM) and the CUSUM of
squares (CUSUMSQ) tests of structural stability proposed by Brown, Durbin, and Evans
(1975). When you choose this option, Micro�t displays two graphs, one giving the plot of
the CUSUM statistic (21.131), and the other giving the plot of the CUSUMSQ statistic
(21.133). Each graph also displays a pair of straight lines drawn at the 5 per cent level of
signi�cance de�ned by equations (21.132) and (21.134), respectively. If either of the lines
is crossed, the null hypothesis that the regression equation is correctly speci�ed must be
rejected at the 5 per cent level of signi�cance. The CUSUM test is particularly useful
for detecting systematic changes in the regression coe¢ cients, and the CUSUMSQ test is
useful in situations where the departure from the constancy of the regression coe¢ cients is
haphazard and sudden.

Option 5 enables you to test for the statistical signi�cance of deleting one or more
regressors from your linear regression model.

Option 6 enables you to test the statistical signi�cance of adding one or more regressors
to your linear regression model.

Option 7 allows you to carry out a Wald test of linear or non-linear restrictions on the
parameters of your model. When you choose this option you will �rst be prompted to specify
the number of the restrictions that you wish to test, and then the restrictions themselves.

Notes

13Unit roots tests can also be applied to the residuals directly by making use of the ADF commands in
the Processing Window. See Section 4.4.2 for more information.
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1. Restrictions must be linearly independent and should not exceed the number of the
unknown parameters in your model.

2. In the case of linear regressions,Micro�t assigns A1, A2, ... to the regression coe¢ cients
and B1, B2; ::: to the parameters of the AR=MA error processes. For example, to test
the hypothesis that in the regression of C on INPT , Y , Y (�1), C(�1) the long run
response of C to Y is equal to 1, you need to specify either (A2 +A3) = (1�A4) = 1,
or A2 + A3 + A4 = 1. Both are mathematically equivalent, and in large samples give
the same results. In small samples, however, they could give very di¤erent results (see
Gregory and Veall 1985, 1987). The linear form of the restriction is preferable and
should be used in practice.

3. Another method of testing restrictions would be to use option 5 in the Post Regression
Menu (see Section 6.20).

4. The relevant expression for the test statistic is given by equation (21.198).

Option 8 enables you to compute a number of test statistics proposed in the literature
for the test of non-nested linear regression models. This option also computes a number of
useful summary statistics, including Akaike and Schwartz Bayesian information criteria (see
Section 21.8 for details, and for relevant references to the literature).

Option 9 allows you to carry out non-nested tests of the following linear regression
models :

M1 : f(y) = X�1 + u1; u1 � N(0; �2In);
M2 : g(y) = Z�2 + u2; u2 � N(0; !2In);

where f(y) and g(y) are known transformations of the n � 1 vector of observations on the
underlying dependent variable of interest, y, and X and Z are n� k1and n� k2, observation
matrices for the models M1 and M2, respectively. In what follows we refer to f(y) and g(y)
as the right-hand-side (RHS) variables.

When you choose this option, you will be prompted to list the regressors of model M2.
The currently speci�ed regression equation will be treated as model M1. Then you will be
presented with the following menu, asking you to specify the nature of the transformation
of the dependent variable for model M1:

0. Move to Hypothesis Testing Menu
1. Linear form
2. Logarithmic form
3. Ratio form
4. Di¤erence form
5. Log-di¤erence form
6. General non-linear form to be speci�ed by you

Options 1 to 5 allow you to specify the following transformations of the dependent
variable under model M1:
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Linear form: f(y) = y
Logarithmic form: f(y) = log(y)
Ratio form: f(y) = y=z
Di¤erence form: f(y) = y � y(�1)
Log-di¤erence form: f(y) = logy � logy(�1)

where z is another variable on the workspace. Notice that log(y) refers to a vector of
observations with elements equal to log(yt), t = 1; 2; :::; n. Also y� y(�1) refers to a vector
with a typical element equal to yt � yt�1; t = 1; 2; :::; n.

Option 6 in this sub-menu allows you to specify your own particular functional form for
f(y). See note 4 below for more details.

Once one of these options is chosen, the program presents you with a similar menu to
identify the functional form, g(y), for the RHS variable under model M2. Having speci�ed
the functional forms for the dependent variables of the two models, the program asks you to
give the number of replications, R, to be used in the simulations, and computes the following
test statistics: PE test statistic due to tciteNMacKinnon1983, the Bera and McAleer (1989)
test statistic, the double-length regression test due to Davidson and MacKinnon (1984), and
the simulated Cox test statistic, SCc, proposed in Pesaran and Pesaran (1995). Furthermore,
it reports Sargan (1964) and Vuong (1989) likelihood criteria for the choice between the three
models. See Section 21.9 for the details. Using this option it is possible, for example, to
test linear versus log-linear models, �rst-di¤erence models versus models in log-di¤erences,
models in ratio forms against models in logarithms.

Notes

1. In the case of testing linear versus log-linear models (or �rst-di¤erence versus log-
di¤erence models) the program �rst computes the probability of drawing a negative
value of y under the linear model, and displays a warning if this probability is larger
than 0.0001. In such an event, the Cox statistic for testing the log-linear versus the
linear model cannot be computed, and the program only computes the Cox statistic
for testing the linear versus the log-linear model. See Pesaran and Pesaran (1995).

2. The results are displayed in two separate screens. The �rst screen gives the OLS
estimates of models M1 and M2, and the quasi-maximum likelihood estimators of the
parameters of model M1 and M2, and vice versa. The di¤erent test statistics are
displayed in the subsequent screen.

3. Our experience suggests that for most problems 150 to 200 replications should be
enough for achieving accuracies of up to two decimal places in the computation of the
simulated Cox statistic. Nevertheless, we recommend that you try di¤erent numbers
of replications to check the robustness of the results.

4. You need to choose option 6 when the functional forms f(y) or g(y) are not among the
menu choices. When you choose this option you will be presented with a box editor,
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asking you to specify the functional forms for the RHS variable, their inverse functions,
and their derivatives, for each of the non-nested models separately. You need to provide
the required information �rst for model M1 and then for model M2, separating them
by a semicolon (;). For example, suppose you wish to specify the functions

f(yt) =
yt � yt�1

zt
g(yt) = log(yt=zt)

for the non-nested regression models M1 and M2, respectively. You need to type

F = (Y � (Y (�1))=Z; Y = Z � F + Y (�1); DFY = 1=Z;

G = LOG(Y=Z); Y = Z �EXP(G); DGY = 1=Y

Notice that the variables F , Y , G, Z should exist on Micro�t�s workspace, but the
variables DFY and DGY should not exist.



Chapter 7

Multiple Equation Options

This chapter deals with the multiple (system) equation options in Micro�t, and covers esti-
mation, hypothesis testing and forecasting in the context of unrestricted Vector Autoregres-
sive (V AR) models, Seemingly Unrelated Regression Equations (SURE), and cointegrating
V AR models. The chapter also shows how to compute/plot orthogonalized and generalized
impulse response functions, forecast error variance decompositions, and persistence pro�les
for the analysis of the e¤ect of system-wide shocks on the cointegrating relations. There are
also important new options for long-run structural modelling, enabling the user to estimate
and test models with multiple cointegrating relations subject to general linear (possibly)
non-homogeneous restrictions. The details of the econometric methods and the computa-
tional algorithms that underlie the multivariate options are set out in Chapter 22, where
references to the literature can also be found.

7.1 The canonical multivariate model

The multivariate estimation options in Micro�t are all based on the following augmented
vector autoregressive model of order p, or AV AR(p) for short:

zt = a0 + a1t+

pX
i=1

�izt�i +	wt + ut (7.1)

where zt is an m � 1 vector of jointly determined (endogenous) variables, t is a linear time
trend, wt is a q � 1 vector of exogenous variables, and ut is an m� 1 vector of unobserved
disturbances assumed to satisfy the following assumptions:1

B1 Zero Mean Assumption. The m� 1 vector of disturbances, ut, have zero means

E (ut) = 0; for t = 1; 2; :::; n

1These assumptions are the multivariate generalizations of those underlying the univariate classical linear
regression model described in Section 6.1.

119
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B2 Homoscedasticity Assumption. The m � 1 vector of disturbances, ut, has a time-
invariant conditional variance matrix

E
�
utu

0
t jzt�1; zt�2; :::;wt;wt�1; :::

�
= �

where � = (�ij) is an m�m symmetric positive de�nite matrix.

B3 Non-autocorrelated Error Assumption. The m� 1 vector of disturbances, ut, are
serially uncorrelated

E
�
utu

0
s

�
= 0 for all t 6= s

B4 Orthogonality Assumption. The m�1 vector of disturbances, ut, and the regressors
wt are uncorrelated

E (ut jwt ) = 0 for all t

B5 Stability Assumption. The augmented V AR(p) model (7.1) is stable. That is, all the
roots of the determinantal equation

j Im ��1���2�2 � � � � ��p�p j= 0 (7.2)

fall outside the unit circle.

For maximum likelihood estimation, the following normality assumption is also needed

B6 Normality Assumption. The m� 1 vector of disturbances has a multivariate normal
distribution.

The V AR speci�cation is chosen for its �exibility and computational ease, and it is
�hoped�that by choosing p (the order of the V AR) high enough, the residual serial correla-
tion problem can be avoided. The conditional homoscedasticity assumption, B3, is likely to
be violated in the case of �nancial time series at monthly or higher frequencies. See Chapter
8 for the use of multivariate GARCH models. Assumption B2 allows for contemporane-
ous correlation across the errors in di¤erent equations, and therefore also accommodates
instantaneous feedbacks between the di¤erent variables in zt.

The canonical multivariate model (7.1) also forms the basis of the Seemingly Unrelated
Regression Equations (SURE) and the restricted SURE options in Micro�t. The general
SURE model results when one allows for di¤erent lag orders and/or exogenous variables in
di¤erent equations in (7.1) (see Section 7.7).

Finally, the cointegrating V AR options discussed in Section 7.5 are based on equation
(7.1) but allows one or more roots of the determinantal equation (7.2) to fall on the unit
circle.
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7.1.1 The log-likelihood function of the multivariate model

The various multivariate estimation options in Micro�t compute maximum likelihood (ML)
estimators of the parameters of (7.1) subject to appropriate parametric restrictions. The log-
likelihood function of (7.1), conditional onw1;w2; :::;wn and the initial values, z0; z�1; :::; z�p+1;
is given by

`n(') =
�nm
2

log 2� � n

2
log j�j � 1

2

nX
t=1

u0t�
�1ut; (7.3)

where ' stands for all the unknown parameters of the model. Stacking the n observations
on the m equations in (7.1), the log-likelihood in (7.3) can also be written in matrix form as

`n(') =
�nm
2

log 2� � n

2
log j�j � 1

2Tr
�
��1UU0� ; (7.4)

where Tr(�) denotes the trace of a matrix, and

U = Z� �na00 � tna01 �
pX
i=1

Z�i�
0
i �W	0 (7.5)

U
n�m

= (u1;u2; :::;un)
0 ; Z

n�m
= (z1; z2; :::; zn)

0 (7.6)

Z�i
n�m

= (z�i+1; z�i+2; :::; z�1+n)
0 ; W

n� q
= (w1;w2; :::;wn)

0 (7.7)

�n
n� 1

= (1; 1; :::; 1)0 ; tn
n� 1

= (1; 2; :::; n)0 (7.8)

The particular computational algorithm used to carry out the maximization of the above
log-likelihood function depends on the nature of the restrictions on the parameters of the
model, and are set out in detail in Chapter 22. In this chapter our focus will be on how to
use the various multiple estimation options.

7.2 General guidelines

Before proceeding any further, the following points are worth bearing in mind when using
the multiple equation options in Micro�t :

1. The order of the V AR, p, often plays a crucial role in the empirical analysis, and in
selecting it special care must be taken to ensure that it is high enough so that the
disturbances ut in (7.1) are not serially correlated and, for the p chosen, the remaining
sample for estimation is large enough for the asymptotic theory to work reasonably well.
This involves a di¢ cult balancing act. For V AR order selection Micro�t automatically
generates the Akaike information criterion (AIC) and the Schwarz Bayesian criterion
(SBC), as well as a sequence of log-likelihood ratio statistics. In practice, their use
often leads to di¤erent choices for p, and the user must decide on the best choice of p
for the problem in hand.
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2. The multivariate techniques are often highly data intensive, particularly when m, the
number of jointly determined variables, is large. For example, whenm = 10; p = 4, and
q = 2, each equation in the AV AR model (7.1) contains s = mp+ q+2 = 44 unknown
coe¢ cients. For such a speci�cation our experience suggests that sample sizes of 200
or more is often needed if any sensible results are to be obtained. It is, therefore,
important that the multivariate options in Micro�t are applied in cases where n is
su¢ ciently large.2

3. Cointegrating V AR options presume that the variables zt are I(1), and that the user
already knows the nature of the unconditional mean of the variables in the underlying
V AR model, namely whether the variables zt have non-zero means or are trended,
and whether the trend is linear. Therefore, it is important that the variables in zt are
tested for unit roots (for example using the ADF command in the Process window),
and that the nature of the trends in zt is ascertained, for example, by plotting each
elements of zt against time! Econometric techniques are often not powerful enough to
identify the nature of the trends in the variables being modelled.

4. Before using the long-run structural modelling options described in Section 7.5.3, you
need to specify the number of cointegrating (or long-run) relations of your model.
The maximum eigenvalue and the trace statistics advanced by Johansen (1988) and
Johansen (1991) can be employed for this purpose (see Section 7.5). However, the
results of these tests are often ambiguous in practice, and it may be necessary that
the number of cointegrating relations is chosen on the basis of a priori information;
for example from the long-run predictions of a suitable economic model: see Pesaran
(1997).

5. Another important issue in the use of long-run structural modelling options concerns
the nature of the just-identifying restrictions on the long-run relations. This invariably
requires an explicit formulation of the long-run economic model that underlies the
empirical analysis. Micro�t invites you to specify the cointegration or the long-run
relations of your model at two di¤erent stages. In the �rst stage you will be asked to
specify the cointegrating relations that are just-identi�ed. Once such a just-identi�ed
model is successfully estimated, you will be prompted to specify your over-identifying
restrictions (if any). For the ML estimation procedure to converge it is important
that the over-identifying restrictions are introduced one at a time, starting with those
that are less likely to be rejected. The asymptotic standard errors computed for the
estimated coe¢ cients of the exactly-identi�ed cointegrating relations can be used as a
guide in deciding which over-identifying restrictions to impose �rst, and which one to
impose second, and so on.

6. Since the cointegration analysis focuses on the long-run properties of the economic
model, it is important to combine it with some additional information on how the
long-run relations of the model respond to shocks. For example, it may be of interest

2Size limitations in the case of the multivariate estimation options are set out in Appendix A.
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to know whether there are over-shooting e¤ects, and how long, on average, it will
take for the economy to settle back into its long-run state after being shocked. To shed
light on these and other related issues we recommend the use of the generalized impulse
response functions for characterizing the time-pro�les of the e¤ects of variable-speci�c
shocks on the long-run relations, and the persistence pro�les for characterizing the
e¤ects of system-wide shocks on the cointegrating relations. See Sections 22.9.4, 22.9.5
and 22.9.6.

7.3 System Estimation Menu

All the multivariate options in Micro�t can be accessed from the System Estimation Menu
(the Multivariate Menu) or by clicking the button. When you use this button the cur-

rently selected menu option (Unrestricted V AR) is automatically selected. The Multivariate
Menu options open the System Estimation Menu which contains the following options

1. Unrestricted V AR
2. Cointegrating V AR Menu
3. Cointegrating V ARX
4. SURE method
5. Restricted SURE method
6. 2SLS
7. Restricted 2SLS
8. 3SLS
9. Restricted 3SLS

Option 1 enables you to estimate unrestricted V ARmodels, test a number of restrictions
on their parameters and compute multivariate, multi-step ahead forecasts. You can also use
this option to estimate univariate AR models. But if you wish to estimate univariate ARMA
models you need to choose the MA option in the Linear Regression Estimation Menu. See
Sections 6.5 and 6.12.

Option 2 enables you to carry out cointegration analysis in a V AR framework; dis-
tinguishing between I(1) jointly determined variables, I(1) exogenous variables, and I(0)
exogenous variables. You can choose among �ve di¤erent speci�cations of intercepts and/or
trends in the underlying V AR model. This option also allows you to perform impulse re-
sponse analysis and trend/cycle decompositions. See Sections 22.10.1, 22.11 and 22.9.4.

Option 3 enables you to estimate vector error correction models with weakly exogenous
I(1) variables (V ARX). This option can also be used to perform impulse response analysis
and trend/cycle decompositions. See Sections 22.10.1, 22.11 and 22.9.4.

Option 4 allows you to estimate a system of Seemingly Unrelated Regression Equations
(SURE) by the full maximum likelihood method (see Zellner 1962).

Option 5 provides an important extension of the SURE estimation method of option
3, and allows estimation of SURE models subject to linear restrictions, possibly involving
coe¢ cients from di¤erent regression equations in the model. This option can be used, for
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example, to estimate systems of demand equations subject to the homogeneity and symmetry
restrictions.

Options 6 and 7 enable you to estimate SURE models and SURE models subject to
linear restrictions by two-stages least squares (see Zellner 1962).

Options 8 and 9 allow three-stages least squares estimation of unrestricted and re-
stricted SURE models. This method accounts for possible serial correlation of disturbances,
and leads to more e¢ cient estimates of regression coe¢ cients than two-stages least squares
when regression errors are autocorrelated (see Kmenta and Gilbert (1970) and Parks (1967)).

7.4 Unrestricted VAR option

Option 1 in the System Estimation Menu (Multivariate Menu: see Section 7.3) enables you
to estimate the augmented V AR(p) model de�ned by (7.1). When you choose this option
you will be presented with Figure 7.1, which prompts you to list the jointly determined
variables in the V AR, namely zt, followed by the deterministic/exogenous variables, namely
intercepts, trend terms (if any) and possibly exogenous variables determined outside the
V AR model, denoted by wt in equation (7.1). It is possible to specify only one variable in
zt. In this case an augmented univariate autoregressive model will be estimated. The two
sets of variables must be separated by &.

For example, to specify a V AR model in the three variables

C Real consumption expenditure
I Real investment expenditure
Y Real output

including in it an intercept (INPT ) and a linear trend (T ), you need to type

C I Y & INPT T

in the box editor shown in Figure 7.1.

Type in the start and the �nish of your estimation period, and the order of the V AR
model (p � 24), and then click . Micro�t carries out the necessary computations and
presents you with the Unrestricted V AR Post Estimation Menu. See Section 7.4.1.

Notes

1. The ordering of the variables in the V AR is important only as far as computation of
the orthogonalized impulse responses and orthogonalized error variance decompositions
are concerned. See Sections 22.5 and 22.6.

2. Lagged values cannot appear among the set of jointly determined variables, zt. Al-
though they could be included in the second set, namely wts, so long as these are not
lagged values of the �rst set!
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Figure 7.1: The System Estimation window with the unrestricted V AR option

3. If a lagged variable, say C(�1), is included as one of the variables in the V AR, Micro�t
will present you with an error message

4. If you include lagged values of the jointly determined variables as an exogenously
determined variable, initially no error messages will appear on the screen, but at the
stage of computations the program will encounter a perfect multicollinearity problem
and issue an error message.

7.4.1 Unrestricted VAR Post Estimation Menu

The Unrestricted V AR Post Estimation Menu appears on the screen when the estimation
of the V AR model is complete. It contains the following options

0. Move to Backtracking Menu
1. Display single equation estimation results
2. Display system covariance matrix of errors
3. Impulse Response and Forecast Error Variance Decomposition
4. Hypothesis testing and lag order selection in the V AR
5. Compute multivariate dynamic forecasts
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Option 1 enables you to see estimation results for individual equations in the V AR
model. When you choose this option you will be asked to select the equation to be displayed.
Initially, the highlighting will be on the �rst variable in the V AR. Move the cursor to the
variable whose equation you wish to inspect, and click . The estimation results for the
selected equation should now appear on the screen. Since all the equations in the unrestricted
V AR model have the same variables in common, the ML estimates of the V AR model is
the same as the OLS estimates. See Section 22.4. Similarly, the summary and diagnostic
statistics supplied with the estimation results are computed using the same formula as in the
case of the OLS option described in Section 6.6. The only additional information provided
is the maximized value of the system log-likelihood function given at the bottom right-hand
corner of the �rst result table that appears on the screen. See equation (22.38). As in the
case of the OLS option, after the estimation results you will be presented with the Post
Regression Menu, which provides you with a number of options for further analysis of the
residuals and hypothesis testing. For example, you can compute White and Newey-West
adjusted standard errors for the parameter estimates or carry out tests of linear/non-linear
restrictions on the coe¢ cients of the chosen equation in the V AR. But to carry out tests
of restrictions that involve parameters of di¤erent equations in the V AR model you need to
choose the SURE and restricted SURE options described in Section 7.7.1 and 7.7.2.

Option 2 presents you with the unbiased estimates of �, given by b� in equation (21.12).
Option 3 takes you to the Unrestricted V AR Dynamic Response Analysis Menu, from

where you can compute and plot orthogonalized and generalized impulse responses and
forecast error variance decompositions for unit shocks to the ith equation in the V AR model
(7.1). See Section 7.4.2.

Option 4 moves you to the V AR Hypothesis Testing Menu, where you can select the
order of the V AR, test for the statistical signi�cance of the exogenous/deterministic vari-
ables, wt, and �nally test for non-causality of a sub-set of jointly determined variables, zt,
in the V AR model de�ned by (7.1). See Section 7.4.3.

Option 5 enables you to compute forecasts of the jointly determined variables, zt, in
(7.1), for given values of the exogenous/deterministic variables, wt, over the forecast period.
When you select this option you will be �rst asked to specify the forecast period, and then to
choose the variable you wish to forecast. For each variable that you choose you will be given
a choice of forecasting the levels of the variable or its �rst-di¤erences. The program then
computes the forecasts and presents you with the Multivariate Forecast Menu (see Section
7.4.4).

7.4.2 Unrestricted VAR Dynamic Response Analysis Menu

This menu has the following options

0. Return to V AR Post Estimation Menu
1. Orthogonalized IR of variables to shocks in equations
2. Generalized IR of variables to shocks in equations
3. Orthogonalized forecast error variance decomposition
4. Generalized forecast error variance decomposition
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When you choose any one of the above options 1 to 4, you will be asked to choose the
equation to be shocked. Each equation is designated by its left-hand-side variable. Move
the cursor to the desired variable name (equation) and click . You will now be asked

to specify the horizon (denoted in Chapter 22 by N) for the impulse responses (or forecast
error variance decomposition). The default value is set to 50, otherwise you need to type
your desired value of N and then click (with N � 150). Once you have speci�ed the
horizon the program carries out the computations and presents you with a list of impulse
responses (or forecast error variance decompositions) at di¤erent horizons. To plot or save
the results click to move to the Impulse Response Results Menu. This menu has the
following options

0. Move back/bootstrap con�dence intervals
1. Display results again
2. Graph
3. Save in a CSV �le

Option 0 allows you to compute the empirical distribution of impulse responses for one or
more variables by applying the bootstrap method. Choose the desired number of replications
and the con�dence level (1��) and click , then select the variable you want to inspect.
You will be presented with the list of impulse responses at di¤erent horizons for the selected
variable, together with their bootstrapped 1� �

2 and
�
2 percentiles, their median and mean.

Click to return to the Impulse Response Results Menu.
Option 1 enables you to see the results of the impulse response analysis and forecast

error variance decompositions again.
Option 2 enables you to plot the impulse responses (or the forecast error variance

decompositions) for one or more of the variables in the V AR at di¤erent horizons. If you have
previously used option 0 to compute the bootstrapped con�dence intervals at a con�dence
level (1 � �), you can also plot the mean, median, 1 � �

2 and
�
2 percentiles of the impulse

responses bootstrapped empirical distributions.
Option 3 allows you to save the impulse responses (or the forecast error variance de-

compositions) for all the variables in a CSV �le for subsequent analysis.
It is worth noting that the orthogonalized impulse responses and the orthogonalized

forecast error variance decompositions usually depend on the ordering of the variables in the
V AR, but their generalized counterparts do not. The orthogonalized and the generalized
impulse responses exactly coincide either for the �rst variable in the V AR or if � is diagonal.
An account of these concepts and the details of their computation are set out in Sections
22.5 and 22.6.

7.4.3 VAR Hypothesis Testing Menu

This menu appears on the screen when option 4 in the Unrestricted V AR Post Estimation
Menu is chosen. (see Section 7.4.1), and has the following options
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0. Return to V AR Post Estimation Menu
1. Testing and selection criteria for order (lag length) of the V AR
2. Testing for deletion of deterministic/exogenous variables in the V AR
3. Testing for block non-causality of a subset of variables in the V AR

Option 0 returns you to the Unrestricted V AR Post Estimation Menu (see Section
7.4.1).

Option 1 computes Akaike information and Schwarz Bayesian model selection criteria
for selecting the order of the V AR(p), for p = 0; 1; 2; :::; P , where P represents the maximum
order selected by the user (see Section 7.4). The selection procedure involves choosing the
V AR(p) model with the highest value of the AIC or the SBC. In practice, the use of SBC is
likely to result in selecting a lower order V AR model, as compared to the AIC. But in using
both criteria it is important that the maximum order chosen for the V AR is high enough,
so that high-order V AR speci�cations are given a reasonable chance of being selected, if
they happen to be appropriate. This option also computes log-likelihood ratio statistics and
their small sample adjusted values which can be used in the order-selection process. The
log-likelihood ratio statistics are computed for testing the hypothesis that the order of the
V AR is p against the alternative that it is P , for p = 0; 1; 2; ::; P � 1. Users interested in
testing the hypothesis that the order of the V AR model is p against the alternative that it
is p+ 1, for p = 0; 1; 2; :::; P � 1, can construct the relevant log-likelihood statistics for these
tests by using the maximized values of the log-likelihood function given in the �rst column
of the result table corresponding to this option. For example, to test the hypothesis that the
order of the V AR model is 2 against the alternative that it is 3, the relevant log-likelihood
ratio statistic is given by

LR(2 : 3) = 2 (LL3 � LL2) (7.9)

where LLp, p = 0; 1; 2; :::; p refers to the maximized value of the log-likelihood function for
the V AR(p) model. Under the null hypothesis, LR(2 : 3) is distributed asymptotically as a
chi-squared variate with m2(3� 2) = m2 degrees of freedom, where m is the dimension of zt
in equation (7.1). For further details and the relevant formulae see Section 22.4.1.

Option 2 computes the log-likelihood ratio statistic for testing zero restrictions on the
coe¢ cients of a sub-set of deterministic/exogenous variables in the V AR. For example, to
test the hypothesis that the V AR speci�cation in (7.1) does not contain a deterministic trend
the relevant hypothesis will be a1 = 0: In general, this option can be used to test the validity
of deleting one or more of the exogenous/deterministic variables from the V AR. When you
choose this option you will be asked to list the deterministic/exogenous variable(s) to be
dropped from the V AR model. Type in the variable name(s) in the box editor and click

to process. The test results should now appear on the screen; they give the maximized
values of the log-likelihood function for the unrestricted and the restricted model, and the
log-likelihood ratio statistic for testing the restrictions. The degrees of freedom and the
rejection probability of the test are given in round ( ) and square [ ] brackets, respectively.
For further details and the relevant formulae see Section 22.4.2.

Option 3 computes the log-likelihood ratio statistic for testing the null hypothesis that
the coe¢ cients of a sub-set of jointly determined variables in the V AR are equal to zero.
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This is known as Block Granger Non-Causality test and provides a statistical measure of
the extent to which lagged values of a set of variables (say z2t) are important in predicting
another set of variables, (say z1t) once lagged values of the latter set are included in the
model.

More formally, in (7.1), let zt = (z01t; z
0
2t) where z1t and z2t are m1�1 and m2�1 sub-sets

of zt, and m = m1 +m2. Consider now the following block decomposition of (7.1)

z1t = a10 + a11t+

pX
i=1

�i;11z1;t�i +

pX
i=1

�i;12z2;t�i +	1wt + u1t; (7.10)

z2t = a20 + a21t+

pX
i=1

�i;21z1;t�i +

pX
i=1

�i;22z2;t�i +	2wt + u2t:

The hypothesis that the subset z2t does not �Granger-cause�z1t is de�ned by

HG : �12 = 0;

where �12 = (�1;12;�2;12:::;�p;12) : When you choose this option you will be asked to list
the subset of variable(s) on which you wish to carry out the block non-causality test, namely
z2t, in the above formulation. The program then computes the relevant log-likelihood ratio
statistic and presents you with the test results, also giving the maximized log-likelihood
values under the unrestricted (�12 6= 0) and the restricted model (�12 = 0). For further
details and the relevant formulae see Section 22.4.3. Note that the Granger non-causality
tests may give misleading results if the variables in the V AR contain unit roots (namely
when one or more roots of (22.34) lie on the unit circle). In such a case one must ideally
either use V AR models in �rst di¤erences, or cointegrating V AR models if the underlying
variables are cointegrated. See the discussion in Canova (1995) p. 104, and the references
cited therein.

7.4.4 Multivariate Forecast Menu

This menu appears on the screen when option 5 in the Unrestricted V AR Post Estimation
Menu is selected. (See Section 7.4.1). It contains the following options

0. Choose another variable
1. Display forecast and forecast errors
2. Plot of in-sample �tted values and out of sample forecasts
3. Save in-sample �tted values and out of sample forecasts

Option 0 enables you to inspect forecasts of the level or �rst-di¤erences of another
variable in the V AR.

Option 1 lists the actual values, multivariate forecasts and the forecast errors. In cases
where actual values for the jointly determined variables over the forecast period are not
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available, it is still possible to generate multi-step ahead forecasts so long as observations
on the exogenous/deterministic variables in the V AR (namely wt, intercepts and trends)
are available over the forecast period. In addition to listing the forecasts, this option also
computes a number of standard summary statistics for checking the adequacy of the forecasts
over the estimation and the forecast periods.

Option 2 enables you to see plots of the actual and forecast values for the selected
variable. In the graph window you can specify a di¤erent period over which you wish to see
the plots. Click the Start and Finish �elds and scroll through the drop-down lists to select
the desired sample period, and then press the button �Refresh graph over the above sample
period�.

Option 3 allows you to save the �tted and forecast values of the selected variable in
the workspace in a new variable to be used in subsequent analysis.

7.5 Cointegrating VAR options

The econometric model that underlies the cointegrating V AR options is given by the follow-
ing general vector error correction model (V ECM):

�yt = a0y + a1yt��yzt�1 +

p�1X
i=1

�iy�zt�i +	ywt + uty (7.11)

where zt =
�
yt
xt

�
. This model distinguishes between four categories of variables:

1. yt, which is an my � 1 vector of jointly determined (or endogenous) I(1) variables.3

2. xt, which is an mx � 1 vector of I(1) exogenous variables.

3. wt, which is a q � 1 vector of I(0) exogenous variables.

4. Intercepts and deterministic linear trends.

The implicit V AR model for the I(1) exogenous variables, xt, is given by

�xt = a0x +

p�1X
i=1

�ix�xt�i +	xwt + vt (7.12)

and assumes that xts are not themselves cointegrated. Notice also that despite the fact that
(7.12) does not contain a deterministic trend, the levels of xt will be trended due to the drift
coe¢ cients, a0x.

Combining (7.11) and (7.12) we obtain

�zt = a0 + a1t��zt�1 +
p�1X
i=1

�i�zt�i +	wt + ut (7.13)

3 Vector yt is said to be I(1) if all its elements must be di¤erenced to achieve stationarity.
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where

zt =

�
yt
xt

�
; ut =

�
uty
vt

�
; a0 =

�
a0y
a0x

�
; a1 =

�
a1y
0

�
� =

�
�0y

0

�
; �i =

�
�iy
�ix

�
; 	 =

�
	y

	x

�
which is a restricted vector error correction form of (7.1).

In estimating (7.11)Micro�t distinguishes between �ve cases depending on whether (7.11)
contains intercepts and/or time trends, and on whether the intercepts and the trend coef-
�cients are restricted. Ordering these cases according to the importance of deterministic
trends in the model we have

Case I. a0y = a1y = 0 (no intercepts and no deterministic trends).

Case II. a1y = 0; and a0y = �y�y (restricted intercepts and no deterministic trends).

Case III. a1y = 0; and a0y 6= 0 (unrestricted intercepts and no deterministic trends).

Case IV. a0y 6= 0; and a1y = �yy (unrestricted intercepts and restricted deterministic
trends).

Case V. a0y 6= 0; and a1y 6= 0 (unrestricted intercepts and trends).

The intercept and the trend coe¢ cients, a0y and a1y are my � 1 vectors, �y is the
long-run multiplier matrix of order my � m, where m = mx + my, �1y;�2y; :::;�p�1;y are
my �m coe¢ cient matrices capturing the short-run dynamic e¤ects, and 	y is the my � q
matrix of coe¢ cients on the I(0) exogenous variables.

Firstly (7.11) allows for a sub-system approach in which the mx-vector of random vari-
ables, xt, are treated structurally exogenous, in the sense that there are no error correction
feedbacks in the equations explaining �xt. Models of this type naturally arise in empirical
macroeconomic analysis of small open economies where for the purpose of modelling the
domestic macroeconomic relations, foreign prices, interest rates and foreign incomes can of-
ten be treated as exogenous I(1) variables. Secondly, the model (7.11) explicitly allows for
the possibility of deterministic trends, which again could be an important consideration in
macroeconomic applications.

The importance of distinguishing among the above �ve cases is discussed in Section 22.7.
In the case where a0 and a1 are both unrestricted (Case V), yt will be trend-stationary when
the rank of �y is full, but when �y is rank de�cient, the solution of yt will contain quadratic
trends, unless a1y is restricted as in Case IV. Similarly, in Case III, when �y is rank de�cient
then yt will contain a linear deterministic trend, unless a0y is restricted as in Case II. Case
I is included for completeness and is unlikely to be of relevance in economic applications.

It is also worth noting that in Case IV where a1y 6= 0; the cointegrating vectors contain
a deterministic trend, and in Case II where a0y 6= 0; the cointegrating vectors contain
intercepts.
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Under the assumption that Rank(�y) = r, that is, when there exists r cointegrating
relations among the variables in zt, we have

�y = �y�
0 (7.14)

where �y and � are my � m and m � r matrices each with full column rank, r. The r
cointegrating relations are then given by

�0zt = �
0z0 +

�
�0C�(1)a1

�
t+ �t (7.15)

where z0 is the initial value of zt, C�(1) = C�0 + C
�
1 + C

�
2 + � � � , de�ned by the recursive

relations (22.83), and �t (�0 = 0) is an r � 1 vector of mean-zero, I(0) disturbance vector,
representing the covariance stationary components of the cointegrating relations.4 In the
case where the trend coe¢ cients a1y in the underlying V ECM are restricted (Case IV), we
have �0C�(1)a1 = �0, where  is an r � 1 vector of unknown coe¢ cients. In this case the
trend coe¢ cients enter the cointegrating relations and we have

�y0t = a0y ��y�0 (zt�1 � t) +
p�1X
i=1

�iy�zt�i +	ywt + uty (7.16)

�0 (zt�1 � t) will be a covariance stationary process with a constant mean. In this case the
presence of a deterministic trend in the cointegrating relations can be empirically tested by
testing the r �co-trending�restrictions

�0 = 0 (7.17)

In Case V where a1y is unrestricted, the deterministic trends in the error correction model
(7.11) are speci�ed outside the cointegrating relations. One could test for their presence in
the error correction model by means of standard t-tests. Similar considerations also apply
when comparing models with restricted and unrestricted intercepts, but with no determinis-
tic trends (Cases II and III). Under Case II, the intercepts in the underlying error correction
model will appear as a part of the cointegrating relations, while under case III, the unre-
stricted intercepts appear as a part of the error correction speci�cation.

In most macroeconomic applications of interest, where yt and xt contain deterministic
trend components, and �y is rank de�cient, the appropriate vector error correction model
is given by Case IV, where the trend coe¢ cients are restricted. In cases where (yt;xt) do
not contain deterministic trends, Case II is the appropriate error correction model.

7.5.1 Speci�cation of the cointegrating VAR model

The Cointegrating V AR Menu is option 2 in the System Estimation Menu (See Section 7.3).
The menu contains the following choices for the inclusion of intercept/trends in the V AR
model

4 For a derivation and an explicit expression for �t see Section 22.7.1. Also see Park (1992) and Ogaki
(1992).
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1. No intercepts or trends included in V AR model
2. Restricted intercepts and no trends in V AR model
3. Unrestricted intercepts and no trends in V AR model
4. Unrestricted intercepts and restricted trends in V AR model
5. Unrestricted intercepts and unrestricted trends in V AR model

Options 1 to 5 refer to Cases I to V set out above, and correspond to di¤erent spec-
i�cations of intercept/trend in the underlying V AR model. Option 2 is appropriate when
the jointly determined variables do not contain a deterministic trend. Option 4 (that corre-
sponds to Case IV) is appropriate when the jointly determined variables in the V AR have a
linear deterministic trend.

Options 3 to 5 can lead to error correction models with di¤erent trend properties
depending on the number of cointegrating relations.

You need to list the I(1) variables in your model, namely variables zt, followed by the
list of your I(0) variables, wt, if any, separating them by &. The division of I(1) variables
into the jointly determined variables, yt, and the exogenously determined variables, xt, is
done by using the semicolon character (;) as a separator. For example, suppose you wish to
estimate a cointegrating V AR model containing the following variables:

P Domestic price level
PF Foreign price level
E Exchange rate
R Domestic interest rate
RF Foreign interest rate
DPO Changes in real oil prices
DPO(�1) Lagged changes in real oil prices

where P; E and R are endogenous I(1) variables, PF and RF are exogenous I(1) vari-
ables, and DPO is the exogenous I(0) variable in the model. Then you need to type

P E R ; PF RF & DPO DPO(�1)

You should not include an intercept or a deterministic trend term among these variables.
You need to specify the order of the V AR model (p � 24), and then click to begin
calculations. Micro�t presents you with the trace and maximum eigenvalue statistics for
testing a number of hypotheses concerning the rank of the long-run matrix �y in (7.11),
together with the relevant 90 and 95 per cent critical values (see Sections 22.8, 22.8.1 and
22.8.2).

The program also gives the maximized values of the log-likelihood function of the cointe-
grating V AR model, Akaike, Schwarz, and Hannan and Quinn model selection criteria, for
the di¤erent values of r, the rank of the long-run matrix, �y (see Section 22.8.3).

The above test results and model selection criteria can be used to determine the appro-
priate number of cointegrating relations that are likely to exist among the I(1) variables.
Before moving to the next stage of the cointegration analysis, you must choose a value for
r. It is only meaningful to continue with the cointegration analysis if your choice of r lies
strictly between 0 and my.
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7.5.2 Cointegrating VAR Post Estimation Menu

This menu appears on the screen after the cointegration test results obtained choosing either
option 2 or 3 in the System Estimation Menu (see Section 7.6 for further details on option
3, the cointegrating V ARX option). This menu has the following options

0. Move to Backtracking Menu
1. Display cointegration tests again
2. Specify r, the number of cointegrating vectors (CVs)
3. Display CVs using Johansen�s just-identifying restrictions
4. Display system covariance matrix of errors
5. Display matrix of long-run multipliers for the speci�ed r
6. Long-run structural modelling, IR Analysis and Forecasting
7. Compute multivariate dynamic forecasts

Option 0 takes you back to the Commands and Data Transformations box.
Option 1 enables you to see the cointegration test results again.
Option 2 allows you to specify your choice of r, the number of cointegrating or long-run

relations among the I(1) variables. Notice that r cannot be zero. If r is chosen to be equal
to my, the dimension of yt, the estimation results will be the same as using the unrestricted
V AR option.

Option 3 displays theML estimates of the cointegrating vectors under Johansen�s exact
identifying restrictions. These estimates lack any meaningful economic interpretations when
r > 2. In the case where r = 1, Johansen�s estimates (when appropriately normalized) will
be the same as those obtained using option 6 in this menu.

Option 4 displays the estimates of �, the variance matrix of the errors in the cointe-
grating V AR model, assuming rank of �y is equal to r.

Option 5 displays the ML estimates of �y, the matrix of the long-run coe¢ cients
de�ned by (7.14), subject to the cointegrating restrictions. Notice that by construction rank
of b�y is equal to r.

Option 6 moves you to the Long-Run Structural Modelling Menu and enables you to
estimate the cointegrating vectors subject to general linear restrictions, possibly involving
parameters across the cointegrating vectors, and to test over-identifying restrictions (if any).
This option is also the gateway to computation of impulse response functions, forecast error
variance decompositions, persistence pro�le analysis and multivariate forecasting, with the
cointegrating vectors, �, being subject to (possibly) over-identifying restrictions (see Section
7.5.3).

Option 7 enables you to compute multivariate dynamic forecasts of yt, the jointly
determined variables, for given values of xt and wt, over the forecast period, and assuming
that rank (�y) = r. The forecasts obtained under this option implicitly assume that the
cointegrating vectors, �, are exactly identi�ed. To compute multivariate forecasts when �
is subject to over-identifying restrictions you must use option 5 in the Impulse Response
Analysis and Forecasting Menu (see Section 7.5.4). When you choose this option you will
be �rst asked to specify the forecast period, and then to choose the variable you wish to
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forecast. For each variable that you choose you will be given a choice of forecasting the
levels of the variable or its �rst di¤erences. The program then computes the forecasts and
presents you with the Multivariate Forecast Menu (see Section 7.4.4).

7.5.3 Long-Run Structural Modelling Menu

This menu can be accessed selecting option 6 in the Cointegrating V AR Post Estimation
Menu (see Section 7.5.2). It contains the following options

0. Move to Cointegrating V AR Post Estimation Menu
1. Likelihood ratio test of �xing some cointegrating vectors (CVs)
2. Likelihood ratio test of imposing same restriction(s) on all CVs
3. Likelihood ratio test of imposing restriction(s) on only one CV
4. Likelihood ratio test of imposing general restrictions on CVs
5. Use CVs obtained under Johansen�s just-identifying restrictions
6. Fix all the cointegrating vectors

Option 0 returns you to the Cointegrating V AR Post Estimation Menu (see Section
7.5.2).

Options 1 to 3 represent di¤erent ways of testing simple homogenous restrictions on the
cointegrating vectors. Since the same restrictions can be imposed and tested using option
4 we will not discuss these options here. The interested user should consult the manual for
Micro�t 3.0 where these tests are described in detail (see Pesaran and Pesaran (1991), pp.
88-89).

Option 4 enables you to estimate the V AR model subject to general (possibly) non-
homogenous restrictions on the cointegrating (or the long-run) coe¢ cients, and compute log-
likelihood ratio statistics for testing over-identifying restrictions on the long-run coe¢ cients.
However, when you �rst choose this option you will be asked to specify exactly r restrictions
on each of the r cointegrating vectors to just-identify the long-run restrictions. For example,
if the number of cointegrating relations, r, is equal to 4, a typical set of just-identifying
restrictions could be

A1 = 1; A2 = 0; A3 = 0; A4 = 0;
B1 = 0; B2 = 1; B3 = 0; B4 = 0;
C1 = 0; C2 = 0; C3 = 1; C4 = 0;
D1 = 0; D2 = 0; D3 = 0; D4 = 1

The �les CO2.EQU, CO3.EQU, ..., CO10.EQU in the Micro�t Tutorial Directory contains
such just-identifying restrictions for r = 2; 3; ::; 10, respectively. The above type of just-
identifying restrictions could be made relevant to your particular application, by a suitable
choice of the ordering of the variables in the V AR.5 Once you have successfully estimated the
model subject to the just-identifying restrictions, you can add over-identifying restrictions

5 Notice that except for the results on orthogonalized impulse response functions, and the orthogonalized
forecast error variance decomposition, the cointegration tests and the ML estimates are invariant to the
ordering of the variables in the VAR.
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at a later stage (see option 0 in Section 7.5.4). The econometric and computational details
are set out in Section 22.9.

Option 5 sets the cointegrating vectors equal to Johansen�s estimates, b�J , which are
obtained subject to the just-identifying restrictions de�ned by (22.106) and (22.107).

Option 6 enables you to �x the cointegrating vectors by specifying all their elements.
Options 1 to 6 in the menu, once successfully implemented, take you to the Impulse

Response Analysis and Forecasting Menu (see Section 7.5.4).

7.5.4 Impulse Response Analysis and Forecasting Menu

This menu appears on the screen after a successful implementation of options 1 to 6 in the
Long-Run Structural Modelling Menu (see Section 7.5.3). It contains the following option:

0. Return to identify/test cointegrating vectors
1. Impulse Response of variables to shocks in equations
2. Forecast Error Variance Decomposition analysis
3. Impulse Response of CVs to shocks in equations
4. Persistence Pro�le of CVs to system-wide shocks
5. Trend/Cycle Decomposition
6. Compute multivariate dynamic forecasts
7. Display restricted/�xed CVs again
8. Display error correction equations
9. Save error correction terms
10. Display system covariance matrix of errors
11. Save the cointegrating V AR model in a CSV �le

Option 0 enables you to estimate/test (further) over-identify restrictions on the coin-
tegrating or long-run coe¢ cients. The restrictions could involve parameters from di¤erent
long-run relations (see Section 22.7 and option 4 in the Long-Run Structural Modelling
Menu described in Section 7.5.3). When you choose this option you will be asked to con-
�rm whether you wish to test over-identifying restrictions on the long-run relations. If you
say �No�, you will be returned to the Long-Run Structural Modelling Menu (see Sections
22.9.1-22.9.3). If your answer is in the a¢ rmative you will be presented with a box-editor to
specify your over-identifying restrictions. Our recommendation is to introduce these restric-
tions gradually (ideally one by one), starting from those that are less likely to be rejected.
The asymptotic standard errors reported below the just-identi�ed estimates could provide
a good guide as to which over-identifying restrictions to impose �rst, second and so on.
Once your over-identifying restrictions are added successfully to the existing set of restric-
tions (including the just-identifying ones), you will be presented with a screen containing
initial values for all the long-run coe¢ cients. These are the estimates obtained under the
previous set of restrictions. We recommend that you accept these initial estimates.6 If you

6You can, of course, edit these initial estimates if you experience di¢ culties with the convergence of the
iterative algorithm.
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now click to accept the initial values you will be presented with a small menu giving

you a choice of the �Back substitution algorithm (A) as in Micro�t 4�, the �Back substitu-
tion algorithm (B) new to Micro�t 5�, and the �Modi�ed Newton-Raphson algorithm�. The
highlighting is always on the �Back substitution algorithm (B) new to Micro�t 5�, which is
the one that we recommend. If you choose the modi�ed Newton-Raphson algorithm7 you
will also be given a choice of a damping factor in the range [0.01 to 2.0]. We recommend
starting with the value of 0.01, unless you experience di¢ culties with getting the algorithm
to converge. Once you have chosen the algorithm, the program starts the computations and,
if the iterative process converges successfully, presents you with the ML estimates of the
long-run relations subject to the over-identifying restriction, together with their asymptotic
standard errors in round brackets. Micro�t also generates log-likelihood ratio statistics for
testing the over-identifying restrictions, which are asymptotically distributed as �2 variates
with degrees of freedom given by k � r2, where k is the total number of restrictions and r2
is the number of just-identifying restrictions (see Section 22.9.3). If you click , you will
be presented with a window asking whether you want bootstrapped critical values of overi-
dentifying restrictions on long-run relationships. You can choose the number of replications
and two di¤erent signi�cance levels. If you click Micro�t starts the computation and
presents you with an output window which reports the bootstrapped critical values of the
log-likelihood ratio statistics. If you click you return to the Impulse Response Analysis
and Forecasting Menu.

Option 1 computes and displays orthogonalized and generalized impulse responses of
variable-speci�c shocks on the di¤erent variables in the cointegrating V AR model, (possibly)
subject to over-identifying restrictions on the long-run coe¢ cients. Once the results are ob-
tained, it is also possible to compute bootstrapped con�dence intervals of impulse responses,
for any desired con�dence level.

Option 2 computes and displays orthogonalized and generalized forecast error variance
decompositions for the cointegrating V AR model, (possibly) subject to restrictions on the
long-run relationships. You can then obtain bootstrapped con�dence intervals for the error
variance decomposition at a given con�dence level.

Option 3 computes and displays orthogonalized and generalized impulse responses of
the e¤ect of variable-speci�c shocks on the r cointegrating relations.

Option 4 computes and displays the time pro�le of the e¤ect of system-wide shocks
on the cointegrating relations, referred to as �persistence pro�les�. Selecting options 3 or 4
allows you to obtain bootstrapped con�dence intervals for persistence pro�les, for a given
con�dence level. The algorithms used to carry out the computations for options 3 and 4 are
set out in Section 22.9.5 and 22.9.6, where references to the literature can also be found.

Option 5 allows you to perform the multivariate Beveridge Nelson trend/cycle decom-
position (see Section 22.11).

Option 6 enables you to compute multivariate, multi-step ahead forecasts (of levels and
of �rst-di¤erences) of yt conditional on values of xt and wt. The forecasts obtained using

7For a detailed account of the Back substitution algorithm (A) and of the Modi�ed Newton-Raphson
algorithm see Section 22.9.2.
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this option and those obtained using option 7 in the Cointegrating V AR Post Estimation
Menu will be identical under just-identifying restrictions on the cointegrating relations, and
di¤er only when there are over-identifying restrictions on � (see Section 7.4.4, and option 7
in Section 7.5.2). In the case of cointegrating V ARX (option 3 from the System Estimation
Menu), you can choose between conditional and unconditional or ex ante forecasts, depending
on whether you wish to use the realized values of the exogenous variables or their forecast
values. For the conditional forecasts the values of the exogenous variables during the forecast
period are treated as known. The unconditional forecasts use forecasts of the exogenous
variables, obtained using the marginal model.

Option 7 displays the ML (or �xed) estimates of the cointegrating vectors again. This
option also allows you to obtain bootstrapped con�dence intervals forML estimates, for two
di¤erent signi�cance levels.

Option 8 displays error correction equations for each of the jointly determined I(1)
variables in the model. These estimates are followed by diagnostic statistics and the other
options available after the OLS option. See section 6.6.

Option 9 saves error correction terms in the workspace.
Option 10 displays the degrees-of-freedom adjusted system covariance matrix of the

errors in the underlying V AR model, (7.11). The adjustments are made by dividing the
cross-product of residuals from di¤erent equations by n � s, where s is the total number
of coe¢ cients estimated for each equation in the V AR. This adjustment does not take
account of the cross-equation restrictions on the long-run coe¢ cients, �y, implicit in the
cointegrating restrictions. These estimates will be identical to those obtained using option
4 in the Cointegrating V AR Post Estimation Menu, if the cointegrating vectors, �, are not
subject to over-identifying restrictions. See Section 7.5.2.

Option 11 allows you to save the estimated cointegrating V AR model as a CSV �le.

7.5.5 Beveridge-Nelson Trend/Cycle Decomposition

Option 5 from the Impulse Response Analysis and Forecasting Menu allows you to com-
pute the multivariate Beveridge-Nelson trend/cycle decomposition (see Section 22.11). When
choosing this option you will be presented with a screen containing the names of the endoge-
nous and exogenous variables and the default initial values for the corresponding parameters
and t-ratios on the intercept and trend. If you click , you are then asked to select the

variable for which you wish to perform the trend/cycle decomposition.

7.5.6 Trend/Cycle Decomposition Results Menu

This menu appears on screen after you have performed a trend cycle decomposition, using
option 5 from the Impulse Response Analysis and Forecasting Menu. It contains the following
options
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0. Move back
1. Display results again
2. Graph
3. Save the decomposition for all variables in a CSV �le
4. Save the trend component for all variables in a CSV �le
5. Save the stochastic component for all variables in a CSV �le
6. Save the permanent component for all variables in a CSV �le
7. Save the cyclical component for all variables in a CSV �le
8. Save all the detrended variables in a CSV �le

Option 0 allows to move back to the Impulse Response Analysis and Forecasting Menu.
Options 1 and 2 enables to display results or to plot the various components.
Option 3 to 8 save the decomposition or some components of the Beveridge-Nelson

decomposition for all variables in a CSV �le.

7.6 Cointegrating VARX option

Option 3 in the System Estimation Menu (Multivariate Menu: see Section 7.3) enables you
to estimate vector error correction models (V ECM) with weakly exogenous I(1) variables.
When you choose this option you will be presented with the screen in Figure 7.2 (below),
which prompts you to list the jointly determined (endogenous) variables, followed by the
list of the exogenous variables, and the deterministic variables such as intercepts and trend
terms (if any). The division of variables into endogenous and exogenous is done using the
semicolon character (;) as a separator, and the deterministic variables are separated from
the rest by &.

Type in the start and the �nish of your estimation period, and the order of the V AR
model which could di¤er between endogenous and exogenous variables (in both cases must
be smaller than 24) and then click . Micro�t asks you to select the variables you wish
to restrict, and then presents you with the screen in Figure 7.3.

Here you are asked to specify the equations for the marginal models for your exogenous
variables. You need to list �rst the lag order of the endogenous variables, then the lag order
of exogenous variables, followed by the deterministic variables (if any). You must specify
one equation for each exogenous variable and separate the equation speci�cations using the
semicolon (;).

Once you have completed the speci�cation of the marginal models, click . Micro�t
carries out the necessary computations and produces an output window with the results on
cointegration tests. If you close this output window, you will be then presented with the
Cointegrating V AR Post Estimation Menu (see Section 7.5.2).

7.7 SURE options

There are six options inMicro�t for estimation of Seemingly Unrelated Regression Equations
(SURE) models. These options can be accessed from the System Estimation Menu (see
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Figure 7.2: The System Estimation window with the V ARX option

Section 7.3).
Option 4, 6 and 8 in this menu enable you to compute, respectively, maximum likelihood

(ML), two-stages least squares (2SLS) and three-stages least squares (3SLS) estimates (see
Section 22.1 and 22.2) of the parameters of the following SURE model:

yit = �
0
ixit + uit; i = 1; 2; :::;m (7.18)

where yit is the ith dependent variable in the model composed of an equation, xit is the
ki� 1 vector of regressors in the ith equation, �i is the ki� 1 vector of unknown coe¢ cients
of the ith equation, and uit is the disturbance term. The disturbances (shocks) uit, i =
1; 2; :::;m are assumed to be homoscedastic and serially uncorrelated, but are allowed to be
contemporaneously correlated (Cov (uit; ujt) = �ij , need not be zero for i 6= j).

Options 5, 7 and 9 in the System Estimation Menu allow you to compute, respectively,
maximum likelihood, two-stages least squares and three-stages least squares estimates of
(7.18) when �is are subject to the following general linear restrictions:

R� = b (7.19)

where R and b are r�k matrix and r�1 vector of known constants, and � =
�
�01;�

0
2; :::�

0
m

�0
is a k � 1 vector of unknown coe¢ cients, k =

Pm
i=1 ki. When there are no cross-equation

restrictions, we have
Ri�i = bi (7.20)
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Figure 7.3: Box editor for the speci�cation of the marginal model

where Ri and bi are the ri � ki and ri � 1 matrix vector of restrictions applicable only to
the coe¢ cients of the ith equation in the model. See Section 22.3 for more details.

7.7.1 Unrestricted SURE options

These are options 4, 6 and 8 in the System Estimation Menu (see Section 7.3). When
you choose one of these options you will be presented with a box editor for specifying the
equations in the SURE model. You should list the endogenous variable, yit, followed by its
regressors, xit; for each equation, separating the di¤erent equations by a semicolon (;). The
program then automatically works out the number of equations in the SURE model, namely
m (m � 10). A simple example, of a SURE speci�cation is

W1 INPT W1(�1) LP1 LP2 LP3 LRY ;
W2 INPT W2(�1) LP1 LP2 LP3 LRY

where INPT is an intercept term, W1 and W2 could be budget shares of two di¤erent
commodity groups, LP1, LP2 and LP3, the logarithm of price indices and LRY , the loga-
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rithm of real income. It is also possible to estimate restricted V AR models using the SURE
option. For example, suppose you wish to estimate the following restricted V AR(4) model:

x1t = a1 +
4X
j=1

b1jx1;t�j + c11x2;t�1 + d11x3;t�1 + u1t

x2t = a2 +

4X
j=1

b2jx2;t�j + c21x1;t�1 + d21x3;t�1 + u2t

x3t = a3 +
4X
j=1

b3jx3;t�j + c31x1;t�1 + d31x2;t�1 + u3t

then you need to specify the SURE model as

X1 INPT X1f1� 4g X2(�1) X3(�1);
X2 INPT X2f1� 4g X1(�1) X3(�1);
X3 INPT X3f1� 4g X1(�1) X2(�1)

For speci�cation of V AR models with linear non-homogeneous and/or cross-equation para-
metric restrictions you need to use the restricted SURE option (see Section 7.7.2).

Once the unrestricted SURE model is successfully speci�ed you will be prompted to
specify the period over which you wish to estimate the model. Micro�t then starts to com-
pute ML, 2SLS or 3SLS estimators of the parameters (depending on whether you selected
option 4, 6 or 8 from the System Estimation Menu) and, when successful, presents you with
the SURE Post Estimation Menu (see Section 7.7.3). Maximum likelihood estimates are
computed using the back-substitution algorithm described in Section 22.1.1.

7.7.2 Restricted SURE options

These are options 5, 7 and 9 in the System Estimation Menu (see Section 7.3). When you
select one of these options you will be �rst presented with a box editor to specify the equations
in the SURE model (see Section 7.7.1 on how to specify the SURE model). When you have
done this you will be presented with another box editor for you to specify coe¢ cients of the
SURE model. These restrictions must be linear, but can include cross-equation restrictions.
For example, suppose you are interested in estimating the following system of equations

Yit = �i + �iXit + iWit + uit

for i = 1; 2; :::; 4, and t = 1; 2; :::; n, assuming the homogeneity of the slope coe¢ cients,
namely �i = �, and i = , for i = 1; 2; :::; 4. In the �rst box editor that appears on the
screen (after you choose the restricted SURE option) type

Y 1 INPT X1 W1;
Y 2 INPT X2 W2;
Y 3 INPT X3 W3;
Y 4 INPT X4 W4
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In the second box editor that appears on the screen type the restrictions

A2 = B2; B2 = C2; C2 = D2;
A3 = B3; B3 = C3; C3 = D3

Note that Micro�t assigns the coe¢ cients A1, A2, and A3 to the parameters of the �rst
equation, B1, B2, and B3 to the parameters of the second equation, C1, C2 and C3 to the
parameters of the third equation, and so on. Therefore,

�1 = A1; �1 = A2; 1 = A3;
�2 = B1; �2 = B2; 2 = B3

and so on.
Once the restrictions are speci�ed successfully you will be asked to specify the period

over which you wish to estimate the model. When this is done, Micro�t starts the task of
computing ML, 2SLS or 3SLS estimators (depending on whether you selected option 5, 6
or 9 from the System Estimation Menu) of the parameters of the SURE model subject to the
restrictions. You will be then presented with the SURE Post Estimation Menu, with options
for displaying the estimates and their standard errors, carrying out tests on the parameters
of the model and computing multivariate forecasts. The technical details and the relevant
formulae are given in Section 22.3.

7.7.3 SURE Post Estimation Menu

This menu appears on the screen after a SURE model or a restricted SURE model is
successfully estimated either by maximum likelihood, two-stages least squares, or three-
stages least squares (see Sections 7.7.1 and 7.7.2). It contains the following options

0. Move back to System Estimation Menu
1. Edit the model and estimate
2. Display individual equation estimation results
3. Display system covariance matrix of errors
4. Wald tests of hypotheses on the parameters of the model
5. Estimate/test functions of parameters of the model
6. Compute multivariate dynamic forecasts

Option 0 returns you to the System Estimation Menu (see Section 7.3).
Option 1 allows you to edit the equations in the SURE model and estimate the revised

model.
Option 2 enables you to see the ML estimates of the coe¢ cients of the equations in

the SURE model. When you choose this option you will be asked to select the equation
in the model that you wish to inspect. You will then be presented with estimation results
together with a number of summary statistics, including the values of the AIC and SBC for
the SURE model. (See Sections 22.1 and 22.3 for computational details). If you press the
Esc key you will then be presented with the Post Regression Menu, with a number of options



CHAPTER 7. MULTIPLE EQUATION OPTIONS 144

including plotting/listing/saving residuals, �tted values, and displaying the estimates of the
covariance matrix of the coe¢ cients of the chosen equation. See the OLS option in Section
6.6 for further details. Notice, however, that if you wish to test restrictions on the coe¢ cients
of the SURE model, or estimate known functions of the parameters, or compute dynamic
forecasts, you need to use options 4 to 6.

Option 3 displays the estimates of the variance matrix of the error, namely b�, given by
(22.31) and (22.32).

Option 4 enables you to compute Wald statistics for testing the general linear/non-linear
restrictions

H0 : h(�) = 0

against
H1 : h(�) 6= 0

where � =
�
�01;�

0
2; :::;�

0
m

�0, and h(�) is a known r�1 vector function with continuous partial
derivatives. See Section 22.2.1.

Option 5 allows you to compute estimates of known (possibly) non-linear functions of
the coe¢ cients, � =

�
�01;�

0
2; :::;�

0
m

�0.
Option 6 enables you to compute multivariate forecasts of the dependent (left-hand-side)

variables in the SURE model. When the regressors include lagged values of the dependent
variables, the program computes multivariate dynamic forecasts. When you choose this
option you will be asked to specify the forecast period, and then to choose the variable you
wish to forecast. For each variable that you choose you will be given a choice of forecasting
the levels of the variables or their �rst-di¤erences. Micro�t then computes the forecasts and
presents you with the Multivariate Forecast Menu 7.4.4.



Chapter 8

Volatility Modelling Options

8.1 Introduction

This chapter describes howMicro�t can be used to estimate univariate and multivariate con-
ditionally heteroscedastic models. In the following, we brie�y review a variety of univariate
and multivariate models with time-varying conditional variance that can be estimated using
the volatility modelling options in Micro�t. More technical details on the econometric meth-
ods and computational algorithms used are given in Chapter 23, where further references to
the literature can also be found.

Volatility of a series (say asset returns, rt) is generally measured by its conditional vari-
ance, and is denoted by

h2t = V ar(rt jFt�1 ):

Volatility can arise due to a number of factors: over-reaction to news, incomplete learning,
parameter variations and abrupt switches in policy regimes.

In the case of asset returns, volatility can be estimated either from option prices (when
they are available) or from historical observations. The former is referred to as the Implied
Volatility (IV ) approach and is subject to a number of shortcoming: it depends on the
particular option pricing model used; most option pricing models assume that volatility is
constant, which is not true; the horizon of the IV is �xed (say 3 months) while the risk
manager is often interested in shorter horizons; the number of assets with option prices
is not su¢ ciently comprehensive for most risk management tasks. Measures of volatility
based on historical data are broadly known as �realized volatility� typically using intra-
daily observations. Econometric approaches to volatility usually focus on daily observations.
Measures of realized volatility are also used in evaluation of econometric models of volatility.

Forecasts of volatility are used in risk management, option pricing and asset portfolio
decisions. Most of these applications involve multivariate volatility models. We begin with
univariate models of asset return volatility.

145
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8.2 Historical approaches to volatility measurement

8.2.1 RiskMetricsTM (JP Morgan) method

RiskMetrics uses an exponentially weighted moving average model. Let

zt = rt � �r;

The historical volatility of zt conditional on observations available at time t� 1 is computed
as

h2t = (1� �)
1X
�=0

��z2t���1 (8.1)

where � is known as decay factor (or 1� � the decay rate). The weights

w� = (1� �)�� ; � = 0; 1; 2; :::

add up to unity, and h2t can be computed recursively

h2t = �h2t�1 + (1� �)z2t�1

which is a special version of the GARCH(1,1) model to be discussed below.
Model (8.1) requires the initialization of the process. For a �nite observation window,

denoted by H, a more appropriate speci�cation is

h2H;t =
HX
�=0

wH�z
2
t�1��

where

wH� =
(1� �)��

1� �H+1
; � = 0; 1; :::;H (8.2)

are weights that add up to unity.
Other weighting schemes have also been considered; in particular the equal weighted

speci�cation

h2t =
1

H + 1

HX
�=0

z2t�1�� ;

where wH� = 1=(1 +H), which is a simple moving average speci�cation.
The value chosen for the decay factor, �; and the size of the observation window, H, are

related. For example, for � = 0:9, even if a relatively large value is chosen for H, due to the
exponentially declining weights attached to past observations only around 110 observations
are e¤ectively used in the computation of h2t .
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8.2.2 Econometric approaches

Consider the regression model

rt = �
0xt�1 + "t = �0 + �

0
1x1;t�1 + "t

and assume that all the classical assumptions are valid except that V ("t jFt�1 ) is not con-
stant, but varies over time. In the case of daily asset returns, �1 = 0. One possible
model capturing such variations over time is the Autoregressive Conditional Heteroscedas-
ticity (GARCH) model �rst proposed by Engle (1982). Other related models where the
conditional variance of "t is used as one of the regressors explaining the conditional mean
of yt have also been suggested in the literature and are known as GARCH-in-Mean and
GARCH-in-Mean (or GARCH-M , for short) models. (See, for example, Engle, Lillien, and
Robins (1987)). For a useful survey of the literature on GARCH modelling see Bollerslev,
Chou, and Kroner (1992). Shephard (2005) provides selected readings of the literature.

8.3 Univariate GARCH models

The basic econometric model underlying volatility modelling options is the Generalized Au-
toregressive Conditional Heteroscedastic (GARCH) model proposed by Engle (1982) and
Bollerslev (1986). This model assumes that

yt = �
0xt + ut (8.3)

V (ut j
t�1 ) = h2t = �0 +

qX
i=1

�iu
2
t�i +

pX
i=1

�ih
2
t�i + �

0wt (8.4)

where h2t is the conditional variance of ut with respect to the information set 
t�1, and wt
is a vector of predetermined variables assumed to in�uence the conditional error variances in
addition to the past squared errors. In what follows we refer to

Pq
i=1 �iu

2
t�i and

Pp
i=1 �ih

2
t�i

in (8.4) as the MA and the AR parts of the GARCH(p; q), respectively. The GARCH
model of Bollerslev, or GARCH(p; q) for short is a special case of (8.4) where � = 0.

Micro�t allows to estimate a number of variants of the GARCH model, such as the
GARCH in mean, the absolute GARCH and the exponential GARCH models.

In the GARCH(p; q)-in-mean speci�cation (for short, GARCH(p; q)-M) the conditional
error variance is used as one of the regressors explaining the conditional mean of yt

yt = �
0xt + h

2
t + ut (8.5)

where the conditional error variance h2t = V (ut j
t�1 ) is de�ned by (8.4).
In the absolute GARCH(p; q) model the conditional standard error of the disturbances

ut in (8.3) are speci�ed by

ht =
p
V (ut j
t�1 ) = �0 +

qX
i=1

�i jut�ij+
pX
i=1

�iht�i + �
0wt (8.6)
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A variant of theGARCH(p; q)-M is the absolute valueGARCH-in-Mean model (orAGARCH(p; q)-
M for short), de�ned by (8.5) and (8.6). This model has been introduced into the literature
by Heutschel (1991).

According to the exponential GARCH(p; q) model (EGARCH(p; q) for short) the loga-
rithm of the conditional variance of the errors in (8.3) has the following speci�cation:

log h2t = �0 +

qX
i=1

�i

�
ut�i
ht�i

�
+

qX
i=1

��i

�����ut�iht�i

����� ��

+

pX
i=1

�i log h
2
t�i + �

0wt (8.7)

where � = E
����utht ����. The value of � depends on the density function assumed for the

standardized disturbances, �t = ut=ht. This model, which is due to Nelson (1991), allows for
the possible asymmetric e¤ects of past errors on the conditional error variances.

A variant of the above model is the EGARCH(p; q)-in-mean model, given by (8.5) and
(8.7).

See Section 23.1 for further details on the above models and the relevant algorithms.

8.4 Multivariate GARCH models

The literature on multivariate volatility modelling is large and expanding. Bauwens, Lau-
rent, and Rombouts (2006) provide a recent review. A general class of such models is the
multivariate generalized autoregressive conditional heteroscedastic (MGARCH) speci�cation
(Engle and Kroner (1995)). However, the number of unknown parameters of the unrestricted
MGARCH model rises exponentially with m; and its estimation will not be possible even
for a modest number of assets. The diagonal-VEC version of the MGARCH model is more
parsimonious, but still contains too many parameters in most applications. To deal with the
curse of dimensionality the dynamic conditional correlations (DCC) model is proposed by
Engle (2002), which generalizes an earlier speci�cation by Bollerslev (1990) by allowing for
time variations in the correlation matrix. This is achieved parsimoniously by separating the
speci�cation of the conditional volatilities from that of the conditional correlations. The lat-
ter are then modelled in terms of a small number of unknown parameters, which avoids the
curse of the dimensionality. With Gaussian standardized innovations; Engle (2002) shows
that the log-likelihood function of the DCC model can be maximized using a two-step pro-
cedure. In the �rst step, m univariate GARCH models are estimated separately. In the
second step using standardized residuals, computed from the estimated volatilities from the
�rst stage, the parameters of the conditional correlations are then estimated. The two-step
procedure can then be iterated, if desired, for full maximum likelihood estimation.

DCC is an attractive estimation procedure which is reasonably �exible in modelling
individual volatilities, and can be applied to portfolios with a large number of assets. How-
ever, in most applications in �nance the Gaussian assumption that underlies the two-step
procedure is likely to be violated. To capture the fat-tailed nature of the distribution of
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asset returns, it is more appropriate if the DCC model is combined with a multivariate
t-distribution, particularly for risk analysis where the tail properties of return distributions
are of primary concern. But Engle�s two-step procedure will no longer be applicable to such
a t-DCC speci�cation, and a simultaneous approach to the estimation of the parameters
of the model, including the degree-of-freedom parameter of the multivariate t-distribution,
would be needed. Pesaran and Pesaran (2007) (PP) develop such an estimation procedure
and propose the use of devolatized returns computed as returns standardized by realized
volatilities rather than by GARCH-type volatility estimates.

Micro�t 5 allows you to estimate Engle�s DCC and PP�s t-DCC speci�cations for a
relatively large number of asset returns. For an empirical application to risk management
see Pesaran, Schleicherc, and Za¤aroni (2009).

8.4.1 DCC and t-DCC Multivariate Volatility Models

Let rt be an m� 1 vector of asset returns at close day t assumed to have mean �t�1 and the
non-singular variance-covariance matrix �t�1, which we decompose as follows (see Bollerslev
(1990) and Engle (2002)):

�t�1 = Dt�1Rt�1Dt�1

where

Dt�1 =

266664
�1;t�1 0 ::: 0

0 �2;t�1
...

...
. . . 0

0 0 ::: �m;t�1

377775 (8.8)

Rt�1 =

26666664
1 �12;t�1 �13;t�1 � � � �1m;t�1

�21;t�1 1 �23;t�1 � � � �2m;t�1
...

. . .
...

... �m�1;m;t�1
�m1;t�1 � � � � � � �m;m�1;t�1 1

37777775 (8.9)

In (8.8)-(8.9), �2i;t�1 is the conditional volatility de�ned by

�2i;t�1 = V (rit j 
t�1)

and �ij;t�1 are the conditional pair-wise return correlations

�ij;t�1 =
Cov (rit; rjt j 
t�1)

�i;t�1�j;t�1

where 
t�1 is the information set available at close of day t � 1. Clearly, �ij;t�1 = 1; for
i = j.

TheMGARCH option inMicro�t allows joint estimation, by maximum likelihood, of the
following system of dynamic equations, known in the literature as the dynamic conditional
correlation (DCC) model (Engle (2002)):

�2i;t�1 = ��
2
i (1� �1i � �2i) + �1i�2i;t�2 + �2ir2i;t�1; i = 1; :::;m (8.10)
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~�ij;t�1 (�) =
qij;t�1p

qii;t�1qjj;t�1
; i 6= j = 1; :::;m (8.11)

In (8.10), ��2i is the unconditional variance of the ith asset return, and �1i; �2i for i = 1; :::;m;
are unknown parameters. In (8.11), qij;t�1 is

qij;t�1 = ��ij(1� �1 � �2) + �1qij;t�2 + �2~ri;t�1~rj;t�1 (8.12)

where ��ij is the unconditional pairwise correlation between rit and rjt; �1; �2 are unknown
parameters; and ~ri;t�1 are standardized returns. Micro�t o¤ers two alternative ways of
standardizing returns:

1. Exponentially weighted returns ~rit (Engle (2002)):

~rit =
rit

�i;t�1
(8.13)

with �2i;t�1 given by (8.10).

2. Devolatilized returns (Pesaran and Pesaran (2007)):

~rit =
rit

~�2it(p)
(8.14)

with ~�2it(p) =
Pp�1
s=0 r

2
i;t�s

p .

Further details on the estimation of dynamic conditional correlations models are provided
in Section 23.2. See also Engle (2002), Pesaran and Pesaran (2007), and Pesaran, Schleicherc,
and Za¤aroni (2009).

8.5 Volatility Modelling Menu

The Volatility Modelling Menu contains the following options

1. Univariate GARCH
2. Multivariate GARCH applied to a set of regressors
3. Multivariate GARCH applied to OLS residuals

Option 1 allows you to estimate a variety of conditionally heteroscedastic models, such
as GARCH, GARCH, exponential GARCH, absolute GARCH, GARCH in mean models
both for normally and Student�s t-distributed errors. See Section 8.6.

Option 2 enables you to estimate dynamic conditional correlation models for a set of
variables which could follow a multivariate normal or a Student�s t-distribution. See Section
8.7.

Option 3 enables you to estimate dynamic conditional correlation models on OLS resid-
uals, after having controlled for a set of regressors. See Sections 21.6 and 8.7.
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8.6 Univariate GARCH Estimation Menu

The Univariate GARCH Estimation Menu enables you to estimate a variety of univariate
conditional heteroscedastic models. When you click on option 1 you will be presented with
the following options:

0. Move to Backtracking Menu
1. GARCH, Auto-Regressive Conditional Heteroscedasticity
2. GARCH-M , GARCH in Mean
3. AGARCH, Absolute value GARCH
4. AGARCH-M , Absolute value GARCH in Mean
5. EGARCH, Exponential GARCH
6. EGARCH-M Exponential GARCH in Mean

Option 0 takes you back to the Commands and Data Transformations box.
Option 1 allows you to estimate the GARCH model (8.3)-(8.4). The variables xt and

wt must be in Micro�t�s workspace and can include lagged values of yt.
Option 2 enables you to compute ML estimates of the GARCH(p; q)-in-mean model.
Option 3 allows you to compute ML estimates of the absolute value GARCH(p; q)
Option 4 enables you to estimate the absolute value GARCH-in-Mean model.
Option 5 allows you to computeML estimates of the exponential GARCH(p; q) model.
Option 6 enables you to estimate the EGARCH(p; q)-in-Mean model given by (8.5)

and (8.7).

8.6.1 Speci�cation of the GARCH, AGARCH and EGARCH models

When you choose any one of the six estimation options in GARCH-M Estimation Menu you
will be presented with the following sub-menu

0. Return to GARCH Estimation Menu
1. Estimate assuming a normal distribution for conditional errors
2. Estimate assuming a t-distribution for conditional errors

which gives a choice between a conditional normal density and a conditional standardized
Student-t distribution for the disturbances.1 Once you select one of these two conditional
distributions you will be asked to specify the orders of the GARCH(p; q) in the box editor
that appears on the screen. You need to type the non-zero lags in the AR and theMA parts
of the GARCH speci�cation, respectively.

Separate the two sets of numbers by ;. Each set of numbers should be in ascending order.

1The use of Student-t distribution for the standardized errors, �t = ut=ht, has been suggested by Bollerslev
(1987).
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A set can contain only a single 0. Examples:

To specify an GARCH(1) type 0 ; 1

To specify a GARCH(2; 1) type 1 2 ; 1

To specify a restricted GARCH(4) type 0 ; 4

To specify OLS=ML estimation type 0 ; 0

Notice that the same rules apply when you specify AGARCH and EGARCH classes of
model.

Having speci�ed the orders of your GARCH model the program asks you to specify the
list of the variables wt (if any), to be added to the speci�cation of the conditional variance
equations (see (8.4), (8.6) and (8.7)). If you do not wish to include any other variables in
the equation for the conditional variances simply click the button to move to the next
stage of the program, where you will be asked to supply initial estimates for the parameters
of the GARCH-M models.

8.6.2 Speci�cation of the initial parameter values for GARCH, AGARCH
and EGARCH models

Once you have completed the speci�cation of your conditional heteroscedastic model you
will be asked to supply initial estimates for the parameters of your model. Type your choice
and click the button. An appropriate choice for the initial estimates is often critical
for a successful convergence of the numerical algorithm used to compute the ML estimates.
This is particularly important in the case of generalized ARCH models with a non-zero AR
component. The following points are worth bearing in mind.

1. The algorithm often fails to converge if you try to estimate a GARCH model when
there is in fact no statistically signi�cant evidence of an ARCH e¤ect in the data.
After running an OLS regression to check for the presence of an ARCH e¤ect in your
regression, use option 2 in the Hypothesis Testing Menu (see Section 6.23).

2. It is often advisable not to choose initial values that are on the boundary of the feasible
set. For example, in the case of the GARCH speci�cation (8.4), the values of �i and
�i should be such that

Pq
i=1 �i+

Pp
i=1 �i is not too close to unity. It is important that

positive non-zero values are chosen for these parameters.

3. Make sure that the residuals in the underlying regression model are not serially cor-
related. Presence of signi�cant residual serial correlation can create problems for the
ML estimation of the GARCH model.

4. The algorithm may fail to converge if the observations on the dependent variable are
very small. Scale up these observations and re-estimate the GARCH model.
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8.6.3 Estimation results for the GARCH-M options

The estimation results for the GARCH-M options are summarized in a table. The top
half gives the ML estimates of the regression coe¢ cients, �, and the estimate of  (when a
GARCH-in-Mean model is estimated), their estimated asymptotic standard errors, t-ratios,
as well as a number of summary statistics, and model selection criteria. The bottom of the
table gives the ML estimates of the parameters of the conditional variance model together
with their asymptotic standard errors.

After the estimation results you will be presented with the Post Regression Menu, with
a number of options described in detail in Section 6.20. In particular, you can plot/save
estimates of the conditional standard errors, ĥt, and save their forecasts, if any. (To compute
forecasts of ht you need to choose options 8 or 9 in the Post Regression Menu.) You can
also plot the histogram of the standardized (or scaled) residuals, �̂t = ût=ĥt. To access these
options select option 3 in the Post Regression Menu after the GARCH estimation results.

8.7 Multivariate GARCH Menu

Option 2 and 3 in the Volatility Modelling Menu allow you to estimate dynamic conditional
correlation (DCC) models on a set of variables or regression residuals. If you choose option
2, in the screen editor you need to list the variables that you wish to include in your DCC
model; if you select option 3 you should list the dependent variable followed by its regressors
for each equation, separating the di¤erent equations by a semicolon (;).

After you specify your model (using either option 2 or 3 in the Volatility Modelling
Menu), you will be presented with the screen shown in Figure 8.1.

The Multivariate GARCH window is divided into two panels. The left panel allows you
to set a number of characteristics in your multivariate GARCH model. In particular:

- In the �Decay Factor for the Variance��eld you can impose the parameters �1i and �2i
in (8.10) to be the same for all assets, that is �1i = �1 and �2i = �2 for i = 1; :::;m.
Further, you can impose the restriction that �1i + �2i = 1; that is that conditional
volatilities are non-mean reverting. See Section 23.2 for further details.

- In the �Decay Factor for the Covariance��eld you can impose the restriction on (8.11)
that �1 + �2 = 1; that is, that conditional correlations are non-mean reverting in the
case of all the assets.

- In the �Distributional assumption��eld, you can choose either the multivariate normal
distribution or the multivariate Student�s t-distribution for conditional returns rt. If
you choose t-distributed returns, a new parameter, the number of degrees of freedom
of the t-distribution (df), appears among the parameters to be estimated.

- In the �Standardized returns��eld you can decide the way you standardize your returns,
using the exponentially weighted returns given by (8.13), or the devolatilized returns
given by (8.14). For devolatilized returns you need to choose the lag-order, p, to
compute the realized volatilities in the �Rolling volatility window��eld. Note that
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Figure 8.1: The Multivariate GARCH window

p should be smaller or equal to the number of observations used for inizialization of
estimation.

- In the �eld �Observations used to initialized�you need to set the number of observations,
T0, used for the initialization of recursions in (8.10) and (8.11).

- In the �Estimation options� you may restrict some or all parameters at their initial
values. See Section 23.2.1.

- At the bottom of the Multivariate GARCH window you can choose to estimate the
DCC model using a single, expanding or rolling window of observations. The option
�Single window estimation�employs all available observations in the maximum likeli-
hood estimation. The option �Expanding window estimation�uses an expanding set of
observations. If you choose this option, you need to specify the observation from which
you wish to start expanding the estimation. The �Rolling window estimation�option
estimates the model over successive rolling samples of a �xed length to be speci�ed.
You can choose the size of the rolling window in the �eld below this option. Note that
the number of observations you specify for the expanding or rolling sample must be
greater than 20 times the number of parameters to be estimated, and smaller than
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the total number of observations used for estimation.

The left panel in the MGARCH window contains the names of the parameters to be
estimated and their initial values. You can change these initial settings by moving the cursor
to the desired position and by typing your own choice of the initial estimate. These initial
parameter values can be readily changed if the estimation method fails to converge.

8.7.1 Estimation results for the MGARCH

The estimation results for the multivariate GARCH options 2 and 3 are set out in a window
which consists of two parts. The top part gives the ML estimates of the volatility decay
parameters �1; �2, the correlation decay parameters �1 and �2, and, if the multivariate t-
distribution is selected, the degrees of freedom (df) of the t-distribution, together with their
standard errors and the associated t-ratios.

The bottom part of the result window gives a table which has on the diagonal the
unconditional variances of asset returns, computed over the initialization plus estimation
sample (see Section 23.2.1). Namely, for the ith asset

��i =

vuut 1

T

TX
t=1

r2it

where T is the sample size of the initialization and estimation sample. The o¤-diagonal
elements are the unconditional correlations, estimated as

��ij =

PT
t=1 ritrjtqPT

t=1 r
2
it

qPT
t=1 r

2
jt

8.8 Multivariate GARCH Post Estimation Menu

This menu appears on the screen after the estimation results for theDCC model, using either
option 2 or 3 in the Volatility Modelling Menu. The Multivariate GARCH Post estimation
Menu contains the following options

0. Re-specify MGARCH model and estimate or Quit
1. Display estimation results again
2. List/Plot/Save estimated conditional volatilities, correlations and eigenvalues
3. Wald test for linear/non-linear restrictions
4. Estimate/test functions of parameters of the model
5. Test the validity of the MGARCH model (V aR diagnostics)
6. Calculate the Value at Risk (V aR) of a portfolio
7. Compute forecasts of conditional volatilities and correlations

Option 0 returns you to the Multivariate GARCH window where you can re-specify
your model (see Section 8.7).
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Option 1 enables you to see the ML estimation of the MGARCH model again (see
Section 8.7.1).

Option 2 allows you to to list/plot/save the estimated conditional volatilities and cor-
relations and the eigenvalues of covariance and correlation matrices.

Option 3 enables you to carry out Wald tests for linear and non-linear restrictions on
the coe¢ cients. For the relevant formulae see Section 21.25.

Option 4 allows you to estimate linear and non-linear functions of the coe¢ cients. For
the relevant formulae see Section 21.24.

Option 5 allows you to test the validity of the DCC model using a set of diagnostics
based on the V aR and on the Probability integral transforms. See Section 23.2.3.

Option 6 enables you to compute the Value at Risk (V aR) of a portfolio. See Section
23.2.3.

Option 7 computes forecasts of conditional volatilities and correlations. Using this
option, you can list or plot forecasts, or save them in a special Micro�t �le for later use. See
Section 23.2.4.

8.8.1 Testing the Validity of Multivariate GARCH Menu

This menu appears if you choose option 5 from the Multivariate GARCH Post Estimation
Menu and contains the following options

0. Quit
1. Tests based on Probability Integral Transforms
2. Testing for V aR Exceptions

Option 0 returns you to the MGARCH Post estimation Menu.
Option 1 allows you to compute the LM test and the KS test of randomness of the

probability integral transforms, and to plot or save the histogram of the probability integral
transforms. Under a correct speci�cation of the DCC model, these should reproduce the
density of a uniform random variable (see Section 23.2.3 for further details).

Option 2 enables you to list, plot and save the V aR for a given tolerance level, over the
evaluations period. This option also allows you to compute the mean V aR violations and
associated diagnostic test statistics (see Section 23.2.3 for further details).

8.8.2 Compute the VaR of a portfolio

When you select option 6 from the Multivariate GARCH Post Estimation Menu you will be
presented with the screen reported in Figure 8.2. The V aR calculator allows you to compute
the one-step ahead Value at Risk of a portfolio of your own choice for a given probability
level and to compute its probability level for a given V aR.

On the left panel of the screen you can choose the allocation of the assets in your portfolio,
as well as the return for each asset. On the right part of the screen you can choose whether
asset returns are expressed in percentage or in points, by checking the appropriate checkbox.
On the bottom of the screen you can decide whether in the computation of the V aR you want
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to use the one-step ahead forecasts of variances and covariances or the estimated variances
and covariances.

Figure 8.2: Compute the V aR of a portfolio
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Tutorial Lessons
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Chapter 9

Lessons in Data Management

The tutorial lessons in this chapter demonstrate the input/output features of Micro�t. We
start these lessons with an example of how to read ASCII (text) data �les, using the data
�le UKSTOCK.DAT. This �le contains the monthly observations on a number of �nancial
series for the UK economy. It is assumed that you have already gone through the steps set
out in Chapter 2, that Micro�t 5.0 is properly installed on your system and that the various
tutorial data �les are on your hard-disk. To open a data �le from the tutorial directory,
choose �Open �le from tutorial data �les�from the �le Menu.

9.1 Lesson 9.1: Reading in the raw data �le UKSTOCK.DAT

Load Micro�t 5.0, and choose �Open �le from tutorial data �les�from the �le Menu. This
displays the Open �le dialogue with a list of �les on the left.

Initially, we suggest that you try to load into Micro�t the data �le UKSTOCK.DAT
which is in ASCII format. This �le contains seven economic time series for the UK economy
organized by observations over the period 1970M1-1995M5, where M denotes that the data
are monthly and the integers 1; 2; :::; 12 denote the months starting with January = 1. All
variables refer to the last trading day of the month. The seven variables are arranged in the
�le in the following order:

1. Financial Times 500 Composite Share Index
2. FT30 Dividend Yield
3. Money Supply (M0)
4. Three Month Treasury Bill Rate (end of period)
5. Average Gross Redemption Yield on 20-year Government Securities
6. Exchange rate: US $ to 1 Pound Sterling (Spot Rate)
7. Retail (Consumer) Price Index

To load (read) the data, choose .DAT data �les from the List �le of type box, then
double click on the �le UKSTOCK.DAT. You should now see the New dataset dialogue on
the screen.

159



CHAPTER 9. LESSONS IN DATA MANAGEMENT 160

For frequency of the data choose monthly. For the sample period choose the start year
and month as 70 and 1, and then the end year and month as 95 and 5. Choose to organize
your data by observation, make sure the Free format radio button is selected, then click

.
Micro�t assigns the variable names X1; X2; X3; X4; X5; X6; and X7 to your variables

by default. To change these variables, move to each cell of the table in turn and type in the
variable names

ukftidx ukftdy ukm0 uk3tbr uk20yr ukexch ukcpi

and then click .
If the data are read unsuccessfully, you will see an error message. Read Section 3.2

carefully, and start the lesson again!
After the raw data �le is read in successfully it is good practice to �rst inspect the data

in the Data window to ensure that they have been read in correctly. To check the data click
the option. You should see the list of monthly observations on all the seven variables
on the screen. You can use the scroll bars, and the PgUp, PgDn, Ctrl+Home keys to move
around the list.

To save the data in the workspace in binary format for subsequent use with Micro�t, you
need to select the �Save as�option from the File Menu (see Lesson 9.2).

9.2 Lesson 9.2: Saving your current dataset as a special Mi-
cro�t �le

Once you have satis�ed yourself that the raw data �le is read in correctly, you may wish
to save it as a special Micro�t �le for use in subsequent sessions. Special Micro�t �les are
saved as binary �les and allow you rapid access to your data without any need to supply the
details of your data every time you wish to use them with Micro�t.

To save your current dataset in a special Micro�t �le choose �Save as� from the File
Menu (see Section 3.5). This takes you to the Save as dialogue. Make sure �Micro�t data
�les�is selected in the List �les of type box, enter the �lename UKSTOCK.FIT, and click

. Since the �le UKSTOCK.FIT already exists, you will be asked if you want to replace

it. Choose No to return to the Save as dialogue (but to overwrite the �le UKSTOCK.FIT
choose Yes).

9.3 Lesson 9.3: Reading in the specialMicro�t �le UKSTOCK.FIT

The �le UKSTOCK.FIT is the special Micro�t �le corresponding to the raw data �le UK-
STOCK.DAT. To read UKSTOCK.FIT you need to choose �Open �le from tutorial data
�les�from the File Menu and choose UKSTOCK.FIT by double clicking on it (see Section
3.2). The program starts reading the data from the �le, and assuming that the data have
been read in successfully, it displays the Process window (see Chapter 4).
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9.4 Lesson 9.4: Combining two special Micro�t �les contain-
ing di¤erent variables

Suppose you wish to add the variables in Micro�t �le UKSTOCK.FIT to the variables in
the special Micro�t �le USSTOCK.FIT. First read in the �le UKSTOCK.FIT (see Lesson
9.3). Once this is done successfully, choose �Add a special Micro�t �le to workspace� from
the File Menu and when the Open �le dialogue appears select USSTOCK.FIT. If the two
�les are combined successfully, a message con�rming this is displayed.

Click to return to the Process window. To make sure that the variables in

USSTOCK.FIT (USLGR, USCPI, USM1, US3TBR, USSIDX, and USDY ) are cor-
rectly added to the current variables (namely the variables in UKSTOCK.FIT), click the

button to display the list of variables. There should be 13 variables: seven from UK-
STOCK.FIT and six from USSTOCK.FIT on your workspace. Use the �Save as�option to
save the combined dataset under a di¤erent �lename before proceeding further.

9.5 Lesson 9.5: Combining two special Micro�t �les contain-
ing the same variables

One of the tutorial �les, the special Micro�t �le EJCON1.FIT, contains annual observations
(1948-1981) on the following eight variables1:

AB Personal bond holdings
AM Net liquid assets net of house loans
AS Personal share holdings
BP Bond prices
C Real consumption expenditures
PC Nominal consumption expenditures
SP Share prices
Y Real disposable income

Suppose you wish to update and extend this dataset with observations on the same variables
over the period 1970 to 1985, saved in the Special Micro�t �le EJCON2:F IT .

Select the option �Add 2 special Micro�t �les� from the File Menu. First choose the
�le EJCON1.FIT, click , and then choose EJCON2.FIT from the Open dialogue. The
program augments the data contained in EJCON1.FIT using the new and additional obser-
vations from the �le EJCON2.FIT in the manner described in Section 3.3.1. To inspect the
combined dataset click the button. The dataset displayed on the screen should now
contain observations on the eight variables C, PC, Y , AS, AB, AM , SP , and BP over the
extended period from 1948 to 1985, inclusive. Notice also that observations for the period
1970 to 1981 contained in the �le EJCON1.FIT are now overwritten by the corresponding

1For a description and sources of this dataset see Pesaran and Evans (1984) and the manual of Micro�t
3.0.
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observations in the �le EJCON2.FIT. To save this revised and extended dataset in a special
Micro�t �le, see Lesson 9.2. We have already saved this dataset in the �le EJCON.FIT and
this �le should be in the tutorial directory or on your Micro�t disks.

9.6 Lesson 9.6: Extending the sample period of a special Mi-
cro�t �le

By combining two �les you can extend the sample period of an existing special Micro�t �le.
Suppose you wish to extend the period of the dataset UKSTOCK.FIT from 1970(1)-1995(5)
to 1965(1)-1996(12). First start with a new dataset choosing �Input data from the keyboard�
from the File Menu (see Section 3.2). Choose the monthly data frequency, and enter the
start year and month as 1965 and 1, and the end year and month as 1996 and 12. Save your
�le as a special Micro�t �le with a name of your choice. Choose �Add a special Micro�t �le
to workspace�from the File Menu and �nd the �le UKSTOCK.FIT. Click . Back in

the Process window, click the button. You should now see the observations on the
variables, UKFTIDX, UKFTDY , UKM0, UK3TBR, UK20Y R, UKEXCH, UKCPI
in your workspace, now extended over the period 1965(1) to 1996(12). The values of all these
variables over the periods 1965(1) to 1969(12) and 1995(6) to 1996(12) will be set to blank.
You can replace some or all missing values by clicking on the relevant cells and typing in
new values, or by using the the FILL_MISSING and FILL_FORWARD commands
(see Chapter 4 on how to use these and other commands).

9.7 Lesson 9.7: Reading the CSV �le UKCON.CSV into Mi-
cro�t

The �le UKCON.CSV is a comma delimited values �le containing quarterly observations on
the following seven variables obtained from the UK Central Statistical O¢ ce (CSO95) data
bank:

AIIWQA Personal disposable income £m (seasonally adjusted)
AIIXQA Consumers�expenditure: Total £ m CURR SA
CAABQA Consumers�expenditure: Total £ m CONS

(1990 prices) SA
CCBHQU Consumers�expenditure: Total £ m CONS

(1990 prices) NSA
CECOQU Real personal disposable income at 1990 prices

(seasonally unadjusted)
CECPQA Real personal disposable income at 1990 prices

(seasonally adjusted)
DQABQU Tax and prices index (Jan 1987 = 100)

The variable names and their descriptions are the same as those in the CSO95 databank.
If you read this �le into Excel you will see that the data in the worksheet are arranged in

columns with the �rst column being the dates, while the �rst two rows contain the variable
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names and their descriptions, respectively. The last column contains observations on �Tax
and Prices index�, but only over the period 1987(1) to 1995(1).

To read this worksheet into Micro�t, choose �Open �le�from the File Menu. From the
Open dialogue select UKCON.CSV by double-clicking on it. Micro�t attempts to read in
the �le and, if successful, displays the message

UKCON.CSV imported successfully

Click to move to the Process window, then click the button to see the seven
variables in the �le UKCON.XLS and their descriptions. To see the observations on all the
variables click the button. Inspect the data carefully and make sure that they are

imported into Micro�t correctly. Note that the missing values of DQABQU (tax and prices
index) over the period 1955(1) to 1986(4) are set to blank.

9.8 Lesson 9.8: Reading the Excel �le DAILYFUTURES.XLS
into Micro�t

The �le DAILYFUTURES.XLS is an Excel �le containing daily observations on futures
returns on the S&P 500 index of the US stock market (SP ), the Financial Times Stock
Exchange 100 index of the London Stock Exchange (FTSE), and the Blue chip index of the
German stock market (DAX), over the period from 01-May-02 to the 01-May-07.

To read this worksheet into Micro�t, choose �Open �le from tutorial data �les�from the
File Menu. From the Open dialogue select DAILYFUTURES.XLS by double-clicking on it.

Once Micro�t has successfully loaded the data, click on the button. You will see
that Micro�t has created three new columns, the DAY , MONTH and Y EAR, containing
for each observation the corresponding information on the day, month and year.

For further information on how to input daily data, see Section 3.2.10.

Note: Dates in the �le DAILYFUTURES.XLS are expressed in the European format. If
the Windows regional settings of your computer are set to English United States, then you
will need to change the default date format to the European case in Micro�t before opening
the �le. To change the default date format in Micro�t, go to the Options Menu, choose
the �European/US date format�, select the European Date format option and click .
Alternatively, you can load data in CSV format, contained in the �le DAILYFUTURES.CSV
in the tutorial directory.

9.9 Lesson 9.9: Saving the DAILYFUTURES.XLS �le ex-
cluding missing values

Load into Micro�t the Excel �le DAILYFUTURES.XLS (see Lesson 9.8), and click on the
button. Notice that there are jumps in the data, due to the fact that the stock ex-

change does not trade during weekends, and missing values for each series, generally due to
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holidays that can vary from country to country. In the presence of missing values, Micro�t
does not allow the use of some functions, such as MEAN, SUM, CSUM, and commands,
such as ADF, KPSS, SPECTRUM (see Chapter 4 for the use of these and other com-
mands). Further, in the presence of missing values in the middle of the estimation period
Micro�t does not carry the estimation of any univariate or multivariate models. To deal with
this problem, you can either create a new dataset where observations with missing values are
dropped, or impute missing data using the FILL_FORWARD and FILL_MISSING
commands, and save the ��lled-in�data as a new data �le for your future use.

To exclude observations with missing values, choose the �Save as�option in the File Menu,
and select �CSV, descriptions in 2nd row, exclude rows with missing values undated and daily
data only�. A �Save as�dialogue appears; type in a �lename in the usual way, and click .
You will be asked to select the sample period. Specify the initial and the �nal period, and
click . If you wish to see the new dataset with no missing observation that Micro�t
has created, select the �Open �le�option from the File Menu, and from the Open dialogue
double click on the �le you have just saved. Once Micro�t has successfully imported the
data, click on the button, and check that the data do not contain blank cells.

9.10 Exercises in data management

9.10.1 Exercise 9.1

The raw data �le USSTOCK.TXT contains monthly observations covering the period 1973M3
to 1995M6 (inclusive) on the following variables

Yield on Long-Term US Government Bonds
US Consumer Price Index
US Money Supply (M1 de�nition)
Three-month US Treasury Bill Rate
US Share Prices - Standard and Poor 500 (SP500) Composite Index
Dividend Yield on SP500

These observations are arranged �variable-by-variable�in the �le in free format. Input this
�le into Micro�t, check that it is correctly read in, and save it as a Special Micro�t �le.

9.10.2 Exercise 9.2

Load the �le EJCON.FIT containing the variables AB, AM , AS, BP , C, PC, SP , and Y
into Micro�t and add to it the �le EU.FIT, containing annual observations on the variables

E Employees in employment (1000s)
U Unemployed including school leavers

9.10.3 Exercise 9.3

Repeat the steps in Lesson 9.7 and read in the Excel worksheet �le UKCON.XLS into
Micro�t. Save them in a Micro�t �le and add the �ve variables in the �le UKCON.FIT
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to the variables in the workspace. Check that the observations on the variables C and
CAABQA are in fact identical.

9.10.4 Exercise 9.4

Load the �le UKSTOCK.FIT into Micro�t, and then save the variables in this �le as a CSV
�le. Exit Micro�t and read the CSV �le created by Micro�t into Excel. Are the observations
exported correctly?



Chapter 10

Lessons in Data Processing

The Lessons in this chapter show how to carry out data transformations on the data on the
workspace by issuing commands and formulae in the Process window. It is assumed that
you have already gone through the steps set out in Chapter 2, that Micro�t 5.0 is properly
installed on your system and that the various tutorial data �les are on your hard-disk. To
open a data �le from the tutorial directory, choose �Open �le from tutorial data �les�from
the �le Menu.

10.1 Lesson 10.1: Interactive data transformations

You can carry out the transformations which you require on your data either interactively
or by executing an already prepared batch/equation �le. Suppose you wish to analyse the
quarterly movements in aggregate consumption expenditures in the UK. First read in the
special Micro�t �le UKCON.FIT (see Lesson 9.3). You should see the Commands and
Data Transformation box on the screen in which you can type a formula to carry out data
transformations on your existing variables, or issue one of the commands described above.
For example, if you type

INPT = 1; P = CNOM=C; LY = LOG(Y ); LC = LOG(C);
PI = LOG(P=P (�1)); DLY = LY � LY (�1);
DLC = LC � LC(�1)

the program generates seven new variables:

INPT Intercept term, (a vector with all its elements equal to unity)
P Implicit price de�ator of consumption expenditures

(1990=1.00, on average)
LY Logarithm of Y
LC Logarithm of C
PI In�ation rate (measured as the change in log of P )
DLY Change in log of Y
DLC Change in log of C

166
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These new variables are now added to the list of your existing variables, and you should see
them in the Variables box. If you wish to edit the variables�descriptions, click the
button.

Note: The content of the Commands and Data Transformation box can be saved as an
equation �le (with the extension EQU), and retrieved at a later stage. Click the button
to save the content of the Commands and Data Transformation box, enter the �lename and
click . We have already saved this �le as UKCON.EQU, and should be on the tutorial

directory (typically C:nPROGRAM FILESnMFIT5nTUTORn).

10.2 Lesson 10.2: Doing data transformations using the BATCH
command

A convenient method of carrying out data transformations is to �rst to create a BATCH
�le (using your preferred text editor before running Micro�t), containing the instructions
(formulae and commands) that you wish carried out, and then running this BATCH �le
interactively by means of the BATCH command. The �le UKCON.BAT in the tutorial
directory is an example of such a BATCH �le. The content of the �le UKCON.BAT is
reproduced in Table 10.1.
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Table 10.1: Content of the BATCH �le UKCON.BAT

$ BATCH �le UKCON.BAT, to be used in conjunction

$ with the special Micro�t �le UKCON.FIT

$

$

$ Generate an intercept term

Inpt=1

$ Generate implicit price de�ator of consumer expenditures

p=cnom/c

$ Take (natural) logarithms

ly=log(y)

lc=log(c)

$ Generate rates of change of the variables computed as log-changes

pi=log(p/p(�1))

dly=ly�ly(�1)

dlc=lc�lc(�1)

$ Generate rates of change of the variables computed as

$ percentage change

rp=rate(p)

ry=rate(y)

rc=rate(c)

$ Note that rate (y) is computed as 100*(y�y(�1))/y(�1)

s=(y�c)/y

$ End of the BATCH �le

You can also see the content of this �le on screen by using the option �View a File�from
the File Menu and then double-clicking on UKCON.BAT.

To run the BATCH �le UKCON.BAT, make sure that the �le UKCON.FIT is loaded into
Micro�t and that the Commands and Data Transformation box is clear. Then click on the

button on the right-hand side of the screen and select the desired BATCH �le from the
list of �le names by double clicking on the �le UKCON.BAT. Wait until the computations
are completed and the message

Operations on batch �le completed successfully

appears on the screen. If you now click and then click the button, you will see
the list of the �ve original variables together with 11 more variables created by the program
in the process of executing the instructions contained in the BATCH �le UKCON.BAT. The
variable window should now look like the screen shown in Figure 10.1.

The variables in this list will be used in other lessons on preliminary data analysis,
estimation, hypothesis testing, and forecasting.
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Figure 10.1: The Variable window

10.3 Lesson 10.3: Adding titles (descriptions) to variables

Suppose you wish to give titles to the seven variables in the special Micro�t �le UK-
STOCK.FIT (see Lesson 9.3). This can be done either interactively or by means of a BATCH
�le. Read in the �le UKSTOCK.FIT and click the button. Move to each of the vari-
ables�description �eld in turn and type in a title. Alternatively, in the Commands and Data
Transformations box type

ENTITLE

and click . You will be prompted in the Variable window where you can supply a title

(a description not more than 80 characters long) to any variable you wish. For example, for
the variable UKFTIDX type in the title

Financial Times 500 Composite Share Index

Once you have supplied the description for all variables, click to save and then
to return to the Process window. Note that you cannot undo the changes you have made to
the variable description if you click .

Another alternative is to run the BATCH �le UKNAMES.BAT. The content of this
�le is listed in Table 10.2. To run this BATCH �le click the button in the Process
window. You will be presented with an Open �le dialogue to help you search for the �le
UKNAMES.BAT on your PC.
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Table 10.2: Content of the BATCH �le UKNAMES.BAT

10.4 Lesson 10.4: Creating dummy variables

In this lesson we will describe how to construct a dummy variable in Micro�t. Suppose your
current sample period is 1948-1981, and you wish to construct the following dummy variable

Dt = 0 for 1948; 1949
Dt = 1 for 1950; :::; 1955
Dt = 2 for 1956; :::; 1960
Dt = 3 for 1961; :::; 1970
Dt = 4 for 1971; :::; 1981

Read in the �le EJCON.FIT. In the Commands and Data Transformations box type

SAMPLE 1948 1981; D = 0;
SAMPLE 1950 1955; D = 1;
SAMPLE 1956 1960; D = 2;
SAMPLE 1961 1970; D = 3;
SAMPLE 1971 1981; D = 4;

SAMPLE 1948 1981;
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The program now creates the variable D in your workspace, with the following values:

OBS D OBS D

1948 0 1965 3

1949 0 1966 3

1950 1 1967 3

1951 1 1968 3

1952 1 1969 3

1953 1 1970 4

1954 1 1971 4

1955 1 1972 4

1956 2 1973 4

1957 2 1974 4

1958 2 1975 4

1959 2 1976 4

1960 2 1977 4

1961 3 1978 4

1962 3 1979 4

1963 3 1980 4

1964 3 1981 4

As another example suppose you wish to create a variable which takes the value of zero over
the period 1948-1968 (inclusive), and then increases by steps of unity from 1969 onward.
You need to type

SAMPLE 1948 1968; TD = 0;
SAMPLE 1969 1981; SIM TD = TD(�1) + 1;
SAMPLE 1948 1981; LIST
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The variable TD should now have the following values:

OBS TD OBS. TD

1948 0 1956 0

1949 0 1966 0

1950 0 1967 0

1951 0 1968 0

1952 0 1969 1

1953 0 1970 2

1954 0 1971 3

1955 0 1972 4

1956 0 1973 5

1957 0 1974 6

1958 0 1975 7

1959 0 1976 8

1960 0 1977 9

1961 0 1978 10

1962 0 1979 11

1963 0 1980 12

1964 0 1981 13

Alternatively you can use the cumulative sum function, CSUM(�), to construct this trend
(see Section 4.3.4). Type

SAMPLE 1948 1968; TD = 0;
SAMPLE 1969 1981; TD = CSUM(1);
SAMPLE 1948 1981; LIST TD

10.5 Lesson 10.5: Plotting variables against time and/or against
each other

Suppose you have loaded in the special Micro�t �le UKCON.FIT, and wish to plot the
variables C (real consumption expenditures) and Y (real disposable income) against time on
the same screen. In the Commands and Data Transformations box type

PLOT C Y

for the graph to appear on the screen (see Figure 10.2 below).
You can alter the display of the graph, print it, or save it. To alter the display click

and choose one the options. For more information, see Section 5.2. To print the displayed
graph, click . You will be presented with a standard Windows Print dialogue.

You can save the displayed graph in a variety of graphic formats, such as Bitmap (BMP),
Windows meta�le (WMF), Enhance meta�le (EMF), JPEG and PNG, by clicking the
button, or choosing the �Save as�option from the File Menu. You can save in Olectra Chart
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Figure 10.2: Real consumption expenditure and real disposable income in the UK

Format (OC2) by selecting the �Save the chart (Olectra Chart Format�) option from the File
Menu. This format is useful if you want to load the graph into Micro�t at a later stage
for further editing. If you click the button, you can also copy the displayed graph to

clipboard for pasting into other programs (see Section 5.2 for further details).

Suppose now that you wish to obtain a scatter plot of the rate of change of real con-
sumption (DLC) against the rate of change of real disposable income (DLY ). Type

BATCH UKCON ; SCATTER DLC DLY

to see the scatter plot on your screen (see Figure 10.3). (Recall that lower- and upper-case
letters have the same e¤ect inMicro�t.) Clearly there seems to be a high degree of association
between the rate of change of consumption expenditure and the real disposable income.

10.6 Lesson 10.6: The use of command XPLOT in generating
probability density function

The commandXPLOT can be used for a variety of purposes, such as for plotting probability
distributions, and Lorenz (or concentration) curves. For example, to generate a plot of the
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Figure 10.3: Scatter plot of DLC and DLY

standard normal distribution and the Cauchy distribution on the same graph, read the special
Micro�t �le X.FIT. This �le should be in the tutorial directory and contains the variable X,
fxt = (t� 100)=10; t = 1; 2; :::; 200g (see Lesson 9.1 on how to read in a special Micro�t
�le). In the Commands and Data Transformations box type

MEU = 0; ZIG = 1;

BATCH DENSITY

When the operations in the BATCH �le are completed successfully, type

XPLOT NORM CAUCHY X

You will see the plot of the standard Normal and Cauchy distributions on the screen (see
Figure 10.4).

10.7 Lesson 10.7: Histogram of US stock market returns

The HIST command can be used to generate histograms and check the extent to which
the empirical distribution function of a given variable deviates from the normal distribution.
For instance, suppose you are interested in obtaining the histogram of the return on the US
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Figure 10.4: Plot of Normal and Chauchy distributions

Stock Market. The Special Micro�t �le USSTOCK.FIT contains 270 monthly observations
over the period 1973(1)-1995(6) on the following variables

US3TBR US Three Month Treasury Bill Rate (per cent, per annum)
USCPI Consumer Price Index
USDY Dividend Yield; ratio of dividends to share prices

(per cent ,per annum)
USLGR Yield of Long-term US Government Bond

(per cent, per annum)
USM1 Money Supply M1
USSIDX Share Prices Index-Standard and Poor 500 Composite

(beginning of the month)

The monthly rate of return on the Standard and Poor 500 (SP500) share index is de�ned as
the sum of the capital gains/losses [(Pt � Pt�1) =Pt�1] plus the dividend yield (Dt�1=Pt�1).
Since in USSTOCK.FIT observations on the dividend yield variable (USDY ) are measured
in per cents and at annual rates, we �rst need to compute the dividends paid on SP500 per
month. To carry out the necessary computations read the �le USSTOCK.FIT into Micro�t,
and in the Commands and Data Transformations box type

USDIV = (USDY � USSIDX)=1200;
USSR = (USSIDX � USSIDX(�1) + USDIV (�1))=USSIDX(�1);
HIST USSR
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You should see a histogram with 15 bands on the screen. If you wish to draw a histogram
with a speci�c number of bands, say, you need to type

HIST USSR(20)

The result should be the same as in Figure 10.5. Compared with the normal distribution,
which is given in the background of the histogram, the distribution of USSR is a little
skewed and has fat tails, that is, it displays excess kurtosis. There also seems to be an
�outlier�, showing a 21:6 per cent decline in monthly returns, which refers to the October
1987 stock market crash.

Figure 10.5: Histogram and normal curve for variable USSR (sample from 1973M1 to
1995M6)

10.8 Lesson 10.8: Hodrick-Prescott �lter applied to UK GDP

The HP �lter is a two-sided �lter routinely used as a method of detrending aggregate output
in the real business cycle (RBC) literature. In this lesson we use the function HPF(�; �)
described in Section 4.3.7 to detrend the logarithm of the UK GDP.

The Special Micro�t �les GDP95.FIT on the tutorial directory contains the following
variables:

UKGDP GDP(A) at constant market prices (1990 prices £ million)
USGNP Gross National Product (BILL.1987$) (T1.10) average
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Figure 10.6: Plot of logarithm of the UK GDP and its trend estimated using the Hodrick-
Prescott �lter with � = 1600

The sample period for the US and UK output series are 1960(1)-1995(1), and 1955(1)-
1995(1), respectively. Read this �le into Micro�t, and in the Command and Data Transfor-
mations box type

Y UK = LOG(UKGDP );
Y UKT = HPF(Y UK; 1600);
PLOT Y UK Y UKT

You should now see the plot of the logarithm of UK GDP and its trend computed using the
HP procedure with � = 1600 on the screen (see Figure 10.6). The detrended series can now
be computed as

Y UKD = Y UK � Y UKT ; PLOT Y UKD

You should now see the Figure 10.7 on the screen. To check the sensitivity of the HP
detrending procedure to the choice of �, try other values of � and plot the results. Notice
that for the most part, the trend series are not very sensitive to the value of � in the range
[600; 3600].

Repeat the above exercise with the USGNP . But remember to reset the sample to
1960(1)-1995(1), as US output series are not de�ned outside this period, and the application
of the HPF function will result in missing values for the trend.
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Figure 10.7: Plot of detrended UK output series using the Hodrick-Prescott �lter with
� = 1600

10.9 Lesson 10.9: Summary statistics and correlation coe¢ -
cients of US and UK output growths

As a part of your preliminary data analysis you may be interested to see the summary
statistics and correlation matrix of some of the variables in the variable list. For example,
suppose you have read in the �le GDP95:F IT and you wish to compute summary statistics
and correlation coe¢ cients for the variables, USGR (US output growth), and UKGR (UK
output growth). Type in the Command and Variable Transformation box

SAMPLE 1960Q1 1994Q4;
USGR = RATE(USGNP ); UKGR = RATE(UKGDP );
COR USGR UKGR

First you should see the summary statistics for the two variables USGR and UKGR on
the screen. If you click the correlation matrix for these variables will be displayed (see

Table 10.3). The result in Table 10.3 shows that the US economy has enjoyed a slightly
higher growth than the UK economy over the 1960-1994 period. The US economy has grown
around 2:9 per cent per annum as compared to an average annual rate of 2:3 per cent in
the UK. Output growth has been relatively more variable in the UK. The coe¢ cients of
variations of output growth is 1:24 for the US as compared to 1:95 for the UK.

Finally the correlation coe¢ cient between the two output growth series is 0:22, which
is statistically signi�cant at the 5 per cent level. In fact the Pesaran-Timmermann statistic for
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testing the association between the two growth rates, computed asPTTEST(USGR;UKGR),
is equal to 2:82, which is well above 1:96, the 5 per cent critical value of the standard normal
distribution (see Section 4.3.17 for an account of the PTTEST function).

Table 10.3: Summary statistics for UK and US output growth and estimated correlation
matrix of variables

10.10 Lesson 10.10: Autocorrelation coe¢ cients of US output
growth

Suppose you are interested in computing the autocorrelation coe¢ cients of up to order 14
for the variable USGR (the quarterly growth rate of US and GNP). Carry out the steps in
Lesson 10.9, and when presented with the Command and Data Transformation box, type

SAMPLE 1960Q1 1994Q4;
DY US = LOG(USGNP=USGNP (�1));
COR DY US(14)

The program �rst computes the logarithmic rate of change of the US real GNP, and then dis-
plays the summary statistics (mean, standard deviation, and so on) for the variable DY US.
If you now click , the autocorrelation coe¢ cients, the Box-Pierce and Ljung-Box sta-

tistics will be displayed (see Table 10.4).
Clicking now yields a plot of the autocorrelation coe¢ cients (see Figure 10.8). The

default value for the maximum order of the computed autocorrelation coe¢ cients is equal to
1
3 of the sample size. For example, if you compute the autocorrelation coe¢ cients over the
period 1985(1)-1990(4) only the �rst 8 autocorrelation coe¢ cients will be computed (see the
COR command in Section 4.4.8).

The command COR applied to a variable, say X, also computes the Q statistic due
to (Box and Pierce 1970) and its modi�ed version, the Q� statistic, due to (Ljung and
Box 1978) for X (see Section 21.1). These statistics can be used to carry out general
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tests of serial correlation. The Ljung-Box Q� statistic tends to be more reliable in small
samples. The �gures in square brackets refer to the probability of falsely rejecting the
null hypothesis of no serial correlation. A small p-value provides evidence against the null
hypothesis that the variable X is serially uncorrelated. In the case of the results in Table 10.4
there is clear evidence of serial correlation in US output growth. The �rst- and second-order
autocorrelation coe¢ cients 0:31864 and 0:23792 are large relative to their standard errors
(the t-ratios for these autocorrelation coe¢ cients are 3:76, and 2:56 which are above the
critical value of the standard normal distribution at the level of 5 per cent). The remaining
autocorrelation coe¢ cients are not statistically signi�cant.

Table 10.4: Summary statistics and autocorrelation coe¢ cients for US output growth

10.11 Lesson 10.11: Spectral density function of the US out-
put growth

The SPECTRUM command (see Section 4.4.27) can be used to obtain di¤erent estimates
of the standardized spectral density function. As an example, consider the problem of
estimating the spectral density function for the rate of change of the US real GNP .

Use the option �Open File�from the File Menu to read the GDP95.FIT �le into Micro�t
and in the Commands and Data Transformation box create the variables (using the full
sample)

DY US = LOG(USGNP=USGNP (�1))
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Figure 10.8: Autocorrelation function of DY US (sample from 1960Q1 to 1994Q4)

Then clear the editor type

SPECTRUM DY US

You should see three di¤erent estimates of the standardized spectral density function of
DY US on the screen. These estimates, and their asymptotic standard errors, are based on
Bartlett, Tukey, and Parzen windows (see Section 21.3 for the details of the algorithms and
the relevant references to the literature). The window size is set to the default value of 2

p
n,

where n is the number of observations. In the present application, n = 139; and the window
size is equal to 24 (to override the default value for the window size see Section 4.4.27).
The estimates of the spectral density are scaled and standardized using the unconditional
variance of DY US, and if evaluated at zero frequency provide a consistent estimate of
Cochrane (1988) measure of persistence. Click to save these estimates in a result �le,

or to print. If you click you will be presented with four screens. The �rst three

show the plots of the alternative estimates of the spectral density function (under Bartlett,
Tukey and Parzen windows) and their standard error bands. For the purpose of comparing
the di¤erent windows, the fourth screen displays all three estimates of the spectral density
function on one graph (See Figure 10.9). Notice that the spectrum peaks at frequency 0:26,
suggesting a cycle with periodicity equal to 24 quarters or 6 years.
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Figure 10.9: Various estimates of standardized spectral density of DY US (sample from
1960Q1 to 1994Q4)

10.12 Lesson 10.12: Constructing a geometrically declining
distributed lag variable: using the SIM command

Suppose you are interested in constructing a geometrically declining distributed lag function
of the UK in�ation rate, stored in the special Micro�t �le UKCON.FIT. Let �t be the
in�ation rate, and denote its geometric distributed lag function by �et . Then

�et = (1� �)
1X
i=0

�i�t�i�1; for t = 1960Q1; :::; 1995Q1 (10.1)

with � = 0:8, and �e1960Q1 = �1960Q1. First notice that (10.1) can also be written recursively
as

�et = ��et�1 + (1� �)�t�1; for t = 1960Q1; :::; 1995Q1

or
�et ��et�1 = (1� �)(�t�1 ��et�1); for t = 1960Q1; :::; 1995Q1

The last equation is immediately recognizable as the �rst-order adaptive expectations model.
To compute �et , for t = 1960Q1; :::; 1995Q1, load the special Micro�t �le, UKCON.FIT,
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and when presented with the Command and Data Transformation box, type

BATCH UKCON ;
SAMPLE 1960Q1 1995Q1; PIE = PI;
SAMPLE 1960Q2 1995Q1;
SIM PIE = 0:8 � PIE(�1) + 0:2 � PI(�1);
SAMPLE 1960Q1 1995Q1

The variable PIE (�et ) will now be created in your workspace, and you should see it added
to the list of your existing variables. For a graphical presentation of the relationship between
the in�ation rate (PI), and the adaptively formed in�ation expectations (PIE), type

PLOT PI PIE

You should see the plot of PI and PIE against time on the screen (Figure 10.10). It can
be clearly seen from this graph that the adaptive expectations tend to underestimate the
actual rate of in�ation when in�ation is accelerating, and overestimate it when in�ation is
decelerating. A proof of this phenomenon can be found in Pesaran (1987a), pp. 18-19.

Figure 10.10: Actual and (adaptive) expected in�ation in the UK (with adaptive coe¢ -
cient=0.80)
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10.13 Lesson 10.13: Computation of OLS estimators using
formulae and commands

In this lesson we show how the function SUM, described in Section 4.3.29, can be used
to compute OLS estimators of the coe¢ cients of a simple regression equation from �rst
principles. This type of application of Micro�t is particularly useful for undergraduate
courses in statistics and econometrics in which students need to be shown the details of the
various steps involved in the computations.

Suppose you are interested in computing the OLS estimates of the regression of C (the
real consumption expenditure) on Y (the real disposable income) using quarterly UK obser-
vations over the period 1960(1)-1994(4)

Ct = �+ �Yt + ut; t = 1; 2; :::; n (10.2)

where ut is the error term. The OLS estimators of the coe¢ cients � and � in (10.2) are
given by

�̂ =
nX
t=1

�
Yt � �Y

�
(Ct � �C)

,
nX
t=1

�
Yt � �Y

�2
�̂ = �C � �̂ �Y

where �C and �Y are the arithmetic means of C and Y , respectively.
To carry out the necessary computations, read in the special Micro�t �le UKCON.FIT,

and type the following instructions in the Commands and Data Transformations box

SAMPLE 1960Q1 1994Q4;
n = SUM(1);
CBAR = SUM(C)=n;CD = C � CBAR;
Y BAR = SUM(Y )=N ;Y D = Y � Y BAR;
BHAT = SUM(Y D � CD)=SUM(Y D^2);
AHAT = CBAR�BHAT � Y BAR

The variables AHAT and BHAT will now contain the OLS estimates of � and �, respec-
tively. You can list these estimates using the LIST command.

You can also use the SUM function to compute other statistics, such as the estimates
of the standard error of the OLS estimates, the squared multiple correlation coe¢ cient
(R2), the adjusted squared multiple correlation coe¢ cient (R

2
), and the Durbin-Watson

statistic. (The formulae for these statistics can be found in Section 21.6.1). The BATCH �le
OLS.BAT in the tutorial directory contains the necessary instructions for carrying out these
computations. It is reproduced here in Table 10.5. To run this BATCH �le �rst ensure that
the variables C and Y are in your workspace (click ), then type

BATCH OLS
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If the operations are successful, you should see the following additional variables in the
workspace

AHAT OLS estimate of �
BHAT OLS estimates of �
SEAHAT estimate of the standard error of ahat (�̂)
SEBHAT estimate of the standard error of bhat(�̂)
ZIGMA �̂, the standard error of regression
RSQ R2, the square of the multiple correlation coe¢ cient
RBARSQ �R2, the adjusted R2

DW Durbin-Watson statistic
E OLS residuals

Table 10.5: The BATCH �le OLS.BAT

You can now use either the LIST or the COR commands to list/print the various
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estimators/statistics computed by the BATCH �le OLS.BAT. If you type

COR C Y CBAR Y BAR CV AR Y V AR AHAT SEAHAT

BHAT SEBHAT ZIGMA RSQ RBARSQ DW N

you should obtain the results in Table 10.6.

Table 10.6: OLS regression results using the BATCH �le OLS.BAT

As we shall see in Chapter 11 (see Lesson 11.1), the same results (and more) can be
readily computed by using the OLS option in the Linear Regression Menu.

10.14 Lesson 10.14: Construction of indices of e¤ective ex-
change rates and foreign prices

In this lesson we provide an example of how a BATCH �le can be used to compute the
indices of the e¤ective exchange rate (EER) and foreign prices (PF ) for a given country
(which we denote by �j�) with respect to its main trading partners.

Denote the e¤ective exchange rate index of the jth country by Ejt. Then

Ejt =

NX
i=1

wji

�
Ejit � 100
Eji;85

�
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where wji is the share of country jth trade with the ith country, so that
PN
i=1wji = 1;

and Ejit is the market rate of exchange of the jth currency in terms of the ith currency,
computed as

Ejit =

�
jth country national currency

USdollar

�
�
�

USdollar
ith country national currency

�
Eji;85 is the average value of the Ejit variable over the quarters in 1985,

Eji;85 =
1
4

85q4X
t=85q1

Ejit

Let PFj be the jth country foreign price index, de�ned as the weighted average of the
wholesale price indices of the main trading partners of the jth country,

PFjt =

NX
i=1

wjiPit

Where Pit is the wholesale price index (WPI) of the ith country.
The BATCH �le G7EXCH.BAT contains the instructions for computing the variables

EER and PF for the UK. But it can be readily modi�ed to compute these variables for any
other G7 country (see below). Table 10.7 reproduces this BATCH �le. The data needed to
run the BATCH �le are stored in the �le G7EXCH.FIT.

This �le contains the variables Ei and Pi; with i = 1; 2; :::; 10, where

E1 = Japan market rate (Yen versus US$)
E2 = Germany market rate (DM versus US$)
E3 = France market rate (FF versus US$)
E4 = UK market rate (UK£ versus US$)
E5 = Italy market rate (Lira versus US$)
E6 = Canada market rate (Can$ versus US$)
E7 = The Netherlands market rate (NGuil versus US$)
E8 = Switzerland market rate (SF versus US$)
E9 = Belgium market rate (BF versus US$)
E10 = Austria market rate (AS versus US$)
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Table 10.7: Content of The BATCH �le G7EXCH.BAT
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and
P0 = USA WPI
P1 = Japan WPI
P2 = Germany WPI
P3 = France CPI(1972-1979), WPI(1980-1992)
P4 = UK WPI
P5 = Italy WPI
P6 = Canada WPI
P7 = The Netherlands WPI
P8 = Switzerland WPI
P9 = Belgium WPI
P10 = Austria WPI

The chosen domestic country, j, in the BATCH �le G7EXCH.BAT is the UK, so that
j = 4, Pj = P4; Ej = E4. The eight main trading partners are taken to be the USA, Japan,
Germany, France, Italy, Canada, the Netherlands and Belgium. Note, however, that the
BATCH �le G7EXCH.BAT can be easily modi�ed to compute the EER and PF indices
for the other G7 countries. You simply need to edit it so that EJ is set to the currency of
your choice, and the main trading weights in the construction of the indices are adjusted
appropriately. The relevant weights for the G7 countries are given in Table 10.8.

Table 10.8: Trading weights of the G7 countries

USA Japan Germany France UK Italy Canada
Main trading
partners

USA - 0.7232 0.1513 0.1355 0.2281 0.1634 0.8546
Japan 0.2996 - 0.0493 0.0345 0.0530 0.0262 0.0613
Germany 0.0948 0.0778 - 0.2654 0.2276 0.3024 0.0201
France 0.0504 0.0256 0.1951 - 0.1552 0.2432 0.0111
UK 0.0841 0.0488 0.1422 0.1376 - 0.1084 0.0286
Italy 0.0473 0.0171 0.1362 0.1762 0.0814 - 0.0098
Canada 0.3601 0.0726 0.0156 0.0151 0.0349 0.0164 -
Netherlands 0.0366 0.0197 0.1803 0.0927 0.1422 0.0767 0.0820
Belgium 0.0261 0.0151 0.1301 0.1431 0.0776 0.0632 0.0061

To compute the two indices for the UK, load the �le G7EXCH.FIT into Micro�t. Check
the de�nitions of the variables Ei, Pi, by clicking the button. Run the BATCH �le
G7EXCH.BAT by typing

BATCH G7EXCH

in the Commands and Data Transformations box. If the operations are successful, you should
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see the following additional variables in the workspace

EER UK e¤ective exchange rate index:

PF UK foreign price index:

To see a time-plot of these indices type

PLOT EER PF

The screen should now appear as shown in Figure 10.11.

Figure 10.11: E¤ective and weighted foreign price indices for the UK (1985=100)

10.15 Lesson 10.15: Non-parametric density estimation of fu-
tures returns

In this lesson we demonstrate how to apply the NONPARM command (4.4.18) to estimate
the density function of asset returns. In particular, consider daily data on returns of the
equity futures index Nikkei (NK). The special Micro�t �le FUTURESDATA.FIT contains
daily data on futures returns on a number of currencies, bonds and equity indices, and
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covers the period from 31-Dec-93 to 01-Jan-07.1 To avoid lengthy computations in the
present application we will only use data from 2005 to 2007 (a total of 522 observations).

Go to the Commands and Data Transformations box, and type

SAMPLE 31-Dec-04 01-Jan-07; NONPARM 1 2 3 4 NK 0

Micro�t carries out the necessary computations and presents you an output window with the
list of kernel density estimates for variable NK using Guassian and Epanechnikov kernels,
and Silverman and least squares cross-validation as band widths. The list of observations
on the variable NK, as well as the list of points at which the nonparametric functions are
evaluated are also provided.

Since the vector of evaluation data points is not included in the command line, these are
automatically supplied by the program. Also note that the use of the least squares cross-
validation band width requires the evaluation of the kernel function at n2 data points, and
in applications where n is relatively large (for example, larger than 1000), this could take
considerable amount of time (see Section 21.2 for further details).

If you now close the output window, you will be presented with the Kernel Density
Estimation Menu, where you can display, plot or save your kernel density estimates and
evaluation data points. Select option 2, then choose to inspect the plot of Gaussian ker-
nel with least squares cross-validation band width against evaluation points. The graph is
displayed in Figure 10.12.

Figure 10.12: Gaussian kernel and least squares cross-valication band width for the variable
NK

1See Section 20.1 for further details concerning this data set.
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Now close the graph window and in the Kernel Density Estimation Menu click on option
3. Again, choose to inspect the plot of Gaussian kernel with least squares cross-validation
band width. Results are displayed in Figure 10.13. Notice that the estimated density function
for NK has a more acute peak and thicker tails than the normal distribution (i.e., there is
evidence of excess kurtosis). As an exercise, use the command COR in the Commands and
Data Transformations box to compute the kurtosis statistic and check that b2 � 3 > 0 (see
also Section 21.1).

Figure 10.13: Gaussian kernel and least squares cross-valication band width for the variable
NK, plus the normal density function

Finally, use option 4 from the Kernel Density Estimation Menu to plot the Gaussian
kernel with least squares cross-validation band width for the variable NK, together with
the Student�s t-distribution. You will be asked to specify the degrees of freedom for the
t-distribution. Type in, for example, 5, and click the button. The graph, displayed in Figure
10.14, indicates that the t-distribution captures the excess kurtosis of the distribution better
than the normal distribution.

In this application the use of Epanechnikov kernel with least squares cross-validated band
width produces a very uneven estimated density. Special care must be exercised in the choice
of the kernel and the band width procedure.

Warning: In the case of large data sets avoid using the cross validation procedure. You
can do this by using options 1 and 3 after the NONPARM command. See (4.4.18) for
further detail.
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Figure 10.14: Gaussian kernel and least squares cross-valication band width for the variable
NK, plus the t-density function

10.16 Lesson 10.16: Principal components analysis of USmacro-
economic time series

In this lesson we perform a principal components analysis (PCA, 4.4.19 and 22.12) to sum-
marize the empirical content of a large number of time series for the US economy. Data
are available in the special Micro�t �le MSW90.FIT, from the Tutorial directory. This �le
contains a well known data set on monthly data on a large number of variables. The data
set covers the period 1959 to 2002 (for a total of 528 months) on 90 variables describing
di¤erent aspects of the US economy, such as income/output, employment, and construc-
tion/inventories. We refer to Marcellino, Stock, and Watson (2006) for further details.
Due to the presence of some missing values, in this application we only consider data over
the years 1967-2000. Load this �le into Micro�t, and use the button to inspect the

variables and their descriptions.2 Once the data set is successfully entered, move to the
Process window and use the button to select from the Tutorial directory the EQU
�le PCATRANS.EQU. This �le contains some instructions for creating an intercept, and
for stardardizing the set of variables that will enter in the principal components analysis,
so that they have unit (sample) variance. Clear the Commands and Data Transformations
box, and retrieve from the Tutorial directory the LST or EQU �les PCAPROD.LST or
PCAPROD.EQU, which contains the list of 22 (standardized) variables on income/output

2Not all variables have a description in the data set. See Marcellino, Stock, and Watson (2006) for a
detailed description of all the variables included.
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to be included in the principal components analysis. Notice that the PCA command can be
applied to a maximum of 102 variables. By clicking , Micro�t carries out the necessary
computations and presents you an output window with the list of non-zero eigenvalues, cu-
mulative and percent cumulative eigenvalues, and eigenvectors associated with the selected
set of variables. We refer to Section 22.12 for the relevant formula and for further infor-
mation on principal components analysis. The output screen is partly reproduced in Table
10.9. Notice that, since variables have been standardized, the sum of non-zero eigenvalues
associated to the S matrix is approximately equal to 22, the number of variables included
in the principal components analysis. Further, we observe that there are only 2 eigenvalues
larger than 1. This implies that there exist only two components, or factors, that explain
at least as much as the equivalent of one original variable. Also, the eigenvalues indicate
that these two factors account for about 97 per cent of the total variance, thus providing a
reasonable summary of the data.

Table 10.9: Principal components analysis of US macroeconomic time-series

Now close the output window, and choose Option 2 to plot eigenvalues and cumulative
eigenvalues from principal components analysis. These are reproduced in Figure 10.15 and
10.16, and display the eigenvalues and cumulative eigenvalues on the vertical axis and the
principal component number on the horizontal axis.

Notice that these graphs show a sudden decrease in eigenvalues in the �rst two principal
components, and relatively low contributions after the second principal component. This
agrees with our preceding conclusion that two principal components provide a good summary
of the data under consideration. We now save the �rst two principal components in a FIT
�le, and produce their plot against time. To this end, close the graph window, and in the
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Figure 10.15: Plot of eigenvalues from principal components analysis

Post Estimation Menu (Principal Components Analysis) use options 3 and 4 to save the �rst
two principal components in the �le MSW90(2PC).FIT. Click to return to the Process
window and use the option �Add a Special Micro�t File to Workspace�from the �le menu to
add the �le MSW90(2PC).FIT to the current data set. Then clear the Commands and Data
Transformations box and type

SAMPLE 1967M1 2000M12;

PLOT PC_1 PC_2

The plot is reported in Figure 10.17. Notice that PC_1 summarizes a general trend of the
variables included in the principal components analysis.

10.17 Lesson 10.17: Canonical correlation analysis of bond
and equity futures

In this lesson we use canonical correlation analysis (CCA, 4.4.7 and 22.13) to explore the
relationship between returns on bond and equity futures. Daily observations on futures
returns on a number of currencies, bonds and equity indices over the period from 31-Dec-93
to 01-Jan-07 are stored in the special Micro�t �le FUTURESDATA.FIT.3 In this lesson we
use data over the period from 31-Dec-95 to 01-Jan-07 on four government bond futures:
US ten year Treasury Note, ten year government bonds issued by Germany, UK and Japan,

3See Section 20.1 for further details regarding this data set.
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Figure 10.16: Plot of percent cumulative eigenvalues from principal components analysis

denoted by BU , BG, BE, and BJ , respectively; and �ve equity index futures in US, UK,
Germany, France and Japan, namely S&P 500, FTSE, DAX, CAC and Nikkei, denoted by
SP , FTSE, DAX, CAC, and, NK, respectively. Load the FUTURESDATA.FIT �le into
Micro�t, go to the Commands and Data Transformations box and type

SAMPLE 31-Dec-95 01-Jan-07;

CCA BU BG BE BJ & SP FTSE DAX CAC NK & C

where C denotes an intercept, included in the data set. Micro�t starts the computation,
and when �nished, presents an output screen with the list of non-zero squared canonical
correlations, the eigenvectors, the statistic for testing the independence between the two sets
of variables and the canonical variates. Due to the length of the output, Table 10.10 only
shows part of it. Notice that we have only four canonical variates, which is equal to the
number of variables in the smaller of the two data sets. The chi-squared statistic (equal
to 277:1414) is large and highly signi�cant, indicating that there exists a signi�cant degree
of correlation between bond and equity futures returns. It is worth noting that the �rst
canonical variate explains over 63 per cent of the canonical correlation between the two sets
of variables.
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Figure 10.17: Plot of the �rst two principal components

Table 10.10: Canonical correlation analysis of bonds and equity futures
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10.18 Exercises in data processing

10.18.1 Exercise 10.1

Combine the two Special Micro�t �les UKSTOCK.FIT and USSTOCK.FIT and compute
the rates of change of consumer prices (say USPI and UKPI) in the two countries. Compare
the histograms, estimated autocorrelation functions and spectrums of the two in�ation rates.
Comment on their di¤erences and similarities.

10.18.2 Exercise 10.2

Load the �le USCON.FIT intoMicro�t and retrieve the �le USCON.EQU into the Command
and Data Transformation box at the data processing stage. Process the content of the editor,
and then plot the scatter of the rate of change of real non-durable consumption on the rate
of change of real disposable income. Using the function RATE(�), compute the average
growth of UK real disposable income over the four sub-periods 1960(1)-1969(4), 1970(1)-
1979(4), 1980(1)-1989(4), and 1990(1)-1994(4), and comment on your results. Repeat these
calculations by computing the quarterly rate of change of real disposable income as �rst
di¤erences of the logarithm of the real disposable income. Are your conclusions a¤ected by
the method used to compute the average growth rates?

10.18.3 Exercise 10.3

Read in the �le UKCON.FIT into Micro�t and compute the Pesaran-Timmermann non-
parametric statistic for testing the degree of association between the rates of change of
consumption expenditure and real disposable income. Compare the results of this test with
that based on the correlation coe¢ cient between these variables.

10.18.4 Exercise 10.4

Use the special Micro�t �le G7EXCH.FIT and the associated BATCH �le G7EXCH.BAT to
construct the indices of e¤ective exchange rates and foreign prices for Germany and France.
The weights to be used in the construction of these indices are shown in Table 10.8.



Chapter 11

Lessons in Linear Regression
Analysis

The lessons in this chapter are concerned with estimation, hypothesis testing, and predic-
tion problems in the context of linear regression models. They use a variety of time-series
and cross-sectional observations to show how the options in Micro�t can be used to test
for residual serial correlations, heteroscedasticity, non-normal errors, structural change, and
prediction failure, how to carry out estimation of models with serially correlated errors, com-
pute recursive and rolling regressions, test linear and non-linear restrictions on the regression
coe¢ cients, and detect when multicollinearity is likely to be a problem.

11.1 Lesson 11.1: OLS estimation of simple regression models

When you have �nished your data transformations you can estimate, test, or forecast using a
variety of estimation methods. You will need to specify your regression equation, the period
over which you wish your regression to be estimated, and, in the case of linear regression, the
number of observations you would like to set aside for predictive failure/structural stability
tests.

In this lesson we shall consider two applications: �rst we estimate the simple regression
equation (10.2) already estimated in Lesson 10.13 by running a BATCH �le containing
formulae and commands. Later we estimate a more complicated regression. Here we show
how the computations can be carried out more simply using the OLS option. The relevant
data are in the special Micro�t �le UKCON.FIT (see Lessons 10.1 and 10.2). Load this
�le (using the �Open File�option in the the File Menu), and in the Commands and Data
Transformations box create an intercept term by typing

INPT = 1

Click the Univariate Menu button on the main menu bar, choose the Linear Regression Menu
and make sure option 1 Ordinary Least Squares is selected. Type the speci�cations of the

199
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regression equation in the Commands and Data Transformations box:

C INPT Y

Now enter the sample period
1960Q1 1994Q4

into the Start and End �elds. Click , and you will be presented with the OLS results
reproduced in Table 11.1. Compare these estimates with those in Table 10.6.

Table 11.1: OLS estimates of a simple linear consumption function

Consider now the estimation of a slightly more complicated consumption function involv-
ing lagged values, namely the ARDL(1; 1) speci�cation in logarithms1

log ct = �1 + �2 log ct�1 + �3 log yt + �4 log yt�1 + ut (11.1)

1 In most applications the log-linear speci�cation performs better than the linear speci�cation. The co-
e¢ cients of the log-linear speci�cation, being elasticities, and hence scale-invariant, are also much easier to
interpret. For a formal test of the linear versus the log-linear speci�cation and vice versa, see Lesson 11.9.
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For empirical analysis it is often more appropriate to consider an �error correction�form of
(11.1) given by

� log ct = �1 + �2� log yt + �3 log ct�1 + �4 log yt�1 + ut (11.2)

where� log ct = log ct�log ct�1;� log yt = log yt�log yt�1, �1 = �1, �2 = �3, �3 = �(1��2)
and �4 = �4+�3: To run the regression (11.2) �rst return to the Process window (click ,

choose in the next menu, then click ) to generate the following variables:

LC = LOG(C); LY = LOG(Y ); INPT = 1;

DLC = LC � LC(�1); DLY = LY � LY (�1)

Alternatively, you can either retrieve the equation �le UKCON.EQU into the Commands and
Data Transformations box, or run the BATCH �le UKCON.BAT. Once the above variables
have been generated, choose Linear Regression Menu from the Univariate Menu and choose
option 1 Ordinary Least Squares for the speci�cation of the regression equation. Type the
dependent variable, DLC, followed by the regressors

DLC INPT DLY LC(�1) LY (�1)

Choose the start and end dates 1955(1) and 1992(4) from the drop-down lists. Click .

You can save the variables list for future use in a �le using the button. Since the

observations 1993(1)-1994(4) are not used up in the estimation, you will now be asked to
specify the number of observations to be used in the predictive failure/structural stability
tests. Type in 8 to choose all the eight remaining observations (notice that the observation
1995(1) for yt is missing) and click . The results given in Table 11.2 should now appear
on the screen. The diagnostic statistics that follow the estimation results suggest statistically
signi�cant evidence of residual serial correlation and non-normal errors.
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Table 11.2: Error correction form of the ARDL(1; 1) model of consumption and income in
the UK

To leave the OLS result screen click . You will now be presented with the Post

Regression Menu (see Section 6.20), giving a number of options to further analyse your
regression results. For example, suppose you wish to test the hypothesis that in (11.2)
�3 = �4 = 0: Choose option 2 in this menu and then option 5 in the Hypothesis Testing
Menu (see Section 6.23) that follows, and after clearing the content of the box editor if
necessary (by clicking the button), type

LC(�1) LY (�1)

The results in Table 11.3 should now appear on the screen.
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Table 11.3: Statistical signi�cance of the level variables in the ARDL(1; 1) model of income
and consumption in the UK

The various statistics for testing the joint restrictions �3 = �4 = 0 are given at the lower
end of Table 11.3. For example, the likelihood ratio (LR) statistic is 3:0191. Notice that the
critical value of this test depends on whether or not log yt is integrated. See Pesaran, Shin,
and Smith (2000), and Lesson 16.5 for further details. However, in the present application,
the value of the LR statistic is small enough for us to safely conclude that the hypothesis
that �3 = �4 = 0 cannot be rejected. Therefore, the ARDL(1; 1) speci�cation in (11.1) does
not provide a stable long relationship between real disposable income and consumption in
the UK.

To see a plot of the actual and �tted values choose option 3 in the Post Regression Menu,
and when presented with the Display/Save Residuals and Fitted Values Menu (see Section
6.21) click . You should see Figure 11.1 on the screen.

You can save this �gure in a variety of formats by using (see Section 5.2 for further

details). Figure 11.1 clearly shows that none of the sharp falls in the consumption expenditure
are explained by the simple ARDL(1; 1) model in (11.1).

You can also compute static forecasts of � log ct over the period 1993(1)-1994(4). Click
to leave Figure 11.1, then click , and choose option 8 in the Post Regression

Menu. You will be asked to select the forecast interval, by entering the initial and the
�nal forecast period. Click to obtain forecasts of � log ct together with a number of

summary statistics. If you then press the button, you will be presented with a plot of
actual and forecast values of � log ct. You can also obtain this graph by choosing option 9
in the Post Regression Menu (see Figure 11.2).

Note that the forecasts generated in the present application are �static� in the sense
that for every quarter in the period 1993(1)-1994(4), actual values of log ct�1 are used in
forecasting log ct. (See Section 21.26.1 for further details).

Note that in the above example, although the estimation period is speci�ed as 1955(1)-
1992(4), because of the missing initial values for the lagged variables log yt�1 and log ct�1,
the program automatically adjusts the sample period to take account of these missing ob-
servations and selects 1955(2)-1992(4) as the estimation period.
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Figure 11.1: Plot of actual and �tted values of � log ct

11.2 Lesson 11.2: Two alternative methods of testing linear
restrictions

This lesson describes two di¤erent methods of testing the hypothesis of constant returns to
scale in the context of a Cobb-Douglas (CD) production function.

Consider the CD production function

Yt = AK�
t L

�
t e
ut ; t = 1; 2; :::; n (11.3)

where Yt = Output, Kt = Capital Stock, Lt = Employment.
The unknown parameters A, � and � are �xed, and uts are serially uncorrelated distur-

bances with zero means and a constant variance. We also assume that uts are distributed
independently of Kt and Lt. Notice that for simplicity of exposition we have not allowed for
technical progress in (11.3). The constant returns to scale hypothesis postulates that pro-
portionate changes in inputs (Kt and Lt) result in the same proportionate change in output.
For example, doubling Kt and Lt should, under the constant returns to scale hypothesis,
lead also to the doubling of Yt. This imposes the following parametric restriction on (11.3):

H0 : �+ � = 1
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Figure 11.2: Plot of actual and single-equation static forecast(s)

which we consider as the null hypothesis and derive an appropriate test of it against the
two-sided alternative:

H1 : �+ � 6= 1

In order to implement the test of H0 against H1 we �rst take logarithms of both sides of
(11.3), which yields the log-linear speci�cation

LYt = a+ �LKt + �LLt + ut (11.4)

where
LYt = log(Yt); LKt = log(Kt); LLt = log(Lt)

and a = log (A).
It is now possible to obtain estimates of � and � by running OLS regressions of LYt on

LKt and LLt (for t = 1; 2; :::; n), including an intercept in the regression. Denote the OLS
estimates of � and � by �̂ and b�, and de�ne a new parameter, �, as

� = �+ � � 1 (11.5)
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The hypothesis �+ � = 1 against �+ � 6= 1 can now be written equivalently as

H0 : � = 0
H1 : � 6= 0

We now consider two alternative methods of testing � = 0: a direct method and a regression
method :

Direct method of testing � = 0

This method directly focuses on the OLS estimates of �, namely b� = �̂+b��1, and examines
whether this estimate is signi�cantly di¤erent from zero. For this we need an estimate of the
variance of b�. We have

V (b�) = V (�̂) + V (b�) + 2Cov ��̂; b��
where V (�) and Cov(�) stand for the variance and the covariance operators, respectively. The
OLS estimator of V (b�) is given by

bV (b�) = bV (�̂) + bV (b�) + 2dCov(�̂; b�)
where ^ denotes the estimate. The relevant test-statistic for testing � = 0 against � 6= 0 is
now given by

tb� = b�qbV (b�) =
�̂+ b� � 1qbV (�̂) + bV (b�) + 2dCov(�̂; b�) (11.6)

and under � = 0, has a t-distribution with n� 3 degrees of freedom.

The regression method

This method starts with (11.4) and replaces � (or �) in terms of � and � (or �). Using (11.5)
we have

� = � � �+ 1

Substituting this in (11.4) for � now yields

LYt � LLt = a+ �(LKt � LLt) + �LLt + ut (11.7)

or
Zt = a+ �Wt + �LLt + ut (11.8)

where Zt = log(Yt=Lt) = LYt � LLt and Wt = log(Kt=Lt) = LKt � LLt. A test of � = 0
can now be carried out by �rst regressing Zt on Wt and LLt (including an intercept term),
and then carrying out the usual t-test on the coe¢ cient of LLt in (11.8). The t-ratio of � in
(11.7) will be identical to tb� de�ned by (11.6).

We now apply the two methods discussed above to the historical data on Y , K, and L
used originally by Cobb and Douglas (1928). The relevant data are stored in the special



CHAPTER 11. LESSONS IN LINEAR REGRESSION ANALYSIS 207

Micro�t �le CD.FIT, and covers the period 1899-1922. Read this �le (using the Open File
option in the File Menu), and in the Commands and Data Transformations box type

LY = LOG(Y ); LL = LOG(L); INPT = 1;

Z = LOG(Y=L); W = LOG(K=L)

to generate the variables LY , LL, Z and W de�ned above. Then move to the Univariate
Menu on the main menu bar and choose the Ordinary Least Squares option from the Linear
Regression Menu. Type

LY INPT LK LL

and click . You should see the OLS estimates on the screen (see Table 11.4).

Table 11.4: Estimates of the log-linear Cobb-Douglas production function

Click to move to the Post Regression Menu and choose option 4 and then option 1
in the Standard, White and Newey-West Adjusted Variance Menu. The following estimates
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of the variance covariance matrix of
�
�̂; b��0 should appear on the screen:24 bV (�̂) dCov ��̂; b��dCov ��̂; b�� bV (b�)

35 = � 0:004036 �0:0083831
�0:0083831 0:021047

�

Using the above OLS estimates of � and � given in Table 11.4 (namely �̂ = 0:23305 andb� = 0:80728 ) and the above results in (11.6) gives
tb� = 0:23305 + 0:80728� 1p

0:004036 + 0:021047� 2(0:0083831)
= 0:442 (11.9)

Comparing tb� = 0:442 and the 5 per cent critical value of the t-distribution with T�3 = 24�
3 = 21 degrees of freedom (which is equal to 2:080), it is clear that since tb� = 0:442 < 2:080,
then the hypothesis � = 0 or �+ � = 1 cannot be rejected at the 5 per cent level.

To implement the regression approach you need to return to the Commands and Data
Transformations box to edit the regression equation. Click to clear the box editor and
then type

Z INPT W LL

You should see the results given in Table 11.5 on your screen.
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Table 11.5: Log-linear estimates of the Cobb-Douglas production function in per capita
terms

The t-ratio of the coe¢ cient of the LL variable in this regression is equal to 0:442 which
is identical to tb� as computed in (11.9).

It is worth noting that the above estimates of � and �, which have played a historically
important role in the literature, are very �fragile�, in the sense that they are highly sensitive
to the sample period chosen in estimating them. For example, estimating the model (given
in (11.4)) over the period 1899-1920 (dropping the observations for the last two years) yields
�̂ = 0:0807(0:1099) and b� = 1:0935(0:2241)! The �gures in brackets are standard errors.
11.3 Lesson 11.3: Estimation of long-run e¤ects and mean

lags

In this lesson we show how option 5 in the Post Regression Menu (see Section 6.20) can be
used to estimate long-run e¤ects, mean lags, and other functions of the underlying parameters
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of a regression model, together with their standard errors.
As an example, consider the following ARDL(1; 1) model relating capital expenditure in

the US manufacturing sector (Yt) to capital appropriations (Xt)

Yt = �0 + �1Yt�1 + �2Xt + �3Xt�1 + ut (11.10)

Assuming that j�1j < 1, we have

Yt =
�0

1� �1L
+

�
�2 + �3L

1� �1L

�
Xt +

�
1

1� �1L

�
ut

or
Yt = a0 + �(L)Xt + (1� �1L)�1ut

where L is the lag-operator such that LYt = Yt�1, and �(L) is the distributed lag function
operating on Xt. The long-run response of Yt to a unit change in Xt is given by

LR = �(1) =
�2 + �3
1� �1

(11.11)

The mean lag of response of Yt to a unit change in Xt is de�ned by

ML =
1

�(1)

1X
i=1

i�i = �0(1)=�(1)

where �0(1) denotes the �rst derivative of �(L) with respect to L, evaluated at L = 1. It is
now easily seen that2

ML =
�0(1)

�(1)
=

�1�2 + �3
(1� �1)(�2 + �3)

(11.12)

Suppose now you wish to compute the estimates of LR and ML and their standard errors
using observations in the special Micro�t �le ALMON.FIT. This �le contains quarterly
observations on Yt and Xt over the period 1953(1)-1967(4), which is an extended version of
the data originally analysed by Almon (1965).

Choose option 1 in the Single Equation Estimation Menu (see Section 6.4) and type

Y INPT Y (�1) X X(�1)

You should now see theOLS results on the screen. Click to move to the Post Regression
Menu and choose option 5 in this menu. You will be presented with a box editor. Type the
two functional relations (11.11) and (11.12) in the following manner:

LR = (A3 +A4)=(1�A2);
ML = (A2 �A3 +A4)=((1�A2) � (A3 +A4))

2For more details see Dhrymes (1971) or Greene (2002), Chapter 19. Note that the concept of mean lag
is meaningful if all the lag coe¢ cients, �i, have the same signs.
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Notice that Micro�t assigns the coe¢ cients A1, A2, A3, and A4 to the regressors INPT;
Y (�1); X, and X(�1), respectively.

The results in Table 11.6 should now appear on the screen.

Table 11.6: Estimates of the long-run coe¢ cient and mean lag for the relationship between
capital expenditures and capital appropriations in US manufacturing

According to these results, the hypothesis of a unit long-run coe¢ cient on X cannot be
rejected. The mean lag is also estimated with a reasonable degree of accuracy, and suggests a
mean lag of 4:7 quarters between changes in capital appropriations and capital expenditures
in US manufacturing. Table 11.6 also reports an estimate of the covariance matrix of the
functions of parameters LR and ML.

11.4 Lesson 11.4: The multicollinearity problem

Multicollinearity is commonly attributed to situations in which there is a high degree of
intercorrelation among the explanatory variables in a multivariate regression equation. Mul-
ticollinearity is particularly prevalent in the case of time-series data where there often exists
the same common trend in two or more regressors in the regression equation. As a simple
example consider the model

yt = �1x1t + �2x2t + ut (11.13)

and assume for simplicity that (x1t; x2t) have a bivariate distribution with the correlation

coe¢ cient, �, that is, � = Cov (x1t; x2t) = fV (x1t)V (x2t)g
1
2 . It is clear that as � approaches

unity, separate estimation of the slope coe¢ cients �1 and �2 becomes more and more prob-
lematic. Multicollinearity will be a problem if the coe¢ cients of x1t and x2t are jointly
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statistically signi�cant but neither are statistically signi�cant when tested individually. Ex-
pressed di¤erently, multicollinearity will be a problem when the hypotheses �1 = 0 and
�2 = 0 cannot be rejected when tested separately, while the hypothesis �1 = �2 = 0, is re-
jected when tested jointly. This clearly happens when x1t (or x2t) is an exact linear function
of x2t (or x1t). In this case, x2t = x1t and (11.13) reduces to the simple regression equation

yt = �+ (�1 + �2)x1t + ut (11.14)

and it is only possible to estimate �1 + �2. Neither �1 nor �2 can be estimated (or tested)
separately. This is the case of �perfectly multicollinearity�and arises out of faulty speci�cation
of the regression equation. One such example is when four seasonal dummies are included
in a quarterly regression model that already contains an intercept term.

The multicollinearity problem is also closely related to the problem of low power when
separately testing hypotheses involving the regression coe¢ cients. It is worth noting that no
matter how large the correlation coe¢ cient between x1t and x2t, so long as it is not exactly
equal to �1, a test of �1 = 0 (or �2 = 0) will have the correct size, assuming that all the
other classical normal assumptions are satis�ed. The high degree of correlation between x1t
and x2t causes the power of the test to be low, and as a result we may end up not rejecting
the null hypothesis that �1 = 0 even if it is false.

3

To demonstrate the multicollinearity problem and its relation to the problem of low
power, consider the following (simulated) model

x1 � N(0; 1)
x2 = x1 + 0:15v
v � N(0; 1)
y = �+ �1x1 + �2x2 + u
u � N(0; 1)

with � = �1 = �2 = 1, and where x1, v and u are generated as independent standardized
normal variates using respectively the �seed� of 123, 321 and 4321 in the normal random
generator (see the function NORMAL in Section 4.3.14). To generate x1; x2 and y choose
Input Data from the Keyboard from the File Menu. In the New data set dialogue choose
undated frequency, type 500 for the number of observations, and 0 for the number of variables
and then click . Type the following formulae in the box editor that appears on the

screen to generate the variables Y , X1 and X2;each having 500 observations:4

SAMPLE 1 500;
X1 = NORMAL(123); V = NORMAL(321);
U = NORMAL(4321);
X2 = X1 + 0:15 � V ; Y = 1 +X1 +X2 + U ; INPT = 1

3The power of a test is de�ned as the probability of rejecting the null hypothesis when it is false.
4Alternatively, you can retrieve the equation �le MULTI.EQU into the Commands and Data Transforma-

tions box and then click to process.
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Then move to the Single Equation Estimation Menu (the Univariate Menu on the main menu
bar), choose option 1 and run the OLS regression of Y on INPT , X1 and X2 using only
the �rst 50 observations. You should see the results in Table 11.7 on the screen.

Table 11.7: An example of a multicollinear regression based on simulated data

The value of F statistics F (2; 47) for testing the joint hypothesis HJ
0 : �1 = �2 = 0,

against HJ
1 : �1 6= 0;and/or�2 6= 0 is equal to 132:9788, which is well above the 95 per

cent critical value of the F -distribution with 2 and 47 degrees of freedom, and strongly
rejects the joint hypothesis that �1 = �2 = 0: The t-statistics for the separate induced tests
of HI

0 : �1 = 0, against HI
1 : �1 6= 0, and of HII

0 : �2 = 0, against HII
1 : �2 6= 0, are

1.0526 and 0.8548, respectively. Neither are statistically signi�cant and do not lead to the
rejection of �1 = 0 and �2 = 0 when these restrictions are considered separately. The joint
hypothesis that �1and �2 are both equal to zero is strongly rejected, but neither of the
hypotheses that �1 and �2 are separately equal to zero can be rejected. This is clearly a
multicollinearity problem. The sample correlation coe¢ cient of x1 and x2 computed using
the �rst 50 observations is equal to 0.99316, which is apparently too high given the sample
size and the �t of the underlying equation, for the �1 and �2 coe¢ cients to be estimated
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separately with any degree of precision. In short, the separate induced tests lack the necessary
power to allow rejection of �1 = 0 and/or �2 = 0, separately.

The relationship between the F statistic used to test the hypothesis �1 = �2 = 0 jointly,
and the t-statistics used to test �1 = 0 and �2 = 0 separately, can also be obtained theoret-
ically, and is given by

F =
t21 + t

2
2 + 2�̂t1t2

2(1� �̂2)
(11.15)

where �̂ is the sample correlation coe¢ cient between x1t and x2t.5 This relationship clearly
shows that even for small values of t1 and t2 it is possible to obtain quite large values of F
so long as �̂ happens to be close enough to 1.

In the case of regression models with more than two regressors the detection of the
multicollinearity problem becomes even more complicated. For example, when there are three
coe¢ cients, namely testing them separately: �1 = 0, �2 = 0, �3 = 0, in pairs:�1 = �2 = 0,
�2 = �3 = 0, �1 = �3 = 0, and jointly: �1 = �2 = �3 = 0. Only in the case where the results
of separate induced tests, the �pairs�tests and the joint test are free from contradictions can
we be con�dent that the multicollinearity is not a problem.

There are a number of measures in the literature that purport to detect and measure the
seriousness of the multicollinearity problem. These measures include the �condition number�
de�ned as the square root of the largest to the smallest eigenvalue of the matrix X0X;
and the variance-in�ation factor, de�ned as

�
1�R2i

�
for the �i coe¢ cient where R

2
i is the

squared multiple correlation coe¢ cient of the regression of xi on the other regressors in the
regression equation. Both these measures only examine the intercorrelation between the
regressors, and at best present a partial picture of the multicollinearity problem, and can
often �lead�to misleading conclusions.

To illustrate the main source of the multicollinearity problem in the present application,
return to the simulation exercise, and use all the 500 observations (instead of the �rst 50
observations) in computing the regression of y on x1 and x2. The results are

yt = 0:9307
(0:0428)

+ 1:1045 x1t
(0:28343)

+ 0:93138 x2t
(0:27981)

+ ût t = 1; 2; :::; 500

R2 = 0:8333; �̂ = 0:95664; F2;497 = 1242:3

As compared with the estimates based on the �rst 50 observations (see Table 11.7), these
estimates have much smaller standard errors, and using the 95 per cent signi�cance level we
arrive at the same conclusion whether we test �1 = 0 and �2 = 0 separately or jointly. Yet,
the sample correlation coe¢ cient between x1t and x2t estimated over the 500 observations is
equal to 0:9895, which is only marginally smaller than the estimate obtained for the �rst 50
observations. By increasing the sample size from 50 to 500 we have increased the precision
with which �1 and �2 are estimated and the power of testing �1 = 0 and �2 = 0, both
separately and jointly.

5 In the simulation exercise we obtained t1 = 1:0526, t2 = 0:8548 and �̂ = 0:99316. Using these estimates
in (11.15) yields F = 132:9791, which is only slightly di¤erent from the F statistic reported in Table 11.7.
The di¤erence between the two values is due to the rounding of errors.



CHAPTER 11. LESSONS IN LINEAR REGRESSION ANALYSIS 215

The above illustration also points to the fact that the main cause of the multicollinearity
problem is a lack of adequate observations (or information), and hence the imprecision with
which the parameters of interest are estimated. Assuming that the regression model under
consideration is correctly speci�ed, the appropriate solution to the problem is to increase the
information on the basis of which the regression is estimated. The new information could be
either in the form of additional observations on y, x1 and x2, or it could be some a priori
information concerning the parameters. The latter �ts well with the Bayesian approach, but
is di¢ cult to accommodate within the classical framework. There are also other approaches
suggested in the literature such as the ridge regression and the principle component regres-
sion, to deal with the multicollinearity problem. A review of these approaches can be found
in Judge, Gri¢ ths, Hill, Lütkepohl, and Lee (1985).

11.5 Lesson 11.5: Testing common factor restrictions

Consider the following ARDL(1,1,1) model relating logarithm of real consumption expendi-
tures (log ct) to the logarithm of the real disposable income (log yt) and the rate of in�ation
(�t) in the UK:

(1� �1L) log ct = �0 + (�2 + �3L) log yt + (�4 + �5L)�t + ut (11.16)

where L represents the backward lag operator. The idea of testing for common factor re-
strictions was originally proposed by Sargan (1964). The test explores the possibility of
simplifying the dynamics of (11.16) by testing the hypothesis that the lag polynomials op-
erating on log ct, log yt, and �t have the same factor in common. The procedure can also
be viewed as a method of testing the dynamics in the deterministic part of the regression
model against the dynamics in the stochastic part (see Hendry, Pagan, and Sargan (1984),
Section 2.6). In the case of the present example, the common factor restrictions are6

�1�2 + �3 = 0
�1�4 + �5 = 0

�
(11.17)

A test of these restrictions can be readily carried out using Micro�t. Here we assume that
(11.16) is to be estimated by the OLS method, but the procedure outlined below is equally
applicable if (11.16) is estimated by the IV method.

We use quarterly observations in the special Micro�t �le UKCON.FIT to carry out the
test. First read the UKCON.FIT and make sure that the variables LC = log ct, LY = log yt,
Pt = CNOM=C and PI = log(Pt=Pt�1) are on the workspace. To generate these variables
go to the Data Processing Stage and retrieve the �le UKCON.EQU, or equivalently run the
BATCH �le UKCON.BAT. (See also Lessons 10.1 and 10.2).

Choose option 1 in the Single Equation Estimation Menu (the Univariate Menu on the
main menu bar: Section 6.4) and type

LC INPT LC(�1) LY LY (�1) PI PI(�1)
6To derive the restrictions in (11.17) note that for the lag polynomials 1� �1L and �4 + �5L to have the

same factor in common, it is necessary that ��11 , the root of 1��1L = 0, should also be a root of �2+�3L = 0
and �4 + �5L = 0.
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You should see the OLS regression results on the screen. Move to the Post Regression Menu
and choose option 2 (see Section 6.20). This takes you to the Hypothesis Testing Menu (see
Section 6.23). Now choose option 7 in this menu to carry out a Wald test of the common
factor restrictions in (11.17). In the box editor that appears on the screen type

A2 �A3 +A4 = 0; A2 �A5 +A6 = 0

You should now see the test results shown in Table 11.8.

Table 11.8: Testing for common factor restrictions

The Wald statistic for testing the two non-linear restrictions in (11.17) is equal to 22:06,
which implies a strong rejection of the common factor restrictions. It is, however, important
to note that the Wald statistic is sensitive to the way the non-linear restrictions are speci�ed.
See, for example, Gregory and Veall (1985) and Gregory and Veall (1987). See also Exercise
11.3.

11.6 Lesson 11.6: Estimation of regression models with seri-
ally correlated errors

Suppose now you wish to estimate the saving equation

st = �0 + �1st�1 + �2� log yt + �3 (�t ��et ) + ut (11.18)

using UK quarterly observations in the special Micro�t �le UKCON.FIT

st saving rate (the variable S on the workspace)
� log yt the rate of change of real disposable income (DLY )
�t Actual rate of in�ation (PI)
�et Adaptive expectations of �t as computed in Lesson 10.12

subject to the AR(1) error speci�cation by the Cochrane-Orcutt method

ut = �1ut�1 + �t (11.19)
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Equation (11.18) is a modi�ed version of the saving function estimated by Deaton (1977).7

To carry out the computations for the above estimation problem �rst go through the
steps described in Lesson 10.12 to generate the variable PIE with � = 0:8 in your workspace.
Alternatively, read UKCON.FIT and then retrieve the �le UKCON.EQU into the Commands
and Data Transformations box. If you now click the variables S, DLY , PI and INPT

will be created on the workspace. Click to clear the editor and then type

LAMBDA = 0:8; BATCH PIE

to generate the in�ation expectations variable PIE. Then create the unanticipated in�ation
variable �t ��et by typing

DPIE = PI � PIE

Now move to the Single Equation Estimation Menu (the Univariate Menu), and choose
option 4 from the Linear Regression Menu (see Section 6.9). Type

S INPT S(�1) DLY DPIE

and choose the start and end dates 1960(1) and 1994(4). Click and, when prompted,

type 1 and press . You will now be presented with a menu for initializing the estimation

process (see Section 6.13.1). Choose option 3 to see the plot of the concentrated log-likelihood
function, showing the log-likelihood pro�le for di¤erent values of �, in the range [�0:99; 0:99]
(see Figure 11.3).

As you can see, the log-likelihood function is bimodal for a positive and a negative value of
�1. The global maximum of the log-likelihood is achieved for �1 < 0. Bimodal log-likelihood
functions frequently arise in estimation of models with lagged dependent variables subject to
a serially correlated error process, particularly in cases where the regressors show a relatively
low degree of variability. The bimodal problem is sure to arise if apart from the lagged values
of the dependent there are no other regressors in the regression equation.

To compute the ML estimates click to return to the menu for initialization of the
unknown parameter �1. Choose option 2 and type �0:2 as the initial estimate for �1 and click

. The results in Table 11.9 should now appear on the screen. The iterative algorithm

has converged to the correct estimate of �1 (i.e. �̂1 = �0:22838) and refers to the global
maximum of the log-likelihood function given by LL(�̂1 = �0:22838) = 445:3720. Notice also
that the estimation results are reasonably robust to the choice of the initial estimates chosen
for �1, so long as negative or small positive values are chosen. However, if the iterations are
started from �

(0)
1 = 0:5 or higher, the results in Table 11.10 will be obtained. The iterative

process has now converged to �̂1 = 0:81487 with the maximized value for the log-likelihood
function given by LL(�̂1 = 0:81487) = 444:3055, which is a local maximum. (Recall from
Table 11.9 that LL(�̂1 = �0:22838) = 445:3720). This example clearly shows the importance
of experimenting with di¤erent initial values when estimating regression models (particularly

7However, note that the saving function estimated by Deaton (1977) assumes that the in�ation expectations
�et are time invariant.
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Figure 11.3: Log-likelihood pro�le for di¤erent values of �1

when they contain lagged dependent variables) with serially correlated errors. Suppose now
you wish to estimate equation (11.18) subject to the following AR(4) error process with zero
restrictions on two of its coe¢ cients:

ut = �1ut�1 + �4ut�4 + �t

Return to the Single Equation Estimation window via the Backtracking Menu and choose
option 5 in the Liner Regression estimation Menu, run the same calculation, and when
prompted, type

1 4

Choose option 1 to use the initial estimate supplied by the program. The results in Table
11.11 should now appear on the screen.
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Table 11.9: Cochrane-Orcutt estimates of a UK saving function

Table 11.10: An example in which the Cochrane-Orcutt method has converged to a local
maximum
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Table 11.11: ML estimates of a saving equation with restricted AR(4) error process maximum
likelihood estimation: �xed initial values of disturbances

These estimates seem to be quite robust to the choice of the initial values for �1 and �4.
For example, starting the iterations with �(0)1 = 0:8 and �(0)2 = 0:0 yields the same results as
in Table 11.11.

11.7 Lesson 11.7: Estimation of a �surprise�consumption func-
tion: an example of two-step estimation

A simple version of the life cycle rational expectations theory of consumption predicts that
changes in real consumption expenditures (or their logarithms) are only a¤ected by inno-
vations in real disposable income. Muellbauer (1983), building on the seminal work of Hall
(1978), has estimated the following �surprise�aggregate consumption function for the UK

� log ct = a0 + a1(log yt �[log yt) + ut (11.20)

where ct = real consumption expenditures, yt = real disposable income, and [log yt is the
predictor of log yt based on information at time t� 1.

In this lesson we use quarterly observations on ct and yt in the �le UKCON.FIT to esti-
mate (11.20). This is an example of the two-step estimation method for rational expectations
discussed in Pagan (1984) and Pesaran (1987b) and Pesaran (1991).

In the �rst step the predicted values of log yt are obtained by running the OLS regression
of log yt on its past values, and possibly lagged values of other variables. In what follows we



CHAPTER 11. LESSONS IN LINEAR REGRESSION ANALYSIS 221

estimate a second-order autoregressive process, AR(2), in log yt. In the second step (11.20)
is estimated by running the OLS regression of � log ct on a constant term and the residuals
obtained from the regression in the �rst step.

To carry out the computations in the �rst step, read in the special Micro�t �le UK-
CON.FIT, generate the variables LC = log ct and LY = log yt, and an intercept term, and
then choose option 1 in the Single Equation Estimation Menu (Univariate Menu: see Section
6.4), make sure the OLS option is selected, and type

LY INPT LY (�1) LY (�2)

When the table appears, click , and from the Post Regression Menu choose option

3. You should now see the Display/Save Residuals and Fitted Values Menu on the screen.
Choose option 6, and when prompted type

DRLY Unanticipated change in log(Y )

The variable DRLY
�
= log yt � clogyt� is saved in the workspace, and you can now carry out

the computations in the second step.
Return to the Single Equation Estimation window (making sure the OLS option from

the Linear Regression Menu is selected), click to clear the box editor and then type

DLC INPT DRLY

The results in Table 11.12 should now appear on the screen.
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Table 11.12: �Surprise�consumption function for the UK

The t-ratio of the coe¢ cient of DRLY is 4:8269, which is much higher than the critical
value of the t distribution with 158 � 2 = 156 degrees of freedom; thus suggesting that
innovations in income growth have signi�cant impact on consumption growth.8

Repeat the above exercise using the USCON.FIT �le. Also try additional regressors,
such as � log yt�1 and � log ct�1 in (11.20). Are your results sensitive to the order of the
AR process chosen to compute [log yt?

8Notice that

log yt � [log yt = (log yt � log yt�1)�
�
[log yt � log yt�1

�
= � log yt ��[log yt:
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11.8 Lesson 11.8: An example of non-nested hypothesis test-
ing

Suppose you are faced with the following models:

M1 : � log ct = �0 + �1 log yt + �2 log ct�1 + �3 log yt�1 + �4�t + ut1

M2 : � log ct = �0 + �1(log yt � clogyt) + �2�t + ut2
Model M1 is an in�ation-augmented version of the error correction model (11.1) in Lesson
11.1. The in�ation rate, �t, is measured as the change in the logarithm of the implicit price
de�ator of consumption.

Model M2 is the in�ation-augmented �surprise�consumption function, and is estimated
in Lesson 11.7. First read the special Micro�t �le UKCON.FIT and make sure that the
following variables are in the list:

DLC � log ct
DLY � log yt
PI log(pt=pt�1)
P Implicit price De�ator of Consumption Expenditure
DRLY log yt �[log yt

log yt � �̂0 � �̂1 log yt�1 � �̂2 log yt�2
INPT Intercept term

If one or more of these variables are not in your workspace you need to consult the relevant
lessons on how to generate them. (See Lessons 11.6 and 11.7).

Suppose now that you wish to test model M1 against M2 and vice versa. Choose option
1 in the Single Equation Estimation Menu (Univariate Menu: see Section 6.4), make sure
the OLS option is selected, and type

DLC INPT DLY LC(�1) LY (�1) PI

Click and then , and select option 2 in the Post Regression Menu. You should

now see the Hypothesis Testing Menu (see Section 6.23) on the screen. Choose option 8,
and when prompted, �rst click to clear the box editor and then type the regressors of
model M2:

INPT DRLY PI

The results in Table 11.13 should now appear on the screen.
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Table 11.13: Non-nested statistics for testing ARDL and �surprise�consumption functions

All the non-nested tests suggest that both models should be rejected. There is also
a con�ict between the two model selection criteria, with the Akaike information criterion
favouring M2, and the Schwarz Bayesian criterion favouring M1. The test results point to
another model, possibly a combination of modelsM1 andM2, as providing a more satisfactory
speci�cation.

11.9 Lesson 11.9: Testing linear versus log-linear models

Suppose you are interested in testing the following linear form of the in�ation augmented
ARDL(1; 1) model:

M1 : ct = �0 + �1ct�1 + �2yt + �3yt�1 + �4�t + u1t

against its log-linear form

M2 : log ct = �0 + �1 log ct�1 + �2 log yt + �3 log yt�1 + �4�t + u2t

where

ct Real Non-durable Consumption Expenditure in the US
yt Real Disposable Income in the US
�t In�ation Rate

First read the special Micro�t �le USCON.FIT, and generate the necessary variables for
running the above regressions, (for example by using the button to retrieve the �le

USCON.EQU into the Commands and Data Transformation box). Choose option 1 in the
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Single Equation Estimation Menu (Univariate Menu, see Section 6.4), make sure the OLS
option is selected, and type

C INPT C(�1) Y Y (�1) PI

Click , then , and select option 2. You should now see the Hypothesis Testing

Menu (see Section 6.23) on the screen. Choose option 9 and, when prompted, type the
regressors of model M2; namely

INPT LC(�1) LY LY (�1) PI

You will now be asked to specify the nature of the transformation of the dependent variable
in model M1. Choose the linear option 1.

A similar menu concerning the nature of the transformation of the dependent variable in
model M2 now appears on the screen. Choose option 2. You will be prompted to specify the
number of replications (R) to be used in the computations of the Cox statistic by simulation
(see Section 21.9 and option 9 in Section 6.23). For most applications, values of R in the
range 100-250 will be adequate. Enter 100, and press for computations to start. Once
the computations are completed, the results in Table 11.14 should appear on the screen. This
table gives the parameter estimates under both models. The estimates of the parameters of
M1 computed under M1 are the OLS estimates (�̂), while the estimates of the parameters
of M1 computed under M2 are the pseudo-true estimators (�̂� = �̂�(�̂)). If model M1 is
correctly speci�ed, one would expect �̂ and �̂� to be near to one another. The same also
applies to the estimates of the parameters of model M2 (�).
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Table 11.14: Testing linear versus log-linear consumption functions

The bottom part of Table 11.14 gives a number of di¤erent statistics for testing the linear
versus the log-linear model and vice versa. This table also gives the Sargan (1964) and Vuong
(1989) likelihood function criteria for the choice between the two models. For other details
and references to the literature, see Section 21.9.

In the present application all the tests reject the linear model against the log-linear model,
and none reject the log-linear model against the linear one at the 5 per cent signi�cance level,
although the simulated Cox and the double-length tests also suggest rejection of the log-linear
model at the 10 per cent signi�cance level. Increasing the number of replications to 500 does
not alter this conclusion. The two choice criteria also favour the log-linear speci�cation over
the linear speci�cation.

11.10 Lesson 11.10: Testing for exogeneity: computation of
the Wu-Hausman statistic

In this lesson we show how the variable addition test option in the Hypothesis Testing
Menu (see Section 6.23) can be used to compute the Wu (1973) T2 statistic for testing the
independence (or more precisely the lack of correlation) of the regressors, log yt and �t, and



CHAPTER 11. LESSONS IN LINEAR REGRESSION ANALYSIS 227

the disturbance term, ut, in the following regression equation estimated on UK data:9

log ct = �0 + �1 log ct�1 + �2 log yt + �3 log yt�1 + �4�t + ut (11.21)

We assume that you have read in the �le UKCON.FIT and that the variables log ct, log yt,
and �t are in the variable list (these variables can be generated by running the batch �le
UKCON.BAT). We also assume that the variables, log yt�1, log yt�2, log ct�1, log ct�2, �t�1,
�t�2, can be used as instruments for this test.10

Computation of the Wu-Hausman T2 statistic can be carried out in the following manner.

1. Run OLS regressions of LY (log yt) and PI (�t) on the variables INPT , LY (�1),
LY (�2), LC(�1), LC(�2), PI(�1), and PI(�2), over the period 1960(1)-1994(4),
and save the residuals (using option 6 in the Display/Save Residuals and Fitted Values
Menu), in the variables RLY and RPI, respectively (see Lesson 11.7 on how to do this).
More speci�cally, choose option 1 in the Single Equation Estimation Menu (see Section
6.4), make sure the OLS option is selected, choose the estimation period 1960(1) to
1994(4), then enter

LY INPT LY f1� 2g LC f1� 2g PI f1� 2g

When the table appears, click . Choose option 3 from the Post Regression

Menu and option 6 from the Display/Save Residuals and Fitted Values Menu. When
prompted, enter

RLY Residuals from LY regression

Press , and then choose option 0 to return to the Single Equation Estimation

window. Replace LY by PI in the screen editor box. Click and when the

table appears click . Choose option 3 from the Post Regression Menu and Option

6 from the Display/Save Residuals and Fitted Values. When prompted, enter the
following string:

RPI Residuals from PI regression

Click to move to the Post Regression Menu. Choose option 0 to return to
the Single Equation Estimation window.

2. Make sure that the variables RLY and RPI are correctly saved in your workspace.
Then choose option 1 in the Single Equation Estimation Menu (the Univariate Menu
on the menu bar) and make sure the OLS option is selected. Click to clear the

9Wu�s T2 statistic is also known as the Wu-Hausman statistic. For details see Wu (1973), Hausman (1978),
Nakamura and Nakamura (1981), and Pesaran and Smith (1990).
10The Wu-Hausman test is also asymptotically equivalent to testing the statistical signi�cance of the dif-

ference between the OLS and the Two-Stage Least Squares estimates of the regression coe¢ cients in (11.21).
It is also advisable to carry out Sargan�s general mis-speci�cation test given in the result table in the case of
IV regressions.
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box editor, and ensure that the start and end dates are set to 1960(1) and 1994(4).
Then type

LC INPT LC(�1) LY f0� 1g PI

click the button and proceed. When the table appears, click . In the Post
Regression Menu select option 2 and then choose option 6 from the Hypothesis Testing
Menu. In the box editor enter

RLY RPI

Table 11.15: The Wu-Hausman statistic for testing the exogeneity of LY and PI

The Wu-Hausman statistic (Wu�s T2 statistic) is equal to the value of the F -statistic in
Table 11.15, which is computed as 5:70, and under the null hypothesis (of exogeneity) is
distributed approximately as an F with 2 and 133 degrees of freedom. The exogeneity test
can also be based on the Lagrange multiplier, or the likelihood ratio statistic reported in
the above table. All three tests are asymptotically equivalent, and in the case of the present
application, reject the null hypothesis that the income and in�ation variables are exogenous
in the in�ation augmented ARDL(1; 1), in (11.21). However, as can be seen from Table
11.15, the t-ratio of the in�ation variable, RPI; is �1:4227, and suggests that the hypothesis
that the in�ation rate is exogenous cannot be rejected.

Also, the rejection of the exogeneity of log yt in (11.21) crucially depends on the exclu-
sion of log yt�2 from the ARDL speci�cation. As an exercise, include log yt�2 among the
regressors of (11.21) and try the above exogeneity test again.
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11.11 Lesson 11.11: Recursive prediction of US monthly ex-
cess returns

The literature on the predictability of returns or excess returns on common stocks is quite
extensive. It has been shown that a substantial part of variations in excess returns at
di¤erent time intervals is predictable. See, for example, Campbell (1987), Fama and French
(1989), Pesaran (1991), Breen, Glosten, and Jagannathan (1989), Glosten, Jagannathan,
and Runkle (1993) and Pesaran and Timmermann (1994). In this lesson we replicate some
of the excess return regressions reported in Pesaran and Timmermann (1994) at monthly
frequencies, and show how to use such regressions to generate recursive predictions of excess
returns on Standard and Poor 500 (SP500) portfolio using only ex ante dated variables.

The special Micro�t �le PTMONTH.FIT contains monthly observations on a number
of �nancial and macroeconomic variables over the period 1948(1) to 1992(12) for the US
economy (notice, however, that there are missing observations for most of the variables
during the 1948-1951 period). Read this �le and run the batch �le PTMONTH.BAT on it
in the Commands and Data Transformations box. The following variables should now be in
the variables list:

DI11 i1� i1(�1)
DIP12 log(ip12=ip12(�12))
ERSP nrsp� ((1 + (i1(�1)=100)^(1=12)) + 1
INPT 1
PI12 log (ppi12=ppi12(�12))
Y SP divsp=psp

where
DIV SP Twelve-month average of dividends on SP500
I1 One-month t-bill rate (Fama-Bliss)
IP Index of industrial production
IP12 MAV(ip; 12)
NRSP (psp� psp(�1) + divsp) =psp(�1)
PPI Producer price index
PPI12 MAV(ppi; 12)
PSP SP500 price index (end of month)

ERSP is the excess return on SP500 de�ned as the di¤erence between the nominal return
on SP500 (NRSP ) minus the lagged one month Treasury Bill (TB) rate converted from an
annual rate to a monthly rate (allowing for compounding).

DI11 Change in the one-month T -bill rate of the index of
industrial production

DIP12 Rate of change of twelve-month moving average of the index
of industrial production

PI12 Rate of change of the twelve-month moving average of the
producer price index

Y SP Dividend yield de�ned as the ratio of dividends to share prices
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Notice that in computing the twelve-month moving averages of the industrial production
and producer price indices we have made use of the �moving-average� function MAV(�; �)
described in Section 4.3.11.

The excess return regressions reported in Pesaran and Timmermann (1994) were initially
estimated over the period 1954(1)-1990(12), but were later extended to include the two years
1991 and 1992 (see Tables III and PIII in Pesaran and Timmermann (1994)). Here we
consider estimating the following monthly excess return regression over the whole period
1954(1)-1992(12):

ERSPt = �0 + �1Y SPt�1 + �2PI12t�2 + �3DI11t�1

+�4tDIP12t�2 + ut (11.22)

Under the joint hypothesis of risk neutrality and market e¢ ciency it should not be possible
to predict the excess returns, ERSPt, using publicly available information. It is therefore
important that observations on the regressors in (11.22) are available publicly at time t� 1,
when ERSPt is being forecast. Such information is readily available for the interest rates,
share prices and dividends, but not for the production and the producers� price indices.
Observations on these latter variables are released by the US government with a delay. In
view of this the variables PI12 and DIP12 are included in the excess return regression with
a lag of two months.

To replicate the OLS results in table PIII in Pesaran and Timmermann (1994), p.61,
choose option 1 in the Single Equation Estimation Menu, and when prompted type11

ERSP INPT Y SP (�1) PI12(�2) DI11(�1) DIP12(�2)

The OLS results in Table 11.16 should appear on the screen. Check that these estimates
are identical with those reported by Pesaran and Timmermann (1994), p. 61. To estimate
(11.22) recursively choose option 2 in the Single Equation Estimation Menu (Section 6.4).
The following variable list should be in the box editor:

ERSP INPT Y SP (�1) PI12(�2) DI11(�1) DIP12(�2)

Set the number of observations used for updating estimation equal to 1, and click . The
program now carries out the necessary computations and presents you with the Recursive
OLS Regression Results Menu (see Section 6.14.1). You can use option 1 in this menu to
plot the recursive estimates. For example, if you choose to see the recursive estimates of the
coe¢ cient of the dividend yield variable, Y SP (�1), the plot in Figure 11.4 will appear on
the screen.

To save recursive predictions of excess return choose option 8, and when prompted type

ERHAT Recursive Predictions of Excess Return on SP500
11The relevant variable list is saved in the special Micro�t �le PTMONTH.LST, and can be retrieved using

the button.
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Click , and you will now be asked to supply the variable name for the standard errors of

the recursive predictions, themselves computed recursively. Type12 ERSE standard errors of
the recursive predictions of excess return on SP500, click and choose option 0 to return
to the box editor. You should now see the variables ERHAT and ERSE in the variable
list (click to to display). To estimate the extent to which the recursive predictions

of excess return (ERHAT ) and the actual excess returns (ERSP ) are correlated, you can
either compute simple correlation coe¢ cients between these variables, or use the function
PTTEST(�; �) to compute the Pesaran and Timmermann predictive failure test statistic.
To avoid uncertain initial estimates we suggest computing these statistics over the period
1960(1)-1992(12). You need return to the Process window (click ), clear the editor and
type

SAMPLE 60m1 92m12; COR ERSP ERHAT ;

STAT = PTTEST(ERSP;ERHAT ); LIST STAT

The sample correlation between ERSP and ERHAT is 0:2066, and the coe¢ cients of varia-
tions computed for these variables suggest that actual returns are 3 times more variable than
recursively predicted returns. The Pesaran-Timmermann test statistic is 2:8308, which is well
above 1:67, the 95 per cent critical value for a one-sided test. There is clearly signi�cant
evidence that monthly excess returns are predictable using ex ante dated variables.

12Note that the descriptions that follow ERHAT and ERSE are optional.
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Table 11.16: Regression of excess returns on Standard and Poor 500 portfolio

11.12 Lesson 11.12: Rolling regressions and the Lucas cri-
tique

This lesson will illustrate the use of rolling regression to examine parameter variation. In an
in�uential paper Lucas (1976) argued that estimated econometric parameters are unlikely to
be stable, since as policy regimes change, people will change how they form their expectations,
and this will change the estimated decisions rules. The issue is discussed in more detail in
Alogoskou�s and Smith (1991b). Consider the simple expectations augmented Phillips Curve

�wt = f(ut) + �E(�pt j 
t�1) (11.23)

where wt is the logarithm of money wages, ut the unemployment rate, pt the logarithm of
a general price index, and 
t�1 the information set at t � 1. We would expect � = 1, if
workers lacked money illusion. Now suppose the evolution of in�ation could be described by
a �rst order autoregression, with time-varying parameters

E(�pt j 
t�1) = �t(1� �t) + �t�pt�1 (11.24)
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Figure 11.4: Recursive estimates of the coe¢ cients of the dividend yield variable in equation
(11.22)

where �t is the steady-state rate of in�ation and �t measures the persistence of in�ation.
Alogoskou�s and Smith (1991b) estimate the above equations using UK data over the period
1855-1987. Over this 130-year period, with its varying policy regimes - the Gold Standard,
the two World Wars, Bretton Woods, and so on - we would not expect either steady state
in�ation or its persistence to be constant. Substituting, the expectations equation (11.24)
into the in�ation-augmented Phillips Curve (11.23) gives

�wt = f(ut) + ��t(1� �t) + ��t�pt�1 (11.25)

The coe¢ cient on lagged in�ation in the above Phillips Curve should move in line with
the coe¢ cient of lagged in�ation in the in�ation expectations equation (11.24). The two
coe¢ cients must be equal when � = 1. To determine whether this is the case, we need to
obtain time-varying parameter estimates of the coe¢ cients in the two equations and compare
their movements. We do this using the Rolling Regression Option in Micro�t.

Read the special Micro�t �le PHILLIPS.FIT, which contains annual observations over
the period 1855-1987 on the following variables

E Log Employment
N Log Labour Force
P Log ConsumerjPrices
W Log Earnings
Y Log Real GDP
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In the Commands and Data Transformations box type

C = 1;DW =W �W (�1);DP = P � P (�1);
U = N � E;DU = U � U(�1)

to create a constant term in C, the rate of change of money wages in DW , the rate of price
in�ation in DP , the rate of unemployment in U , and the change in the rate of unemployment
in DU . Click the Univariate Menu option, choose Rolling Linear Regression Menu and then
Rolling Least Squares. In the box editor that appears on the screen specify the equation as

DW C DU U DP (�1)

This allows both the level and change in unemployment to in�uence the rate of growth of
wages. Set to 1 the number of observations used for updating estimation and click .
Select the whole sample, choose the rolling least squares option, and in the window size �eld
type 25. Whereas recursive regression extends the sample by one each time it re-estimates,
rolling regression keeps the sample size the same, here at 25 years. Alogoskou�s and Smith
(1991b) keep the sample size �xed because they think that information about the persistence
of in�ation before World War I is probably not informative about the persistence of in�ation
after World War II. The program will now estimate the equation over all sub-samples of 25
years. When it has stopped calculating, choose to plot the rolling coe¢ cients and standard
errors. Choose DP (�1) to see the plot in Figure 11.5. You will see that the estimated
coe¢ cients of DP (�1) were not signi�cantly di¤erent from zero on pre-World War I samples,
shot upwards after 1914, tended to decline thereafter and started rising towards the end of
the period. You can examine the other coe¢ cients as well. Since we wish to compare the
coe¢ cient on DP (�1) with that from another equation, click to leave the graph, and
choose option 3 in the Rolling Regression Results Menu to save the rolling coe¢ cients.

Once again choose the regressorDP (�1) and in response to the prompt name it PCCOEF
(Phillips Curve Coe¢ cient). Backtrack and edit the regression

DP C DP (�1)

Repeat the earlier process and save the OLS rolling coe¢ cients on DP (�1) for this autore-
gression as ARCOEF . Backtrack, clear the Commands and Data Transformations box, then
type

PLOT PCCOEF ARCOEF

You should see Figure 11.6 on the screen. As the theory suggests, they show quite similar
movements, though the match is less good before World War I. The correlation between the
coe¢ cients is 0:69.

11.13 Exercises in linear regression analysis

11.13.1 Exercise 11.1

Use the data in the �le UKCON.FIT to estimate the equation (11.16) by the IV method.
Using 1, log yt�1, log yt�2, log ct�1, log ct�2, �t�1 and �t�2 as instruments, compare these



CHAPTER 11. LESSONS IN LINEAR REGRESSION ANALYSIS 235

Figure 11.5: Rolling OLS estimates of the coe¢ cient of the lagged in�ation in the in�ation
equation

estimates with the corresponding OLS estimates. What is the interpretation of Sargan�s
mis-speci�cation test statistic given in the IV regression result table.

11.13.2 Exercise 11.2

Carry out the non-nested tests in Lesson 11.9 using the UK quarterly consumption data in
UKCON.FIT.

11.13.3 Exercise 11.3

Check the sensitivity of the Wald test statistics to the way the non-linear restrictions in
Lesson 11.5 are speci�ed by computing the relevant statistics for testing the restrictions
�1 + (�3=�2) = 0 and �1 + (�5=�4) = 0. Notice that when it is known a priori that �2 6= 0
and �4 6= 0 the above restrictions are algebraically equivalent to those in Lesson 11.5 (see
equation (11.17)).

11.13.4 Exercise 11.4

Carry out the test of the common factor restrictions in Lesson 11.5 on the US data using
the �le USCON.FIT.
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Figure 11.6: Rolling OLS coe¢ cients of the lagged in�ation rate in the Phillips and in�ation
equations

11.13.5 Exercise 11.5

Repeat the computations in Lesson 11.11 using the returns on the Dow Jones portfolio
instead of the SP500 portfolio.

11.13.6 Exercise 11.6

Carry out the analysis in Lesson 11.12 using a larger window size (say 30), and discuss the
robustness of your conclusions in the choice of the observation window.



Chapter 12

Lessons in Univariate Time-Series
Analysis

The lessons in this chapter show you how to identify, estimate, and calculate dynamic fore-
casts using univariate ARMA(p; q), and ARIMA(p; d; q) models. Univariate ARMA and
ARIMA processes have been used extensively in the time series literature and are partic-
ularly useful for short-term (one-step ahead) forecasting. Following the seminal work of
Box and Jenkins (1970), a number of dedicated computer packages for the estimation of
ARIMA models have been developed. In Micro�t, the MA option in the Linear Regression
Menu can be readily used to provide estimates of univariate ARIMA models containing up
to 12 unknown parameters in their MA part.

The ARIMA (p; d; q) model for the variable x is given by

yt = f(t) + �1yt�1 + �2yt�2 + � � �+ �pyt�p + �t + �1�t�1 + � � �+ �q�t�q (12.1)

where yt = �dxt = (1 � L)dxt, and f(t) is the deterministic trend in yt (if any). In most
economic applications either d = 0 and f(t) = � + �t, or d = 1 and f(t) = �. The �rst
step in univariate analysis concerns the selection of the orders p; d; and q. In Box-Jenkins�
terminology, this is called the identi�cation of the univariate model. The selection of these
orders are often carried out in two stages: in the �rst stage, d, the order of integration
of the process is determined using the Augmented Dickey-Fuller (ADF ) tests.1 Once the
order of integration of the process is established, the orders of the ARMA process, p, and
q, are then selected either by plotting the correlogram of a time-series and comparing it
with the theoretical correlogram of a speci�c time-series model (Box-Jenkins approach) or
by specifying a relatively high order ARMA model, as the most general one, and then using
Likelihood Ratio tests or one of the popular model selection criteria such as the AIC, or
the SBC to select a more parsimonious model (see Section 21.7). The ADF test statistics
and plots of the correlogram can be obtained automatically by using commands ADF and
COR in the Process window: see Sections 4.4.2 and 4.4.8. Values of AIC and SBC can

1A process is said to be integrated of order d if it must be di¤erenced d times before it is rendered
stationary. An integrated process of order d is often denoted by I(d).

237
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be computed by estimating ARMA models of di¤erent orders using the MA Option in the
Linear Regression Estimation Menu: see Section 6.5. The model with the highest value for
the information criteria is selected. Notice that the use of di¤erent information criteria can
lead to di¤erent models. The use of SBC tends to select a more parsimonious model as
compared to the use of AIC. See Section 21.7 for more details and relevant references to the
literature.

12.1 Lesson 12.1: Using the ADF command to test for unit
roots

In this lesson we shall consider the problem of testing for a unit root in the US real GNP
using the command ADF in the Process window.

The �le GDP95.FIT contains quarterly observations over the period 1960(1) to 1995(1)
on USGNP (theUSGrossNational Product at 1987 prices, source: Citibase), and quarterly
observations over the period 1955(1) to 1995(1) on UKGDP (the UK Gross Domestic Prod-
uct at 1990 prices, source: CSO95 Macroeconomic Variables). See also Lessons 10.8 and
10.9.

Use the Open File option in the File Menu on the main menu bar to load the �le
GDP95.FIT. In the Process window create the log of output, its �rst di¤erence, constant
and time trend by typing in the box editor

Y US =LOG(USGNP ); DY US = Y US � Y US(�1);
INPT = 1; T =CSUM(1)

Before applying the ARMA methodology to the US output series, it is important to check
if it is di¤erence or trend stationary. If it is (trend) stationary, we use the ARMA model for
Y US plus a deterministic trend, while if it is di¤erence-stationary of degree d (or integrated
of order d, I(d)) we should use the autoregressive integrated moving average (ARIMA)
model for Y US.2

Consider the univariate AR(1) process

yt = �+ (1� �)�t+ �yt�1 + �t; t = 1; :::; n (12.2)

where �t is iid(0; �2). If j�j < 1, fytg is trend stationary, while if � = 1, fytg is di¤erence
stationary with a non-zero drift, �. Attempts to distinguish the di¤erence stationary process
from the trend stationary series has generally taken the form of a (one-sided) test of the null
hypothesis of a unit root against the alternative of stationarity; that is,

H0 : � = 1 against H1 : � < 1

It is important to note that when using the t-statistic for testing � = 1; we should use
the critical values of the non-standard Dickey-Fuller unit root distribution rather than the

2See Box and Jenkins (1970).
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standard normal distribution.3 In the more general case where the disturbances, �t; t =
1; 2; ::::n are serially correlated, then we should use the augmented Dickey-Fuller (ADF)
unit roots test statistic,4 which is proposed to accommodate error autocorrelation by adding
lagged di¤erences of yt:5

yt = �+ (1� �)�t+ �yt�1 +
p+1X
i=1

�iyt�i + �t; t = 1; 2; :::; n (12.3)

which can also be rewritten as

�yt = �+ ��t� �yt�1 +
pX
i=1

i�yt�i + �t; t = 1; 2; :::; n (12.4)

where the null is now H0 : � = 1 � � = 0: When using the ADF tests and interpreting the
results, the following points are worth bearing in mind:

- Although ADF has good power characteristics as compared to other unit roots tests
in the literature, it is nevertheless not very powerful in �nite samples for alternatives
H1 : � = �0 < 1, when �0 is near unity.

- There is size-power trade-o¤ depending on the order of augmentation used in dealing
with the problem of residual serial correlation.6 Therefore, it is often crucial that an
appropriate value is chosen for p, the order of augmentation of the test.7

To test for the unit root in log of USGNP , clear the Commands and Data Transforma-
tions box and type

ADF Y US(5)

3Critical values have been generated by Monte Carlo simulation for the three cases of (i) � = 0; � = 0;
(ii) � 6= 0; � = 0; and (iii) � 6= 0; � 6= 0: See Fuller (1996), Dickey and Fuller (1979) and Hamilton (1994)
Chapter 17. For a comprehensive survey of the unit root literature see Stock (1994).

4There are other unit root test statistics such as the semi-parametric approach of Phillips and Perron
(1988), and the tests of the stationarity hypothesis proposed in Kwiatkowski, Phillips, Schmidt, and Shin
(1992). The Phillips-Perron test can be computed in Micro�t as the ratio of the OLS estimate of � in the
simple DF regression �yt = � + ��t � �yt�1 + �t, to its Newey-West standard error obtained using options
4 to 6 in the Standard, White and Newey-West Adjusted Variance Menu (see Section 6.22). The critical
values for the Phillips-Perron test are the same as those for the Dickey-Fuller test, and depend on whether
the DF regression contains an intercept term or a time trend. See the previous footnote. For an application
see Lesson 16.1.

5Said and Dickey (1984) show that if the order p is suitably chosen, the ADF test statistics have the
same asymptotic distribution as the simple DF statistic under IID errors. If �t follows the AR(p) process,
the number of lagged di¤erences in the ADF regression must be at least as large as p. If �t has an MA
component, the order p must be allowed to increase with the sample size though at a slower rate (at the rate
of n1=3).

6 In the case of autocorrelated disturbances, the size distortion of the uncorrected DF test is quite consid-
erable. The ADF (p) test performs better, with a su¢ ciently high value for p. This happens, however, at the
expense of power. ADF tests with p large relative to the sample size have almost no power.

7Since we do not know the true order of p, the two-step procedure might be used whereby the model
selection criteria such as the Akaike information criterion (AIC) or the Schwarz Bayesian criterion (SBC) is
used to select the order of the ADF regression, and the test is then performed.
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where we have chosen p = 5 as the upper bound for the order of augmentation. Click on the
button, and, when prompted, check the �Simulate critical values�

checkbox to obtain simulated critical values for the ADF test. Click to accept the
default number of replications, number of observations to be used in your simulations, and
signi�cance level of the test. Then press . The results in Table 12.1 should appear on
the screen.

Table 12.1: ADF unit root tests for variable Y US

This table consists of three panels: the upper panel provides results on the ADF statistics
for models with no intercept and no trends; the middle panel gives the ADF statistics for
models with an intercept term but no time trends; and the bottom part gives the ADF
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statistics for models with an intercept and a linear deterministic trend. Since USGNP is
trended, only the bottom panel of Table 12.1 is relevant. Before carrying out the unit roots
tests, the order of the ADF regression de�ned by (12.4) needs to be selected. The values
reported in Table 12.1 for the di¤erent model selection criteria suggest that the correct order
is likely to be between 1 and 2, with the SBC selecting the lower order. The ADF statistics
for p = 1 and 2 are equal to �3:0616 and �3:2291, respectively, which are both (in absolute
value) below their (asymptotic) 95 per cent critical value given at the foot of the table
(�3:4435). The ADF statistics for p = 1 and 2 are also below (in absolute value) the 95 per
cent of the simulated critical values, given by the column headed CV . The same is also true
if we consider higher values of p. It is therefore not possible to reject the null of a unit root
(H0 : � = 1) in the log of USGNP at the 5 per cent signi�cance level.

Similar conclusions can be reached using other unit roots tests provided by Micro�t, such
as the GLS-ADF , WS-ADF , or the PP -ADF test statistics (see Sections 4.4.3 to 4.4.5 and
4.4.10). For example, to apply the GLS_ADF procedure to the log of USGNP series you
need to enter the following command:

ADF_GLS USGNP

As another example, suppose you wish to test for a unit root in DY US (the growth of
USGNP ). Given the quarterly nature of the series it is advisable to use a maximum lag of
at least 5. To this end you need to enter

ADF DY US(5)

Since the output growth is not trended, the relevant ADF statistics are given in the second
part of Table 12.2. The model selection criteria suggest selecting either p = 0 or 1. However,
irrespective of the order of the augmentation chosen for the ADF test the absolute values
of the ADF statistics are all well above the 95 per cent critical value of the test given at the
foot of the table (�2:8830) and above the corresponding simulated critical values, and hence
the hypothesis that growth rate of USGNP has a unit root is �rmly rejected.
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Table 12.2: ADF unit root tests for the variable DY US

The model selection criteria in the second part of Table 12.2 also suggest that the process
of US output growth can be approximated by a low-order AR process, with the AIC selecting
an AR(1) process and the SBC selecting an AR(0) process for the US output growth.
Estimating an AR(1) process for US output growth over the period 1960(3)-1995(1) gives

DY USt = 0:00498
(0:000927)

+ 0:31881
(0:0806)

DY USt�1 + ût

thus suggesting that log(USGNPt) is an I(1) process with a non-zero drift, estimated as
0:00498=(1� 0:31881) = 0:00732(0:0011), representing the quarterly average rate of growth
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of the US economy. The �gure in parentheses is the asymptotic standard error of the average
growth rate and can be obtained using option 5 in the Post Regression Menu, once the OLS
estimation of the AR(1) process in DY US is completed.

12.2 Lesson 12.2: Spectral analysis of US output growth

The spectral approach enables us to investigate the properties of time-series in the frequency
domain. Let fxt; t = �1; :::;1g be a univariate covariance stationary process with mean
E(xt) = � and the kth autocovariance function

E(xt � �)(xt�k � �) = k = �k; k = 0; 1; 2; :::

The main goal of the spectral analysis is to determine the importance of cycles of di¤er-
ent frequencies in accounting for the behaviour of xt.8 Assuming that autocovariances are
absolutely summable (

P1
k=0 k is �nite), the population spectrum can be written as9

f(!) =
1

�

(
0 + 2

1X
k=1

k cos(!k)

)
; 0 � ! < �

- If xt is a white noise process (0 = �2 and k = 0 for k 6= 0), then f(!) is �at at �2=�
for all ! 2 [0; �]:

- If xt is a stationary AR(1) process, xt = � + �xt�1 + �t with j�j < 1 and �t being
a white noise process, then f(!) is monotonically decreasing in ! for � > 0, and a
monotonically increasing function of ! for � < 0.

- If xt is a stationary MA(1) process, xt = � + �t + ��t�1 with j�j < 1 and �t being a
white noise process, then f(!) is monotonically decreasing (increasing) in ! for � > 0
(for � < 0).

The sample spectral density function (or the sample periodogram) can be estimated by

f̂(!) =
1

�

(
̂0 + 2

1X
k=1

̂k cos(!k)

)
; 0 � ! < �

8Any covariance stationary process has both a time-domain and a frequency-domain representation, and
any feature of the data that can be described by one representation can equally be described by the other.
For an introductory account of the spectral analysis see Chat�eld (2003). A more advanced treatment can
be found in Priestley (1981).

9Given the population spectrum, f(!), then the j-th autocovariance of the covariance stationary process
xt can be written as Z �

��
f(!) exp(i!j)d! = j ; j = 0; 1; ::: :

For example, in the special case when j = 0, the variance of xt can be obtained byZ �

��
f(!)d! = 0:

In general,
R !1
�!1

f(!)d! = 2
R !1
0
f(!)d! represents the portion of the variance of xt that is attributable to

the periodic random components with frequency less than or equal to !1:



CHAPTER 12. LESSONS IN UNIVARIATE TIME-SERIES ANALYSIS 244

where ̂k is the sample autocovariances obtained by

̂k = n�1
1X

t=k+1

(xt � �x)(xt�k � �x); for k = 0; 1; :::; n� 1

and �x is the sample mean. However, one serious limitation of the use of the sample peri-
odogram is that the estimator f̂(!) is not consistent; that is it is not becoming more accurate
even as the sample size n increases. This is because in estimating it we have made use of
as many parameter estimates (̂k; for k = 0; 1; :::; n� 1) as we had observations (x1; :::; xn).
Alternatively, the population spectrum can be estimated non-parametrically by use of kernel
estimates given by

f̂(!j) =
mX

i=�m
�(!j+i; !j)f̂(!j+i)

where !j = j�=m,m is a bandwidth parameter10 indicating how many frequencies f!j ; !j�1; :::; !j�mg
are used in estimating the population spectrum, and the kernel �(!j+i; !j) indicates how
much weight each frequency is to be given, where

Pm
i=�m �(!j+i; !j) = 1. Speci�ca-

tion of kernel �(!j+i; !j) can equivalently be described in terms of a weighting sequence
f�j ; j = 1; :::; mg, so that

f̂(!j) =
1

�

(
̂0 + 2

mX
k=1

�k̂k cos(!jk)

)
(12.5)

Micro�t computes a scaled and standardized version of f̂(!j) by multiplying it by �=̂0, and
gives

f̂�(!j) = 1 + 2
mX
k=1

�k(̂k=̂0) cos(!jk) (12.6)

and their estimated standard errors using Bartlett, Tukey and Parzen lag windows at the
frequencies !j = j�=m, j = 0; 1; 2; :::;m (see Section 21.3). Each of these frequencies are
associated with the period = 2�=!j = 2m

j ; j = 0; 1; 2; :::;m. For example, at zero frequency
the periodicity of the series is in�nity. The value of the standardized spectrum at zero
frequency refers to the long-run properties of the series. The higher this value, the more
persistent are the e¤ects of deviations of xt from its trend. The spectrum of a unit root
process at zero frequency is unbounded.

In this lesson we carry out the spectrum analysis of the detrended and �rst-di¤erenced
log of USGNP . The unit-root analysis of Y US (the logarithm of USGNP ) in the previous
lesson suggests that we should �rst-di¤erence the output series before carrying out any
spectral analysis of it. Spectral analysis of trended or non-stationary processes can be very

10One important problem is the choice of the bandwidth parameter, m. One practical guide is to plot an
estimate of the spectrum using several di¤erent bandwidths and rely on subjective judgement to choose the
bandwidth that produces the most plausible estimate. Another possibility often recommended in practice is
to set m = 2

p
n. This is the default value chosen by Micro�t. For more formal statistical procedures see, for

example, Andrews (1991), and Andrews and Monahan (1992).
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misleading. To illustrate this we �rst consider the spectral analysis of output series, when it
is de-trended using a simple regression of Y US on a linear trend.

Load the �le GDP95.FIT, create the variables Y US and so on, as described in Lesson
12.1). In the box editor, type

Y US INPT T

which is a regression of Y US on a constant term (INPT ) and a time trend (T ). When
the results table appears click , and in the Post Regression Menu choose option 3

(List/Plot/Save residuals), and then option 6. When prompted, type the name of the residual
and its description as

RESY US Residual obtained from the regression of Y US on a linear trend

Then, click as many times as required to move back to the Commands and Data
Transformations box, go to the Process window, clear it, and type

SPECTRUM RESY US

Since we have not speci�ed any window size after the variable, RESY US, the program
uses the default value of 2

p
n = 2

p
144 = 24 for the window (bandwidth) size (notice that

observations on US output are available only over the period 1960(1)-1995(1), and hence
n = 144). You will be presented with three alternative estimates of the SPECTRUM
followed by their plots. To save the graphs, click the button, and select an appropriate

option (see Section 5.2 on details of how to print/save/retrieve graphs). The plots of the
estimated standardized spectral density function of RESY US using the Bartlett, Tukey and
Parzen lag windows are shown in Figure 12.1.

One prominent feature of this plot is that the contribution to the sample variance of
the lowest-frequency component is much larger than the contributions of other frequencies
(for example at business cycle frequencies). This is due to the non-stationary nature of the
detrended series, RESY US. In general, if the process is non-stationary (for example if it
has a unit root), then its spectral density becomes dominated by the value of the spectrum
at the zero frequency, and drops dramatically immediately thereafter, thus hiding possible
peaks at higher (business cycle) frequencies.

To avoid this problem one could either try other detrending procedures such as the
Hodrick-Prescott method described in Sections 4.3.7 and 21.4 and Lesson 10.8, or apply
the SPECTRUM command to DY US, the �rst-di¤erence of output series (in logarithms).
Here we do the latter.

Move to the Commands and Data Transformations box, clear it, and type

SPECTRUM DY US(24)

The results in Table 12.3 should now appear on the screen, followed by plots of the SPECTRUM
for three di¤erent windows: see Figure 12.2.
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Figure 12.1: Alternative estimates of the spectrum of deviations of US output (in logs) from
a linear trend

Table 12.3: Spectral density functions of DY US for the period 1960(1) to 1995(1)
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Figure 12.2: Alternative estimates of the spectrum of US output growth

In the case of output growths, we �nd that the spectral density function of DY US, as
compared to that of RESY US, is relatively �at, but decreases over the entire frequency. This
may imply that DY US is a stationary process with a positive autocorrelation coe¢ cient.

The value of the scaled spectrum at zero frequency measures the long-run variance of
DY US, and is proposed by Cochrane (1988) as a measure of persistence of shocks to real
output. In the case of the US output growth it is estimated to be 1:4186 (0:6782), 1:4387
(0:7296), and 1:7345 (0:7457), for the Bartlett, Tukey and Parzen windows, respectively. See
the �rst row of Table 12.3, and Lesson 12.4.

If the process is over-di¤erenced, then its spectral density at zero frequency becomes zero.
For example, consider the spectrum of the second-di¤erence of Y US. Clear the Commands
and Data Transformations box and type

DDY US = DY US �DY US(�1); SPECTRUM DDY US(20)

The plots of the estimated standardized spectral density function of DDY US are given in
Figure 12.3, from which we �nd that DDY US is in fact over-di¤erenced, since its spectral
density at zero frequency is very close to zero.

The spectrum analysis in general supports our �nding in Lesson 12.1 that Y US is an
I(1) process.
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Figure 12.3: Alternative estimates of the spectrum of changes in US output growth

12.3 Lesson 12.3: Using an ARMA model for forecasting US
output growth

In the previous two lessons we found that Y US (the logarithm of US GNP) is an integrated
process of order 1 but DY US (the growth of US GNP) is a persistent stationary process. In
this lesson we consider the problem of selecting the orders p and q for an ARIMA(p; 1; q)
model of Y US, or the ARMA(p; q) model of DY US:

�(L)DY USt = �+ �(L)�t (12.7)

where �(L) = 1 �
Pp
i=1 �iL

i and �(L) = 1 +
Pq
i=1 �iL

i. We assume that (12.7) satis�es
the necessary stability and invertibility conditions.11 To select the orders of p and q we
�rst set them equal to a maximum value of 3. Since we lose 4 observations at the start
of the sample when p and q take the maximum value of 3, we must estimate all the 16
ARMA(p; q), p; q = 0; 1; 2; 3 models over the same sample period, namely 1961(1)-1993(4)
(132 observations). We are keeping the 5 observations over the period 1994(1)-1995(1) for
forecasting. We show how the ARMA(1; 1) model is estimated and then report the results

11That is, the roots of 1� �1z � � � � � �pzp = 0 and 1 + �1z + � � �+ �qzq = 0 lie outside the unit circle.
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for the other models. Choose option 1 Linear Regression Menu from the Single Equation
Menu (the Univariate Menu), selecting option 7 MA errors. In the editor, type

DY US INPT DY US(�1)

which implies that we specify the AR order to be 1, and then specify sample period as

1961Q1 1993Q4

Click and, when prompted, type 1, which means that we specify the MA order to be
1. Next, we see that there are two choices of initial estimates. When there is a convergence
failure, use option 3 to look at the plot of the concentrated log-likelihood function (which
shows that the maximum is found when the MA(1) parameter is around �0:20), and decide
the initial estimate, accordingly. For example, using 0:0 as the initial estimate, we obtain
the estimation results for the ARMA(1; 1) speci�cation in Table 12.4. The values of the
Akaike information criterion (AIC) and Schwarz Bayesian criterion (SBC) for this model
are 437:92 and 433:60, respectively.

Table 12.4: An ARMA(1; 1) model for US output growth

Repeat this procedure to estimate the other ARMA(p; q) models for, p; q = 0; 1; 2; 3.
Notice that for ARMA(p) models (i.e., when q is set to zero) you should use the OLS option
1 from the Univariate Menu. Then comparing the values of the AIC andnor the SBC, select
the model speci�cation with the highest value. Use as initial values 0:0, 0:0 (for the MA
lag1 and 2, respectively) for the ARMA(2; 2), and 0:0, 0:1 for the ARMA(3; 2) while use
the initial values provided by the program for all remaining combinations of p and q. When
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using AIC, we have
pnq 0 1 2 3
0 432.59 436.47 438.87 438.02
1 438.35 437.92 438.08 437.10
2 438.76 438.21 437.22 436.25
3 438.13 437.29 436.30 435.35

and therefore, the ARMA(0; 2) speci�cation for DY US is selected. When using SBC, we
have

pnq 0 1 2 3
0 431.15 433.59 434.55 432.25
1 435.46 433.60 432.32 429.89
2 434.43 432.44 430.02 427.60
3 432.37 430.08 427.65 425.26

and ARMA(1; 0) is selected. In what follows we base the forecasts on the model selected by
SBC, namely the ARMA(1; 0) or simply the AR(1) speci�cation.

To compute the forecasts for the growth rate of the US GNP for the period 1994(1)-
1995(1), now set the sample period to

1961Q4 1993Q4

and use the AR(1) speci�cation for DY US to estimate the parameters. In the Post Regres-
sion Menu, choose option 8 (Forecast) and then press the button to compute dynamic

forecasts of the US output growth over the period 1994(1)-1995(1). The results in Table 12.5
should appear on the screen.

Table 12.5: Forecasts of US output growth based on an AR(1) model
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The forecasts are very close to the actual values for the �rst two quarters, and then settle
down to around 0.0074, which is only slightly above the average quarterly rate of growth of
US real GNP. Option 9 also provides a plot of actual and forecast values, which are presented
in Figure 12.4.

Figure 12.4: Dynamic forecasts of US output growth over the period 1994(1)-1995(1)

12.4 Lesson 12.4: Alternative measures of persistence of shocks
to US real GNP

One of the important features of unit root processes lies in the fact that the e¤ect of shocks
on these series (or random deviations from their trend) do not die out. In the case of random
walk models the long-run impact of the shocks is unity. But for more general I(1) processes
this long-run impact could be more or less than unity. The most satisfactory overall measure
of persistence is the value of the spectral density of the �rst-di¤erences of the series evaluated
at zero frequency, and then appropriately scaled. In the case of the ARIMA(p; 1; q) process:

�xt = �+ �1�xt�1 + � � �+ �p�xt�p + �t + �1�t�1 + � � �+ �q�t�q (12.8)

where �t � IID(0; �2), the spectral density of �xt at zero frequency, is given by

f�x(0) =
�2

�

�
1 + �1 + �2 + � � �+ �q
1� �1 � �2 � � � � � �q

�2
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The measure proposed by Campbell and Mankiw (1987) is given by

Pcm =

�
�f�x(0)

�2

� 1
2

=
1 + �1 + �2 + � � �+ �q
1� �1 � �2 � � � � � �q

(12.9)

Cochrane (1988) suggests scaling f�x(0) by the unconditional variance of �xt, namely

Pc =

�
�f�x(0)

V (�xt)

� 1
2

=

�
�2

V (�xt)

� 1
2

Pcm (12.10)

Notice, however, that �2=V (�xt) = 1 � R2, where R2 is the squared multiple correlation
coe¢ cient of the ARIMA model (12.8). Hence

Pc =
�
1�R2

� 1
2 Pcm (12.11)

In practice f�x(0) can be estimated by using either the non-parametric approach of the
spectral analysis (see Lesson 12.2), or by �rst estimating the ARIMA model (12.8) and then
computing Pcm by replacing the unknown parameters �1; �2; :::; �q, �1; �2; :::; �q, in (12.9) by
their ML estimates. Cochrane (1988) favours the former, while Campbell and Mankiw (1987)
employ the latter approach. The two estimates can di¤er a great deal in practice. This is
primarily because the estimates obtained using the ARIMA speci�cation are conditional on
the orders p and q being correctly selected. But the estimates based on the spectral density
estimation are less rigidly tied up to a given parametric model, and hence are often much
less precisely estimated. In the case of both estimates it is important that their standard
errors are also computed.

Here we estimate the two persistent measures, Pcm, and Pc, for the US real GNP both
using the spectral density and ARIMA modelling approaches. We use the data in the
special Micro�t �le GDP95.FIT to estimate the following ARIMA(0; 1; 2) process for yt
(the logarithm of the US real GNP ) over the period 1960(1)-1995(1):12,13

�yt = �+ �1�t�1 + �2�t�2 + �t

Load the �le GDP95.FIT intoMicro�t. In the Commands and Data Transformations window
create the variables

INPT = 1; DY US = LOG(USGNP=USGNP (�1))

Then choose option 1 in the Single Equation Estimation Menu (Univariate Menu), and select
option 7 MA Errors. Enter the start and end dates of 1960Q1 and 1995Q1, then type

DY US INPT

12Time series observations on the US real GNP are analyzed extensively in the recent literature on the
measurement of the persistence of shocks to the US aggregate output. See, for example, Campbell and
Mankiw (1987), Stock and Watson (1988), Evans (1989), and Pesaran, Pierce, and Lee (1993). The present
data set extends the data used in these studies.
13The choice of the ARIMA(0,1,2) for yt is based on the Akaike information criterion. See Lesson 12.3.
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When prompted type 1, then 2 and click the button and then , to obtain the
results in Table 12.6.

Table 12.6: A MA(2) model for US output growth

Both of the moving average coe¢ cients, �̂1 = 0:2728 (3:26) and �̂2 = 0:2093 (2:83) are
statistically signi�cant. The �gures in () are asymptotic t-ratios. The Campbell and Mankiw
(1987) measure of persistence, Pcm, for the ARIMA(0; 1; 2) speci�cation is given by

Pcm = 1 + �1 + �2

An estimate of Pcm together with its (asymptotic) standard error can be readily computed
by �rst choosing option 5 in the Post Regression Menu, and typing

PCM = (1 +B1 +B2)

to obtain the results shown in Table 12.7.
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Table 12.7: Estimates of Campbell and Mankiw persistence measure for US output growth
based on an MA(2) speci�cation

This yields P̂cm = 1:4821(0:1173), where the bracketed �gure is the asymptotic standard
error of P̂cm. This estimate is smaller than the one obtained by Campbell and Mankiw
(1987), and it is still signi�cantly larger than unity, which is the persistence measure for a
pure random walk model. The t-statistic for this latter test is computed as

tPcm=1 =
�
P̂cm � 1

�
=

qbV (P̂cm) = 1:4821� 1:0
0:1173

= 4:11

Consider now the measure of persistence proposed by Cochrane (1988) in (12.10). The non-
parametric estimate of this measure is given by the standardized spectral density function
of DY US at zero frequency. To obtain this estimate move to the Commands and Data
Transformation box in the Process window and type

SPECTRUM DY US

You should see the estimates of P 2c using the Bartlett, Tukey and Parzen windows in the �rst
row of the result table that appears on the screen, namely 1.4186(0.6782), 1.4387(0.7296)
and 1.7345(0.7457), respectively. To make these estimates comparable to the estimates for

the Campbell and Mankiw measure, Pcm, we need to divide their square root by
�
1�R2

� 1
2 ,

where R2 is estimated to be 0:12 in the present application. Therefore, the point estimates
of the persistence measures are rather similar, although not surprisingly the non-parametric
estimates based on the spectrum are much less precisely estimated than the estimate based
on the parametric approach.
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12.5 Lesson 12.5: Non-stationarity and structural breaks in
real GDP

Suppose you are interested in testing for a unit root in a time-series whilst at the same time
allowing for the presence of known structural break(s). As an example consider log real GDP
in the UK for the years from 1942 to 1987, and suppose that there has been a single mean
shift in UK real GDP in 1973, the time of the �rst oil price shock. The �le PHILLIPS.FIT in
the tutorial directory contains annual aggregate UK data for the years 1855-1987 (inclusive)
on the following �ve variables14

E Logarithm of employment
N Logarithm of labour force
Y Logarithm of real GDP
P Logarithm of a price index
W Logarithm of a nominal wage index

Read this �le and in the Commands and Data Transformations box in the Process window
create an intercept, a time trend and a dummy variable for the year 1973 by typing

SAMPLE 1942 1987;C = 1; T = CSUM(1);DU = 0;

SAMPLE 1973 1973; DU = 1;

Now clear the Commands and Data Transformations box and type

SAMPLE 1942 1987; ADF Y

Click on the button, and, when prompted, check the �Simulate
critical values�checkbox to obtain simulated critical values for the ADF test. Click

and then . The results are reported in Table 12.8. The ADF statistics are above the
95 per cent simulated critical values in the three cases, no intercept no trend, intercept but
no trend, intercept and trend. Hence, it is not possible to reject the unit root hypothesis in
the variable Y at the 5 per cent signi�cance level.

14 It should also be remembered that there are likely to be substantial measurement errors in such historical
data.
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Table 12.8: ADF unit roots tests on the variable Y

Now repeat the same exercise allowing for a one-o¤ break in the level of series Y . Specif-
ically, clear the Commands and Data Transformations box and type

SAMPLE 1942 1987; ADF Y & C T DU

The use of & in conjunction with the command ADF allows running an ADF test that
allows for the e¤ects of deterministics or known exogenous variables that are listed after the
& sign. See Section 4.4.5.

Notice that when ADF is used with &; Micro�t only reports the ADF test for the
case of no intercept and no trend. Since we believe that the series Y is trended, we have
added C and T to the list of variables after &. The output is reported in Table 12.9. The
ADF statistics are below the 95 per cent simulated critical values, for p = 0; 1. Therefore,
once controlled for a single (one o¤) break due to the quadrupling of oil prices in 1973, the
presence of a unit root the Y process is marginally rejected at the 5 per cent signi�cance
level. This outcome, however, is not robust and depends on the initial values (the War years)
and the order of the ADF test. To see this issue the command

SAMPLE 1942 1987; ADF Y (4) & C T DU
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Table 12.9: ADF unit roots tests on the variable Y after controlling for DU

12.6 Lesson 12.6: Unit roots in US nominal wages and the
stock market crash

In this lesson we investigate the non-stationarity of the logarithm of nominal wages in the US,
allowing for a single structural break in 1929, the year of the stock market crash. Following
Perron (1989), we estimate three equations to test for the unit root hypothesis. Speci�cally,
we consider

yt = a0 + a1t+ a2DCt + �yt�1 +

pX
i=1

i�yt�i + "t; (12.12)

yt = a0 + a1t+ a2DTt + �yt�1 +

pX
i=1

i�yt�i + "t; (12.13)

yt = a0 + a1t+ a2DCt + a3DTt + �yt�1 +

pX
i=1

i�yt�i + "t; (12.14)

where

DCt = 0 for t � 1929
DCt = 1 for t > 1929

DTt = t �DCt

In this lesson we set p = 4. The above regressions allow for the possible existence of three
kinds of structural breaks: model (12.12) allows for a break in the level (intercept) of the
series; equation (12.13) allows for a break in the rate of growth (slope); and equation (12.14)
allows for breaks in both, namely possible breaks in both the level and in the rate of growth
of the series.

Load the Excel �le NPLUS.XLS from the tutorial directory, and go to the Process win-
dow. To create the logarithm of NW , an intercept, a trend and the variables DC and DT ,
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in the Commands and Data Transformations box type

SAMPLE 1930 1970 ; C = 1; T = CSUM(1); DC = 0;

SAMPLE 1930 1970; DC = 1;

SAMPLE 1909 1970; DT = DC � T ; Y = LOG(NW );

In the following, we apply the ADF -WS unit root test described in Section 4.4.5 to Y . We
�rst consider equation (12.12), and test for a unit roots after allowing for a break in the
intercept only. Clear the Commands and Data Transformations box and type

ADF_WS Y (4) & C DC T

Click on the button, and, when prompted, check the �Simulate
critical values�checkbox to obtain simulated critical values for the ADF test. Click

and then . The results in Table 12.10 should appear on the screen. The ADF statistics
are above the 95 per cent simulated critical values, given by the column headed CV . It is,
therefore, not possible to reject the null of a unit root (H0 : � = 1) in the variable Y at the
5 per cent signi�cance level, despite allowing for a break in the intercept.

Table 12.10: WS-ADF unit roots tests on the variable Y after controlling for a break in the
intercept

Now clear the Commands and Data Transformations box and type

ADF_WS Y (4) & C T DT

The above instruction allows testing forH0 : � = 1 in model (12.13). The results are reported
in Table 12.11. As before, it is not possible to reject the null of a unit root in the log of NW
at the 5 per cent signi�cance level, if we only allow for a break in the rate of growth of the
series.
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Table 12.11: WS-ADF unit roots tests on the variable Y after controlling for a break in the
trend

We now allow for a break both in the level and in the rate of growth, by issuing the
command

ADF_WS Y (4) & C DC T DT

The test results are displayed in Table 12.12, and show that even if we allow for a simultaneous
breaks in the intercept and the trend of Y in 1929, the series Y is still non-stationary for
p = 1; 2; 3; 4 since the values of the ADF -WS statistic are below the simulated critical values.
As an exercise, try replicating this lesson using the ADF_MAX and ADF commands.
Similar results should be obtained.

Table 12.12: WS-ADF unit root tests on the variable Y after controlling for a break in the
intercept and trend
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12.7 Exercises in univariate time-series analysis

12.7.1 Exercise 12.1

Detrend the logarithm of US real GNP using the Hodrick-Prescott �lter, and then investigate
the cyclical properties of the detrended series by using the SPECTRUM command. Show
that the most likely periodic cycle in this series is 24 quarters. How robust is this conclusion
to the choice of �, the smoothing coe¢ cient in the Hodrick-Prescott �lter? Carry out this
analysis on the UK GDP and compare the results.

12.7.2 Exercise 12.2

Estimate the spectral density function of the UK output growth evaluated at zero frequency,
using both parametric and non-parametric approaches. The relevant data are given in the
�le GDP95.FIT.

12.7.3 Exercise 12.3

Estimate a suitable ARIMA(p; d; q)model for UK consumer prices over the period 1965-1990
and use it to forecast the in�ation rate over the period 1991-1993. Compare the forecasting
performance of the model with a �naive�forecast based on a random walk model, possibly
with a drift.



Chapter 13

Lessons in Non-Linear Estimation

In this chapter we show how the non-linear option in the Single Equation Estimation Menu
can be used to estimate simple non-linear models such as the Cobb-Douglas production
function, the Phillips curve, Almon distributed lag functions, and parameters of the Euler
equation that arise in inter-temporal optimization models. For the relevant estimation menus
see Section 6.16, and for the underlying econometric and computational methods see Section
21.21.

13.1 Lesson 13.1: Non-linear estimation of Cobb-Douglas pro-
duction function

The non-linear estimation option in Micro�t provides a powerful tool for the estimation of
non-linear equations and/or the estimation of linear equations subject to linear or non-linear
parametric restrictions. Suppose you are interested in estimating the following non-linear
form of the Cobb-Douglas production function

Yt = AK�
t L

1��
t + ut (13.1)

Read into Micro�t the �le CD.FIT which contains the annual observations on US Output
(Y ), Capital Stock (K) and Labour Input (L), over the period 1899-1922 originally analysed
by Cobb and Douglas (1928). Choose option 4 in the Single Equation Estimation Menu (see
Section 6.4), and in the Commands and Data Transformation box type (see Section 6.16.1)

Y = A0 � (K ^A1) � (L^(1�A1))

You will now be prompted to specify the initial estimates for the parameters A0 and A1 (see
Section 6.16.2). The initial choice of A0 and A1 is often critical for the convergence of the
iterative process. For example, the iterative process is unlikely to converge if the iterations
are started with very small values of A0 and A1. For example, starting the iterations with

261
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Table 13.1: Non-linear estimates of the Cobb-Douglas production function

A0 = A1 = 0 will result in the message

An invalid operation has been carried out or a very large number has been
calculated.

Either initial values of parameters are not appropriate or variables need
to be scaled! Try again.

There are no general rules concerning the choice of the initial estimates for the unknown
parameters, but in most applications a preliminary linear regression based on a Taylor series
expansion of the non-linear equation can be very helpful in providing a reasonable set of
initial estimates for the unknown parameters. In the case of the present example, one can
obtain initial estimates for these parameters by running the constrained linear regression
of log Yt � logLt on an intercept term and (logKt � logLt). This yields the initial esti-
mates of 0:0145 and 0:2541 for the parameters logA0 and A1, respectively. Therefore, using
1:0147 (= exp(0:0145)) and 0:25 as initial estimates for A0 and A1 we obtain the results
shown in Table 13.1.

It is generally advisable to carry out the iterations from di¤erent initial estimates to
guard against the possibility of local optima. For the present application, we retried the
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Table 13.2: Non-linear estimates of the Cobb-Douglas production function

computations using the initial values (1; 0:8), (3; 0:75), (5; 0:01) and (10; 0:95), and arrived
at exactly the same estimates as above.

Suppose now that you are interested in estimating (13.1) by the non-linear 2-stage least
squares (or NLS � IV ) method using f1, logKt�1; logKt�2, logLt�1, and logLt�2g as
instruments. First specify the non-linear equation using option 4 in the Single Equation
Estimation Menu (Univariate Menu), and selecting the Non-linear 2-stage Least Squares
option. Use the NLS estimates of A0 and A1, namely 1:02 and 0:25 as initial estimates and,
when prompted, type

INPT LK(�1) LK(�2) LL(�1) LL(�2)

You should see the results in Table 13.2 on the screen. In this example the NLS estimates
in Table 13.1 and the NLS-IV estimates in Table 13.2 are very similar.

13.2 Lesson 13.2: Estimation of Euler equations by the NLS-
IV method

The non-linear instrumental variable option in Micro�t can also be used to estimate the
parameters of Euler equations obtained as �rst-order conditions of a representative agent�s
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utility maximization problem under uncertainty. Typically, a Euler equation takes the form
of

E fH(xt;) j
t�1 g = 0; (13.2)

where E(� j
t�1 ) denotes conditional expectation,  is a k � 1 vector of unknown parame-
ters to be estimated, xt is a vector of observable variables, and 
t�1 is the information
known to the agent (but not necessarily to the econometrician) at time t � 1 (see, for ex-
ample, Hansen and Singleton (1983)). As an example, consider the optimization problem of
a representative consumer with a constant relative risk averse utility function who faces a
consumption/investment decision in an uncertain environment. Assuming that only invest-
ment in stocks is being considered, the Euler equation for this optimization problem will be
given by

ut = �(x1t)
�x2t � 1 (13.3)

where E(ut j
t�1 ) = 0, � is the discount factor, � is the constant relative risk aversion
parameter, x1t = (ct�1=ct), and x2t is the one-period real return on stocks (see, for example,
Grossman and Shiller (1981), Hansen and Singleton (1983), and Pesaran (1991)). On the
assumption that the parameters of (13.2) are identi�ed, the NLS-IV option in Micro�t can
be used to obtain consistent estimates of � and � by de�ning ut to be a vector with all
its elements set equal to zero, using E (E (ut j
t�1 )) = 0 and then running the non-linear
regression of ut on x1t and x2t as in (13.3). To implement this procedure proceed in the
following manner:

1. First read the �le HS.FIT into the workspace. This �le covers monthly observations
over the period 1959(3)-1978(12) on the following variables

X1 the ratio of consumption in time period t� 1
to consumption in time period t

X2 the one-period real return on stocks

This is the corrected version of the data set used by Hansen and Singleton (1983).

2. In the Commands and Data Transformations box generate the variables

INPT = 1; U = 0

3. From the Single Equation Estimation Menu (Univariate Menu) choose option 4, and
when prompted type

U = b � (X1 ^s) �X2� 1

You will now be asked to give initial estimates for the unknown parameters b and s.
These correspond to the discount factor, �, and the risk aversion coe¢ cient, �. Try
the initial values of 0.8 and 1 for these two parameters, respectively, and click .
You need to list at least 2 instruments. You can try di¤erent lagged values of X1 and
X2, and the unit vector (namely INPT in the workspace) as your instruments. If you
choose the variables

INPT X1(�1) X2(�1)
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Table 13.3: Euler equation estimates of the Hansen-Singleton consumption-based asset pric-
ing model

as instruments, the results given in Table 13.3 should appear on the screen. The
results seem to be robust to the choice of the initial parameter estimates, and yield the
estimate 0:865 (2:046) for the risk aversion coe¢ cient, which is very poorly estimated.
In contrast the discount factor, �, is estimated much more precisely.

Notes

1. The diagnostic and other summary statistics that follow the NLS-IV results for the
estimation of the Euler equation should be treated with caution. Given the way the
non-linear regression (13.3) is set up, the functional form and the heteroscedasticity
test statistics are not appropriate and should be ignored.

2. In the context of non-linear rational expectations models the disturbances ut need not
be homoscedastic and are likely to be serially correlated if the observation horizon
exceeds the decision horizon of the economic agent (see, for example, Chapter 7 in
Pesaran (1987b)). In these circumstances the appropriate standard errors for the pa-
rameter estimates are given by White�s or Newey and West�s adjusted estimates. To
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Table 13.4: Euler equation estimates of the Hansen-Singleton consumption-based asset pric-
ing model

compute these standard errors �rst choose option 4 in the Post Regression Menu (see
Section 6.20), and then choose option 4 (Newey-West adjusted with Bartlett weights)
in the Standard, White and Newey-West Adjusted Variance Menu that follows and,
when asked to specify the truncation point (or horizon) for the Bartlett window type
12 and press . The Newey-West adjusted variance matrix of (�̂ and �̂) should

appear on the screen. Click followed by to obtain the estimation results
in Table 13.4 giving the GMM estimates with Newey-West adjusted standard error
using the Bartlett weights.

1. The results in Table 13.4 are only marginally di¤erent from the estimates based on the
unadjusted standard errors given in Table 13.3.

2. The NLS-IV procedure applied to Euler equations also provides a simple method of
implementing the Generalized Method of Moments (GMM) due to Hansen (1982).
The possible e¤ects of serial correlation and heteroscedasticity in uts on the standard
errors can be readily dealt with using option 4 in the Post Regression Menu (see note
2 above).

3. Sargan�s general mis-speci�cation test statistic described in Section 21.10.3 can also be
readily computed for the present application, and is given by 0:0027813=0:0415452 =
1:61, which should be compared with the critical value of a chi-squared variate with one
degree of freedom (the di¤erence between the number of instruments and the number
of unknown parameters).
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13.3 Lesson 13.3: Estimation of Almon distributed lag mod-
els

Suppose you are interested in estimating the following polynomial distributed lag model:

Yt = � +
mX
i=0

wiXt�i + ut (13.4)

where the weights wi are determined by polynomials of order r

wi = b0 + b1i+ b2i
2 + � � �+ brir (13.5)

for i = 0; 1; :::;m. The above model is also known as the Almon distributed lag model,
ALMON(m; r), and in the case where r < m it imposes m � r restrictions on the lag
coe¢ cient wi (see for example Greene (2002), Chapter 19), and the original paper by Almon
(1965)). Here we show how to estimate such a model using Micro�t.

There are two di¤erent ways of estimating the polynomial distributed lag model (13.5).

Method A, using the BATCH command One possibility would be to construct
the following weighted averages:

Ztj =

mX
i=0

ijXt�i; j = 0; 1; :::; r (13.6)

and regress Yt on an intercept term and the variables Zt0, Zt1, ..., Ztr. This would then
yield the estimates of a, b0, b1,...,br. The construction of the Zs can be carried out in the
Commands and Data Transformations in the Process windows, preferably using theBATCH
command on a previously prepared batch �le.

Method B, using the non-linear option Alternatively, one can estimate the Almon
distributed lag model directly using the non-linear least squares option. You simply need
to type the formula for the distributed lag model (13.4) in the screen editor box for the
non-linear estimation option, substituting (13.5) for the weights wi.

As an example, consider the estimation of a polynomial distributed lag model withm = 8
and r = 3, ALMON(8,3), between appropriations (X), and capital expenditures (Y ) for the
US manufacturing sector. The relevant data are in the specialMicro�t �le ALMON.FIT, and
contain observations on Y andX over the period 1953(1)-1967(4): This is an extended version
of the data analysed originally by Almon (1965). The special Micro�t �le ALMON.FIT, and
two other related �les, namely ALMON83.BAT and ALMON83.EQU, should all be in the
tutorial directory.
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Table 13.5: Estimation of the Almon distributed lag model using constructed variables
(method A)

Method A First load the �le ALMON.FIT into Micro�t. To implement method A,
in the Commands and Data Transformations in the Process window run the batch �le AL-
MON83.BAT by typing

BATCH ALMON83

This creates the variables Z0, Z1, Z2, and Z3 de�ned by (13.6). Now run a linear regression
of Y on an intercept term and the variable Z0, Z1, Z2, and Z3. To do this you need to
select option 1 from the Single Equation Estimation Menu (Univariate Menu) choosing the
OLS option. Type

Y INPT Z0 Z1 Z2 Z3

The results in Table 13.5 should now appear on the screen.
The estimates of b0, b1, b2 and b3 are given by the coe¢ cients of Z0, Z1, Z2 and Z3

respectively. Notice, however, that the very low value obtained for the DW static suggests
the possibility of a serious dynamic mis-speci�cation.

Method B The same results can be obtained using the non-linear option. Choose
option 4 in the Single Equation Estimation Menu (Univariate Menu), selecting the Nonlinear
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Table 13.6: Estimation of the Almon distributed lag model using constructed variables
(method B)

Least Square option. In the box editor, retrieve the equation �le ALMON83.EQU using the
button, and then select the �le. This gives the equation for the estimation of the

Almon distributed lag model between X and Y with m = 8 and r = 3. Click to
accept the equation. You will now be prompted to specify the initial parameter estimates.
Since the equation is inherently linear in the unknown parameters, click to accept the
default values of zeros for the initial estimates. The results of the non-linear estimation are
reproduced in Table 13.6.

13.4 Lesson 13.4: Estimation of a non-linear Phillips curve

Phillips (1958) estimated his famous curve, a non-linear relationship between the rate of
growth of wages and unemployment, graphically from pre-World War I UK data. In this
lesson using econometric methods, we estimate the same curve on the same data.1 The
relevant data are in the �le PHILLIPS.FIT (for more details see Lesson 12.5).

1The background to the estimation of the Phillips curve is discussed in Alogoskou�s and Smith (1991a).
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Read this �le, and in the Commands and Data Transformations box in the Process
window create an intercept, C, the rate of growth of money wages, DW , and the (log)
unemployment rate, U , and then graphically examine the pre-WWI Phillips Curve by typing

C = 1;DW =W �W (�1);U = N � E;

SAMPLE 1861 1913; SCATTER DW U

The scatter diagram associated with the original Phillips curve is shown in Figure 13.1.

Figure 13.1: Scatter of changes in money wages against the unemployment rate 1861-1913

Although the �t is not very close, there is clearly a negative relationship between DW
and U , with some evidence of non-linearity: at high rates of unemployment the e¤ect on
wage growth is much smaller than at low rates of unemployment. Using averages of data for
1861-1913 Phillips obtained estimates of a curve of the form

DWt = a1 + a2U
a3
t + �t (13.7)

where �t represents an error term. His estimate of a3 was �1:4, close to a linear relationship
between wage growth and the reciprocal of the unemployment rate.

To evaluate the importance of non-linearity in the Phillips curve we �rst estimate two lin-
ear relationships: one between the wage growth and the level of the unemployment variable,
and the other between the wage growth and the reciprocal of the unemployment variable.
We can use these estimates to obtain initial values for the non-linear estimation of (13.7)
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Table 13.7: OLS estimates of a linear Phillips curve

that we shall be carrying out subsequently. Close the scatter plot and click to clear
the content of the Commands and Data Transformations box, and type

SAMPLE 1855 1987; RU = 1=U

to create the inverse of the unemployment rate in RU . Choose option 1 from the Single Equa-
tion Estimation Menu (Univariate Menu), making sure that the OLS option is selected.
Specify the equation as DW C U , set the sample to 1861- 1913, and click . You
should obtain the results in Table 13.7. The unemployment rate is statistically highly signif-
icant with a negative coe¢ cient, but the failure of the functional form and heteroscedasticity
tests suggests that there may be important non-linearities in the relationship. For a compar-
ison of this linear speci�cation with the non-linear ones to be estimated below also note that
�R2; AIC, and SBC for this regression are given by 0:321, 121:35, and 119:38, respectively.
Click to move to the Post Regression Menu, and then backtrack and edit the

regression equation to
DW C RU
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Table 13.8: OLS estimates of a non-linear Phillips curve

Estimating this equation by the OLS method over the same sample period (1861-1913) yields
the results in Table 13.8.

Note that the functional form and heteroscedasticity tests are now acceptable and the
equation is preferred on the basis of all three model selection criteria. The values of �R2; AIC,
and SBC for this speci�cation are 0.449, 126.88, and 124.91, respectively.

Now backtrack to the Single Equation Estimation Menu and choose the Non-Linear
Regression option 4, selecting the Non-Linear Least Squares option. Type

DW = A1 +A2 � U^A3

and set the sample from 1861 to 1913. Click . For the initial values of A1; A2; and ,A3

choose 0.1, 0.1, and -1, respectively. Click . You should obtain the results in Table
13.9.

The estimate of a3 is very close to and not signi�cantly di¤erent from �1, though a2 is
not signi�cantly di¤erent from zero. Such mixed results do arise in non-linear estimation,
and special care needs to be taken in interpreting them. Firstly, if a2 = 0, then a3 is not
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Table 13.9: Phillips curve estimated by non-linear least squares
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identi�ed. We would also expect a high covariance between the two estimates. For instance,
given the negative relationship between DW and U , if a3 is positive a2 will be negative and
vice versa. Comparing the results to the regression using RU above, where a3 is set to �1,
we see that the reciprocal formulation is preferred by all three model selection criteria, and
has a much sharper estimate of a2.

13.5 Lesson 13.5 Estimating a non-linear Phillips curve with
serially correlated errors

The non-linear option is very �exible and can be used to estimate linear regression models
subject to linear and/or non-linear parametric restrictions or to estimate non-linear models
with serially correlated errors. Suppose that we wish to estimate the Phillips equation de�ned
by (13.7) subject to a �rst-order autoregressive error process

DWt = a1 + a2U
a3
t + �t

where
�t = ��t�1 + �t; �t � iid(0; �2)

We �rst note that the above relations can also be written as

DWt = a1 + a2U
a3
t + �(DWt�1 � a1 � a2Ua3t�1) + �t

which is another, albeit more complicated, non-linear equation. To estimate this model using
the Phillips�original data set �rst read the �le PHILLIPS.FIT and follow the steps in Lesson
13.4, to create the rate of growth of money wages in DW and the logarithm of the rate of
unemployment in U . Choose option 4 in the Single Equation Estimation Menu (Univariate
Menu), selecting Non-linear Least Squares, and type

DW = A1 +A2 � U^A3 +A4 � (DW (�1)�A1�A2 � U(�1)^A3)

Select 1861-1913 as the sample period and click . For the initial values of A1; A2; A3;

and A4 choose 0:1,0:1,�1:0, and 0:0, respectively, and then click . You should see the
results in Table 13.10 on the screen.

The estimate of �, denoted by A4 in Table 13.10, is not signi�cantly di¤erent from zero,
and is in line with the diagnostic test results obtained in Lesson 13.4.

13.6 Exercises in non-linear estimation

13.6.1 Exercise 13.1

Use the data in the special Micro�t �le CD.FIT to estimate the Cobb-Douglas production
function:

Yt = AK�
t L

�
t + ut;

Use option 7 in the Hypothesis Testing Menu (see Section 6.23) to test the constant returns
to scale restriction �+ � = 1. Compare your results with those in Table 13.1.
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Table 13.10: Estimates of Phillips curve with AR(1) serially correlated residuals
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13.6.2 Exercise 13.2

Estimate the Euler equation (13.3) in Lesson 13.2 by the non-linear least squares method
and compare your results with those in Table 13.3.

13.6.3 Exercise 13.3

Re-estimate the Phillips curve in Lesson 13.4 over the entire sample period and the sub-
periods 1954-1969, 1970-1987, allowing for the possible e¤ects of current and past changes in
in�ation and unemployment on changes in money wages. Compare your results with those
obtained by Phillips (1958).

13.6.4 Exercise 13.4

Use the quarterly observations on US real GNP (USGNP ) in the �le GDP95.FIT to estimate
the following non-linear autoregressive model, known as the threshold autoregressive (TAR)
model

yt = a01 + a01 � I(yt�2 � b) +
a11 � yt�1 + a11 � yt�1 � I(yt�2 � b) (13.8)

where yt = log(USGNP=USGNP (�1)), and I(yt�2 � b) represents the indicator (or sign)
function such that it is equal to unity when yt�2 > b, and zero otherwise. You may �nd it
easier to estimate the model for di¤erent values of the threshold parameter, b. Note that the
sample mean of yt is 0:0072, which corresponds to an annual average growth rate of 2:9 per
cent.

For a discussion of this class of models see Tong (1990). For an application to US output
see Potter (1995).



Chapter 14

Lessons in Probit and Logit
Estimation

The lessons in this section demonstrate the Logit/Probit options described in Section 6.19.

14.1 Lesson 14.1: Modelling the choice of fertilizer use by
Philippine farmers

The �le PHIL.FIT contains observations on fertilizer use by 491 small farmers in the Philip-
pines, together with 5 explanatory variables. The dependent variable to be explained is
FERUSE, a binary variable equal to 1 if fertilizer is used and zero otherwise. The explana-
tory variables are

CREDIT Amount of credit (per hectares) held by the farmer
DMARKET Distance of the farm from the nearest market
HOURMEET Number of hours the farmer spent with an agricultural

�expert�
IRSTAT Binary variable equal to 1 if irrigation is used,

0 otherwise
OWNER Binary variable equal to 1 if the farmer owns the

land, 0 otherwise
ONE Vector of 1s

The appropriate probability model for explaining the binary choice variable FERUSE is
de�ned by

Pr(FERUSEi = 1) = F (�0xi); i = 1; 2; :::; 491

where xi is a 6 � 1 vector of the regressors for the ith farmer. The program allows you to
compute ML estimates of � both when F (�) is the cumulative distribution function of the
standard normal (the Probit model) and when it has the logistic form (the Logit model).
See Sections 6.19 and 21.20 for further details.

277
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Read the Micro�t �le PHIL:FIT and choose Logit from option 7 (Logit and Probit
models) in the Single Equation estimation Menu (Univariate Menu: see Section 6.4). List
the dependent variable FERUSE followed by the explanatory variables in the editor:

FERUSE ONE CREDIT DMARKET

HOURMEET IRSTAT OWNER

For the estimation sample enter 1 and 450 into the start and end �elds, thus keeping the
remaining 41 observations for forecasting. Click . The results in Table 14.1 should
appear on the screen. Similar results are also obtained using the Probit option. See Table
14.2.

Table 14.1: Probability of fertilizer use by Philippine farmers by Logit maximum likelihood
estimation
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Table 14.2: Probability of fertilizer use by Philippine farmers by Probit maximum likelihood
estimation

Although the maximized value of the log-likelihood function is slightly larger for the Logit
model, the two models �t the data equally well. The goodness of �t measure, computed as the
proportion of observations with correctly predicted values of FERUSE, and the associated
Pesaran-Timmermann test statistic, are the same for both models. In what follows we focus
on the Logit estimates.

The estimated coe¢ cients have the expected signs, with the variables CREDIT ,HOURMEET ,
IRSTAT and OWNER having a positive e¤ect, and the DMARKET (the distance of the
farm from the nearest market) variable having a negative e¤ect on the probability of fertilizer
use.1

To estimate the marginal e¤ect of a unit change in, say, the CREDIT variable, computed
at sample means on the probability of the fertilizer use, you must multiply the factor 0:24416
given in the second part of Table 14.1 by the coe¢ cient of CREDIT , using 0:24416 �
0:00272 = 0:00066 (see Section 6.19.2). Similarly, the marginal e¤ect of the DMARKET
variable on probability of fertilizer use (evaluated at sample means) is given by 0:24416 �
(�0:026518) = �0:0065.

The standard errors reported in Tables 14.1 and 14.2 allow you to carry out tests on the
individual coe¢ cients in �. To implement joint linear/non-linear tests on these coe¢ cients
you need to choose option 5 (Wald test of linear/non-linear restrictions) in the Post Estima-
tion Menu (Logit Model). Suppose you wish to test the joint hypothesis that coe¢ cients of
the CREDIT and DMARKET variables are zero. Type

A2 = 0; A3 = 0

1Notice that the magnitudes of the coe¢ cients reported for the Logit and the Probit models in Tables
14.1 and 14.2 respectively, are not comparable. To make them comparable the coe¢ cients estimated under
the Probit option must be multiplied by 1:814:
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The result of the test is given in Table 14.3, and the value of the Wald statistic for this test
is equal to 5:1871, which is below the critical value of the �2 distribution with two degrees
of freedom at the 95 per cent level.

A plot of actual values and �tted probabilities for the Logit speci�cation is shown in
Figure 14.1.

Table 14.3: Testing joint restrictions on the parameters of the probability model of fertilizer
use by Philippine farmers

Figure 14.1: Actual values of FERUSE and the �tted probabilities for the Logit speci�cation
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14.1.1 Forecasting with Probit/Logit models

Forecasts of the probability of fertilizer use for the remaining 41 farmers in the sample can
be computed using option 7 in the Logit Post Estimation Menu (see Section 6.19.4). When
you choose this option you will be asked to choose the forecast sample. Click to select
all the remaining farmers in the sample. You will now be presented with the results in
Table 14.4. The second part of this table gives a number of summary statistics, for the
estimation and the prediction samples. As might be expected, the �tted values match the
actual observations much better over the estimation sample as compared to the prediction
sample. The Pesaran-Timmermann statistic is equal to �1:062 over the forecast sample,
which is no longer statistically signi�cant.

Table 14.4: Forecasting the probability of fertilizer use by Philippine farmers
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14.2 Lesson 14.2: Fertilizer use model estimated over a sub-
sample of farmers

Micro�t readily allows you to estimate regression or Probit/Logit models over a sub-sample
of observations selected according to a particular set of criteria. For example, suppose you
wish to estimate the probability of fertilizer use only over the sample of farmers that use
irrigation and own their own farms. Move to the Commands and Data Transformations in
the Process window and generate the variable

X = 1� SIGN(IRSTAT ) � SIGN(OWNER)

It is clear that

X = 0 if IRSTAT = 1 and OWNER = 1

X = 1 if either IRSTAT or OWNER is equal to zero

Now reorder the observations so that all farmers that own their farm and use irrigation are
put at the top of the workspace. This can be done by issuing the REORDER command
(see Section 4.4.21)

REORDER X; N = SUM(1�X)

The number of farmers that own their farm and use irrigation is given by N (in the present
example N = 96). The �rst 96 observations of the reordered data set represent the observa-
tions on farmers that own their land and use irrigation. To see that this is in fact the case
use the LIST command to list the observations.2

To estimate the Logit model for this sub-sample of farmers, move to the Single Equation
Estimation Menu, and type

FERUSE ONE CREDIT DMARKET HOURMEET

Enter 1 and 96 into the start and end �elds, select the Logit model from option 7 in the Single
Equation Estimation Menu, and click . The results in Table 14.5 should now appear
on the screen. For this sub-sample only the credit variable is signi�cant. But the Pesaran-
Timmermann statistic is equal to 1.70 and does not reject the hypothesis that the �tted and
actual values for this sub-sample are not related at the 5 per cent level of signi�cance.

2Notice that you can use the RESTORE command to restore the original ordering of your observations.
See Section 4.4.22.
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Table 14.5: Probability of fertilizer use by a sub-sample of Philippine farmers owning their
farms and using irrigation

14.3 Exercises in Logit/Probit estimation

14.3.1 Exercise 14.1:

Use the observations in the �le PHIL.FIT to estimate a Probit model of the probability of
fertilizer use for the sub-sample of farmers who reside within the two-miles radius of the
market (see Lessons 14.1 and 14.2).

14.3.2 Exercise 14.2:

Read the special Micro�t �le PTMONTH.FIT and run the batch �le on it to generate the
variables INPT , ERSP , Y SP , DI11, DIP12, and PI12. See Lesson 10.11 for more details.
Use the SIGN(�) function to construct a dummy variable that takes the value of unity if
ERSP (the excess returns on SP500) is unity and zero otherwise. Then estimate Logit
and Probit regressions of this (1; 0) variable on INPT , Y SP (�1), PI12(�2), DI11(�1),
and DIP12(�2) over the period 1954(1)-1992(12). Compare these results with the OLS
estimates in Table 11.16. Comment on the relative merits of the two estimation approaches.

Re-estimate the Probit/Logit regressions over the period 1954(1)-1992(11), and forecast
the probability of a negative excess return in 1992(12).



Chapter 15

Lessons in VAR Modelling

Lessons in this chapter demonstrate some of the main features of the unrestricted V AR
options in Micro�t. The relevant menus and options for these lessons are described in
Section 7.4, and the related econometric methods are brie�y reviewed in 22.4.

The lessons are based on a trivariate V AR model in output growths of USA, Japan and
Germany. These series have been already analysed in some detail in Canova (1995) Section
8, where he provides some empirical justi�cation for modelling output growths rather than
output levels. Canova�s study, however, covers the period 1955(1)-1986(4), while the data
that we will be using cover the period 1963(1)-1993(4).

The �le G7GDP.FIT contains quarterly observations on GDP(GNP) at constant 1990
prices for the G7 countries, namely Canada, France, Germany, Italy, Japan, USA and the
UK. This �le also contains data on patents granted by the US Patent O¢ ce to all the G7
countries.1

15.1 Lesson 15.1: Selecting the order of the VAR

In this lesson we consider the problem of selecting the order of the trivariate V AR model in
the output growths of USA, Japan and Germany.

The special Micro�t �le G7GDP.FIT contains quarterly observations on 83 di¤erent
variables over the period 1963(1)-1993(4). Read this �le into Micro�t. Check that the
following variables are in the workspace (click )

DLY USA US output growth
DLY JAP Japan�s output growth
DLY GER Germany�s output growth
CONST Vector of ones

1The source of the output data is the International Financial Statistics, IMF. The output series for Japan
and Germany refer to GNP at constant 1990 prices. The quarterly patent data has been compiled by Silvia
Fabiani from primary sources (the �le PATSIC supplied by the US Patent O¢ ce). We are grateful to her for
providing us with this data set. For more details see Fabiani (1995), and the �le G7READ.ME in the tutorial
directory.

284
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Open the System Estimation Menu (the Multivariate Menu on the main menu bar) and
choose option 1 (See Section 7.3). In the Commands and Data Transformation box type

DLY USA DLY JAP DLY GER & CONST

This speci�es an unrestricted V ARmodel in the output growths of USA, Japan and Germany,
and includes a vector of intercepts in the model. For the estimation period type

1963Q1 1992Q4

and keep the quarterly observations in 1993 for forecasting purposes. You will now be asked
to specify the order of the V AR. Since the aim is to select an �optimal�order for the V AR,
it is important that at this stage a high enough order is selected such that one is reasonably
con�dent that the optimal order will not exceed it. In the case of the present application
we recommend using 6 as the maximum order for the V AR. Therefore, enter 6 into the
Order of the V AR �eld. Click . You will now be presented with the Unrestricted V AR

Post Estimation Menu (see Section 7.4.1). Choose option 4 to move to the V AR Hypothesis
Testing Menu (see Section 7.4.3). Option 1 in this menu presents you with the results in
Table 15.1. All the seven V AR(p), p = 0; 1; 2; :::; 6, models are estimated over the same
sample period, namely 1964(3)-1992(4), and as to be expected the maximized values of the
log-likelihood function given under the column headed LL increase with p. However, the
Akaike and the Schwarz criteria select the orders 1 and 0, respectively. The log-likelihood
ratio statistics (whether or not adjusted for small samples) reject order 0, but do not reject
a V AR of order 1. In the light of these we choose the V AR(1) model. Notice that it is quite
usual for the SBC to select a lower order V AR as compared with the AIC.

Table 15.1: Selecting the order of a trivariate V AR model in output growths

Having chosen the order of the V AR it is prudent to examine the residuals of individual
equations for serial correlation. Click , backtrack, and estimate a V AR(1) model over

the period 1964(3)-1992(4). Then choose option 1 in the Unrestricted V AR Post Estimation
Menu to inspect the results on individual equations in the V AR. Tables 15.2 to 15.4 show
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the regression results for the US, Japan and Germany, respectively. There is no evidence
of residual serial correlation in the case of the US and Germany�s output equations, but
there is a statistically signi�cant evidence of residual serial correlation in the case of Japan�s
output equation. There is also important evidence of departures from normality in the case
of output equations for the USA and Japan. A closer examination of the residuals of these
equations suggest considerable volatility during early 1970s as a result of the abandonment
of the Bretton Wood system and the quadrupling increase in oil prices. Therefore, it is likely
that the remaining serial correlation in the residuals of Japan�s output equation may be due
to these unusual events. Such a possibility can be handled by introducing a dummy variable
for the oil shock in the V AR model (see Lesson 15.2).

Table 15.2: US output growth equation
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Table 15.3: Japanese output growth equation

Table 15.4: Germany�s output growth equation
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15.2 Lesson 15.2: Testing for the presence of oil shock dum-
mies in output equations

Consider the V AR model of output growths of US, Germany and Japan in Lesson 15.1, and
suppose we are interested in testing the signi�cance of an oil shock dummy variable, which
takes the value of unity in the �rst quarter of 1974 and zeros elsewhere, in that model.

Load the �le G7GDP.FIT, and in the Commands and Data Transformations box in the
process window type

D74 = 0; SAMPLE 74Q1 74Q4; D74 = 1;

SAMPLE 63Q1 93Q4

You should now see the dummy variable D74 among the variables in the variable list (click
to view it). Choose the unrestricted V AR option in the System Estimation Menu,

and specify the following augmented V AR model:

DLY USA DLY JAP DLY GER & CONST D74

For the sample period choose
1964Q1 1992Q4

For the order of the V AR enter 1. Click and move to the V AR Hypothesis Testing

Menu (see Section 7.4.3). Select option 2 and type

D74

The results in Table 15.5 should now appear on the screen.

Table 15.5: Testing for the e¤ect of the oil shock in the V AR model

As can be seen from this table, the log-likelihood ratio statistic for testing the deletion of
the oil shock dummy from all three output equations is 8:61, which is statistically signi�cant
at the 3:5 per cent level.
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To check the signi�cance of the oil shock dummy in individual output equations you need
to choose option 1 in the Unrestricted V AR Post Estimation Menu. The dummy variable
is signi�cant in Japan�s output growth equation, marginally signi�cant in the US output
growth equation, and not statistically signi�cant in Germany�s equation. Also note that
the inclusion of the dummy has reduced the signi�cance of the residual serial correlation in
Japan�s output equation, but has not eliminated the problem. Therefore, there may be other
factors (such as non-linear e¤ects) that should be taken into account. Another possibility is
to try a higher order for the V AR model; although this course is not recommended by the
model selection criteria or the likelihood ratio test statistics.

15.3 Lesson 15.3: International transmission of output shocks

One important issue in the analysis of international business cycle is the extent to which
output shocks are transmitted from one country to another. In this lesson we examine this
issue by Granger non-causality tests applied to the trivariate V AR in the US, Japanese and
German output growths.

Read �le G7GDP.FIT into Micro�t and go through the steps in Lesson 15.2, and specify
the augmented V AR(1) model

DLY USA DLY JAP DLY GER & CONST D74

to be estimated over the period 1964(1)-1992(4). For the order of the V AR choose 1. Then
choose option 3 in the V AR Hypothesis Testing Menu (see Section 7.4.3). You will be
asked to list the sub-set of variables with respect to which you wish to carry out the block
non-causality tests. Type

DLY JAP DLY GER

to test for the non-causality of the Japanese and German output growths in the US output
equation. You should now see the test results on the screen, shown in Table 15.6.
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Table 15.6: Granger non-causality test of US output growth with respect to the output
growths of Germany and Japan

The log-likelihood ratio statistic for this test is equal to 0:50, which is asymptotically
distributed as a �2 variate with 2 degrees of freedom, and is clearly not signi�cant statistically.
Carrying out a similar exercise for the other output equations we obtain the LR statistic of
4:93 [0:085] when testing for the non-causality of the US and Germany�s output growth in the
Japanese output equation, and the LR statistic of 11:975 [0:003] for testing the non-causality
of the US and Japanese output growth in the Germany�s output equation. The �gures in
square brackets refer to rejection probabilities. Therefore, if there is any transmission of
output shocks between these three countries, it seems that it goes from the US to other two
countries rather than the reverse.

15.4 Lesson 15.4: Contemporaneous correlation of output
shocks

Another aspect of the international transmission of output shocks is the extent to which
shocks in di¤erent output equations are contemporaneously correlated. Again using the
augmented V AR(1) model of output growths of the US, Japan, and Germany, in this lesson
we test the hypothesis that

H0 : �12 = �13 = �23 = 0

against the alternative that

H1 : �12 6= 0; �13 6= 0; �23 6= 0

where �ij , denotes the contemporaneous covariance between the shocks in the output equa-
tions of countries i and j.
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One possible method of testing the above hypothesis is to compute the log-likelihood
ratio statistic

LR (H0 jH1 ) = 2 (LLU � LLR)

where LLU and LLR are the maximized values of the log-likelihood function under H1 (the
unrestricted model), and under H0 (the restricted model), respectively. See also Section
22.2.2.

To compute LLU for the present application, follow the steps in Lesson 15.2 and estimate
the augmented V AR(1) model in

xt = (DLY USA;DLY JAP;DLY GER)

augmented with the variableswt = (CONST;D74) ; over the period 1964(1)-1992(4). Choose
option 1 in The Unrestricted V AR Post Estimation Menu, and press to see the re-
gression results for the US output equation. The value of LLU is given by the value of the
�system log-likelihood�shown in the bottom right hand-corner of the result table, namely

LLU = 1124:0

To compute the restricted log-likelihood value, LLR, we �rst note that under H0

LLR = LLUS + LLGER + LLJAP

where LLUS , LLGER and LLJAP are the single-equation log-likelihood values of the output
equations for the US, Germany and Japan, respectively. They are readily computed using
the OLS Option. For example, to compute LLUS choose option 1 in the Single Equation
Estimation Menu (Univariate Menu: see Section 6.4). Click to clear the box editor
and then type

DLY USA CONST D74 DLY USA(�1) DLY JAP (�1) DLY GER(�1)

Enter the start and end dates 1964Q1 and 1992Q4, and click : You should see the
OLS regression results on the screen. LLUS is given by the value of the �Equation Log-
likelihood�in this result table; that is, LLUS = 381:95. Now click , backtrack, change
the dependent variable from DLY USA to DLY GER and run the regression by the OLS to
obtain LLGER = 373:31. Similarly we have LLJAP = 367:02. Therefore

LR (H0 : H1) = 2(1124� 381:95� 373:31� 367:02)
= 3:44

which is asymptotically distributed as a �2 variate with 3 degrees of freedom. The 95 per
cent critical value of the �2 distribution with 3 degrees of freedom is 7:81. Therefore, the null
hypothesis that the shocks in di¤erent output equations are contemporaneously uncorrelated
cannot be rejected.

The estimates of �ij , obtainable using option 2 in the Unrestricted V AR Post Estimation
Menu, also corroborate this �nding. These estimates are reproduced in Table 15.7 and show
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that the estimates �̂12 = 0:1014 � 10�4, �̂13 = 0:6001 � 10�5 and �̂23 = 0:1282 � 10�4 are
about 1=10 of the estimated error variances, given by the diagonal elements of the 3 � 3
matrix in Table 15.7.

Table 15.7: Granger non-causality test of US output growth with respect to the output
growths of Germany and Japan

15.5 Lesson 15.5: Forecasting output growths using the VAR

Here we use the augmented V AR(1) model estimated in the previous lessons to compute
multivariate, multi-step ahead forecasts of output growths.

Read the �le G7GDP.FIT and follow the steps in Lesson 15.2 to estimate the V AR(1)
model of output growths of the US, Japan and Germany over the period 1964(1)-1992(4).
Then choose option 5 in the Unrestricted V AR Post Estimation Menu, and when prompted
press the button to select 1993(4) as the �nal quarter of the forecast period. You will

then be asked to choose the growth rate that you wish to forecast. Press to choose the
US output growth, and then select �Level of DLY USA�rather than �Change in DLY USA�
to see the forecasts of the levels of output growth. You should now see the Multivariate
Forecast Menu on the screen (See Section 7.4.4). Click to see the forecasts and the
forecast errors for the four quarters of 1993. These forecast results are reproduced in Table
15.8. As can be seen from the summary statistics, the size of the forecast errors and the
in-sample residuals are very similar. A similar picture also emerges by plotting in-sample
�tted values and out-of-sample forecasts (see Figure 15.1). It is, however, important to note
that the US growth experience in 1993 may not have been a stringent enough test of the
forecast performance of the V AR, as the US output growths have been positive in all the
four quarters. A good test of forecast performance is to see whether the V AR model predicts
the turning points of the output movements.

Similarly, forecasts of output growths for Japan and Germany can also be computed.
For Japan the root mean sum of squares of the forecast errors over the 1993(1)-1993(4)
period turned out to be 1:48 per cent, which is slightly higher than the value of 1:02 per cent
obtained for the root mean sum of squares of residuals over the estimation period. It is also
worth noting that the growth forecasts for Japan miss the two negative quarterly output
growths that occurred in the second and fourth quarters of 1993.

A similar conclusion is also reached in the case of output growth forecasts for Germany.
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Table 15.8: Multivariate dynamic forecasts for US output growth (DLY USA)

Figure 15.1: Multivariate dynamic forecasts of US output growth (DLY USA)
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15.6 Lesson 15.6: Impulse responses of the e¤ects of output
growth shocks

In this lesson we show how to use Micro�t to compute/plot impulse responses (and forecast
error variance decomposition) for the e¤ect of unit shocks (equal to one standard error) to
the US output growth equation on the growth of outputs in Germany and Japan within
the trivariate V AR model analysed in the earlier lessons. Since in Lesson 15.4 we could not
reject the hypothesis that the variance matrix of the errors in the V AR model is diagonal, we
do not expect the orthogonalized and the generalized impulse responses (and the associated
forecast error variance decompositions) to be very di¤erent. Also, in view of the results of
Lesson 15.3, we estimate the model with the US output growth as the �rst variable in the
V AR.

Read the �le G7GDP.FIT and choose the Unrestricted V AR option in the System Esti-
mation Menu and set up the V AR model in the box editor that appears on the screen by
typing

DLY USA DLY GER DLY JAP & CONST D74

Then select the sample period 1964(1)-1993(4), and a V AR of order 1. Micro�t carries out
the necessary computations and presents you with the Unrestricted V AR Post Estimation
Menu (see Section 7.4.1). Choose option 3 to move to the Unrestricted V AR Dynamic
Response Analysis Menu. (See Section 7.4.2). Initially choose option 1 to compute orthogo-
nalized impulse responses, and then select the variable/equation DLY USA to shock. Since
there is little persistence in output growth shocks it is advisable to select a short horizon
for the impulse responses. We recommend choosing 25 when you are asked to specify the
�horizon for impulse responses�. The results are reproduced in Table 15.9.
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Table 15.9: Orthogonalized impulse responses to one SE shock in the equation for US output
growth (DLY USA) using an unrestricted vector autoregressive model

As you can see, the e¤ect of a unit shock to the US output growth has only a small
impact on output growths of Germany and Japan, and this e¤ect dies out very quickly with
the forecast horizon.

To see the plot of impulse responses click to move to the Impulse Response Results
Menu, and choose the graph option. You will be presented with a list of the jointly determined
variables in the V AR. Select all three variables, DLY USA, DLY GER and DLY JAP; and
click . Figure 15.2 should now appear on the screen.

As you can see, the impact of US output growth shocks on Germany and Japan is small
on impact and generally tends to die out very quickly.

Consider now the generalized impulse responses of the e¤ect of a unit shocks toDLY USA,
the US output growth. Since DLY USA is the �rst variable in the V AR, the orthogonalized
and generalized impulse responses will be identical. To see that this is in fact the case choose
option 2 in the Unrestricted V AR Dynamic Response Analysis Menu and select DLY USA
to shock and 25 for the forecast horizon, and compare the results that appear on the screen
with those in Table 15.9. This is not, however, the case if you choose to shock Japan�s
output growth equation. For example, in the case of the orthogonalized responses the e¤ects
of shocking Japan�s output growth on the US and Germany�s output growths on impact
(at zero horizon) are zero, (by construction), but the corresponding generalized impulse re-
sponses are 0:08 and 0:12 per cent, respectively. However, due to the almost diagonal nature
of the variance matrix of the shocks, the two impulse responses are not signi�cantly di¤erent
from one another in this particular application.
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Figure 15.2: Orthogonalised impulse responses to one SE shock in the equation forDLY USA

15.7 Exercises in VAR modelling

15.7.1 Exercise 15.1

Carry out Lessons 15.1 to 15.5 using a V AR model in output levels, and compare your
�ndings with those obtained using the V AR model in growth rates.

15.7.2 Exercise 15.2

The �le G7GDP.FIT (on the tutorial directory) also contains patent data for the G7 coun-
tries. Repeat the Lessons 15.1 to 15.5 using rates of change of patents granted by the US
Patent O¢ ce to the US, Japan and Germany, instead of the output growth rates. Discuss
the similarity and the di¤erences between the two sets of results.

15.7.3 Exercise 15.3

Again using the �le G7GDP.FIT, estimate an augmented V AR model in output growths and
rates of change of patents granted in the case of the US, Japan and Germany.

� Select an optimal order for this 6-variable V AR model.

� Test the statistical signi�cance of the D74 oil shock dummy variable in this combined
V AR model.
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� Test the Granger non-causality of output growths with respect to the rates of change
of the number of patents granted and vice versa.



Chapter 16

Lessons in Cointegration Analysis

The lessons in this chapter are concerned with single equation and multiple equation ap-
proaches to cointegration analysis. They show how Micro�t can be used to test for cointe-
gration under a variety of circumstances, how to estimate long-run relations using both single
equation approaches, such as the Phillips and Hansen (1990) Fully-Modi�ed OLS estimators,
and the Autoregressive-Distributed Lag (ARDL) estimators discussed in Pesaran and Shin
(1999); and the system approaches such as the Full Maximum Likelihood procedure applied
to the underlying V AR model. The lessons in this chapter also demonstrate Micro�t capa-
bilities in the areas of impulse response analysis and forecasting using cointegrating V AR
models.

The literature on cointegrating V AR is vast and growing. Excellent accounts of the
early developments can be found in Watson (1994), and Hamilton (1994) Chapter 19. The
basic cointegrating V AR model underlying most of the lessons in this chapter is set out
in Chapter 22, where further references to the literature can also be found. The ARDL
approach is described in Section 21.19.

These lessons deal with the problem of testing for cointegration, and cover both the
residual-based methods proposed by Engle and Granger (1987), and a generalization of
Johansen (1988) and Johansen (1991) Full Information Maximum Likelihood (FIML) ap-
proach. Two main procedures are currently used to test for cointegration. One is the
residual-based ADF method proposed by Engle and Granger (1987), and the other is the
Maximum Likelihood approach (Johansen (1988), Johansen (1991) and Johansen (1995)).
There are also other procedures such as the common stochastic trends approach of Stock and
Watson (1988), the auxiliary regression procedure of Park (1992), and variants of the resid-
ual based approach proposed by Phillips and Ouliaris (1990), extended by Hansen (1992).
For a review of these tests see Watson (1994), and Hamilton (1994) Chapter 19. We shall
also consider a new approach to testing for the existence of long-run relations when it is not
known whether the underlying regressors are I(1) or I(0). This testing method is developed
in Pesaran, Shin, and Smith (2001). For reasons that will become clear from Lesson 16.5,
we shall refer to this as the bounds test.

With the exception of the ARDL approach to cointegration analysis and the related
bounds test, the cointegrating options in Micro�t presume that the variables under consid-

298
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eration are �rst-di¤erence stationary (or are integrated of order 1). On the problem of how
to test for the order of integration of the variables, see the commands ADF; ADF_GLS,
ADF_MAX and ADF_W (Section 4.4.2) and Lessons 12.1 and 12.2.

16.1 Lesson 16.1: Testing for cointegration when the cointe-
grating coe¢ cients are known

It is often the case that economic theory suggests certain variables are cointegrated with
a known cointegrating vector. Examples are the �great ratios�and the �purchasing power
parity� (PPP ) relations. In this lesson we use the extensive historical data analyzed by
Alogoskou�s and Smith (1991b) to test the hypothesis that wages (W ), prices (P ), output
(Y ), and employment (E), all measured in logarithms, are cointegrated with coe¢ cients
(+1;�1;�1;+1). Such a cointegrating relation implies that the logarithm of the share of
wages in output has been mean-reverting to a constant value over time. Similarly, real wages,
WP = W � P , and labour productivity, Y E = Y � E; should cointegrate with coe¢ cients
(1;�1). In this lesson we test this hypothesis using univariate procedures.

The �le PHILLIPS.FIT contains UK data on the logarithms of employment, labour force,
prices, wages and real GDP over the period 1855-1987 (for more details see Lesson 12.5).
Load this �le, and in the Commands and Data Transformations box in the Process window
type

C = 1; WP =W � P ; Y E = Y � E; WPY E =WP � Y E;
DWPY E =WPY E �WPY E(�1)

to create an intercept term (C = 1), the logarithm of the real wage, WP; the logarithm of
labour productivity, Y E, and the logarithm of the share of wages in output,WPY E.

In the case of most tests of cointegration, the hypothesis being tested is the null of
�non-cointegration�.1 In the present application the relevant hypothesis is that WPY E =
W �P � Y +E is not a cointegrating relation, or equivalently that WPY E contains a unit
root. Any one of the unit roots tests can be used for this purpose. Initially, we use a standard
ADF test; later we consider the application of the Phillips and Perron (1988) semi-parametric
test procedure (see footnote 4 to Lesson 12.1). Click on the button ,
check the �Simulate critical values�checkbox, and click to accept the default number
of replications, signi�cance level, and maximum number of observations used for simulating
critical values.

Use the button to clear the box editor and type

ADF WPY E(4)

The ADF test results, shown in Table 16.1, should appear on the screen.

1The exception is the test of the stationarity hypothesis proposed by Kwiatkowski, Phillips, Schmidt, and
Shin (1992).
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Table 16.1: Unit roots tests for variable WPY E

The Akaike information (AIC) and Schwarz Bayesian (SBC) criteria suggest selecting
ADF regressions of order 3 and 1, respectively. But if all the ADF (p) statistics reported in
Table 16.1 are considered, the null of a unit root is only rejected by an ADF (1) with trend.
Since we would not expect the share to be trended, it is worth trying to determine what
is happening. Plotting WPY E indicates that the share seemed to have moved to a higher
level and become somewhat more stable after World War II (see Figure 16.1). However, to
formally allow for such shift in the mean of WPY E requires a di¤erent set of critical values,
and will be subject to the uncertainty associated with the point at which such shift in the
mean share of wages may have occurred (see Perron (1989)).

A similar conclusion also follows from the Phillips and Perron (1988) test. To compute
this test statistic, choose the linear regression option 1 from the Single Equation Estimation
Menu (Univariate Menu), select the OLS option, and specify the following simple Dickey-
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Figure 16.1: Logarithm of the share of wages in output in the UK

Fuller regression:
DWPY E C WPY E(�1)

where DWPY E = WPY E � WPY E(�1). This regression is estimated over the whole
sample period. The t-ratio of WPY E(�1), namely �1:86, is the simple ADF statistic.
To carry out the non-parametric correction to this statistic proposed by Phillips-Perron,
choose option 4 (standard, White and Newey-West adjusted variance matrices) in the Post
Regression Menu, choose the Newey-West adjusted variances with Bartlett weights, and when
asked, use a window of 12 (say). Similar results are obtained with other window sizes in the
range (4; 20). Now click to leave the estimation results for the adjusted variance

matrices, and choose option 1 (Display regression results for the adjusted covariance matrix).
The t-ratio of WPY E(�1) in this result screen (namely �2:368) is a Phillips-Perron-type
statistic (see Table 16.2). The critical values for this test are the same as those for the ADF
test. Once again the hypothesis that WPY E contains a unit root cannot be rejected at the
95 per cent level. There is a clear evidence that the share of wages in output has changed over
the 1855-1987 period. This is easily con�rmed by adding a dummy variable, say D46, which
takes the value of zero before World War II and unity thereafter, to the ADF regression.
However, the inclusion of such a dummy variable alters the critical values for the unit roots
tests. On this, see Perron (1989).
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Table 16.2: Simple Dickey-Fuller regression with Newey-West adjusted standard errors

16.2 Lesson 16.2: A residual-based approach to testing for
cointegration

This lesson is concerned with the residual-based Augmented Dickey-Fuller (ADF ) test of
cointegration. Engle and Granger (1987) considered seven, asymptotically valid, residual-
based test statistics for testing the null hypothesis of non-cointegration against the alternative
of cointegration, but pointed out that in most applications the ADF test is preferable to
the other six tests. More recently other residual-based type tests have also been proposed
by Phillips and Ouliaris (1990), and extended by Hansen (1992) to allow for the possibility
of a deterministic trend in the cointegrating relation. The ADF residual based tests and the
Phillips-Ouliaris-Hansen tests are asymptotically equivalent and only di¤er in the way they
deal with the problem of residual serial correlation in the simple ADF regression.

Here we show how the residual-based approach can be applied to test the stability of the
share of wages in output analyzed in Lesson 16.1. Load the �le PHILLIPS.FIT and ensure
that the variables Y E (log of output per man), WP (log of real wages), and the intercept
term (C) are in the list of variables. You also need to satisfy yourself that the time series
WP and Y E are integrated processes of order 1.

Choose the linear regression option in the Single Equation Estimation Menu (Univariate
Menu: see Section 6.4), selecting the OLS option. Then type

WP C Y E

to set up the cointegrating equation (under the alternative hypothesis of cointegration).2

This regression is estimated using the whole sample period, 1855-1987. Then move to the
Hypothesis Testing Menu (see Section 6.23) and choose option 3 to compute ADF statistics
of di¤erent orders (up to a maximum order of 12) based on the residuals of the cointegration
regression. The ADF (p) statistics are computed as the t-ratios of the estimated coe¢ cient

2We could have equally considered the regression of Y E on WP . Asymptotically the results should not
depend whether the ADF test is applied to the residuals from the regression of WP on Y E or the reverse
regression. This may not, however, be the case in small samples. It is, therefore, important that the above
computations are also carried out using the residuals from the regression of Y E on WP . See Section 16.9.2.
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of R(�1) in the following OLS regressions:

DR = ��R(�1) +
pX
i=1

�iR(�i) + error

for p = 0; 1; ::; P , where R represents the residual of the OLS regression of WP on an
intercept and Y E, and DR = R � R(�1). Now choose 4 for the maximum order of the
ADF statistics, to obtain the results in Table 16.3 on the screen. The di¤erent model
selection criteria in Table 16.3 favour a relatively low order for the ADF test, with the Akaike
information criterion (AIC) selecting the order 2, and the Schwarz Bayesian criterion (SBC)
selecting the order 1. For these orders the hypothesis of a unit root in the residuals is rejected.
But the evidence is less convincing when higher order ADF statistics are considered. This
is very similar to our �nding in the previous lesson.

Table 16.3: Residual-based statistics for testing cointegration between real wages and labour
productivity

Consider now adding a dummy variable, say D46, which takes the value of zero be-
fore World War II, and unity thereafter, to the cointegrating relation. First return to the
Process window and create the dummy variable D46 by typing in the Commands and Data
Transformations box

D46 = 0; SAMPLE 1946 1987; D46 = 1

Then choose the linear regression option in the Single Equation Estimation Menu (Univariate
Menu), with the OLS option selected, add the variable D46 to the list of the regressors, and
estimate the new regression equation over the whole sample period. If you now choose
option 3 in the Hypothesis Testing Menu, with 4 as the maximum order for the ADF test,
you should obtain the results reproduced in Table 16.4.

The residual-based ADF statistics are now much higher (in absolute value) than those
given in Table 16.3, but due to the presence of the shift-dummy variable, D46, in the regres-
sion, the critical value given at the foot of Table 16.4 is not appropriate. The correct critical
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value for the test is also higher (in absolute value) than 3:3849. Overall, the tests in Lessons
16.1 and 16.2 suggest a reasonably stable share of wages in output, with an important shift
in this share in the aftermath of World War II.

Notes:

1. The critical values for the ADF residual-based tests are computed using the response
surface estimates given in MacKinnon (1991), and di¤er from the critical values re-
ported when the ADF command is utilized in the Process window (see Section 4.4.2).

2. While it is possible to save the residuals and then apply the ADF command to the
saved residuals at the Process window, it is important to note that in that case the
reported critical values are not valid and can therefore result in misleading inferences.
Therefore, it is important that residual-based ADF tests are carried out using option
3 in the Hypothesis Testing Menu (see Section 6.23).

Table 16.4: Residual-based statistics for testing cointegration between real wages and labour
productivity allowing for a World War II dummy

16.3 Lesson 16.3: Testing for cointegration: Johansen ML
approach

The residual-based cointegration tests described in the previous lesson are ine¢ cient and can
lead to contradictory results, especially when there are more than two I(1) variables under
consideration. A more satisfactory approach would be to employ Johansen�s ML procedure.
This provides a uni�ed framework for estimation and testing of cointegrating relations in the
context of vector autoregressive (V AR) error correction models (see Section 7.5). Here we
show how to use the cointegrating V AR options inMicro�t to carry out FIML cointegration
tests.

In Lesson 13.3 we estimated a distributed lag relationship between capital expenditures
(Y ) and appropriations (X) for the US manufacturing sector employing the Almon (1965)
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polynomial distributed lag approach. However, we found that the estimated model su¤ered
from a signi�cant degree of residual serial correlation. In this lesson we re-examine the
relationship between Y and X using cointegration techniques. The relevant data are in the
special Micro�t �le ALMON.FIT, which contains observations on Y and X over the period
1953(1)-1967(4) (see Lesson 13.3 for more details). Read this �le and plot the variables Y
and X in the Process window. As can be seen from Figure 16.2, the two series are trended
and generally move with one another, but by just looking at the graph it would not be
possible to say whether they are cointegrated.

Figure 16.2: Capital expenditures (Y ) and appropriations (X) in US manufacturing

Before using the cointegrating V AR options we need to ensure that the variables Y and
X are in fact I(1), ascertain the nature of the intercept/trend in the underlying V AR model,
and choose the order for the V AR. Clear the Commands and Data Transformations box in
the Process window and type

DY = Y � Y (�1); DX = X �X(�1);
ADF Y ; ADF X; ADF DY ; ADF DX

You should see the various ADF statistics needed for testing the unit root hypothesis on the
screen. From these results it seems reasonable to conclude that Y and X are I(1).

To select the order of the V AR in these variables, select the unrestricted V AR option
from the system Estimation Menu (Multivariate Menu). In the box editor type

Y X & INPT
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to specify a bivariate V AR model in Y and X, containing an intercept term (INPT ) as its
deterministic component.

Choose the whole sample and set the maximum order of the V AR to 4. In the Post
Estimation Menu, choose the hypothesis testing option 4, and then choose testing/selecting
the lag length, option 1 in the V AR Hypothesis Testing Menu. The results in Table 16.5
should now appear on the screen.

Table 16.5: Selecting the order of the V AR model in capital expenditures (Y ) and appro-
priations (X) for US manufacturing

The Schwarz Bayesian criterion (SBC) suggests a V AR of order 2, the Akaike information
criterion (AIC) of order 3. Since we have a short time series (60 observations), we cannot
take the risk of over-parameterization, and therefore choose 2 as the order of the V AR. In
such situations it is, however, important to check the residuals of the individual equations
in V AR for possible serial correlation. An inspection of the results suggests that this is not
a problem in the present application.

Backtrack to the System Estimation window and from the System Estimation Menu
(Multivariate Menu) choose the cointegrating V AR option, selecting the Restricted Inter-
cepts option 2. In the box editor delete the intercept term (INPT ), so that the content of
the box editor is

Y X

In the case of the cointegrating V AR option, speci�cation of intercept and (linear) trend
terms is done at a later stage. Use the whole period for estimation, and set the order of the
V AR to 2. The choice of intercepts/trends is very important in testing for cointegration. In
the present application, although the underlying variables are trended, they move together,
and it seems unlikely that there will be a trend in the cointegrating relation between Y and
X . The results in Table 16.6 should now appear on the screen. Both the maximum and
trace eigenvalue statistics strongly reject the null hypothesis that there is no cointegration
between Y and X, (namely that r = 0), but do not reject the hypothesis that there is one
cointegrating relation between these variables (namely that r = 1).
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Table 16.6: Testing for cointegration between capital expenditures (Y ) and appropriations
(X) in US manufacturing

A similar result also follows from the values of the various model selection criteria reported
in the third panel of Table 16.6. This complete agreement between the three procedures for
testing/selecting the number of cointegrating relations is very rare, however. In practice,
these three methods often result in con�icting conclusions, and the decision concerning the
choice of r, the number of cointegrating relations, must be made in view of other information,
perhaps from economic theory.

As an example, consider the application of the cointegrating V AR option to the problem
of testing the Purchasing Power Parity (PPP ) hypothesis studied in Johansen and Juselius
(1992) and Pesaran and Shin (1996). The relevant data are in the special Micro�t �le
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PPP.FIT and contain the following variables.

P Logarithm of UK wholesale prices
PF Logarithm of foreign prices
E Logarithm of the UK e¤ective exchange rate
R Domestic interest rate
RF Foreign interest rate
DPO Changes in real oil prices
S1; S2; S3 Quarterly Seasonal dummies
INPT Intercept term

Load this �le into Micro�t and make sure that the above variables are on your workspace.
Using the ADF command in the Process window, it is easily seen that we cannot reject
the hypothesis that the variables P , PF , E, R, and RF are I(1), and that DPO is I(0).
The second stage in the cointegration analysis is to decide on the order of the underlying
V AR model and the nature of the intercepts/trends in the model. Using the Unrestricted
V AR option in the System Estimation Menu, and choosing 4 as the maximum order for the
following speci�cation:

P E PF R RF & INPT S1 S2 S3 DPO DPO(�1)

the AIC and SBC criteria select order 3 and 1, respectively. Johansen and Juselius (1992)
(JJ) select the order 2. Given the fact that the sample is relatively small (only 62 quarters) we
follow JJ and select 2 for the order of the V AR.3 As far as the speci�cation of the intercept
and trend in the V AR is concerned we also follow JJ, and assume that the underlying V AR
model does not contain deterministic trends, but contains unrestricted intercepts. However,
recall from the discussion in Sections 22.7 and 7.5 that such speci�cations will generate
deterministic trends in the level of the variables (P , PF , E, R, and RF ), when the long-run
multiplier matrix is rank de�cient, which will be the case in this application if one accepts
the conclusion that variables P , PF , E, R, and RF are I(1).

With the above considerations in mind choose the cointegrating V AR in the System Es-
timation Menu (Multivariate Menu), selecting the Unrestricted intercepts, no trends option
3, and type

P E PF R RF & S1 S2 S3 DPO DPO(�1)

Select the whole period for estimation, choose 2 for the order of the V AR, and click .
The results in Table 16.7 should now appear on the screen.

3However, an inspection of the regression results for the individual equations in the V AR(2) model suggest
important evidence of residual serial correlation for the RF equation. In fact this equation decisively fails
all the four diagnostic tests (residual serial correlation, functional form, normality and heteroscedasticity)
automatically supplied by Micro�t.
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Table 16.7: Testing for cointegration between prices, interest rates, and the exchange rate
in the UK economy

The maximum eigenvalue and the trace statistics in this table are almost identical with
those reported in Johansen and Juselius (1992) Table 2. However, there are important
di¤erences between the critical values used by Micro�t and those reported in JJ and also by
Osterwald-Lenum (1992). The reasons for these di¤erences are explained in Pesaran, Shin,
and Smith (2000). Irrespective of which sets of critical values are used there is a clear con�ict
between the test results based on the maximum eigenvalue statistics and the trace statistic.
Taken literally, the maximum eigenvalue statistic does not reject r = 0 (no cointegration),
while the trace statistic does not reject r = 2, at the 95 per cent signi�cant level. Changing
the signi�cance level of the two tests to 90 per cent results in the maximum eigenvalue value
statistic to select r = 1, and the trace statistic to select r = 3. Turning to the model selection
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criteria (given in panel three of the Table), we �nd that the AIC and SBC choose r = 5
and zero, the two opposite extremes; while the Hannan and Quinn criteria choose r = 5.
The data in this application seems hopelessly uninformative on the choice of r. Turning to
long-run economic theory based on arbitrage in the product and capital markets we would
expect two cointegrating relations: the PPP relation

P � E � PF � I(0)

and the interest-rate arbitrage relation (which is a long-run implication of the uncovered
interest parity hypothesis)

R�RF � I(0)

Combining this theoretical insight with the mixed test results (based on a very short sample)
it seems reasonable to set r = 2.

16.4 Lesson 16.4: Testing for cointegration in models with
I(1) exogenous variables

In certain applications, particularly in the context of small open economies, it is reasonable
to assume that one or more of the I(1) variables in the cointegrating V AR model are �long-
run forcing�variables, in the sense that in the long-run they are not �caused�by the other
variables in the model. This does not, of course, rule out contemporaneous or short-run
interactions between the I(1) variables (for a more formal discussion see Section 22.7). For
example, in the case of the �ve variable V AR model in (P; E; R; PF and RF ) analyzed in
Lesson 16.3, it seems a priori plausible to assume that in the long-run there are no feedbacks
from UK prices, interest rates and exchange rates into foreign prices and interest rates; that
is PF and RF are the �long-run forcing�variables of the system. To test the purchasing
power parity (PPP ) hypothesis under these assumptions, �rst load the �le PPP.FIT and
choose option 2 in the System Estimation Menu (see Lesson 16.3 and Johansen and Juselius
(1992) for further details) - selecting Unrestricted intercepts, no trends option 3. This is
the intercept/trend speci�cation chosen by Johansen and Juselius (1992) (JJ) which we also
adopt in order to make our analysis comparable with theirs. To set up the V AR model
with PF and RF as �long-run forcing�variables, and changes in real oil prices (DPO), and
seasonal dummies (S1; S2; and S3) as exogenous I(0) variables, in the box editor you need
to type

P E R; RF PF & DPO DPO(�1) S1 S2 S3

The semicolon separates the I(1) variables of the model into the set of jointly determined
variables, P , E and R, and the long-run forcing variables PF and RF . Select the whole
sample period, and for the order of the V AR choose 2 (as in JJ�s analysis). Then click .
You should now obtain the results in Table 16.8 on the screen.
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Table 16.8: Testing for cointegration between prices, interest rates, and the exchange rate
in the UK economy, treating foreign prices and interest rates as exogenous

Both the maximum eigenvalue and the trace statistic suggest r = 1. The hypothesis that
r = 0 is rejected against r = 1, but the hypothesis that r = 1 cannot be rejected against
r = 2, and so on. The Schwarz Bayesian (SBC) and the Hannan and Quinn (HQC) also
favour r = 1, but the same is not true for the Akaike information criterion (AIC), which
selects r = 3! In what follows we assume r = 1 and present the estimates of the cointegrating
coe¢ cients, normalized on the coe¢ cient of P .

Click to move to the Cointegrating V AR Post Estimation Menu, choose option
2, and when prompted type 1 to specify r = 1. To obtain estimates of the cointegrating
coe¢ cients (together with their asymptotic standard errors), choose option 6 (Long Run
Structural Modelling, IR Analysis and Forecasting), then choose option 4 and click .
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You will be asked to specify exactly one restriction to identify the cointegrating relation.
In the present application where r = 1, this can be achieved by normalizing on one of the
coe¢ cients. In the box editor type

A1 = 1

to normalize on the coe¢ cient of P , the �rst variable in the cointegrating V AR. You should
now see the estimates of the cointegrating coe¢ cients and their asymptotic standard errors
on the screen. See Table 16.9.

Table 16.9: ML estimates subject to exactly identifying restriction(s); estimates of restricted
cointegrating relations (SEs in brackets)

Notice that the maximized value of the log-likelihood function LL(r = 1) = 536:1264
which is identical to the value �maximized LL�for r = 1 in the bottom panel of Table 16.8.
Also only the coe¢ cient of RF , estimated at �0:77615(0:8925), with its asymptotic standard
error in brackets, is not statistically signi�cant. It is therefore reasonable to re-estimate the
cointegrating relation imposing the over-identifying restriction A4 = 0, where A4 stands for
the coe¢ cient of RF . To impose this restriction, click to move to the IR Analysis
and Forecasting Menu, choose option 0, and then click YES to return to the box editor for
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the speci�cation of the coe¢ cient restrictions. You should see the normalizing (or exactly
identifying) restriction A1 = 1 on the screen. Add the restriction A4 = 0 to it. The box
editor should now contain the two restrictions

A1 = 1; A4 = 0

Click to estimate the cointegrating relations subject to these restrictions. You will

be asked to specify/edit initial values for the cointegrating coe¢ cients. Click to

accept the initial values supplied by the program, and then press to choose the back

substitution algorithm B (new to Micro�t 5.0 ). If you then click , you are asked
whether you wish to obtain bootstrapped critical values for the overidentifying restrictions
on the long-run relationship. Click to accept the default number of replications, equal
to 1,000, and signi�cance levels. The results are shown in Table 16.10.

Table 16.10: ML estimates subject to over-identifying restriction(s); estimates of restricted
cointegrating relations (SEs in brackets)
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The log-likelihood ratio statistic for testing the restrictionA4 = 0, is given by CHSQ(1) =
0:74 with a p-value of 0:389. Also, 0:74 is smaller that the bootstrapped critical values at the
5 per cent signi�cance level. Hence, the log-likelihood ratio is not statistically signi�cant,
suggesting that the restriction A4 = 0 cannot be rejected.

The PPP hypothesis, however, postulates that the coe¢ cients of E and PF should also
be both equal to �1. To impose (and then test) this restriction, you can now click
and then to move to the IR Analysis and Forecasting Menu (see Section 7.5.4), from
where you can return to the box editor to specify the additional restrictions, A2 = �1 and
A5 = �1. Again, if you close the output window and press the button, you should
obtain the results in Table 16.11.

Table 16.11: ML estimates subject to over-identifying restriction(s); estimates of restricted
cointegrating relations (SEs in brackets)

The LR statistic for the three over-identifying restrictions (A2 = �1, A4 = 0, A5 = �1)
is equal to 3:61, which is distributed asymptotically as a chi-squared variate with 3 degrees
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of freedom, and hence is not statistically signi�cant. Also, notice that the LR statistic is
below its 95 per cent bootstrapped critical value (equal to 14:70). Therefore, the restricted
cointegrating relation is estimated as

Pt � Et � PFt � 5:3198
(0:8754)

Rt � I(0)

What is striking about this result is the signi�cant positive long-run e¤ect of the domestic
interest rate on the PPP relation, de�ned by Pt�Et�PFt. This provides evidence against
the validity of the PPP (in the case of the present data set), but also pinpoints for the
departure from PPP , namely the e¤ect of nominal interest rate.

Finally, to see the error correction form of the relations in the cointegrating V AR model
you can choose option 7 in the IR Analysis and Forecasting Menu (see Section 7.5.4). The
number of error-correction equations in the present application is 3, corresponding to the
jointly determined variables of the model, namely P , E and R. The error correction equation
for P is shown in Table 16.12.
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Table 16.12: ECM for the variable P estimated by OLS based on cointegrating V AR(2)

The coe¢ cient of the error-correction term, �0:0423(0:0136), has the correct sign and
is statistically signi�cant, but rather small, suggesting that it would take a long time for
the equation to return to its equilibrium once it is shocked. The error correction terms in
the exchange-rate and the domestic interest rate equations are also statistically signi�cant,
but only just. Notice that the positive coe¢ cients obtained for the error correction terms in
these two equations are correct. This is because E and R enter the error correction terms
with negative coe¢ cients.



CHAPTER 16. LESSONS IN COINTEGRATION ANALYSIS 317

16.5 Lesson 16.5: Long-run analysis of consumption, income
and in�ation: the ARDL approach

In this lesson we employ the testing and estimation procedure advanced in Pesaran, Shin, and
Smith (1996) and Pesaran and Shin (1999) to examine the relationship between logarithm
of non-durable consumption expenditures (LC), the logarithm of the real disposable income
(LY ) and the in�ation rate (DP ) in the US, using quarterly observations over the period
1960(1)-1994(1). The main advantage of this testing and estimation strategy (which we refer
to as the ARDL procedure) lies in the fact that it can be applied irrespective of whether
the regressors are I(0) or I(1), and can avoid the pre-testing problems associated with the
standard cointegration analysis which requires the classi�cation of the variables into I(1)
and I(0).

The ARDL procedure involves two stages. At the �rst stage the existence of the long-run
relation between the variables under investigation is tested by computing the F -statistic for
testing the signi�cance of the lagged levels of the variables in the error correction form of the
underlying ARDL model. However, the (asymptotic) distribution of this F -statistic is non-
standard, irrespective of whether the regressors (in the present application LY and DP ) are
I(0) or I(1). Pesaran, Shin, and Smith (1996) have tabulated the appropriate critical values
for di¤erent numbers of regressors (k), and determined whether the ARDL model contains
an intercept and/or trend. They give two sets of critical values: one set assuming that all the
variables in the ARDL model are I(1), and another computed assuming all the variables are
I(0). For each application, this provides a band covering all the possible classi�cations of the
variables into I(0) and I(1), or even fractionally integrated ones. If the computed F -statistic
falls outside this band a conclusive decision can be made without needing to know whether
the underlying variables are I(0) or I(1), or fractionally integrated. If the computed statistic
falls within the critical value band the result of the inference is inconclusive and depends on
whether the underlying variables are I(0) or I(1). It is at this stage in the analysis that the
investigator may have to carry out unit roots tests on the variables.

The second stage in the analysis is to estimate the coe¢ cients of the long-run relations
and make inferences about their values using the ARDL option (see Section 6.18.) Note
that it is only appropriate to embark on this stage if you are satis�ed that the long-run
relationship between the variables to be estimated is not in fact spurious.

To apply the above approach to the US consumption data, �rst load the special Micro�t
�le USCON.FIT and then run the transformations in the equation �le USCON.EQU on this
data in the Process window. You should have the following variables in the variable list

LC Log of non-durable real consumption expenditures
DLC LC � LC(�1)
LY Log of real disposable income
DLY LY � LY (�1)
PI The rate of in�ation
DPI PI � PI(�1)
INPT A vector of 1s
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Since the observations are quarterly, for the maximum order of the lags in the ARDL model
we choose 4, and carry out the estimation over the period 1960(1)-1992(4), retaining the
remaining �ve observations 1993(1)-1994(1) for predictions.

The error correction version of the ARDL(5; 5; 5) model in the variables LC, LY and PI
is given by

DLCt = a0 +
4X
i=1

biDLCt�i +
4X
i=1

diDLYt�i +
4X
i=1

eiDPIt�i

+�1LCt�1 + �2LYt�1 + �3PIt�1 + ut (16.1)

Due to the high levels of cross-sectional and temporal aggregations involved, it is not possible
to know a priori whether LY and PI are the �long-run forcing� variables for aggregate
consumption (LC), so we have excluded the current values of DLY and DPI from (16.1).
We shall reconsider this issue once we have completed our stability tests, namely whether
there exists a long-run relationship between LC, LY and PI.

The hypothesis that we will be testing is the null of �non-existence of the long-run rela-
tionship�de�ned by

H0 : �1 = �2 = �3 = 0

against
H1 : �1 6= 0; �2 6= 0; �3 6= 0

The relevant statistic is the familiar F -statistic for the joint signi�cance of �1; �2 and �3. To
compute this statistic choose option 1 in the Single Equation Estimation Menu (see Section
6.4). In the Commands and Data Transformations box type

DLC INPT DLCf1� 4g DLY f1� 4g DPIf1� 4g

choose the sample 1960(1)-1992(4) for estimation, and click to see the OLS results of

the regression in �rst di¤erences. This regression is of no direct interest. Click and

then to move to the Hypothesis Testing Menu and choose option 6 (variable addition

test). Now list the lagged values of the level variables by typing

LC(�1) LY (�1) PI(�1)

The F -statistic for testing the joint null hypothesis that the coe¢ cients of these level variables
are zero (namely there exists no long-run relationship between them) is given in the last row
of the result table that appears on the screen. We denote it by F (LC jLY; PI ) = 5:43.
As we have already noted under H0 : �1 = �2 = �3 = 0, this statistic has a non-standard
distribution irrespective of whether LC, LY , and PI are I(0) or I(1). The critical value
bounds for this test are computed by Pesaran, Shin, and Smith (1996), and are reproduced
as Tables B.1 and B.2 in Appendix B. Table B.2 gives the bounds for the W -statistic for
three cases depending on whether the underlying regression contains an intercept or trend.
Table B.1 gives the critical value bounds for the F -statistic version of the test. The relevant
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critical value bounds for the present application is given in the middle panel of Table B.1,
and at the 95 per cent level is given by 3.219-4.378. Since F (LC jLY; PI ) = 5:43 exceeds
the upper bound of the critical value band, we can reject the null of no long-run relationship
between LC, LY and PI irrespective of the order of their integration.

Consider now the signi�cance of the lagged level variables in the error correction models
explaining DLYt and DPIt. Backtrack to edit the regression equation, and change DLC
(the dependent variable) to DLY and then follow the same steps as above to compute the F -
statistic for the joint signi�cance of LC(�1), LY (�1) and PI(�1) in this new regression. You
should obtain F (LY jLC; PI ) = 2:631. Similarly for the PI equation, F (PI jLC; LY ) =
1:359. Both these statistics fall well below the lower bound of the critical value band (which is
3:793-4:855), and hence the null hypothesis that the level variables do not enter signi�cantly
into the equations for DLY and DPI cannot be rejected. Once again this conclusion holds
irrespective of whether the underlying variables are I(0) and I(1).

The above test results suggest that there exists a long-run relationship between LC, LY
and PI, and the variables LY and PI can be treated as the �long-run forcing�variables for
the explanation of LC.

The estimation of the long-run coe¢ cients and the associated error-correction model can
now be accomplished using the ARDL option in Micro�t (see Section 6.18.) Move to the
Single Equation Estimation Menu, and choose the ARDL option (item 6 in this menu).
Click to clear the Commands and Data Transformations box, and type

LC LY PI & INPT

Choose the sample 1960(1)-1992(4) for estimation, enter 4 for the maximum lag to be used
in the model selection that follows, and click . Micro�t estimates 125 regressions and

presents you with the ARDL Order Selection Menu (see Section 6.18.2). This gives a choice
between di¤erent model selection criteria. The SBC and the AIC select the ARDL(1; 2; 0)
and ARDL(2; 2; 3) speci�cations, respectively.

The estimates of the long-run coe¢ cients based on these models are summarized in Table
16.13.

Table 16.13: Estimates of the long-run coe¢ cients based on ARDL models selected by AIC
and SBC

Model Selection Criteria

Long-Run Coe¢ cients SBC-ARDL(1,2,0) AIC-ARDL(2,2,3)

INPT 1.336 1.269

(0.167) (0.112)

LY 0.693 0.700

(0.021) (0.014)

PI -2.595 -2.288

(1.171) (0.754)

The point estimates are very similar, but as to be expected the estimated standard errors
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obtained using the model selected by the AIC are considerably smaller given the much higher
order ARDL model selected by the AIC as compared to the SBC.

To obtain the estimates of the error correction model associated with these long-run
estimates you need to choose option 3 in the Post ARDL Model Selection Menu (see Section
6.18.3). The estimated error correction model selected using AIC is given in Table 16.14.

Table 16.14: A log-linear error correction model of US consumption

With the exception of the coe¢ cient of DLCt�1, all the other coe¢ cients are statis-
tically signi�cant. The underlying ARDL equation also passes all the diagnostic tests
that are automatically computed by Micro�t. The error correction coe¢ cient, estimated
at �0:12599(0:036172) is statistically highly signi�cant, has the correct sign and suggests a
moderate speed of convergence to equilibrium. The larger the error correction coe¢ cient (in
absolute value) the faster will be the economy�s return to its equilibrium, once shocked.

The F and W statistics for testing the existence of a long run level relationship between
LC;LY , and PI, together with their critical value bounds at 90 and 95 per cent levels are
also supplied at the bottom of the above result tables. These critical value bounds are close
to the ones provide in Appendix B, but have the advantage that unlike the critical values in
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Tables B.1 and B.2 they continue to be applicable even if shift dummy variables are included
amongst the deterministic variables

The above error correction model can also be used in forecasting the rate of change of
consumption conditional on current and past changes in real disposable income and in�ation.
Proceed to the Post ARDLModel Selection Menu and choose option 4. Now click the

button twice and select to forecast change in LC over the period 1993(1)-1994(1). You should
obtain the results in Table 16.15.

Table 16.15: Dynamic forecasts for the change in LC

The root mean squares of forecast errors of around 0:45 per cent per quarter compares
favourably with the value of the same criterion computed over the estimation period. How-
ever, the model fails to forecast the extent of the fall in the non-durable consumption ex-
penditures in the �rst quarter of 1993.

16.6 Lesson 16.6: Great ratios and long-run money demand
in the US

In their paper, King, Plosser, Stock, and Watson (1991) (KPSW) examine long-run rela-
tions between (private) output (Y ), consumption (C), investment (I), real money balances
(M � P ), the interest rate (R) and the rate of in�ation (DP = P � P (�1)). With the
exception of the interest rate all the other variables are in logarithms. Output, consump-
tion, investment and money balances are measured on a per capita basis using civilian non-
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institutional population as the de�ator.4 KPSW estimate two sets of cointegrated V AR
models: a three-variable model containing the real variables, C, I and Y ; and a six-variable
model containing the real as well as the nominal variables. For the three-variable model
they estimate restricted and unrestricted V ARs over the 1949(1)-1988(4) period, but for the
six-variable model they choose the shorter estimation period of 1954(1)-1988(4), to avoid
dealing with the possible e¤ects of the Korean War, and other rather special developments
in the US economy on nominal variables. They also experimented with V ARs of di¤erent
orders, and settled on the order p = 6.

In this lesson we reconsider the cointegrating V AR models analysed by KPSW, and
show how to analyze these models and their long-run properties using the cointegrating V AR
options available inMicro�t. The cointegrating V AR analysis involves a number of important
steps, namely (i) ensuring that the jointly determined variables of the model are I(1), (ii)
deciding the order of the V ARmodel, (iii) identifying the nature of the deterministic variables
such as intercepts and trends in the underlying V AR, (iv) resolving the identi�cation problem
of the long-run relations that arises when the number of the cointegrating relations is larger
than unity, and (v) testing over-identifying restrictions on the long-run relations (if any).
This analysis should also be supplemented by an examination of the short-run dynamic
properties of the model, by considering the e¤ect of variable-speci�c and system-wide shocks
on the cointegrating (long-run relations) with the help of impulse response analysis and
persistence pro�les. See also Section 7.5.4.

With the above considerations in mind, load the �le KPSW.FIT (containing quarterly
observations over the period 1947(1)-1988(4) for the US economy), and ensure that the
following variables are in the list:

C Real per capita consumption (GC82, in logs)
DP In�ation (rate of change of GNP de�ator)
I Investment per capita (GIE82, in logs)
MP Real money balance M2 de�ned as log of M2=P ,

P = GNP de�ator
R Interest rate (FY GM3=100)
Y Real private output per capita (GNP82�GGE82, in logs)

The �rst stage in the analysis is to ascertain the order of the integration of the variables. The
simplest way to achieve this in Micro�t is to use the ADF command, although as we have
pointed out earlier the test results can be subject to a considerable margin of uncertainty.5

To compute the ADF statistics for the six variables in the KPSW.FIT �le, type in the box
editor

ADF C(6); ADF I(6); ADFMP (6);

ADF Y (6);ADF R(6); ADF DP (6)

4For further details of the variables and their sources see KPSW. We are grateful to Mark Watson for
providing us with their data set.

5For more details on the ADF tests see Lesson 12.1.
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The test results will appear on the screen. From the results for the ADF regression with
both intercept and trend, we �nd that the null of a unit root is not rejected for C; MP; Y;
and R, but may be rejected for the in�ation rate, DP , and investment I. To check if any of
these variables are I(2), create their �rst-di¤erences and apply the ADF command to them:

DC = C � C(�1); DI = I � I(�1); DMP =MP �MP (�1);
DY = Y � Y (�1); DR = R�R(�1); DDP = DP �DP (�1);
ADF DC(5); ADF DI(5); ADF DMP (5);

ADF DY (5); ADF DR(5); ADF DDP (5)

From the ADF statistics based on the regressions with an intercept term but no trend, we
�nd that the null hypothesis that the �rst-di¤erences of these variables have a unit root is
strongly rejected in the case of all six variables. Hence, we conclude that C; MP; Y and R
could be I(1), but the evidence on DP and I is less certain, and they could be I(0). In view
of this uncertainty over the order of integration of DP , in what follows we shall focus on the
remaining �ve I(1) variables, namely C; I; MP; Y; and R: The analysis of the cointegrating
V AR models when the orders of integration of the variables are unknown or are uncertain is
beyond the scope of the present lesson. For later use we create a constant and a linear time
trend by typing

INPT = 1; T = CSUM(1)

To decide on the order of the V AR, choose option 1 in the System Estimation Menu, and in
the box editor that appears on the screen type

C I MP Y R & INPT T

where the intercept and time trend are included in each equation of the V AR system, since
all variables seem to have a linear trend. Specify the sample period:

1954Q1 1988Q4

This is the same sample period as used by KPSW in their analysis of the six-variable V AR
model. Set the maximum order of the V AR to 6 and click . Choose option 4 in the

Unrestricted V AR Post Estimation Menu (see Section 7.4.1) and then option 1. The results
in Table 16.16 should now appear on the screen.
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Table 16.16: Selecting the order of the V AR model; King, Plosser, Stock and Watson (1991)
data set

On the basis of these results, the Akaike information criterion (AIC) selects order 3, and
the Schwarz Bayesian criterion (SBC) selects the order 2. You can now inspect the estimates
of the individual equations in the V AR for these orders. Since the values of AIC for the
V AR(2) and V AR(3) speci�cations di¤er by a decimal point, and the sample size is small
relative to the number of variables in the V AR, we choose the order 2 in the cointegrating
V AR analysis that follows. Once again, the choice of the order of the V AR is subject to an
important degree of uncertainty.

We now employ the cointegrating V AR option to test the null hypothesis that the �ve
variables in the V AR are not cointegrated. If this hypothesis is rejected we can then move
to the next stage and, on the assumption that there exists a cointegrating relation among
the �ve variables, test the hypothesis that there are no more cointegrating relations among
them, and so on. In this way we should obtain some idea as to the number of cointegrating
relations that may exist among these variables. Given the complicated nature of this testing
procedure, the overall size of the cointegration test is not known, even in large samples, and
hence special care needs to be exercised when interpreting the test results.

Return to the System Estimation Menu, and this time choose option 2 from the Sys-
tem Estimation Menu (Multivariate Menu), selecting the Unrestricted intercepts, restricted
trends option 4, since data are trended and we wish to avoid the possibility of quadratic
trends in some of the variables.6 Delete the intercept and the trend terms so that the
Commands and Data Transformations box contains the following variables:

C I MP Y R

For the sample size type
1954Q1 1988Q4

6See Section 7.5 for the rationale behind the di¤erent options in this menu.
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For the order of the V AR enter 2, then click . The test results in Table 16.17 should
now appear on the screen.

Table 16.17: Cointegration properties of the King, Plosser, Stock and Watson (1991) model

According to the maximum eigenvalue and the trace statistics in this Table, the null
hypothesis of �no cointegration� (namely r = 0) is rejected, but the null hypothesis that
there exists one cointegrating relation (namely r = 1) cannot be rejected. So, we �nd
only one statistically signi�cant cointegrating relation among the �ve I(1) variables. From
economic theory, however, we expect three long-run relations among these variables, given
by

z1 = C � Y (16.2)

z2 = I � Y (16.3)
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z3 =MP � c4Y � c5R (16.4)

with c4 > 0; and c5 < 0. The z1 and z2 relations are known as the �great ratios�. The balanced
growth literature, and the more recent real business cycle literature both predict C � Y and
I � Y as the two cointegrating relations. The relation de�ned by z3 is the long-run money
demand equation. The test results seem to be in con�ict with economic theory. Notice,
however, that the �nite sample performance of Johansen�s log-likelihood ratio statistics are
not known, and also tends to be quite sensitive to the order of the V AR chosen. Hence,
we will continue our analysis assuming that there are three cointegrating relations among
C; I; MP; Y and R. Under this assumption we need three independent a priori restrictions
on each of the three cointegrating relations to exactly identify them.7

In view of the theory-based restrictions implicit in the relations (16.2)-(16.4), we start
the long-run structural analysis with the following just-identifying restrictions:

�11 = 1; �12 = 0; �13 = 0
�21 = 0; �22 = 1; �23 = 0
�31 = 0; �32 = 0; �33 = 1

where we have denoted the three cointegrating vector by

�1 = (�11, �12, �13, �14, �15, �16)
0

�2 =
�
�21, �22, �23, �24, �25, �26

�0
�03 = (�31, �32, �33, �34, �35, �36)

0

Notice that there are six elements in each of these three vectors. The �rst �ve elements are
the coe¢ cients of the I(1) variables C, I, MP , Y and R, respectively, and the last elements
(�i6, i = 1; 2; 3) refer to the time trend. Recall that under case 4, where the underlying
V AR model contains linear deterministic trends with restricted coe¢ cients, the trend term
is automatically included as a part of the cointegrating relation. See Section 7.5.3. The above
exactly identifying restrictions do not impose any testable restrictions on the cointegrating
V AR model.

To estimate the V AR model subject to the above restrictions, click to leave the
cointegration test results in Table 16.17, and move to the Cointegrating V AR Post Estima-
tion Menu (see Section 7.5.3). Choose option 2 and set the number of cointegrating relations
to 3. This returns to the Cointegrating V AR Post Estimation Menu to start your long-
run structural analysis. Choose option 6 and in the Long-Run Structural Modelling Menu
choose option 4. Type the exactly identifying restrictions in the box editor that appears on
the screen:8

A1 = 1; A2 = 0; A3 = 0;
B1 = 0; B2 = 1; B3 = 0;

C1 = 0; C2 = 0; C3 = 1

7 In principle, it seems more appropriate to select the order of the V AR and the number of the cointegrating
relations simultaneously. This could be clearly achieved by means of the familiar model selction criteria, such
as AIC or SBC. But as yet little is known about their small sample performance.

8Alternatively, you can retrieve the contents of the �le CO3.EQU, in the tutorial directory, into the box

editor by clicking the button.
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The exactly identi�ed ML estimates of the three cointegrating vectors �1;�2 and �3 should
appear on the screen together with their asymptotic estimated standard errors in brackets.
These results are shown in Table 16.18.

Table 16.18: An exactly identi�ed structural long-run model for the US economy; King,
Plosser, Stock and Watson (1991) data set

The estimates in the �rst two columns (under vector 1 and vector 2) refer to the �great
ratios�, and those under vector 3 refer to the money demand equation. Notice that the
maximized value of the log-likelihood function given in this Table (namely 2393:1) is the
same as the log-likelihood value reported in the third panel of Table 16.17 for rank = 3.
Since we do not expect these long-run relations to include a linear trend we �rst test the
following over-identifying restrictions:

�16 = �26 = �36 = 0

Click to leave the screen with the exactly identi�ed estimates, and then choose option

0 in the IR Analysis and Forecasting Menu (see Section 7.5.4). You will be asked whether
you wish to test over-identifying restrictions on the cointegrating vectors (CVs). Click YES.
The box editor appears on the screen containing the exactly identi�ed restrictions. Do not
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delete these restrictions. Simply add the following over-identifying restrictions to them:

A6 = 0; B6 = 0; C6 = 0

You can add these restrictions anywhere in the box editor so long as all the restrictions are
separated by semicolons. If you add these restrictions at the end of each row, your screen
should look like Figure 16.3.

Figure 16.3: Testing for over-identifying restrictions

Now click to process. Accept the initial estimates suggested by the program by

clicking , and choose the �Back substitution algorithm (B), new to Micro�t�. Our
experience suggests that in general this algorithm converges more often and faster than the
back substitution algorithm (A) and the modi�ed Newton-Rapson algorithm. The program
now starts the computations and presents you with theML estimates obtained subject to the
over-identifying restrictions. Close the output window and click the button to accept
the default number of replications and signi�cance levels in the computation of critical values
for the LR test statistic. The results are shown in Table 16.19.
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Table 16.19: A structural long-run model for the US economy subject to three over-
identifying restrictions; King, Plosser, Stock and Watson (1991) data set

The LR statistic for testing the three over-identifying restrictions is computed to be 6:48
which is below the 95 per cent critical value of the �2 distribution with 3 degrees of freedom,
and below its 95 per cent bootstrapped critical value (14:79). We therefore do not reject
the hypothesis that there are no linear trends in the cointegrating relations, although there
was a linear trend in the underlying V AR model. Hence the cointegrating relations are also
�co-trending�.

We can now consider imposing further over-identifying restrictions. In the context of
the present model there are two sets of restrictions implied by the �great ratios�(16.2) and
(16.3): namely that the interest rates do not enter these relationships; and that Y enters
with a coe¢ cient of �1. To impose these restrictions choose option 0 in the IR Analysis and
Forecasting Menu and say that you wish to test (further) over-identifying restrictions, and
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when presented with the box editor add the following four restrictions:

A4 = �1; A5 = 0;

B4 = �1; B5 = 0;

and then carry out the necessary computations by accepting all the defaults suggested by
the program, and computing the boostrapped critical values for the LR test statistic. You
should obtain the results in Table 16.20.

Table 16.20: A structural long-run model for the US economy subject to seven over-
identifying restrictions; King, Plosser, Stock and Watson (1991) data set

The LR statistic reported in this Table, if compared with the 95 per cent critical value
of the �2 distribution with 7 degrees of freedom, rejects the over-identifying restrictions.
However, notice that the LR statistic is below its 95 per cent bootstrapped critical value.
Also, the estimates of the long-run income and interest rate elasticities in the money demand
equation (vector 3) have the correct signs and are of orders of magnitudes that one expects.
The long-run income elasticity is 1:225(0:079), and the long-run interest rate elasticity is
�1:26(0:45), although the latter is not very precisely estimated. The asymptotic standard
errors are in brackets. In view of the tendency of the LR tests to over-reject the null
hypothesis, and the strong theoretical underpinning of the three relations, we shall now
adopt the cointegrating vectors in Table 16.20 and analyse the short-run dynamic properties
of the model.
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We shall �rst examine the e¤ect of system-wide shocks on the cointegrating (or long-run)
relations, by plotting the �persistence pro�les� of these relations. Choose option 4 in the
IR Analysis and Forecasting Menu, and accept the default horizon of 50 quarters for the
persistence pro�les. You should see the estimates listed on the screen. To obtain a plot
of these estimates click to move to the Impulse Response Results Menu, and choose
option 2 to graph the pro�les. Figure 16.4 shows the plots of the persistence pro�les for all
the three long-run relations.

Figure 16.4: Persistence pro�le of the e¤ect of a system-wide shock to CV (s)

These pro�les clearly show that while all the three relations have a strong tendency
to converge to their respective equilibria, the speed of convergence of the money demand
equation (vector CV 3) to its equilibrium is noticeably faster than those of the two great
ratios, CV 1 = C � Y and CV 2 = I � Y , with the consumption output ratio equilibrating
faster than the investment-output ratio. These pro�les also show a marked over-shooting
e¤ect for the consumption-output and investment-output ratios. Close the graph and select
option 0. You are asked whether you wish to compute the boostrapped estimates of the
con�dence intervals of impulse responses. Click the button to accept the default
number of replications and con�dence level, or change to your desired values. Micro�t starts
the computations, and when �nished presents you the list of the three cointegrating vectors,
for which you can inspect the bootstrapped distribution. Choose for example CV 3, click

, and then close the output window to return to the �Impulse Response Results Menu�.
Select the graph option 2; and then choose the point estimate of CV 3, its top 97:5 and lower
2:5 percentiles. You will be presented with Figure 16.5.

To see the e¤ect of variable- (or equation-) speci�c shocks on the cointegrating vectors
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Figure 16.5: Persistence pro�le of the e¤ect of a system-wide shock to CV 3

you need to choose option 3 in the IR Analysis and Forecasting Menu. In this case you
can either use the Orthogonalized or the Generalized Impulse Responses. If you choose the
Orthogonalized IR option and choose to consider the e¤ect of shocking the nominal interest
on the cointegrating vectors you should obtain Figure 16.6.

Again, you can plot the mean, median, 97.5 and 2.5 percentiles of the bootstrapped
distribution for the impulse response functions for each cointegrating vector.

Choosing the Generalized IR Option produces Figure 16.7.
In both cases the e¤ect of the shocks on the cointegrating relations dies out, although

the pro�les have very di¤erent shapes. The two sets of pro�les would have been, however,
identical if we had decided to shock the �rst variable in the V AR, namely consumption (see
Section 7.5.4).

Consider now the dynamic e¤ects of a shock to the output equation on all the variables
in the cointegrating V AR model. Choose option 1 in the IR Analysis and Forecasting
Menu, select the Orthogonalized IR option, and then choose the Y equation to shock. The
orthogonalized impulse responses should now appear on the screen. Notice that the impact
e¤ect of shocking Y on the variables that have been entered in the V AR before it (namely
C, I and MP ) are zero by construction. Also note that the impact e¤ect of a unit shock
in output (measured as one standard error) on the nominal interest rate is positive, but
relatively small. To see the plots of these impulse responses, close the output window and
then choose to plot the orthogonalized impulse responses for C, I, MP and Y . You should
see Figure 16.8 on the screen.

A similar graph can also be obtained using the Generalized IR option. This option is
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Figure 16.6: Orthogonalized impulse responses to one SE shock in the equation for R

more satisfactory, and unlike the orthogonalized IR option does not impose zero impact
e¤ects on C, I and MP when Y is shocked. For example, using the Generalized IR option
the impact e¤ect of a unit shock to output on investment is quite large, and is in fact slightly
larger than the e¤ect on output itself. The result is given in Figure 16.9, and suggests an
important cyclical e¤ect of an output shock on investment, with investment responding very
strongly to an output shock and then declining very sharply.

Other options in the IR Analysis and Forecasting Menu can also be used to compute
multivariate dynamic forecasts, based on the cointegrating V AR model subject to the over-
identifying restrictions. See Lesson 16.7. You can also obtain error correction relations for
all the variables in the V AR. Suppose you are interested in the error correction equation for
consumption. Choose option 8 in this menu, and when asked for the choice of the variable,
click to choose consumption. The results in Table 16.21 should now appear on the
screen.
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Figure 16.7: Generalized impulse responses to one SE shock in the equation for R

Table 16.21: Estimates of the error correction model for the variable C over the period
1954(1) to 1988(4)
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Figure 16.8: Orthogonalized impulse response(s) to one SE shock in the equation for Y

In the case of this equation only the error correction term associated with the long-run
money demand equation has a signi�cant impact on consumption growth. The equation
also su¤ers from residual serial correlation, re�ecting the fact that the order 2 chosen for
the underlying V AR is not high enough to deal with the problem of the residual serial
correlation. This is in line with the LR test statistics reported in Table 16.16.

16.7 Lesson 16.7: Application of the cointegrating VAR analy-
sis to the UK term structure of interest rates

Let R (k; t) be the rate of interest with a maturity of k periods as observed at the beginning
of time t. The expectations theory of the term structure of interest rate postulates that

R (k; t) =
1

k
[EtR (1; t) + EtR (1; t+ 1) + :::+ EtR (1; t+ k � 1)] + L (k; t) (16.5)

where L(k; t) is the risk/liquidity premium. Notice that EtR (1; t) = R (1; t), which is known
at the beginning of period t, and equation (16.5) simply states that the average expected rate
of return of investing a certain sum of money in k successive time periods should be equal to
the rate of return of investing this sum of money for k periods with the �xed rate of return
R (k; t), (after allowing for a risk/liquidity premium). Equation (16.5) can be rearranged to
give

R (k; t)�R (1; t) = 1

k

24k�1X
i=1

iX
j=1

Et f�R (1; t+ j)g

35+ L (k; t) (16.6)
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Figure 16.9: Generalized impulse response(s) to one SE shock in the equation for Y

Assuming that R (k; t) is I(1) and L (k; t) is stationary, it can be seen that the right-hand
side of (16.6) is stationary and hence the left-hand side of (16.6) which represents the spread
between two interest rates R (k; t) andR (1; t), should also be stationary.

The above analysis shows that we should expect to �nd (n� 1) cointegrating relations
between a set of n interest rates with di¤erent maturities. These can be represented by

R (k; t) = R (1; t) + ak; k = 2; n (16.7)

Hall, Anderson, and Granger (1992) have applied the above model to analysis the US term
structure of interest rates, and have found strong support for the existence of (n� 1) cointe-
grating vectors of the form (16.7) amongst a set of n interest rates with di¤erent maturities.
We should point out that we expect ak to be positive and rise with maturity.

In what follows we apply the cointegrating V AR techniques to the UK term structure,
in the case of London Interbank O¤er Rates (LIBOR) at di¤erent maturities (for further
details see Pesaran and Wright 1995).

The special Micro�t �le TERMUK.FIT contains monthly observations on LIBORs with
1 month, 3 months, 6 months and 12 months maturities, which we denote by R1, R3, R6
and R12, respectively. This �le also contains the UK e¤ective exchange rate, EER.

In order to apply the cointegrating V AR technique to the above data set we need to
make a number of decisions regarding:

1. The variables to be included as I(1) endogenous (jointly determined) variables.

2. The variables to be included as I(1) exogenous variables.
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3. The variables to be included as additional I(0) variables in the V AR.

4. The inclusion and nature (restricted or unrestricted) of the intercept and/or time trend
in the V AR.

5. The selection of the order of the V AR.

We obviously should include R1, R3, R6 and R12, as endogenous I(1) variables. As an
exercise you should convince yourself that all these four variables are I(1) before including
them in the cointegrating V AR analysis. In this application there are no I(1) exogenous
variables.

The additional I(0) variables included in the V AR allow for the short-run movements in
the I(1) variables which moves them away from their long-run equilibrium. We propose to
include the lag of the percentage change of EER as well as three dummy variables which take
the value of 1 in 1984(8), 1985(2) and 1992(10), and zeros elsewhere. The inclusion of the
last dummy variable is intended to capture the e¤ect of UK exit from the ERM, and the �rst
two dummy variables are included because on each occasion the interest rates were raised
by 2 per cent by the Bank of England, and could be regarded as outliers for our purposes
( namely identi�cation of the long-run relations). Since interest rates are not trended, we
should not include a trend in the V AR, and given the relationships in (16.7), we expect each
cointegrating vector to include an intercept term and moreover the intercept term, should
be restricted.

In order to determine the order of the V AR we �rst run an unrestricted V AR of a
relatively high order (12, for example). We also include an intercept term, � logEER(�1)
and the above three dummy variables as additional I(0) deterministic/exogenous variables.

We therefore, load the �le TERMUK:FIT into Micro�t, click , and retrieve the

�le TERMUK:EQU which contains the necessary transformations. Click to create
the above three dummy variables. The following variables should now be on your workspace

R1 R3 R6 R12 EER INPT DLEER

D84M8 D85M2 D92M10

Now move to the System Estimation Menu, choose option 1 (the unrestricted V AR) and
type the following in the Commands and Data Transformations box:

R1 R3 R6 R12 & INPT DLEER(�1)
D84M8 D85M2 D92M10

Choose all available observations and select the maximum order of the V AR to be 12. In
order to decide whether it is justi�able to consider a V AR model with an order less than
12, choose option 4 in the V AR Post Estimation Menu, move to the Unrestricted V AR
Hypothesis Testing Menu, and then choose option 1. You will be presented with Table
16.22.
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Table 16.22: Selecting the order of the V AR for the analysis of the UK term structure of
interest rates

We can see that according to the AIC the order of the V AR should be 2, whilst the
SBC indicates choosing 1 as the order of the V AR. Since we have a reasonable number of
observations we choose the order of V AR to be 2, bearing in mind that choosing the higher
order is less damaging than choosing the lower order, when the sample size is reasonably
large. Also we notice that if we choose option 2 in the V AR Hypothesis Testing Menu to
test for the signi�cance of deletion of DLEER(�1) in the V AR, and type

DLEER(�1)

in the box editor, we will be presented with Table 16.23 with a �2(4) = 23:0018, which is
highly signi�cant, justifying the inclusion of DLEER(�1) in each equation of the V AR.
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Table 16.23: Testing for deletion of DLBER(�1) from the V AR

We are now in a position to estimate a cointegrating V AR and we should choose option
2 in the System Estimation Menu (Multivariate Menu), selecting the Restricted Intercept,
no trends option 2, and type

R1 R3 R6 R12 & DLEER(�1) D84M8 D85M2 D92M10

in the box editor. Remember not to include INPT amongst the above.
Choose all available observations, choose the order of V AR to be 2 and you will now

be presented with Table 16.24, and as we expect we �nd support for the existence of 3
cointegrating vectors amongst these 4 interest rates.
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Table 16.24: Sequence of log-likelihood ratio statistics for testing the rank of the long-run
multiplier matrix

In order to identify and test relationships of the form (16.7), choose option 2 in the
Cointegrating V AR Post Estimation Menu, then choose the number of cointegrating vectors
to be three. Then choose option 6 to move to the Long-Run Structural Modelling Menu. In
this menu choose Option 4 for carrying out an LR test of imposing general restrictions on
the cointegrating vectors. You will be asked to specify exactly three identifying restrictions
for each of the three cointegrating vectors. In the box editor you should type the following:

A2 = �1; A3 = 0; A4 = 0;
B2 = 0; B3 = �1; B4 = 0;

C2 = 0; C3 = 0; C4 = �1;

You should see Table 16.25.
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Table 16.25: The exact identi�cation of the cointegrating vectors for the UK term structure
of interest rates

In order to impose and test the three over-identifying restrictions by restricting the
coe¢ cient of R1 to be unity in each of the three cointegrating vectors choose option 0 of
the IR Analysis and Forecasting Menu and answer YES to the question which follows. You
should add the restrictions one by one and gradually. Therefore, �rst add the restriction
A1 = 1 to the existing set of restrictions and carry out the test. Then repeat the procedure
for each of the extra restrictions B1 = 1 and C1 = 1. At each stage you should choose the
initial values suggested by Micro�t, choose the default Back substitution (B) algorithm, and
compute the bootstrapped critical values of the LR statistic using the default number of
replications and signi�cance levels. The �nal result is presented in Table 16.26, which shows
the LR statistic for testing the three over-identifying restrictions given by �2(3) = 8:738.



CHAPTER 16. LESSONS IN COINTEGRATION ANALYSIS 342

Table 16.26: Test of over-identifying restrictions for the UK term structure of interest rates

If we compare the LR statistic with the 95 per cent critical value of a �2 with 3 degrees
of freedom, theory restrictions are rejected. However, notice that the LR statistic is below
the 95 per cent bootstrapped critical value. Hence, in view of the over-rejection tendency of
the LR statistic, we do not reject the restrictions suggested by the economic theory.

It is also possible to estimate the generalized impulse responses of all interest rates to
a unit shock in equation for R1 (say). To do this choose option 1 in the IR Analysis and
Forecasting Menu for these restricted CVs. Select option 2 to choose the Generalized Impulse
Response, and choose the horizon for the impulse responses to be 50 months. Then choose
R1 to be shocked. You can inspect the results that follow, or more instructively you can
choose option 2 in the following Impulse Response Results Menu to obtain a graphic display
of these impulse responses. Choose all 4 variables to be included in the graph by checking
all boxes, and then click . You will be presented with Figure 16.10.

As you can see, all interest rates converge to the same level after the e¤ect of the shock
dies away. You can also compute forecasts from this cointegrating V AR model using these
restricted CV s. Choose option 6 in the IR Analysis and Forecasting Menu (Restricted CV s)
and click OK to forecast all the remaining data periods. Choose to view the forecasts for
the change in R1. You will be presented with the results in Table 16.27.
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Figure 16.10: Generalized impulse response(s) to one SE shock in the equation for R1

Table 16.27: Multivariate dynamic forecasts of the change in the one-month LIBOR
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16.8 Lesson 16.8: Canonical correlations and cointegration
analysis

In this lesson we perform a canonical correlation analysis to explore the relationship between
two sets of variables. For technical and other details see and 22.13.

We use data from the special Micro�t �le ALMON.FIT on capital expenditures (Y ) and
appropriations (X) for the US manufacturing sector. The relevant data are in the special
Micro�t �le ALMON.FIT, which contains observations on Y and X over the period 1953(1)-
1967(4). See Lesson 13.3 for more details.

Our intent is to study the relationship between Y and X expressed in �rst di¤erences
and their lagged values, and observe the similarity between canonical correlation and coin-
tegration analysis in terms of computations. See Lesson 16.3 for a detailed analysis on the
non-stationarity and cointegration properties of these variables.

Read the �le ALMON.FIT intoMicro�t, go to the Process window and in the Commands
and Data Transformations box type

DY = Y � Y (�1); DX = X �X(�1) ;
TREND = CSUM(1); LY = Y (�1); LX = X(�1) ;

These instructions allow you to create the �rst di¤erences and �rst-order lags of the variables
Y and X, as well as a trend variable. Now clear the Commands and Data Transformations
box and type

CCA DY DX & LY LX

Results from the output screen on non-zero squared canonical correlations, the eigenvectors
and the statistic for testing the independence of Y and X are provided in Table 16.28. The
"chi-squared statistic" (equal to 44:32) is large, although, given the non-stationarity of Y
and X (see Lesson 13.3on this), this statistic is not distributed as chi-squared and hence the
standard statistical tests cannot be applied.



CHAPTER 16. LESSONS IN COINTEGRATION ANALYSIS 345

Table 16.28: Canonical correlation analysis between DY , DX and LY , LX

We note that the squared canonical correlations available in Table 16.28 should be iden-
tical to the eigenvalues used in computing the trace and the maximal eigenvalue statistics
normally used in the literature to test for cointegration. To check that this is in fact the
case move to the Multivariate Menu and select option 1 (no intercepts or trends) from the
Cointegrating V AR Menu. Set the lag order of the variables in the V AR to 1 and in the
Commands and Data Transformations box type:

Y X

Results, reported in Table 16.29, show that the eigenvalues for cointegration tests are iden-
tical to the squared canonical correlation reported in Table 16.28.
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Table 16.29: Cointegration analysis between Y and X

Now return to the Process window and in the Commands and Data Transformations box
in the Process window type

CCA DY DX & LY LX & INPT TREND

The above instructions allow you to perform a canonical correlation analysis betweenDY;DX
and LY;LX, after �ltering out the e¤ects of an intercept and a trend from these variables.
Results from the output screen on canonical correlations, eigenvectors and the statistic for
testing the independence of Y and X are reported in Table 16.30. As an exercise, check
that the squared canonical correlations are identical to the eigenvalues used for comput-
ing cointegration tests in a V AR(1) of Y and X. To this end, you should use option 5
(unrestricted intercepts and unrestricted trends) from the Cointegrating VAR Menu (in the
System Estimation Menu).
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Table 16.30: Canonical correlation analysis between DY , DX and LY , LX, after controlling
for an intercept and a trend

16.9 Exercises in cointegration analysis

16.9.1 Exercise 16.1

Recompute the residual based ADF statistic for testing cointegration between real wages
(WP ) and labour productivity (Y E) in Lesson 16.2 by running the reverse regression of Y E
on WP . Comment on your results.

16.9.2 Exercise 16.2

Use the time series observations in the �le PHILLIPS.FIT to test the hypothesis that WP =
W�P , and Y E = Y �E are cointegrated using the cointegrating V AR approach discussed in
Lesson 16.3: Compare your results to the univariate approaches applied to the same problem
in Lessons 16.1 and 16.2.
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16.9.3 Exercise 16.3

In the �rst part of Lesson 16.3 we estimated a bivariate cointegrating V AR model in Y (Cap-
ital Expenditures), and X (Appropriations) for US Manufacturing. Check the robustness of
the results by carrying out the exercise using logs of these variables instead of their levels.
Which speci�cation is preferable?

16.9.4 Exercise 16.4

Carry out tests of the Purchasing Power Parity hypothesis for the UK and the USA using
the quarterly observation contained in the �le G7EXCH.FIT. See Lesson 10.14 for details of
the variables in this �le and the batch �le needed to construct the e¤ective exchange rate
and the foreign price indices.

16.9.5 Exercise 16.5

The �le TERMUS.FIT contains monthly observations on eleven interest rates analysed by
Hall, Anderson, and Granger (1992). Denote these interest rates by Y 1; Y 2; :::; Y 11.

1. Analyse the cointegrating properties of the four interest rates Y 1; Y 2; Y 3 and Y 4.

2. Test the hypothesis that there are three cointegrating vectors among these four interest
rates, and interpret the resultant cointegrating relations from the viewpoint of economic
theory.

3. Test the hypothesis that Y 1� Y 2 ; Y 2� Y 3, and Y 1� Y 4, are the long-run relations
linking these interest rates together. Initially you need three restrictions on each of the
three cointegrating vectors in order to just identify them. You should then impose the
over-identifying restrictions (one by one and gradually) and test to determine whether
these over-identifying restrictions are supported by the data.



Chapter 17

Lessons in VARX Modelling and
Trend/Cycle Decomposition

In this chapter we show how the cointegrating V ARX option in the Multivariate Menu can
be used to estimate structural vector error-correcting autoregressive models with exogenous
variables (V ARX). The lessons in this chapter also show how Micro�t can be used to test
for the existence of long-run relations, to compute multivariate forecasts and trend-cycle
decompositions within the framework of cointegrating V AR and V ARX models.

The extension of the cointegrating V ARmodels to the case of exogenous variables is given
in Pesaran, Shin, and Smith (2000). Review of the multivariate Beveridge-Nelson trend-cycle
decomposition is in Garratt, Lee, Pesaran, and Shin (2006), Mills (2003), Robertson, Garratt,
and Wright (2006), Johansen (1995), Evans and Reichlin (1994). See also Section 22.10 and
22.11.

17.1 Lesson 17.1: Testing the long-run validity of PPP and
IRP hypotheses using UK data

In this lesson we re-examine the empirical evidence on the long-run validity of the Interest
Rate Parity (IRP ) and the Purchasing Parity Power (PPP ) hypotheses studied in Johansen
and Juselius (1992), Pesaran, Shin, and Smith (2000) and Pesaran and Shin (1996) (see also
Lesson 16.3).

We use quarterly data on the UK economy over the period from 1966-1999, and consider
a simple model containing three domestic variables, prices, interest rate and exchange rate,
and two foreign variables, OECD prices and foreign interest rate. We carry a cointegration
analysis on these �ve variables, treating the last two as I(1) and weakly exogenous1, and thus
long-run forcing for the remaining variables. To this end, we will employ the cointegrating
V ARX option provided in Micro�t (see Section 22.10 for further details on V ARX models
and reference to the literature).

1Weak exogeneity in this context means that the cointegrating vectors do not appear in the sub-system
VECM for these exogenous variables (see Pesaran, Shin, and Smith (2000)).

349
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Quarterly data on the UK economy over the period 1964q1 to 1999q4 (for a total of 144
observations) are contained in the special Micro�t �le UKCORE.FIT. Load this �le into
Micro�t and in the Process window enter

BATCH UKCORE.BAT

Click the button, ensuring that the following variables are on the workspace

P Logarithm of UK producer price index (seasonally adjusted)
PS Logarithm of OECD producer price index (seasonally adjusted)
R Domestic nominal interest rate. Computed as 0:25 ln (1 +AR=100) where

AR is the UK Treasury Bill annual rate
RS Foreign nominal interest rate. Computed as 0:25 ln (1 +ARSSRD=100) where

ARSSDR is an average of US, Japan, France and Germany Treasury Bill
annual rate

E Sterling e¤ective exchange rate

For later use create a constant and a linear time trend by typing

INPT = 1; T = CSUM(1)

Choose option 3 from the System Estimation Menu (Multivariate Menu) and in the Com-
mands and Data Transformations box enter

R P E; RS PS & INPT T

Alternatively, you can retrieve the �le UKMOD.LST from the tutorial directory. The �rst
three variables are the endogenous variables, followed by the exogenous and the deterministic
variables, the latter two separated by the symbol �&�. Then specify the sample period (of
136 observations)

1966Q1 1999Q4

The selection of the order of the V AR can be based on selection criteria such as AIC
and SBC available in the unrestricted V AR option 1 from the System Estimation Menu
(Multivariate Menu) (see Lesson 16.3). As an exercise you should convince yourself that a
V AR(2) model can adequately capture the dynamic properties of the data. Hence, enter 2
as order of the lag of the endogenous and exogenous variables. Click on the �Simulation of
Critical Values�button; a selection window will appear. Check the �Simulate critical values
for cointegration tests�checkbox, and click to accept the default number of replications
and signi�cance levels. This allows you to obtain 95 and 90 per cent simulated critical values
for cointegration rank test statistics (see Sections 22.8.1 and 22.8.2).

Click . Since we wish to avoid the possibility of quadratic trends in some of the
variables, restrict the trend, and leave the intercept unrestricted. You are then asked to
specify the marginal models for the exogenous variables PS and RS. In the box editor enter

1 1 INPT ;

1 1 INPT
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Numbers in the �rst column refer to the lag order of the �rst di¤erence of endogenous
variables, while those in the second column refer to the lag order of the �rst di¤erences of
exogenous variables. Hence, the above instructions imply the following marginal models for
RS and PS:

dRSt = a01 + ar;1dRt�1 + ap;1dPt�1 + ae;1dEt�1 + ars;1dRSt�1 + aps;1dPSt�1 + urs;t

dPSt = a02 + ar;2dRt�1 + ap;2dPt�1 + ae;2dEt�1 + ars;2dRSt�1 + aps;2dPSt�1 + ups;t

where dRSt = RSt � RSt�1, and so on. Click . Micro�t starts the computations and
yields the results reported in Table 17.1.

Table 17.1: Cointegration rank statistics for the UK model

The upper part of the table summarizes the model and gives the list of eigenvalues of the
estimated stochastic matrix. The bottom of the table is divided in three panels and provides
the output of three sets of test statistics for choosing the number of cointegrating relations
together with their simulated critical values: the maximum eigenvalue statistic, the trace
eigenvalue statistic, and the model selection criteria AIC, SBC and HQC (see Sections
22.8.1-22.8.3 for a description of these test statistics).

The maximum eigenvalue statistic rejects the hypothesis of no cointegration at the 5
per cent signi�cance level, and indicates the existence of one cointegrating vector (r = 1)



CHAPTER 17. LESSONS IN VARX MODELLING AND TREND/CYCLE DEC. 352

between the �ve I(1) variables under investigation; the trace statistic does not reject the
hypothesis of no cointegration at the 5 per cent signi�cance level.

However, economic theory predicts the following two long-run equilibrium relations:

R�RS � I(0) (17.1)

P � E � PS � I(0) (17.2)

Equation (17.1) is an Interest Rate Parity (IRP ) relation, which captures the equilibrium
outcome between domestic and foreign interest rates due to the e¤ect of the arbitrage process
between domestic and foreign bonds. Equation (17.2) is the Purchasing Parity Power (PPP ),
stating that, due to international trade in goods, domestic and foreign prices measured in a
common currency equilibrate in the long-run.

In view of what economic theory suggests, we therefore continue the analysis assuming
that there are two cointegrating relations among R;P;E;RS and PS. Under the assumption
that r = 2, exact identi�cation of the cointegrating relations requires the imposition of
two independent restrictions on each of the two relations. We choose the following exactly
identifying constraints:

�11 = 1; �12 = 0
�21 = 0; �22 = 1

where

�1 = (�11, �12, �13, �14, �15, �16)
0

�2 =
�
�21, �22, �23, �24, �25, �26

�0
are the two cointegrating vectors. associated with zt = (Rt; Pt; Et; RSt; PSt; t)0. To estimate
the V ARX model subject to the above restrictions, click to leave the output window,
and in the Cointegrating V AR Post Estimation Menu choose option 2 to set the number of
cointegrating vectors and enter

2

Then select option 6 to access to the Long-Run Structural Modelling Menu; choose option 4
and, when prompted, enter the just-identifying restrictions2

A1 = 1; A2 = 0;

B1 = 0; B2 = 1;
(17.3)

The exactly identi�ed ML estimates of the two cointegrating vectors and their asymptotic
standard errors should now appear on the screen. These results are reproduced in Table
17.2.

2Alternatively, you can retrieve the contents of the �le UKEXID.EQU from the tutorial directory by

clicking the button.



CHAPTER 17. LESSONS IN VARX MODELLING AND TREND/CYCLE DEC. 353

Table 17.2: ML estimates subject to exactly identifying restrictions for the UK model

Using the above exactly identi�ed model, we can now test for a number of hypotheses.
First, we test the co-trending hypothesis, namely whether the trend coe¢ cients are zero in
the two cointegrating relations, that is, if �16 = �26 = 0. Choose option 0 in the IR Analysis
and Forecasting Menu and say that you wish to test (further) over-identifying restrictions.
When presented with the box editor add the following restrictions

A6 = 0; B6 = 0 (17.4)

You are then presented with a window in which you can set the initial values for estimation;
click the button to accept the default initial values, and then choose the new algorithm

(B) in Micro�t 5.0 (option 2) for the estimation. The program starts the computations and,
when �nished, returns an output window with ML estimates subject to over-identifying re-
strictions. The LR statistic for testing the over-identifying restrictions is 9:69, equal to twice
the di¤erence between the maximized log-likelihood obtained from the estimation subject
to just-identifying restrictions (see Table 17.2) and the maximized log-likelihood subject to
the over-identifying restrictions. Given the small size of the sample, we suggest computation
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of the bootstrapped critical values for this statistic. Close the output window and press
the button to accept the default number of replications and signi�cance levels for the
bootstrap. The program starts the computations and then presents you with the results
reported in Table 17.3.

Table 17.3: Testing the co-trending hypothesis in the UK model

Since the LR statistic is below its bootstrapped critical value at the 5 per cent signi�cance
level (12:18), we do not reject the co-trending hypothesis on cointegrating relations (17.2)-
(17.1).

We now turn to testing the IRP and PPP hypotheses (17.1)-(17.2), assuming that the
co-trending hypothesis holds. Relation (17.1) implies that exchange rate (E), foreign interest
rate (RS) and foreign prices (PS) enter in the long-run relation with coe¢ cients �13 = 0;
�14 = �1; and �15 = 0, respectively. Choose option 0 in the IR Analysis and Forecasting
Menu and say that you wish to test (further) over-identifying restrictions. When presented
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with the box editor add the following three restrictions:

A3 = 0; A4 = �1; A5 = 0 (17.5)

Repeat the above steps to compute bootstrapped critical values for the LR (with the default
number of replications and signi�cance levels); the program presents you with the results
shown in Table 17.4.

Table 17.4: Testing the IRP hypothesis in the UK model

Since the LR statistic (14:00) is below its bootstrapped critical value at the 5 per cent
signi�cance level (19:83), we do not reject the over-identifying restrictions, and conclude that
there is evidence of a long-run relations between domestic and foreign interest rate.

We now test for the PPP hypothesis, again under the assumption that the cointegrating
relations are co-trending. Relation (17.2) implies that exchange rate (E), foreign interest
rate (RS) and foreign prices (PS) enter in the long-run relation with coe¢ cients �1; 0; and
�1, respectively. Choose, once again, option 0 in the IR Analysis and Forecasting Menu,
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and in the box editor replace restrictions (17.5) with the following:

B3 = �1; B4 = 0; B5 = �1 (17.6)

Again, comparing the LR statistic with its boostrapped critical values (obtained with the
default number of replications and signi�cance levels), we are unable to reject the null hy-
pothesis of PPP (jointly with the co-trending assumption) (see Table 17.5).

Table 17.5: Testing the PPP hypothesis in the UK model

We �nally report, in Table 17.6, the output when testing whether IRP and PPP long-
run relations jointly hold, under the co-trending hypothesis. This is done by imposing both
(17.5) and (17.6) and the co-trending restrictions (17.4). Results support the validity of
these long-run relationships using UK data.
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Table 17.6: Testing the IRP and PPP hypotheses in the UK model

17.2 Lesson 17.2: A macroeconomic model for Indonesia

In this lesson we estimate a long-run structural macroeconometric model for Indonesia.3

Indonesia can be considered a small open economy, where a subset of the long-run forcing
variables, such as foreign income and prices, may be viewed as exogenous. Another char-
acteristic of the Indonesian economy is that it has been subject to a major break due to
the Asian �nancial crisis which occurred in 1997. To deal with these issues we adopt a vec-
tor error-correcting autoregressive model with exogenous variables (V ARX), and introduce
dummy variables to represent such breaks, trying to capture shifts both in the long-run and
short-run relations.

The relevant data on the Indonesian economy can be found in the special Micro�t �le

3This Lesson and the following are based on analysis of the Indonesian economy by A¤andi (2007) .
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IDQ.FIT, containing the following variables:

Y Logarithm of Indonesian real per capita GDP (1993=100)
P Logarithm of Indonesian Consumer Price Index (1993=100)
R Domestic nominal interest rate. Computed as 0:25 ln (1 +Rm=100)

where Rm is the 90-day money market rate per annum
M1P Logarithm of Indonesian real per capita money stock (1993=100)
E Logarithm of nominal Rupiah e¤ective exchange rate (1993=100)
Y S Logarithm of foreign real per capita GDP (1993=100)
PS Logarithm of foreign price index (1993=100)
RS Foreign interest rate
PO Logarithm of oil price (1993=100)
DP Indonesian Consumer Price Index (CPI) in�ation rate (DPt = Pt � Pt�1)
INPT Intercept term
D97 Dummy variable equal to 1 for the period from 1997q3 onwards and

0 otherwise
EP Real exchange rate of the Indonesian Rupiah (EPt = Et � Pt)
T Linear trend

This �le contains quarterly data over the period 1979q1-2003q4, for a total of 100 observa-
tions: read it into Micro�t and make sure that the above variables are in the workspace.

In the model, �ve variables will be treated as endogenous, namely domestic output and
prices, interest rate, real exchange rate, and money stock, and four variables as exogenous,
namely foreign output and prices, foreign interest rate and oil price. D97 is a dummy
variable that we wish to include in the cointegrating vector, to investigate whether there
exists a structural break in the long-run relations due to the 1997 Asian crisis.

Consider the following V ECM model:

�zt = ��zt�1 +
p�1X
i=1

�i�zt�i + a0 + a1t+ a2D97t + ut (17.7)

where zt = (y0t;x
0
t)
0 ; yt is the vector of endogenous variables (containing Yt; DPt; Rt; EPt;

and M1Pt), xt is the vector of weakly exogenous variables (containing Y St; PSt; RSt; and
POt), a0 is the intercept, t is the time trend, and D97t is the dummy variable. Furthermore,
� = ��0 is the matrix of long-run coe¢ cients, �i is the matrix of short-run coe¢ cients,
and a1 and a2 are trend coe¢ cients. We assume the following restrictions on the trend
coe¢ cients:

a1 = �b1;a2 = �b2 (17.8)

where b1 and b2 are arbitrary vectors of �xed constants. As shown in Pesaran, Shin, and
Smith (2000), these restrictions ensure that the solution of the model in levels of zt will not
contain quadratic trends or cumulative e¤ects of D97t. If � is full rank, then b1 and b2 are
unrestricted, and can be computed as b1 = ��1a1 and b2 = ��1a2; if � is rank de�cient,
b1 and b2 cannot be fully identi�ed from a1 and a2.
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Under (17.8), the V ECM in (17.7) becomes

�zt = �� (zt�1 � b1t� b2D97t) +
p�1X
i=1

�i�zt�i + a0 + ut

= �� [zt�1 � b1 (t� 1)� b2 (D97t�1 +DD97t)]

+

p�1X
i=1

�i�zt�i + a0 + a1 + ut

= ���z
�
t�1 +

p�1X
i=1

�i�zt�i + a
�
0 + a2DD97t + ut (17.9)

where �� = ��
0
�; �

0
� =

�
�0;��0b1;��0b2

�
; z�t�1 =

�
z0t�1; t� 1; D97t�1

�0
; a�0 = a0+a1; and

DD97t = D97t�D97t�1. The new variableDD97t is a dummy variable introduced to capture
changes in the short-run dynamics. Notice that the deterministic trend t and the dummy
variable D97t are now part of the cointegrating relation �0 (zt�1 � b1 (t� 1)� b2D97t�1) =
�0�z

�
t�1. This implies that the cointegration relations could contain linear trends and may be

subject to structural breaks.
Estimation of model (17.9) requires the construction of the dummy variable DD97. To

create this variable, go to the Process window, and in the Commands and Data Transfor-
mations box type

DD97 = D97�D97(�1)

A new variable entitled DD97 should appear in the list of your variables. Now select option
3 Cointegrating V ARX from the System Estimation Menu (Multivariate Menu), and in the
Commands and Data Transformations window type the following speci�cation:4

Y DP R EP M1P ; Y S PS RS PO & INPT T D97 DD97 (17.10)

For the estimation sample, enter

1981Q2 2003Q4

The selection of the order of the V AR can be based on selection criteria such as AIC
and SBC available in the unrestricted V AR option 1 from the System Estimation Menu
(Multivariate Menu) (see Lesson 16.3). On the basis of this preliminary analysis, we choose
p = 2; hence, type 2 in the boxes entitled �lag order of endogenous variables�and �lag order
of exogenous variables�.

Since in this application the estimation sample is relatively small (91 observations) and
the dimension of the system is relatively large (9 variables), it is advisable to compute boot-
strapped critical values for cointegration tests. Click on the button �Simulation of Critical
Values�, check the box �Simulate critical values for cointegration tests�, and click to
accept the default number of replications and signi�cance level.

4Alternatively, you can retrieve the contents of the �le IDQMOD.LST from the tutorial directory by

clicking the button.
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Press the button. You will be presented with a window asking to select the

variable(s) you wish to restrict. Since we wish to avoid the possibility of quadratic trends
in some of the variables, restrict the time trend (T ) and the shift dummy variable (D97),
while leaving unrestricted the variable intercept (INPT ) and the impulse dummy variable
(DD97); click . A window appears in which you are asked to de�ne the marginal

models. Given that the V ECM has four exogenous variables (Y S; PS;RS; PO), you need
to specify four equations. In the box editor write5

1 1 INPT ;

1 1 INPT ;

1 1 INPT ;

1 1 INPT

Notice that the �rst line of instructions (namely 1 1 INPT ) refers to the following mar-
ginal model:

dY St = a0 + aydYt�1 + adpdDPt�1 + ardRt�1 + aepdEPt�1

+amdM1Pt�1 + aysdY St�1 + apsdPSt�1 + arsdRSt�1

+apodPOt�1 + uys;t

where dY St = Y St � Y St�1. Similar marginal models are speci�ed for the other weakly
exogenous variables. Following the order of the exogenous variables as appear in (17.10), the
second line of instructions refers to the foreign price equation, and the third and fourth lines
refer to the foreign interest rate and oil price equations, respectively. Click . Micro�t
starts the computation and, when �nished, presents you with an output window that is
reproduced in Table 17.7 .

5You can retrieve the contents of the �le IDQMARG.LST from the tutorial directory by clicking the

button.



CHAPTER 17. LESSONS IN VARX MODELLING AND TREND/CYCLE DEC. 361

Table 17.7: Cointegrating rank statistics for the Indonesian model

Both the maximum eigenvalue statistic and the trace statistic indicate the existence of
three cointegrating vectors (r = 3). On the basis of these results, and in view of what the
economic theory suggests (see Lesson 17.3 and A¤andi (2007)), in what follows we assume
r = 3, that is, that there are three long-run relations.6

17.3 Lesson 17.3: Testing for over-identifying restrictions in
the Indonesian model

In Lesson 17.2 we introduced a V ECM model with exogenous variables for the Indonesian
economy; we carried out cointegration tests using the trace and the maximum eigenvalue
statistics, and decided that there exist r = 3 cointegrating relations among the variables. We

6Also, some authors have pointed out that the trace statistic is in general more robust to model mis-
speci�cation and deviations from normality than the maximum eigenvalue statistic (see, for example, Cheung
and Lai (1993)).
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now turn to testing for over-identifying restrictions on the cointegrating vectors, as predicted
by economic theory. This analysis involves the maximum likelihood (ML) estimation of the
model subject to the exactly and over-identifying restrictions (see Pesaran and Shin (2002)
and Pesaran, Shin, and Smith (2000)). The tests of over-identifying restrictions will be
in the form of chi-squared statistics with degrees of freedom equal to the number of the
over-identifying restrictions (see Section 22.9, and, in particular, 22.9.3).

A¤andi (2007) identi�es the following three long-run equilibrium relationship:

EPt + PSt = b10 + �1;t+1

DPt �Rt = b20 + �2;t+1

Rt �RSt = b30 + �3;t+1

where �it, for i = 1; 2; 3, are stationary reduced form errors. The �rst equation describes
the Purchasing Power Parity (PPP ) relation, which predicts that domestic and foreign
prices measured in a common currency equilibrate in the long-run. The second is the Fisher
In�ation Parity (FIP ) relation, stating that the nominal rate of interest should in the long-
run equate the real rate of return plus the (expected) rate of in�ation. Finally, the third
equation is the Interest Rate Parity (IRP ) relation, which captures the equilibrium outcome
between domestic and foreign interest rates due to the e¤ect of the arbitrage process between
domestic and foreign bonds. The three relations can be compactly written as

�t = �
0zt�1 � b0 � b1 (t� 1)� b2D97t�1 (17.11)

where

zt = (Yt; DPt; Rt; EPt;M1Pt; Y St; PSt; RSt; POt)
0

b0 = (b10; b20; b30)
0 ;b1 = (0; 0; 0)

0 ;b2 = (0; 0; 0)
0 ; �t = (�1t; �2t; �3t)

0

� =

0@ 0 0 0 1 0 0 1 0 0
0 1 �1 0 0 0 0 0 0
0 0 1 0 0 0 0 �1 0

1A
The matrix � is the over-identifying matrix, imposing all the restrictions as suggested by
the long-run relations PPP , FIP and IRP .

In view of the restrictions implicit in the above three relations, we start our long-run
analysis with the following just-identifying restrictions:

�12 = 0; �14 = 1; �15 = 0

�21 = 0; �22 = 1; �23 = �1
�32 = 0; �33 = 1; �38 = �1

Click to go to the Cointegrating V AR Post Estimation Menu, and select option 2,
to specify the number of cointegrating vectors. Type

3
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Then select option 6 �Long-Run Structural Modelling, IR Analysis and Forecasting�. You
will be presented with the Long-Run Structural Modelling Menu. Choose option 4, click

and, when prompted, type the just-identifying restrictions7

A2 = 0; A4 = 1; A5 = 0;

B1 = 0; B2 = 1; B3 = �1;
C2 = 0; C3 = 1; C8 = �1

The exactly identi�ed ML estimates of the three cointegrating vectors and their asymptotic
standard errors should appear on the screen. These results are reproduced in Table 17.8 .

Table 17.8: ML estimates subject to exact identifying restrictions in the Indonesian model

The estimates in the �rst column refer to the PPP relation, while the second and the
third column refer to FIP and IRP respectively.

7You can load the �le IDQEXID.EQU with these restrictions by clicking the button.
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Click the button and then select option 0. You are then asked whether you wish
to test for over-identifying restrictions. Select YES and, when prompted, add the following
restrictions:8

A7 = 1;A1 = 0;A6 = 0;A3 = 0;A8 = 0;A9 = 0;A10 = 0;A11 = 0;

B4 = 0;B5 = 0;B6 = 0;B7 = 0;B8 = 0;B9 = 0;B10 = 0;B11 = 0;

C1 = 0;C4 = 0;C5 = 0;C6 = 0;C7 = 0;C9 = 0;C10 = 0;C11 = 0

Notice that these restrictions, together with those given in the just-identifying case, specify
the over-identifying matrix � in (17.11), and restrict the coe¢ cients b1 and b2 for the trend
and the lagged dummy variable D97t�1 to be zero. In total, we have 33 restrictions, of which
24 are over-identifying. Click , and when prompted, press the button to accept

the default initial values and choose option 2, the new algorithm (B) in Micro�t 5.0.
The program returns an output window with ML estimates subject to over-identifying

restrictions. Given the small size of the sample, we compute the bootstrapped critical values
for the LR statistic. Click the button. You are asked whether you wish to boot-

strap the critical values of the test for over-identifying restrictions. Press the button
without changing the number of replications and the signi�cance levels. Micro�t starts the
computations and then presents you with the results shown in Table 17.9.

8These restrictions are in the �le IDQOVID.EQU that you can retrieve from the tutorial directory by

clicking the . button.
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Table 17.9: Testing for over-identifying restrictions in the Indonesian model

Since the LR statistic (74:94) is below its bootstrapped critical value (75:90) at the 5 per
cent signi�cance level, we do not reject the 24 over-identifying restrictions. Notice that the
linear trend does not enter in the cointegrating vectors, thus supporting the hypothesis that
the long-run relations are cotrending. Furthermore, results on the tests for over-identifying
restrictions indicate that the structural break in 1997, due to the Asian crisis, does not a¤ect
the long-run relations. This result, together with the absence of the time trend term T in
the cointegration relations, suggests that the cointegrating relations on the Indonesian data
are cobreaking and also cotrending.

Click and then CANCEL to return to the IR Analysis and Forecasting (Restricted
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CVs) Menu, and choose option 8. You can now select in turn each variable to see the estimates
of the corresponding individual error-correcting equation. For example, choose the variable
in�ation (DP ). You will be presented with the results in Table 17.10.

Table 17.10: Error Correction Speci�cations for the Over-identi�ed Model: 1981q2-2003q4

The lags of domestic interest rate (dR1), exchange rates (dEP1), and foreign output
(dY S) are highly signi�cant in explaining in�ation rate. Note that all error-correcting coef-
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�cients are statistically signi�cant.
As an exercise, obtain error-correction models for the remaining endogenous variables.

A summary of results is reported in Table 17.11. These estimates show that the error-
correction term for IRP and FIP are important in most equations, while the error-correcting
coe¢ cient of PPP is signi�cant at 5 per cent signi�cance level only in the in�ation equation.
Furthermore, the error-correction equations pass most of the diagnostic tests and �t the
historical observations relatively well. In particular, the R

2
of domestic output and interest

rate equations, computed at 0:59 and 0:67 respectively, are quite high. The diagnostic
statistics for tests of residual serial correlation and heteroscedasticity are within the 90 per
cent critical values for the Y and M1P equations. There is evidence of non-normal errors in
the case of some of the error-correcting equations, and mis-speci�cation for the EP equation.
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Table 17.11: The reduced form error-correction speci�cation for the Indonesian model

Equation dY t dRt dEP t dM1P t

Intercept -0.022 -0.006 0.263 -0.043b�1;t�1 0.007 0.003 -0.055 0.012b�2;t�1 -0.096 0.117** -2.506*** -1.396***b�3;t�1 -0.500*** -0.190*** -0.344 -0.729**
dY St 0.076 0.024 1.422 -1.048
dPSt -0.345 0.200 1.439 -0.689
dRSt 1.456 1.132** 6.763 3.125
dPOt 0.026 -0.013 -0.167 0.006
dY t�1 -0.110 -0.107** -1.649** -0.126
dDP t�1 -0.306*** -0.027 2.148*** 0.571***
dRt�1 0.268 0.059 1.531 -0.094
dEP t�1 -0.043*** 0.029*** -0.052 -0.127***
dM1P t�1 -0.018 0.014 0.082 0.014
dY St�1 0.740*** -0.381*** 1.916 0.410
dPSt�1 -0.048 0.115 -2.592 0.617
dRSt�1 -0.508 -0.031 0.286 5.663*
dPOt�1 -0.009 -0.008 0.081 -0.016
DD97t 0.005 0.059*** 0.191* -0.092**

R
2

0.5852 0.6728 0.1532 0.3853b� 0.012 0.006 0.106 0.037
�2SC [4] 11.160** 5.020 14.93*** 3.070
�2FF [1] 5.770** 4.980** 7.79** 1.490
�2N [2] 3.470 39.220*** 11.33*** 1.820
�2H [1] 0.080 0.220 25.660*** 1.880
Notes: The asterisks �*�, �**�and �***�indicate signi�cance at the 10%,

5% and 1% levels, respectively. The diagnostic tests are chi-squared

statistics for serial correlation (SC), functional form (FF), normality (N)

and heteroscedasticity (H).

17.4 Lesson 17.4: Forecasting UK in�ation

In this lesson we show how to use Micro�t to compute dynamic forecasts in the context of
a vector error-correcting autoregressive model with exogenous variables. We will consider
the small model for the UK economy described in Lesson 17.1 and focus on forecasting the
changes in domestic prices. To this end, we re-estimate the V ARX model over a shorter
time period, and keep the remaining observations for forecasting purposes.

Micro�t allows computing multivariate forecasts in two di¤erent ways, depending on how
exogenous variables are treated (see Section 22.10.4). One possibility is to compute forecasts



CHAPTER 17. LESSONS IN VARX MODELLING AND TREND/CYCLE DEC. 369

conditional on the values of the exogenous variables observed over the forecasting period. An
alternative is to use the marginal models to forecast exogenous variables, and then employ
these forecasts to compute unconditional forecasts for the variables. We will explore both
possibilities in turn.

Follow the steps outlined in Lesson 17.1 to estimate a V ARX model with three endoge-
nous variables (R, P and E), two exogenous variables (RS and PS), an intercept and a time
trend, over the period 1977Q1-1997Q4 (for a total of 84 observations), taking the IRP and
PPP long-run relations as given. Hence, specify r = 2 and use option 4 from the Long-run
Structural Modelling Menu to impose the exact-identifying restrictions represented in (17.1)
and (17.2).9

Then go to the IR Analysis and Forecasting Menu, select option 6 to compute multivari-
ate dynamic forecasts, and click . When prompted, enter the forecast period

1998Q1 1999Q4

and select the option �Conditional Forecasts using the supplied values of exogenous variables�,
and click . You will be presented with the list of variables in the model. Choose P and
then select �change in P�. You enter the Multivariate Forecast Menu, where you can decide
to see, plot or save the forecast. For example, choose option 1. The results in Table 17.12
should appear on the screen.

9For this you need to impose restrictions (17.3).
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Table 17.12: Conditional forecasts of domestic price changes in the UK model

The forecasts are very close to the actual values, especially in the �rst four quarters. The
plot of actual and forecast values is presented in Figure 17.1.

Repeat the earlier process with the same variable P , but this time select the option
�Unconditional Forecasts based on the forecasts of the exogenous variables using the Marginal
Model�. The forecast and errors are displayed in Table 17.13.
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Figure 17.1: Plot of in-sample �tted values and out-of-sample dynamic conditional forecasts
of GDP growth in Indonesia

Table 17.13: Unconditional forecasts of domestic price changes in the UK model
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Notice that forecasts errors are larger than those in Table 17.12. The root mean sum of
squares of forecast errors computed over the forecast period, equal to 0:005, is larger than
that displayed in Table 17.12, computed using conditional forecasts (0:003). The plot of
actual and forecasted values is presented in Figure 17.2. Note that in-sample �tted values
are identical using either conditional or unconditional forecasts.

Figure 17.2: Plot of in-sample �tted values and out-of-sample dynamic unconditional fore-
casts of GDP growth in Indonesia
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17.5 Lesson 17.5: Permanent and transitory components of
output and consumption in a small model of the US
economy

In this lesson we consider a simple model in the logarithms of (private) real output (Y ),
real consumption (C), and real investment (I) for the US economy, using data from the �le
KPSW.FIT in the tutorial directory. In Lesson 16.6 we concluded that these variables could
be I(1), and that a V AR(2) model can adequately capture the dynamic properties of data.
In this lesson we start from these results and employ the multivariate Beveridge-Nelson
representation to compute permanent and transitory components of output, consumption
and investments in the US.

The multivariate BN procedure allows you to extract from non-stationary series a per-
manent component and a transitory component (or cycle), where the permanent component
is further sub-divided into a trend or deterministic part and a stochastic component (see
Section 22.11). More speci�cally, let zt = (Ct; It; Yt)

0 be the vector of variables and consider
the decomposition of zt as

zt = z
P
t + z

C
t

where zCt is the cycle and z
P
t is the permanent component satisfying

zPt = z
P
dt + z

P
st

with zPdt and z
P
st being the trend and stochastic parts. The multivariate BN decomposition

in Micro�t di¤ers from the classic BN decomposition since it allows taking into account
restrictions on intercepts and/or trends, as well as incorporating the long-run relations be-
tween variables. For a description of the multivariate trend-cycle decomposition, see Section
22.11.

Load into Micro�t the �le KPSW.FIT (containing quarterly observations over the period
1947(1)-1988(4) for the US economy), and in the Process window create a constant (INPT )
and a linear time trend (T ). Choose option 3 (Cointegrating V ARX) from the System
Estimation Menu (Multivariate Menu) and in the Commands and Data Transformations
box type10

C I Y & INPT T

Then specify the sample period
1954Q1 1988Q4

Enter 2 as the order of the lag of the endogenous variable11, and click . Since we wish
to avoid the possibility of quadratic trends in some of the variables, restrict the trend, while
leaving the intercept unrestricted.

10Since in this application there are no exogenous variables, identical results can be obtained choosing
option 2 from the System Estimation Menu (Multivariate Menu) and selecting the unrestricted intercepts,
restricted trends option 4.
11Use the AIC or SBC selection criteria available in option 1 in the System Estimation Menu (Multivariate

Menu) to check that the order 2 is adequate.
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The balanced growth hypothesis implies that consumption and investment should be
cointegrated with output, each of them with unit cointegrating vector (see King, Plosser,
Stock, and Watson (1991) and also the discussion in Lesson 16.6). In particular, we expect
the following two long-run relations among these variables (recall that all the three variables
are in logs):

C � Y � I(0) (17.12)

I � Y � I(0) (17.13)

Following the same line of reasoning as in Lessons 17.1 and 17.2, we now test for the over-
identifying restrictions implied by (17.12) and (17.13). In the Cointegrating Var Post Esti-
mation Menu, specify the number of cointegrating vectors r = 2; go to option 6 and then 4,
and type in the box editor the following exact-identifying restrictions:

A1 = 1; A2 = 0;

B1 = 0; B2 = 1;

Micro�t returns an output window with the ML estimates together with their asymptotic
standard errors, which is reproduced in Table 17.14.

Table 17.14: ML estimates under exactly identifying restrictions for the US model

Notice that for both cointegrating vectors the coe¢ cients of the variable Y are very
close to �1, which is the value we would expect under the two long-run relations (17.12)
and (17.13). Furthermore, the coe¢ cients on the time trends are nearly zero in both re-
lations, suggesting that the co-trending restrictions are likely to hold in the case of both
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long-run relations. Click to leave the output screen, and select option 0 to test for

over/identifying restrictions. On the basis of the above results, we now impose restrictions
on the coe¢ cients for Y and on the linear trend T . In the box editor add the following
over-identifying restrictions:

A3 = �1; A4 = 0;

B3 = �1; B4 = 0;

Click to accept the default initial values, and choose the back substitution Algo-

rithm B. When the output appears on the screen, close it and click to compute the
bootstrapped critical values, using the default number of replications and signi�cance levels.
Micro�t starts the computations and, when �nished, returns the output reproduced in Table
17.15.

Table 17.15: Maximum likelihood estimates subject to over-identifying restrictions

Note that the LR test (9:31) is below the 95 per cent bootstrapped critical value (15:91).
Hence, we do not reject the over-identifying restrictions listed above, and in the follow-
ing analysis of the trend-cycle properties of the model we adopt the cointegrating vectors
displayed in Table 17.15.
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Click and then to go to the IR Analysis and Forecasting Menu. Option

5 in this menu enables you to compute the multivariate Beveridge-Nelson (BN) decompo-
sition. You will be presented with a list of initial values and growth rates for the long-run
variables. Leave them unchanged, and click the button. You are then asked to choose
a variable for which you wish to inspect the trend-cycle decomposition. Choose, for exam-
ple, the variable output (Y ), and click , then close the output window to go to the

Trend/Cycle Decomposition Result Menu. Hence, select option 3 to save the decomposition
for all variables in a CSV �le. When the Save as dialogue appears, choose the drive and the
directory in which you want to save the data, and type in a �lename in the usual way. Click
OK, and then specify the sample period

1947Q1 1988Q4

Then click as many times as required to move back to the Commands and Data Transforma-
tions box, go to the File Menu and open the CSV �le you have just saved. Click the
button to make sure that the variables have been correctly loaded in your workspace. Also,
notice that the values for the variables in the workspace are missing until 1953q4, since we
estimated the model over the period 1954q1-1988q4.

Go to the Process window, clear the Commands and Data Transformations box, and type

SAMPLE 1954Q1 1988Q4; PLOT Y P_Y

The output is reproduced in Figure 17.3.
Notice that the permanent component of output rises quite rapidly in the 1960s, and

then more slowly in the 1970s, consistent with the much debated productivity slowdown
that occurred over the course of this decade (see Att�eld and Temple (2003)). In the 1980s,
the growth of the permanent component is more rapid. Our analysis indicates that the rate
of output growth observed in the 1960s was higher than the rate of growth of the permanent
component, re�ecting favourable transitory shocks. To investigate the e¤ect of transitory
shocks, we can add the cycle series of output (C_Y ) to the graph. Close the graph to return
to the Commands and Data Transformation box, and type

SAMPLE 1954Q1 1988Q4; PLOT Y P_Y & C_Y

Micro�t produces a new line graph of Y , P_Y; and C_Y in which is added a secondary
y-axis reporting values for variable C_Y (see Section for more information on the PLOT
command). The graph is shown in Figure 17.4.

Notice that the C_Y series is subject to signi�cant downward, as well as upward, shifts
at various points in the sample. Its behaviour re�ects positive transitory shocks during the
1960s and the 1980s.

We now consider the relationship between output and consumption. Close the graph,
and in the Commands and Data Transformations type

SAMPLE 1954Q1 1988Q4; PLOT C_Y C_C
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Figure 17.3: Plot of the US output and the permanent component

The graph is shown in Figure 17.5. We note that given the multivariate approach to
detrending, the two series incorporate the e¤ect of the interactions between output, con-
sumption and investments.

As expected, the degree of co-movement between the transitory components of output
and consumption is very high, yielding a correlation coe¢ cient of 0:87 (you can obtain the
correlation coe¢ cient by using the command COR; see Section 4.4.8 for the use of this
command). However, the variations of transitory consumption are smaller in absolute value
than those in transitory output, which is in line with the excess smoothness puzzle discussed
in the consumption literature.

The plot of transitory output and transitory investments is provided in Figure 17.6.
Again, there is a high degree of synchronization between the two cyclical components, and
not surprisingly the transitory components of investment show a much more pronounced
cyclical �uctuations as compared to the �uctuations in the transitory component of real
output.

17.6 Lesson 17.6: The trend-cycle decomposition of interest
rates

In this lesson we consider a bivariate VAR model in two interest rates and derive the BN
permanent/transitory decompositions of these variables analytically and then show that they
do in fact coincide with the BN decompositions obtained using Micro�t. In the empirical



CHAPTER 17. LESSONS IN VARX MODELLING AND TREND/CYCLE DEC. 378

Figure 17.4: Plot of the US output, the permanent component and the cycle

part we use data on UK domestic and foreign interest rates (for further details on this
exercise, see Dees, di Mauro, Pesaran, and Smith (2007), and for more information on the
BN decomposition see Section 22.11).

Let rt and r�t be the domestic (UK) and foreign interest rates respectively, and consider
the following simple error-correction models:

�rt = a(rt�1 � r�t�1) + "t
�r�t = b(rt�1 � r�t�1) + "�t

The above two equations can be written more compactly as

zt = Azt�1 + ut (17.14)

where zt = (rt; r�t )
0,ut = ("t; "�t )

0 and

A =

�
1 + a �a
b 1� b

�
Solving the di¤erence equation (17.14) by recursive substitution we have

zt+h = A
hzt +A

h�1ut+1 +A
h�2ut+2 + ::::+ ut+h

and hence
Et (zt+h) = A

hzt
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Figure 17.5: Plot of the transitory components of output and consumption in the US

where Et(�) denotes the expectation operator conditional on the information at time t. Since
in this example there are no deterministic variables such as intercept or trend, the permanent
component of zt is given by

zPt = z
P
st = lim

h!1
Et (zt+h) =

�
lim
h!1

Ah
�
zt = A

1zt (17.15)

If we instead use the common component moving average representation of zt, we have

zt =
�
z0 +C(1)sut +C

�(L)ut

where
�
z0 = z0 �C�(L)u0, sut =

Pt
i=1 ui, and

C(1) =
1P
i=0
Ci

C� (L) =
1X
i=0

C�iL
i

with

C0 = I2, Ci = �(I2 �A)Ai�1 for i = 1; 2; :::

C�i = C�i�1 +Ci
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Figure 17.6: Plot of transitory output and investments in the US

Also, recall that C�(L)ut is the stationary component of zt. Hence,

Et (zt+h) = z0 + Et [C(1)su;t+h] + Et [C
�(L)ut+h]

=
�
z0 +C(1)sut + Et [C

�(L)ut+h]

and since C�(L)ut+h is stationary, then

lim
h!1

Et (zt+h) = z0 +C(1)sut

but noting that

C(1) = I2 � (I2 �A)(I2 +A+A
2 + :::) = lim

h!1
Ah = A1

Hence,
lim
h!1

Et (zt+h) =
�
z0 +A

1sut = z0 +A
1(u1 + u2 + :::+ ut) (17.16)

This result looks very di¤erent from that in (17.15) obtained using the direct method. How-
ever, notice that

zt = A
tz0 +

t�1X
j=0

Aj�1ut�j

Premultiplying both sides by Ah and letting h!1 we have�
lim
h!1

Ah
�
zt =

�
lim
h!1

At+h
�
z0 +

t�1X
j=0

�
lim
h!1

Ah+j�1
�
ut�j
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and since limh!1At+h = A1; for any t, then

A1zt = A1z0 +A
1

0@ t�1X
j=0

ut�j

1A
=

�
z0 +A

1(u1 + u2 + :::+ ut)

implying that (17.15) and (17.16) are equivalent.
In this example A1 can be obtained explicitly. It is easily seen that the eigenvalues of

A are �1 = 1 and �2 = 1 + a� b. Hence, the Jordan form of A is given by

Ah = Q

�
1 0
0 a� b+ 1

�h
Q�1

where

Q =

�
1 1
1 1

ab

�
; Q�1 =

� b
�a+b � a

�a+b
� a
�a+b

a
�a+b

�
Assuming that 0 < b� a < 2, then j�2j < 1, and we have

lim
h!1

Ah = Q

�
1 0
0 0

�
Q�1

=
1

b� a

�
b �a
b �a

�
Therefore, the stochastic component of zt, zPt , is given by

zPt =
1

b� a

�
brt � ar�t
brt � ar�t

�
(17.17)

Clearly, rt and r�t have the same stochastic components. Furthermore, the cycles for rt and
r�t are given by

~rt = rt �
brt � ar�t
b� a =

�a(rt � r�t )
b� a (17.18)

~r�t = r�t �
brt � ar�t
b� a =

b(rt � r�t )
b� a (17.19)

where, using UK data over the period 1979-2003, a = �0:13647 and b = 0:098014 (Dees,
di Mauro, Pesaran, and Smith (2007)). Note that b � a = 0:2345 which falls in the range
(0; 2), as required.

To check that the above results in (17.17) and (17.18)-(17.19) coincide with their counter
parts computed using Micro�t, load the �le UKM07.FIT from the tutorial directory, and
make sure that the variables R and RS are in the workspace. Then select option 1 (no
intercept or trends) from the Cointegrating V AR Menu, and in the Commands and Data
Transformation box type

R RS
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Choose 1 as lag of the V AR, and select the estimation period

1979Q2 2003Q4

Close the output window, and use option 2 to set the number of cointegrating relations r = 1.
Then choose option 6 and then 4, and type the following restriction:

A1 = 1

Close the output window, choose option 1 to test for over-identifying restrictions, and in the
box editor add the restriction

A2 = �1

Click twice to see the results, and check that the LR test does not reject the over-
identifying restrictions. Hence, make the necessary steps to return to the IR Analysis and
Forecasting Menu, and select option 5 to compute the BN trend/cycle decomposition of the
variable R. Close the output window, and in the Trend/Cycle Decomposition Menu choose
to save the decomposition for all the variables in a CSV �le (option 3). When prompted, type
in a �lename and click OK to save the decomposition over the whole time period. Then, click

as many times as required to move back to the Commands and Data Transformation
box. Go to the File Menu and choose to load the CSV �le that you have just saved. Notice
that in the workspace there are the variables R, RS and their BN decompositions (Click on
the button to view the variable names and their descriptions).

Go to the Process window and in the Commands and Data Transformations box type

AHAT = �0:13647; BHAT = 0:098014;
PERM = (BHAT �R�AHAT �RS)=(BHAT �AHAT );

CY CLER = R� (BHAT �R�AHAT �RS)=(BHAT �AHAT );
CY CLERS = RS � (BHAT �R�AHAT �RS)=(BHAT �AHAT )

Alternatively you can retrieve the �le UKM07.EQU from the tutorial directory. The above
commands construct the variables provided by the equations (17.17) and (17.18)-(17.19).
Now clear the Commands and Data Transformations box, and inspect the correlation between
the variables just constructed and the decomposition provided byMicro�t. For example, type

COR PERM P_R P_RS

Notice that all correlations are equal to 1. Then try with

COR CY CLER C_R C_RS

Again, all correlations should be equal to 1. Therefore, the directly computed series PERM ,
CY CLER; and CY CLERS are perfectly correlated with the ones (respectively, P_R
C_R and C_RS) computed using Micro�t.
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17.7 Lesson 17.7: The US equity market and the UK economy

This lesson investigates the time pro�le of the e¤ects on the UK economy of shocks to US
real equity prices, by using the generalized impulse response methodology in the context of a
V ARX model (see Section 22.10.4). In this lesson the US economy is considered exogenous
to the UK economy, and plays the role of the rest of the world. See Dees, di Mauro,
Pesaran, and Smith (2007) and Pesaran, Schuermann, and Weiner (2004) for further details
on cointegrating V ARs for multiple countries.

We set up a V ARX model for the UK economy with �ve endogenous variables, namely
domestic output, interest rate, exchange rate, in�ation and equity price index, and three
exogenous variables, given by real oil price (in the UK), and in�ation rate, interest rate and
equity prices in the US. These variables for the period 1979q2-2003q4 are contained in the
CSV �le entitled UKUSEK.CSV in the tutorial directory:

Y UK real output
DP UK in�ation rate
EPEPS Sterling e¤ective exchange rate
Q UK real equity price index
R UK rate of interest (0.25*log(1+R/100))
RPOIL UK real oil price
US_DP US in�ation
US_Q US real equity price index
US_R US interest rate (0.25*log(1+US_R/100))
INPT Intercept
T Time trend

Select option 3 from the Multivariate Menu, and switch on the �Simulation of critical val-
ues�button. Then choose the period 1979Q2-2003Q4 as an estimation sample, select 1 as
lags for the both endogenous and exogenous variables,12 and in the Commands and Data
Transformation type

Y R EPEPS DP Q; US_DP US_R US_Q RPOIL & INPT T

Alternatively, you can retrieve the LST �le UKUSMOD.LST from the tutorial directory.
Check the checkbox corresponding to the variable T to restrict the time trend, and as
marginal models for the four exogenous variables specify

1 1 INPT ;

1 1 INPT ;

1 1 INPT ;

1 1 INPT

12This choice was based on the SBC criterion obtained from option 1 (unrestricted V AR) in the Multi-
variate Menu.
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Notice that both trace and maximum eigenvalue statistics in the output window show the
presence of two cointegrating relations. Hence, close the output and use option 2 to specify
the number of cointegrating relations r = 2. Then go to the Long-Run Structural Modelling
Menu and choose option 4 to test for restrictions. In the box editor type the following
restrictions:

A2 = 1;A4 = �1;
B2 = 1;B7 = �1

The above restrictions represent the Interest Rate Parity (IRP ) and the Fisher In�ation
Parity (FIP ) (see Lesson 17.1 and 17.3 for a description of these relations). Close the
output window, and in the IR Analysis and Forecasting Menu choose option 1 to perform
an impulse response analysis of shocks to equations. Select the generalized impulse response
analysis (option 2) and choose to shock the equation for the US equity price index (US_Q).
Then de�ne the horizon for impulse response as an interval of 25 time periods. You can
inspect the results that follow, or use option 2 in the following Impulse Response Results
Menu to obtain a graphic display of these impulse responses. By using option 0 you can also
compute the bootstrapped con�dence intervals. Choose, for example, to inspect results for
real output (Y ) and then interest rate (R), and their 2:5 and 97:5 percentiles. The results
are displayed in Figure 17.7 and 17.8, respectively. Notice that the shock is accompanied
by a statistically signi�cant increase in the UK real output. Conversely, the increase in the
interest rate is not statistically signi�cant, as is evident in Figure 17.8.

Use option 3 from the IR Analysis Menu to inspect the e¤ect of a shock to the equation
for US_Q on the cointegrating vectors. Using the same steps outlined above, choose to see
the e¤ect on CV 1, which describes the IRP relation. Results are displayed in Figure 17.9.
Notice that the response of the �rst cointegrating relation to a shock on US real equity prices
is very small, becomes statistically signi�cant after four quarters.
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Figure 17.7: Generalized impulse response of real output to a shock in the equation for
US_Q

17.8 Exercises in VARX modelling

Exercise 17.1

Load into Micro�t the �le UKCORE.FIT (see Lesson 17.1 for a description of the variables)
and consider the following long-run relations:

PPP : P � E � PS � I(0)
OG : Y � Y S � I(0)

where Y and Y S are domestic and foreign outputs. The �rst relation describes a purchasing
power parity (PPP ) relation, which predicts that in the long-run domestic and foreign prices
measured in a common currency equilibrate. The second relation is an output gap (OG)
relation, which states that production at home and abroad equilibrate in the long-run. Use
option 3 from the Multivariate Menu to estimate a model with Y , Y S, P , E and PS, where
Y S and PS are assumed to be weakly exogenous, over the period 1966q1-1999q4. Test the
PPP and OG. Initially you need two restrictions on each of the two cointegrating vectors
in order to just identify them. You should then impose the over-identifying restrictions (one
by one and gradually) and test to see if these over-identifying restrictions are supported by
the data.
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Figure 17.8: Generalized impulse response of in�ation to a shock in the equation for US_Q

Exercise 17.2

Repeat the steps of Exercise 17.2 and then use the impulse response analysis to study the
e¤ect of a system-wide shock on the two cointegrating relations.

Exercise 17.3

Repeat Lesson 17.4, and compute conditional and unconditional forecasts for changes in
foreign prices.

17.8.1 Exercise 17.4

Consider the e¤ects of a unit shock to US interest rates on real output and in�ation in the
UK in the context of a VARX model, using the data analysed in Lesson 17.6 (17.7).
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Figure 17.9: Generalized impulse response of CV 1 to a shock in the equation for US_Q



Chapter 18

Lessons in SURE Estimation

The lessons in this chapter are concerned with the options in Micro�t for the maximum
likelihood (ML) estimation of Seemingly Unrelated Regression Equations (SURE) models.
They can be used for estimation of V AR (or vector error correction) models subject to
restrictions on their short-run parameters, or to estimate systems of equations. The restricted
SURE option can also be used to estimate systems of equations subject to general linear
restrictions, including linear cross-equation restrictions. This option is particularly useful
for estimation of systems of budget shares and factor demand share equations subject to
homogeneity and/or symmetry restrictions. Another important use of the restricted SURE
option is in the area of pooling of time-series across a relatively small number of groups
(countries, �rms, and so on). For an account of the SURE options and how they can be
used see Sections 7.7.1 and 7.7.2. The econometrics that underlie the analysis of SURE
models and the numerical algorithms used to compute them can be found in Section 22.1.

18.1 Lesson 18.1: A restricted bivariate VARmodel of patents
and output growth in the US

In this lesson we show how to use the SURE option to estimate restricted V AR models.
For this purpose we consider the following bivariate model in the rates of change of US
GDP output, denoted by DLY USA and patents (DLQUSA) granted to US �rms by the
US Patent O¢ ce:

DLY USAt = a1 +

2X
j=1

b1jDLY USAt�j +
10X
j=9

c1jDLQUSAt�j + d1D74t + u1t

DLQUSAt = a2 +
2X
j=1

b2jDLY USAt�j +
2X
j=1

c2jDLQUSAt�j + u2t

where D74 is an oil shock dummy variable which takes the value of 1 in the four quarters
of 1974 and zero elsewhere. This model assumes that changes in patents (intended to proxy
technological innovations) only start to a¤ect output growth after at least two years. It also

388
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assumes that only output growth was immediately a¤ected by the oil crisis. This model is
a restricted version of a V AR(10) model in DLY USAt and DLQUSAt, and needs to be
estimated using the SURE option.

The relevant data is available in the special Micro�t �le G7GDP.FIT, and is described in
detail in Chapter 15 in Lesson 15.1. Read this �le into Micro�t, and choose the unrestricted
SURE option 4, in the System Estimation Menu (Multivariate Menu: see Section 7.3).
Specify the restricted V AR model set out above by typing

dlyusa const dlyusaf1� 2g dlqusaf9� 10g d74;
dlqusa const dlyusaf1� 2g dlqusaf1� 2g

Choose the whole sample for estimation, and click to carry out the computations. You
will be presented with the Post System Estimation Menu. To see the estimates of the output
growth equation choose option 1 and then select the variable DLY USA. You should obtain
the results in Table 18.1.

Table 18.1: Relationship between US output growth and patents

The lagged patent variables are marginally signi�cant. A test of the joint hypothesis
that c1;9 = 0 and c1;10 = 0 can be carried out using option 3 in the Post System Estimation
Menu. Click and then twice to reach this menu, choose option 3, and then
type

A4 = 0; A5 = 0

The test results should appear on the screen. The Wald statistic for testing the joint hy-
pothesis that lagged patent growths have no impact on output growth is rejected at 5 per
cent level. Other hypothesis of interest, such as Granger non-causality of output growth,
can also be tested using option 4 in the Post System Estimation Menu.
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18.2 Lesson 18.2: Estimation of Grunfeld-Griliches invest-
ment equations

In an important study of investment demand, Grunfeld (1960) and Grunfeld and Griliches
(1960) estimated investment equations for ten �rms in the US economy over the period
1935-1954. In this Lesson we estimate investment equations for �ve of these �rms by the
SURE method. This smaller data set is also analysed in Greene (2002). The Micro�t �le
GGSURE.FIT contains annual observations over the period 1935-1954 (inclusive) on the
variables

Iit Gross investment
Fit Market value of the �rm at the end of the previous year
Cit Value of the stock of plant and equipment at the end of

the previous year

The �ve �rms indexed by i are General Motors (GM), Chrysler (CH), General Electric
(GE), Westinghouse (WE) and US Steel (USS). In the �le, these variables are denoted by
adding the pre�xes GM , CH, WE and USS to the variable names. For example, GMI
refers to General Motors�gross investment, and WEF to the market value of Westinghouse.

The SURE model to be estimated is given by

Iit = �i1 + �i2Fit + �i3Cit + uit (18.1)

for i = GM , CH, GE,WE, and USS, and t = 1935; 1936; :::; 1954. Read the �le GGSURE.FIT
and choose option 4 (unrestricted SURE method) in the System Estimation Menu (see Sec-
tion 7.3). You will now be asked to specify all the equations in the SURE model, separating
them by semicolons. In the box editor type

GMI const gmf gmc;
CHI const chf chc;
GEI const gef gec;
WEI const wef wec;
USSI const ussf ussc

Notice that upper- and lower-case letters have the same e¤ects in Micro�t, and here we have
used upper case letters for the left-hand-side variables simply for expositional convenience.
Also it is often much simpler to specify the di¤erent equations in the model one after another
without starting on a new line. For an example, see Figure 18.1 (the equations are saved in
the �le GGSURE.LST, which can be retrieved using the button).

Estimate the model over the whole sample period. The program carries out the computa-
tions and then presents you with the Post System Estimation Menu. You can use the various
options in this menu to see the SURE estimates, test restrictions on the coe¢ cients, and
compute forecasts. For example, if you wish to see the results for Chrysler, choose Option 1
and, when prompted, select the variable CHI. The results in Table 18.2 should now appear
on the screen.
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Figure 18.1: SURE estimation

Table 18.2: SURE estimates of the investiment equation for the Chrysler company

Except for the intercept term, the results in this table are comparable with the SURE
estimates for the same equations reported in Table 14.3 in Greene (2002). Similarly, the
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estimates for the other investment equations in the model can be inspected.
Since the SURE estimation is appropriate under a non-diagonal error covariance ma-

trix, it may now be of interest to test this hypothesis. For this purpose we need to esti-
mate all the �ve individual equations separately by the OLS method, and then employ the
log-likelihood ratio procedure discussed in Section 22.2.2 (see also Lesson 15.4). The maxi-
mized log-likelihood values for the �ve equations estimated separately are for General Motors
(�117:1418), Chrysler (�78:4766), General Electric (�93:3137), Westinghouse (�73:2271)
and US Steel (�119:3128), respectively, yielding the restricted log-likelihood value of

�481:472 (= �117:1418� 78:4766� 93:3137� 73:2271� 119:3128)

The maximized log-likelihood value for the unrestricted system (namely, when the error co-
variance matrix is not restricted) is given at the bottom right-hand corner of Table 18.2,
under �System Log-likelihood� (= �459:0922). Therefore, the log-likelihood ratio statistic
for testing the diagonality of the error covariance matrix is given by LR = 2(�459:0922 +
481:472) = 44:76, which is asymptotically distributed as a chi-squared variate with 5 (5� 1) =2 =
10 degrees of freedom. The 95 per cent critical value of the chi-squared distribution with 10
degrees of freedom is 19:31. Hence, we reject the hypothesis that the error covariance matrix
of the �ve investment equations is diagonal, which provides support for the application of
the SURE technique to this problem. To see the magnitude of the o¤-diagonal elements
of the estimated error covariance matrix you need to choose option 2 in the Post System
Estimation Menu, by which you should obtain the results in Table 18.3. As you can see, the
covariance estimates on the o¤-diagonal elements are quite large relative to the respective
diagonal elements.

Table 18.3: Estimated system covariance matrix of errors for Grunfeld-Griliches investment
equations

18.3 Lesson 18.3: Testing cross-equation restrictions after
SURE estimation

In the previous lesson we estimated investment equations for �ve US �rms, and found that
the SURE procedure was an appropriate estimation method to apply. Suppose you are now
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interested in testing the hypothesis that the coe¢ cients of Fit, the market value of the �rms,
are the same across all the �ve companies. In terms of the coe¢ cients of the equations in
(18.1), the relevant null hypothesis is

H0 : �i2 = �2; for i = GM; CH; GE; WE; USS

These four restrictions clearly involve coe¢ cients from all the �ve equations. To implement
this test, read the �le GGSURE.FIT and then choose the Unrestricted SURE option (option
4) in the System Estimation Menu (Multivariate Menu). Retrieve the �le GGSURE.LST into
the box editor on the screen by clicking . Estimate the equations over the whole sample
period and choose option 3 in the Post System Estimation Menu. Type the following four
restrictions in the box editor that appears on the screen:

A2 = B2; B2 = C2; C2 = D2; D2 = E2

You should now obtain the test results in Table 18.4. The LR statistic for testing these
restrictions is 20.46 which is well above the 95 per cent critical value of the chi-squared
distribution with 4 degrees of freedom, and we therefore strongly reject the slope homogeneity
hypothesis.

Table 18.4: Testing the slope homogeneity hypothesis

18.4 Lesson 18.4: Estimation of a static almost ideal demand
system

In this lesson we show how to use the restricted SURE option in Micro�t to estimate a
system of demand equations subject to homogeneity and symmetry restrictions. For this
purpose we consider the static version of the almost ideal demand model of Deaton and
Muellbauer (1980), which postulates that the expenditure share of the ith commodity group,
wit, i = 1; 2; :::;m is determined by

wit = �i +
mX
j=1

ij logPjt + �i log (Yt=Pt) + uit (18.2)
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where Pjt is the price de�ator of the commodity group j, Yt is the per capita expenditure on
all the goods, and Pt is the general price index, approximated using the Stone formula:

logPt =
mX
j=1

wj0 logPjt (18.3)

The weights wj0 refer to the budget shares in the base year, which is taken to be 1990.
Consumer theory imposes the following restrictions on the parameters of the share equation:

Homogeneity restrictions :
mX
j=1

ij = 0; i = 1; 2; :::;m (18.4)

Symmetry restrictions : ij = ji; for all i; j (18.5)

We also have
Pm
i=1wit = 1, and hence only m � 1 of the shares can be independently

explained/estimated.
The share equations in (18.2) are unlikely to hold in each and every period, and are

best incorporated within a dynamic framework which freely allows for short-run departures
from the �equilibrium�budget share equations given by (18.2). Such an exercise is carried
out in Pesaran and Shin (2002). Here we consider the above static formulation both to
demonstrate how the restricted SURE option in Micro�t can be used, and also to highlight
the importance of appropriately allowing for dynamics in estimation of demand equations.

We estimate a three-commodity system on the UK quarterly seasonally adjusted data
over the period 1956(1)-1993(2). The three commodity groups are

(1) Food, drink and tobacco
(2) Services (including rents and rates)
(3) Energy and other nondurable

The relevant data are in the special Micro�t �le CONG3.FIT, containing the following
variables:1

INPT Intercept term
LP1 Log of implicit price de�ator for the Food, Drink

and Tobacco group
LP2 Log of implicit price de�ator for the Services group
LP3 Log of implicit price de�ator for the Energy group
LRY Log of per capita real total expenditure
W1 Share of expenditure on Food, Drink and Tobacco group
W2 Share of expenditure on the Services group
W3 Share of expenditure on the Energy group

Load this �le, and move to the System Estimation Menu. Initially choose option 4 to estimate
the unrestricted version of the equations in (18.2), and type

W1 INPT LP1 LP2 LP3 LRY ;
W2 INPT LP1 LP2 LP3 LRY

1For the source of this data set and other details see Pesaran and Shin (2002).
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Notice that we have decided to work with the budget shares W1 and W2, but we could have
equally considered any one of the pairs (W2; W3) or (W1; W3). The results are invariant
to this choice.

For the estimation period type

1956Q1 1993Q2

Click . You can now inspect the estimation results by choosing option 1 in the Post
System Estimation Menu. The results seem quite satisfactory, except for the low value of
the Durbin-Watson statistics obtained for both of the share equations, thus highlighting the
importance of the missing dynamics.

To test the homogeneity restrictions given in (18.4), return to the Post System Estimation
Menu, choose option 3, and type

A2 +A3 +A4 = 0;

B2 +B3 +B4 = 0

The Wald statistic, 4:0755, for testing these restrictions should now appear on the screen,
and suggests that the homogeneity restrictions cannot be rejected.

We now re-estimate the share equations subject to the homogeneity restrictions. For this
purpose, return to the System Estimation Menu, and choose the restricted SURE option 5.
Click to accept the (unrestricted) speci�cation of the share equations, still retained in
the box editor from previously. You will now be asked to specify your parameter restrictions.
Type

A2 +A3 +A4 = 0;

B2 +B3 +B4 = 0

The program now carries out the necessary computations and presents you with the restricted
SURE estimates. For example, to see the estimates for the W1 equation (the share of Food,
Drink and Tobacco) choose option 1 in the Post System Estimation Menu, and select W1.
The results in Table 18.5 should appear on the screen.
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Table 18.5: SURE estimates of the budget share equation for food subject to the homo-
geneity restrictions

Notice that the sum of the estimated coe¢ cients on the price variables do in fact add up
to zero, as required by the homogeneity hypothesis.

We now consider testing the symmetry restriction. In the present case where m = 2,
there is only one restriction implied by the symmetry hypothesis, namely 12 = 21. Press
the Esc key twice to return to the Post System Estimation Menu, and choose the Wald test
option 3. Click to clear the box editor, and type

A3 = B2

to obtain the test results reproduced in Table 18.6.

Table 18.6: Wald test of the symmetry restriction

The Wald statistic for testing the symmetry restriction is equal to 21:95, which is well in
excess of 3:84, the 95 per cent critical value of the chi-squared distribution with one degree of
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freedom. Therefore, in the present static formulation the symmetry hypothesis is decisively
rejected. But in view of the very low DW statistics of the estimated equations and the
problem of dynamic mis-speci�cations that surround these share equations, this may not
be a valid conclusion. In fact, using the long-run structural modelling approach where the
share-equations are embodied within an unrestricted V AR model, Pesaran and Shin (2002)
cannot reject the homogeneity or the symmetry restrictions using the same data set.

18.5 Lesson 18.5: Estimation of a New Keynesian three equa-
tion model

In this exercise we illustrate the estimation of a simple three-equation New Keynesian (NK)
macroeconomic model for the US economy by restricted three-stage least squares (see Section
22.2). The model explains the dynamics of three variables: the rate of in�ation, DPt; the
output gap, Y_Ct; and the nominal short-term rate of interest, Rt. The output gap is
measured as the deviation of GDP (in logs) from its long-horizon forecast, calculated using
the Cointegrating VARX option from the Multivariate Menu. Speci�cally, the NK model is
de�ned by

DPt = a1 + a2Y_Ct + a3DPt�1 + a4DPSt + "1t (18.6)

Y_Ct = b1 + b2DPt + b3Rt�1 + b4Y_Ct�1 + "2t (18.7)

Rt = c1 + c2DPt + c3Y_Ct + c4Rt�1 + "3t (18.8)

where DPSt is the foreign in�ation. The above equations describe a Phillips Curve, an IS or
aggregate demand curve, and a Taylor Rule for monetary policy, respectively. The system is
augmented by foreign in�ation to act as a cost shock in the Phillips Curve. Notice that in a
perfect foresight economy the ex-ante real interest rate in period t�1 is (rt�1��t) so that we
would expect b2 = �b3. The relevant data are in the special Micro�t �le 3EQMODUS.FIT.
Load this �le, and move to the System Estimation Menu (Multivariate Menu). Choose option
9 to estimate by restricted three stage least squares system (18.6)-(18.8), and type

DP INPT Y_C DP (�1) DPS;

Y_C INPT DP R(�1) Y_C(�1);
R INPT DP Y_C R(�1);

Alternatively, you can retrieve the �le 3EQM.EQU from the tutorial directory. With this
option you do not need to specify the instruments, as Micro�t automatically identi�es them
from the system, and in this case are INPT , DPSt; DPt�1; Y_Ct�1; and Rt�1.2 Notice
that the system is over-identi�ed. A window appears in which you are requested to impose
restrictions on the parameters. In the box editor type

B2 +B3 = 0

2Micro�t sets as exogenous all variables that do not appear on the left hand side of equation system
(18.6)-(18.8).
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Now select option 1 from the Post System Estimation Menu, and choose to display results
from estimation for each equation in turn. The output for the three equations is reproduced
in Table 18.7.

Table 18.7: Three-stage least squares estimation of the New Keynesian model

Notice that in the equations for DP , and for R and all estimated parameters, are statisti-
cally signi�cant and have the expected signs. In the Y_C equation, the parameter estimate
attached to Y_C(�1) is also signi�cant with the correct sign.

18.6 Lesson 18.6: 2SLS and 3SLS estimation of an exactly
identi�ed system

In this application we estimate an exactly identi�ed system of equations by two-stage least
squares and three-stage least squares. Exact identi�cation arises when, in the equation to
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be estimated, the number of excluded exogenous variables is exactly equal to the number
of included endogenous variables minus 1. (see Section 22.2 for more details). Consider the
following system of equations:

DPt = a1 + a2Yt +DPSt + "1t
Yt = b1 + b2DPt + b3Rt�1 + "2t
Rt = c1 + c2DPt + c3Yt + "3t

whereDPt andDPSt denote domestic and foreign in�ation respectively, Yt is the real output,
and Rt is the nominal interest rate. The exogenous/predetermined variables are DPSt, Rt�1
and the unit vector (the intercept). The endogenous variables are identi�ed by Micro�t as
the left-hand-side variables, namely DPt, Yt and Rt. Notice that all the equations in this
system are exactly identi�ed. For example, the DPt equation has two endogenous variables
with one excluded predetermined variable, Rt�1, and so is exactly identi�ed. The same
applies to the other two equations. The Rt equation has three endogenous variables and two
excluded exogenous/pre-determined variables, and hence it is also exactly identi�ed since
the number of included endogenous variables minus 1 is equal to the number of excluded
exogenous/pre-determined variables.

The relevant data are in the special Micro�t �le UKM07.FIT (see Lesson 18.2). Load
this �le into Micro�t and in the Process window create an intercept (INPT ). Select option
6 from the Multivariate Menu, and in the Commands and Data Transformation box type

DP INPT Y DPS;
Y INPT DP R(�1);
R INPT DP Y ;

Table 18.8 reports results on the estimation of each individual equation. Make the necessary
steps to return to the Process and Data Transformation box, select option 8 (3SLS), and in
the Commands and Data Transformation box type the same system speci�cation as above.
Inspect each equation in turn and verify that the output is identical to that reported in
Table 18.8. Clearly, in the exact identi�ed case there is no gain in e¢ ciency by using the
3SLS method, and the two-stage least squares method can be used.
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Table 18.8: Two-stage least squares estimation

18.7 Exercises in SURE Estimation

18.7.1 Exercise 18.1

In Lesson 18.1 we assumed that growth of patents only in�uences output growth with a lag
of two years. Estimate similar bivariate models for Japan and Germany, and comment on
your results. The relevant data can be found in the special Micro�t �le G7GDP.FIT.

18.7.2 Exercise 18.2

Test the hypothesis that the error covariance matrix of the restricted bivariate model esti-
mated in Lesson 18.1 is diagonal.

18.7.3 Exercise 18.3

Re-estimate the Grunfeld-Griliches investment equations using a log-linear speci�cation.
Compute the values of Akaike and Schwarz criteria to discriminate between the linear and
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the log-linear speci�cations.

18.7.4 Exercise 18.4

Estimate a simple dynamic version of the Grunfeld-Griliches investment equations by in-
cluding a �rst-order lag of the investments variable among the regressors.

18.7.5 Exercise 18.5

Repeat the estimation and testing exercises in Lesson 18.4 with (W1; W3) and (W2; W3)
as the budget shares to be explained. Check that you do in fact obtain identical estimation
results and make the same inferences.

18.7.6 Exercise 18.6

Use the data in CONG3.FIT to estimate the following dynamic version of the share equations
given by (18.2) over the period 1956(1)-1993(2):

w1t = �1 + �11w1;t�1 + �12w2;t�1 +
3X
j=1

1j logPjt + �1 log (Yt=Pt) + u1t

w2t = �2 + �21w1;t�1 + �22w2;t�1 +
3X
j=1

2j logPjt + �2 log (Yt=Pt) + u2t

Derive the parameter restrictions for testing the long-run homogeneity and the symmetry
restrictions. Test the validity of these restrictions and compare your results with those
obtained in Lesson 18.4.



Chapter 19

Lessons in Univariate GARCH
Modelling

Lessons in this section show how to estimate linear regression models under a variety of
speci�cations for conditional error variances. The relevant estimation options, the underlying
econometric methods and the computational algorithms are described in Sections 8.6 and
23.1. For a comprehensive review of the application of the GARCH modelling to �nancial
data see Pagan (1996).

19.1 Lesson 19.1: Testing for ARCH e¤ects in monthly $/£
exchange rates

In this lesson we consider the following AR(1) model for the rate of change of the $/£
exchange rate:

� log(USDt) = �0 + �1� log(USDt�1) + ut (19.1)

and test for ARCH e¤ects in the conditional variance of ut, namely h2t = V ar(ut j
t�1 ).
The ARCH(q) speci�cation for h2t is given by

h2t = �0 + �1u
2
t�1 + �2u

2
t�2 + � � �+ �qu2t�q (19.2)

The null hypothesis of �no ARCH e¤ect��is

H0 : �1 = �2 = � � � = �q = 0

to be tested against the alternative hypothesis that

H0 : �1 6= 0; �2 6= 0; : : : ; �q 6= 0

The test involves running a regression of squared OLS residuals from the regression (19.1)
on lagged squared residuals (see Section 23.1.7). In what follows we apply the test to
monthly observations on the US Dollar/Sterling rate available in the special Micro�t �le

402
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EXMONTH.FIT. This �le contains monthly observations on the following exchange rates
over the period 1973(1)-1995(6)

CAN Canadian Dollar to one British sterling
DM German Deutschmark to one British sterling
EP Spanish peseta to one British sterling
FF French franc to one British sterling
ITL Italian lira to one British sterling
SF Swiss franc to one British sterling
USD US dollar to one British sterling
Y EN Japanese yen to one British sterling

Read this �le into Micro�t, and in the Commands and Data Transformations window of the
Process window type

DLUSD = LOG(USD=USD(�1)); ONE = 1

to create the rate of change of $/£ in the variable DLUSD. ONE is a vector of ones. To
specify the regression equation (19.1) choose option 1 from the Single Equation Estimation
Menu (Univariate Menu), selecting the OLS option. Type

DLUSD ONE DLUSD(�1)

For the estimation period enter

1973M1 1994M12

thus keeping the observations for the �rst six months of 1995 for volatility predictions (see
Lessons 19.4). Click , and when the results appear click to move to the Post

Estimation Menu. Choose option 2 to move to the Hypothesis Testing Menu (see Section
6.23) and choose option 2 to carry out the ARCH test. You will be asked to specify the
order (from 1 to 12) of the test. Type

1

The test results should now appear on the screen. The LM version of the test yields a
statistic of 8:65, which is well above the 95 per cent critical value of �21, and hence rejects the
hypothesis that there are no ARCH e¤ects in (19.1): see Table 19.1. The same conclusion
is reached if one considers the F -version of the test. Tests of higher-order ARCH e¤ects
also yield similar results, although as the order of the test increases the power of the test
tends to decline. For example, the value of the ARCH(12) test statistic is 11:89, which
is well below the 95 per cent critical value of �212, and does not reject the hypothesis that
�1 = �2 = � � � = �12 = 0. In practice, it is prudent to carry out the test for di¤erent orders
and then make an overall judgement.
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Table 19.1: Testing for the ARCH e¤ect in the monthly dollar/sterling rate
Autoregressive Conditional Heteroscedasticity Test of Residuals (OLS Case)

**********************************************************************

Dependent variable is DLUSD

List of the variables in the regression:

ONE DLUSD(-1)

262 observations used for estimation from 1973M3 to 1994M12

**********************************************************************

Lagrange Multiplier Statistic CHSQ( 1) = 8.6475[.003]

F Statistic F( 1, 259) = 8.8403[.003]

**********************************************************************

As with all diagnostic tests, rejection of the null hypothesis that there are no ARCH
e¤ects does not necessarily imply that conditional variance of � log(USD) is variable. This
can happen particularly if the disturbances ut in (19.1) are serially correlated. But in the
present application, using option 1 in the Hypothesis Testing Menu, the hypothesis that
uts are serially uncorrelated cannot be rejected, and therefore there may well be important
ARCH e¤ects in the data. We estimate various ARCH type models of exchange rate changes
in Section 19.2.

19.2 Lesson 19.2: Estimating GARCH models for monthly
$/£ exchange rate

In the previous lesson we found some evidence of an ARCH e¤ect in the rate of change of
the $/£ exchange rate, � log(USDt); see equation (19.1). Here we show how to use Micro�t
to estimate GARCH models for h2t , the conditional variance of � log(USDt). We assume
that the mean equation for the exchange rate changes follows the AR(1) process,

xt = �0 + �1xt�1 + ut

where xt = � log(USDt), and ut is a white noise process,

E(ut) = 0; E(utut�j) =

�
�2 for j = 0
0 for j 6= 0

�
and j�1j < 1: Therefore, xt is a covariance-stationary process. In this case the optimal linear
forecast of xt is given by

E(xtjxt�1; xt�2; :::) = �0 + �1xt�1

where E(xtjxt�1; xt�2; :::) denotes the linear projection of xt on constant and the past ob-
servations (xt�1; xt�2;:::). While the conditional mean of xt changes over time, if the process
is covariance-stationary, the unconditional mean of xt is constant:

E(xt) =
�0

1� �1
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We may be interested in forecasting not only the level of xt, but also its variance. Although
the unconditional variance of ut is constant, �2; its conditional variance could be time-
varying. A simple example of such a process is the autoregressive conditional heteroscedastic
process of order 1, denoted ut � ARCH(1) or GARCH(0; 1):

V (xt j
t�1 ) = V (ut j
t�1 ) = h2t = �0 + �1u
2
t�1

Furthermore, if �1 < 1, then the unconditional variance of ut is given by

�2 =
�0

1� �1

which is constant. In general, if h2t evolves according to

h2t = �0 + �1u
2
t�1 + :::+ �qu

2
t�q + �1h

2
t�1 + � � �+ �ph2t�p

we have the generalized autoregressive conditional heteroscedastic model, denoted by ut �
GARCH(p; q). For further details and other models of volatility see Sections 8.6 and 23.1.

In this lesson we consider estimating the following GARCH(1; 1) models:

V (ut j
t�1 ) = h2t = �0 + �1u
2
t�1 + �1h

2
t�1 (19.3)

For a well-de�ned GARCH(1; 1) process we must have �0 > 0, j�1j < 1, and 1��1��1 > 0.
These restrictions ensure that the unconditional variance of ut given by V (ut) = �0=(1 �
�1 � �1) is positive. In a number of econometric applications the coe¢ cient �1 in (19.3) is
also assumed to be positive. Micro�t does not impose this restriction in estimation of the
model, but if a large negative estimate of �1 is encountered, or if �0=(1� �1 � �1) becomes
negative in the course of the iterations, the program produces an error message.

To estimate theGARCH(1; 1)model (19.3) on the $/£ exchange rate variable,� log(USDt),
�rst follow the steps in Lesson 19.1, and specify the regression equation (19.1) to be esti-
mated over the sample period 1973(1)-1994(12). Move to the Volatility Modelling Menu and
choose option 1. In the GARCH Estimation Menu select option 1. You are then asked to
choose between a normal and a t-distribution for the conditional distribution of the errors,
ut. Choose the normal distribution option by choosing option 1 and clicking . In the

box editor, type the orders of the GARCH(p; q) model to be estimated as follows:

1; 1

You will now be presented with another box editor to list any additional variables that you
may wish to include in the model for the conditional variance, (19.3): see Section 8.6 for
more details. In the present application there are no additional regressors in the GARCH
model, so click to move to the next screen, where you will be asked to provide initial
estimates for the parameters of the GARCH model, namely �0; �1 and �1, respectively.
Micro�t automatically suggests using the OLS estimate of the unconditional variance, �̂2,
as the initial estimate for �0. You must, however, provide initial estimates for �1 and �1:
For �1 (the �MA lag 1�coe¢ cient) type 0.1, and for �1 (the �AR lag 1�coe¢ cient) type 0.4
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and click to accept these initial estimates. Micro�t starts the computations, which
converge after 36 iterations. The results reproduced in Table 19.2 should now appear on the
screen.

Table 19.2: Modelling conditional heteroscedasticity of the dollar/sterling rate

The ML estimates �̂1 = 0:19664(0:1138) and �̂1 = 0:19941(0:2625) have the correct signs,
but neither are statistically signi�cant at the 95 per cent level. The bracketed �gures are
asymptotic standard errors.

Micro�t also allows you to test linear or non-linear restrictions on the coe¢ cients of the
GARCH model. Suppose you are interested in testing the joint hypothesis that

H0 : �1 = �1 = 0

against
H1 : �1 6= 0; �1 6= 0;

Choose option 2 in the Post Regression Menu (after the GARCH estimation), and then
option 7 in the Hypothesis Testing Menu. Click and type

B2 = 0; B3 = 0

The results in Table 19.3 should appear on the screen. The Wald statistic for testing the
joint hypothesis that �1 = �1 = 0 is equal to 4.94, which is signi�cant at the 91.5 per cent
level, but not at the conventional 95 per cent level.
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Table 19.3: Testing joint restrictions on the parameters of the GARCH model for the dol-
lar/sterling rate

Suppose now that you wish to estimate theGARCH(1; 1)model (19.3) using the Student-
t density function for the conditional distribution of the errors. Choose Option 0 to return
to the GARCH Estimation Menu. Estimate the GARCH(1; 1) model (19.3) again, and
when asked to specify the underlying distribution, choose option 2. Specify the order of the
GARCH as

1; 1

and click again when the second editor appears. You will now be asked to give initial
estimates for the �1 and �1. For the degrees of freedom of the t-distribution the default
initial value of 10 is suggested by Micro�t. Type 0.1 and 0.4 for the �MA lag 1��and �AR lag
1��coe¢ cients and click to accept. Micro�t starts the computations, and converges
after 31 iterations. The estimates in Table 19.4 should appear on the screen.
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Table 19.4: Modelling conditional heteroscedasticity of the dollar/sterling rate

The estimate of 9:896 obtained for �, the parameter of the t-distribution, suggests only a
mild departure from the normality. However, theML estimate of �1 given by 0:5600(0:1107)
now suggests a signi�cant GARCH e¤ect. The Wald statistic for the test of the joint
hypothesis �1 = �1 = 0 is now 49:61, which is highly signi�cant.

A comparison of the Akaike and Schwarz criteria across the above two speci�cation of the
conditional error distribution tends to favour the t-distribution, although as to be expected,
the SBC heavily penalizes the t-distribution for the additional degrees of freedom parameter,
�, which is estimated: see Tables 19.2 and 19.4.

19.3 Lesson 19.3: Estimating EGARCH models for monthly
$/£ exchange rate

The exponential GARCH(1; 1) (or EGARCH(1; 1)) model is de�ned by

log h2t = �0 + �1

�
ut�1
ht�1

�
+ ��1

�����ut�1ht�1

����� ��
+�1 log h

2
t�1

where � = E (jut�1=ht�1j). Unlike the GARCH(1; 1) model estimated in Lesson 19.2, the
above speci�cation has a well-de�ned conditional variance h2t = V (ut j
t�1) , for all parameter
values, �0; �1; ��1. But for the process to be stable it is still required that j�1j < 1. For further
details and references to the literature see Section 23.1.
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The exchange rate model to be estimated is the same as in Lessons 19.1 and 19.2. Read
the Micro�t �le EXMONTH.FIT and specify the regression equation (19.1) to be estimated
over the period 1973(1)-1994(12), then choose option 1 in the Volatility Modelling Menu to
move to the GARCH Estimation Menu (see Section 8.6). Then choose option 5, click ,
and enter

1; 1

for the initial estimate of �1 (�MA lag 1�), ��1 (�ABS MA 1�), and �1 (�AR lag 1�) type 0.1,
0.2 and 0.4, respectively. Click . The program starts the computations, and after 39
iterations you will be presented with the results in Table 19.5. According to these estimates
only ��1 is signi�cantly di¤erent from zero at the 95 per cent level.

Table 19.5: Modelling conditional heteroscedasticity of the dollar/sterling rate

Consider now the estimation of the EGARCH(1; 1) model with a t-distribution for the
conditional distribution of the errors. Move to the GARCH Estimation Menu and choose
option 5, then choose option 2. Click twice. You should see the screen editor for the
speci�cation of the initial estimates. Choose the ML estimates of �1, ��1 and �1 in Table
19.5 as initial values (namely -0.13, 0.33 and 0.15) and click . You should see the results
in Table 19.6 on the screen.
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Table 19.6: Modelling conditional heteroscedasticity of the dollar/sterling rate

A comparison of the results in Tables 19.5 and 19.6 shows that according to the AIC,
there is a clear evidence in favour of the t-distribution, but the evidence is much less clear
cut, if the SBC is used.

19.4 Lesson 19.4: Forecasting volatility

In this lesson we use the GARCH(1; 1) model estimated for the monthly observations on
$/£ exchange rate in Lesson 19.2 to compute the conditional standard errors, ht, over the
estimation period 1973(1)-1994(12), and then obtain (multi)-step ahead forecasts of ht over
the period 1995(1)-1995(6). In Lesson 19.2 we found that the t-distribution performs slightly
better than the normal. So, in what follows we base our estimation on the exchange rate
model

� logUSDt = �0 + �1� log(USDt�1) + ut;

V (ut j
t�1) = h2t = �0 + �1u
2
t�1 + �1h

2
t�1

assuming that conditional on 
t�1, the errors have the standardized Student t-distribution.
First follow the steps in Lesson 19.2 and choose option 1 in the GARCH Estimation

Menu to estimate the above model. Once you have successfully estimated the model, choose
option 8 in the Post Regression Menu after the GARCH result screen, to compute dynamic
forecasts of � logUSDt over the six months from 1995(1) to 1995(6). The program presents
you with the forecasts of � logUSDt, t = 95(1); :::; 95(6). To obtain the forecasts of ht return
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to the Post Regression Menu, and choose option 3 to move to the Display/Save Residuals
and Fitted Values Menu (see Section 6.21). Option 9 in this menu allows you to save the
values of ĥt over the estimation and the forecast period. You can also see the plot of ĥt over
the sample period 1973(1)-1994(12) if you choose option 8 in this menu. See Figure 19.1.

Figure 19.1: Estimated values of ĥt for the dollar/sterling exchange rate

To list or plot the forecasts of ht over the period 1995(1)-1995(6), choose option 9 in the
Display/Save Residuals and Fitted Values Menu and type

HHAT Estimates of the Conditional Standard Errors

click to retun to the Post Regression Menu, choose option 0, and in the GARCH
Estimation Menu choose option 0 again. Return to the Single Equation Estimation window,
and click to move to the Commands and Data Transformations box. Clear it, and
type

SAMPLE 1995M1 1995M6; LIST HHAT

The volatility forecasts in Table 19.7 should now appear on the screen.
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Table 19.7: Volatility forecasts

Month Forecasts of ĥt
1995M1 .035793
1995M2 .034515
1995M3 .033995
1995M4 .033787
1995M5 .033704
1995M6 .033672

Note that these are multiple-step ahead forecasts of ht computed using the formulae in
Section 23.1.9.

19.5 Lesson 19.5: Modelling volatility in daily exchange rates

The degree of volatility tends to increase with the frequency with which observations are
sampled. This can be seen clearly as one moves from monthly to daily observations on ex-
change rates. As an example, consider the daily £ /$ exchange rates in the �le EXDAILY.FIT
covering the period from 2-Jan-1985 to 28-July-1993. In total this �le contains 2,168 daily
observations. Load this �le into Micro�t, and in the Commands and Data Transformations
box create the rate of change of the £ /$ exchange rate in the variable DEUS:

DEUS = LOG(EUS=EUS(�1)); INPT = 1

To �t a GARCH(1; 2) model to the errors of this regression equation, choose option 1 in the
Volatility Modelling Menu and specify the following AR(2) speci�cation for the conditional
mean of DEUS:

DEUS INPT DEUS(�1) DEUS(�2)

Specify the start and end dates as

02-Jan-90 30-Jun-93

keeping the remaining 20 observations for forecast analysis. Click . Choose option 1 in

the GARCH Estimation Menu, click twice and enter

1; 1 2

For the initial values type 0.1 (for �MA lag 1�), 0.2 (for �MA lag 2�) and 0.6 (for �AR lag 1�).
Notice that the sum of these initial estimates cannot exceed unity. Click to start the
computations. The process converges after 26 iterations, and you will be presented with the
results in Table 19.8.
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Table 19.8: Modelling conditional heteroscedasticity of the daily dollar/sterling rate

The second part of this table clearly shows the importance of the AR component in the
GARCH(1; 2) speci�cation. However, the second-order coe¢ cient of the MA part of the
process is not statistically signi�cant. Therefore, once again a GARCH(1; 1) model seems
to �t the observations reasonably well. Re-estimating the exchange rate equation assuming
a GARCH(1; 1) model yields the results in Table 19.9. (To obtain these results we started
the iterations with 0:1 and 0:8 for MA and AR coe¢ cients).



CHAPTER 19. LESSONS IN UNIVARIATE GARCH MODELLING 414

Table 19.9: Modelling conditional heteroscedasticity of daily dollar/sterling rate

One hypothesis of interest involving the coe¢ cients of theGARCH(1; 1)model is whether
or not the sum of the coe¢ cients of this model is unity. When the coe¢ cients add up to
unity, the model is known as the Integrated GARCH or IGARCH model, and implies that
the shocks to the conditional variance are persistent. From the results in Table 19.9 it is
clear that the sum of the estimates �̂1 = 0:0560 and �̂1 = 0:9146 is very close to unity. To
test the hypothesis that �1 + �1 = 1, choose option 7 in the Hypothesis Testing Menu and
type in the box editor

B2 +B3 = 1

(Recall that in Micro�t the coe¢ cients of the GARCH model are denoted by B1, B2 ...).
The Wald statistic, distributed asymptotically as a �2 with one degree of freedom, is equal
42.78, and strongly rejects the hypothesis that the GARCH model is integrated.

19.6 Lesson 19.6: Estimation of GARCH-in-mean models of
US excess returns

The regressions in Lesson 11.11 show that a statistically signi�cant fraction of the variance
of excess returns can be predicted by ex ante data variables, such as lagged dividend yields
and lagged interest rates. This evidence (also replicated using other portfolios in other stock
markets) rejects the joint hypothesis of market e¢ ciency and risk neutrality. However, in
situations where market participants are risk averse, standard e¢ cient market models do not
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rule out the possibility that excess returns on stocks can be predicted. One important class
of asset pricing models predicts a positive relationship between conditional expectations of
excess returns and their conditional variances (see, for example, Merton (1980)). If ERSPt
is the excess return on the SP500 de�ned in Lesson 11.11, then a generalized version of the
Merton (1980) mean-variance model can be written as

ERSPt = �
0xt�1 + V (ERSPt j
t�1 ) + ut (19.4)

where
V (ERSPt j
t�1 ) = V (ut j
t�1 ) = h2t


t�1 is the publicly available information at time t�1, and xt�1 is a vector of ex ante dated
variables. In what follows we assume that xt�1 includes the variables Y SPt�1, PI12t�2,
DI11t�1 and DIP12t�2, de�ned in Lesson 11.11, and that h2t has the GARCH(1; 1) speci-
�cation:

h2t = �0 + �1u
2
t�1 + �1h

2
t�1 (19.5)

This model can be readily estimated using the GARCH-in-mean option in Micro�t. See
Section 8.6. Load the special Micro�t �le PTMONTH.FIT and then run the batch �le
PTMONTH.BAT on it in the Commands and Data Transformations box. Choose option 1
in the Volatility Modelling Menu, retrieve the �le PTMONTH.LST into the box editor, and
click . Choose option 2 (the GARCH-in-mean), followed by the normal distribution
option, and enter

1; 1

Choose the values of 0.5, 0.1 and 0.2 for the initial estimates of  (�in mean�), and �1 (�MA
lag 1�) and �1 (�AR lag 1�), respectively, and click to start the computations. The
iterative procedure converges after 34 iterations, and the results in Table 19.10 should appear
on the screen.
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Table 19.10: Excess return regression for SP500 portfolio with GARCH-in mean e¤ect

According to these results the ML estimates of  is 5.89 (6.74) and has the correct
sign, but is not statistically signi�cant. Therefore, there does not seem to be any evidence
of GARCH-in-mean e¤ect in this model. Notice, however, that the other variables in the
excess return regression continue to be highly signi�cant. The evidence on the volatility of
the conditional variance of ut (i.e. h2t ) is rather mixed. The ML estimate of �1 at 0.84898
(0.0325) is highly signi�cant, but the ML estimate of �1 is near zero and is not statistically
signi�cant.

Now consider estimating the above GARCH-in-mean model (19.4) and (19.5), assuming
the conditional distribution of the errors to be t-distributed. Return to the GARCH Estima-
tion Menu, choose option 2, and then select the t-distribution option. Click to accept

the content of the �rst box editor, and then again. For the initial estimates of , �1,

and �1, choose the values 0:1 (�in mean�), 0:2 (�MA lag 1�) and 0:4 (�AR lag 1�), respectively.
Click to accept these initial estimates. The program starts the computations, and
yields the results in Table 19.11 after 25 iterations.
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Table 19.11: Excess return for SP500 portfolio with GARCH-in-mean e¤ect

Comparing these results with those in Tables 19.10 clearly suggests that the t-distribution
�ts the data much better than the normal. Even the Schwarz criterion unambiguously selects
the model with conditionally t-distributed errors. Nevertheless ̂ = 8:72 (8.94), and hence
the hypothesis that  = 0 cannot be rejected. The same conclusion also applies to �1 (we
have �̂1 = 0:0616(0:043)).

The extent to which the t-distribution has been successful in dealing with the non-normal
errors can be assessed graphically. Click to move to the Post Regression Menu, then

choose option 3, followed by option 5 in the Display/Save Residuals and Fitted Values Menu.
The histogram of the scaled residuals (de�ned by ût=ĥt) should now appear on the screen
(See Figure 19.2).

Except for a possible �outlier�to the left of the graph, the t-distribution seems to provide
a reasonable �t for the distribution of the scaled residuals. A closer inspection of the results
shows, perhaps not surprisingly, that the apparent outlier refers to the 1987 October crash.
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Figure 19.2: Histogram of the scaled residuals (ût=ĥt) for the SP500 excess return regression

19.7 Exercises in GARCH modelling

19.7.1 Exercise 19.1

Use monthly observations in EXMONTH.FIT to estimate a �rst-order autoregressive model
in the rate of change of the Deutschemark/Sterling exchange rate. Is there any evidence of
ARCH e¤ects in this regression?

19.7.2 Exercise 19.2

Use the data in PTMONTH.FIT to estimate the GARCH-in-mean regression (19.4), as-
suming that V (ut j
t�1 ) has the exponential speci�cation. Compare your result with those
obtained in Lesson 19.6.



Chapter 20

Lessons in Multivariate GARCH
Modelling

The lessons in this chapter are concerned with the estimation of multivariate generalized
autoregressive conditional heteroscedastic (MGARCH) models. They show how Micro�t
can be used to estimate dynamic conditional correlation (DCC) models, how to compute
the V aR of a portfolio, and how to calculate forecasts of conditional volatilities and cor-
relations. The relevant estimation options, the underlying econometric methods, and the
computational algorithms are described in Section 23.2. For a review of the application of
dynamic conditional correlation models to �nancial data see Engle (2002), Pesaran and Pe-
saran (2007), Pesaran, Schleicherc, and Za¤aroni (2009), Andersen, Bollerslev, Diebold, and
Ebens (2001), and Andersen, Bollerslev, Diebold, and Labys (2001).

All the lessons in this chapter use the futures data analyzed in Pesaran and Pesaran
(2007).

20.1 Lesson 20.1: Estimating DCC models for a portfolio of
currency futures

In this lesson we demonstrate how to use the multivariate GARCH option to estimate
dynamic conditional correlation (DCC) models for a portfolio composed of returns on six
currency futures: Australian dollar (AD), British pound (BP ), Canadian dollar (CD), Swiss
franc (CH), Euro (EU), and Japanese yen (JY ). We will initially assume that returns are
normally distributed, and then consider the case of t-distributed returns.

Daily data on currency futures are available in the �le FUTURESDATA.FIT, and cover
the period from 31-Dec-93 to 01-Jan-07.1 In the present application we will use data from
1995 to 2005 (for a total of 2; 610 observations) for estimation, and keep the observations
from 2005 to 2007 for evaluation of the model and for forecasting purposes (see Lessons 20.4

1 In the tutorial directory the CSV and Excel versions of the �le FUTURESDATA.FIT are also available.
Notice that to load the Excel version of this �le you need to set in Micro�t the �European/US date�option
to the European date format. See Section 3.2.10 for further details on how to set the date format in Micro�t.

419
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and 20.5).
Read this �le into Micro�t, choose option 2 from the Volatility Modelling Menu, and in

the Commands and Data Transformations box enter the list of variables to be included in
the MGARCH model:2

AD BP CD CH EU JY

Then specify the sample period:

02-Jan-95 31-Dec-04

Click . You will be presented with the Multivariate GARCH window, shown in Figure
20.1.

Figure 20.1: The multivariate GARCH window

In the �Decay factor for the variance�panel, select the �Unrestricted�option and ensure
that the option �Same for all assets�is unchecked. This enables you to compute two para-
meters (�1i and �2i) for each asset i = 1; ::; 6. In the �Decay factor for the covariance�panel,
select the �Unrestricted� option, which allows for mean-reverting conditional correlations.
Choose the multivariate normal distribution, and select the �Rolling historical volatility�op-
tion with rolling window equal to 20.3 Do not change the the default number of observations

2Alternatively you can retrieve the content of the CFUTURES.LST from the tutorial directory by using

the button.
3 In the present application, a choice of p well above 20 does not allow the jumps in returns to become

adequately re�ected in the estimated realized volatility (see Pesaran and Pesaran (2007)).
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(20) used to initialize the estimation. For further information on the initialization sample,
see Section 23.2.1.

The right panel of the multivariate GARCH window displays the default initial values
of parameters, which are set to 0:95 for the parameters �1i, for i = 1; :::; 6, and �1 and 0:05
for �2i, for i = 1; :::; 6, and �2.

Press the button to accept these default values and estimate all parameters of the
model. Micro�t starts the computations and, after 51 iterations, presents you with results
reported in Table 20.1.

Table 20.1: ML estimates of the Gaussian DCC model on futures daily returns

The upper panel of the table presents the maximum likelihood estimates of �i1, �i2 for
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the six currencies futures returns, and �1, �2. Observe that the asset-speci�c estimates of the
volatility decay parameters are all highly signi�cant, with the estimates of �i1, i = 1; 2; :::; 6
very close to unity.

The lower panel of the table reports the estimated unconditional volatilities and corre-
lations of the vector of assets. Notice the high correlation between Euro and Swiss franc
(0:922), and between Euro and British pound (0:603) futures returns.

Now click to leave the estimation results, and choose option 0 to re-specify the
DCC model. In the initial window select the multivariate Student t-distribution option.
Notice that a new parameter, the degrees of freedom (df) of the t-distribution, appears
in the list of parameters to be initialized on the right panel of the multivariate GARCH
window. Its default value is set to 5. Click the button to accept these initial values
and start the computations. The results reported in Table 20.2 appear after 23 iterations.
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Table 20.2: ML estimates of the t-DCC model on futures daily returns

The maximized log-likelihood value (�8848:4) is signi�cantly larger than that obtained
under the normality assumption (�9602:1). The estimated degrees of freedom for the t-
distribution is 5:9, well below 30, and any other value one would expect for a multivariate
normal distribution. This suggests that the t-distribution is more appropriate in capturing
the fat-tailed nature of the distribution of asset returns.
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20.2 Lesson 20.2: Plotting the estimated conditional volatil-
ities and correlations

In this lesson we wish to inspect the temporal dynamics of conditional volatilities and corre-
lations of currency futures returns. Read the special Micro�t �le FUTURESDATA.FIT,
and follow the steps outlined in Lesson 20.1 to estimate an unrestricted t-DCC model
with asset-speci�c volatility parameters, common conditional correlation parameters over
the period from 02-Jan-95 to 31-Dec-04. Click to leave the output window with

the estimation results, and choose option 2 to list/plot/save estimated conditional volatili-
ties and correlations. You will be presented with the Conditional Volatilities, Correlations
and Eigenvalues Menu, select option 2, and click . A list of conditional volatilities
and correlations, and the eigenvalues of the covariance and correlation matrices appears
on the screen.4 For example, select the conditional volatility of the six currencies, namely
V ol(AD); V ol(BP ); V ol(CD); V ol(CH); V ol(EU) and V ol(JY ), and click . To reduce
the impact on the graph of initialization of estimates, we suggest excluding from the plot
the values relative to the initial period from 02-Jan-95 to 01-Jan-96. Hence, once the graph
is displayed, use the Start and the Finish drop-down lists to select sample period from 02-
Jan-96 to 31-Dec-04, and click the REFRESH button. You will be presented with Figure
20.2. It can be seen from the graph that over time, conditional volatilities of currency futures
returns tend to move more closely together. The convergence of volatilities could re�ect the
advent of Euro and a closer �nancial integration, particularly in the Euro area, as well as a
decline in the importance of idiosyncratic factors.

Now return to the list of conditional volatilities and correlations and select the correla-
tions of Euro with all other currencies, namely corr(EU;AD), corr(EU;BP ), corr(EU;CD),
corr(EU;CH), and corr(JY;EU). Use the Start and the Finish drop-down lists to select
sample period from 02-Jan-96 to 31-Dec-04. You will be presented with Figure 20.3. It can
be clearly seen from the graph that conditional correlations of returns on Euro futures with
the other currencies have been rising over time. Also, notice the high correlation between
returns on Euro and Swiss franc futures.

4Cov_eigen_max, cov_eigen_2, cov_eigen_3, ..., cov_eig_min and corr_eigen_max, corr_eigen_2,
corr_eigen_3, and so on, are the eigenvalues of the covariance and correlation matrix respectively, in de-
creasing order.
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Figure 20.2: Conditional volatilities of currency futures returns over the period 02-Jan-96
to 31-Dec-04

20.3 Lesson 20.3: Testing for linear restrictions

Consider the t-DCC model of currency futures returns estimated in Lesson 20.1. In this les-
son we shall focus on the problem of testing the hypothesis that one of the assets returns has
non-mean reverting volatility. That is, let �i1 and �i2 be the parameters for the conditional
volatility equation of the ith asset we wish to test:

H0 : �i1 + �i2 = 1

Under H0 the process is non-mean reverting, and the unconditional variance for this asset
does not exists (see Section 23.2 for further details on mean-reverting processes).

Load into Micro�t the �le FUTURESDATA.FIT, and follow the steps outlined in Les-
son 20.1 to estimate a t-DCC model with asset-speci�c volatility parameters, and common
conditional correlation parameters �1 and �2 (see Table 20.2). Click to leave the out-
put window, and in the Multivariate GARCH Post Estimation Menu select option 4 to
estimate/test functions of the parameters of the model. Click . You will be asked to
specify the restrictions that you wish to test. Suppose that initially we are interested in
testing whether conditional volatilities of Euro returns are mean-reverting. Then in the box
editor type

ZEROS = 1� LAMBDA1_EU � LAMBDA2_EU

You should now see the test results on the screen, which we have reproduced in 20.3. As 1�
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Figure 20.3: Conditional correlations of Euro futures returns with other currencies over the
period 02-Jan-96 to 31-Dec-04

�i1��i2 = 0:0086, with a standard error of 0:0026, results suggest very slow but statistically
signi�cant mean-reverting volatility for Euro futures returns.
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Table 20.3: Testing for mean revertion of volatility of Euro futures returns

As an exercise, test for mean reversion of volatility using other assets. A summary of
results for various assets is reported in Table 20.4.

Table 20.4: Testing for mean revertion of volatility of currency futures returns

Asset 1� �̂1��̂2 Std.errors t-ratio

Australian dollar 0.01029 0.00407 2.5261

British pound 0.01046 0.00479 2.1812

Canadian dollar 0.00266 0.00199 1.3375

Swiss franc 0.01209 0.00355 3.4092

Yen 0.00855 0.00314 2.7240

20.4 Lesson 20.4: Testing the validity of the t-DCC model

In this lesson we test the validity of the t-DCC model estimated in Lessons 20.1, using the
V aR and distribution free diagnostics available in Micro�t (see Section 23.2.3 for further
details on these test statistics).

Load the �le FUTURESDATA.FIT, and follow the steps outlined in Lesson 20.1 to obtain
the estimates of t-DCC model presented in Table 20.2. Click to leave the estimation
results, return to the Multivariate GARCH Post Estimation Menu, and choose option 5.
You will be required to specify the forecast/evaluation period that is used to evaluate the
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MGARCH. Enter
03-Jan-05 01-Jan-07

You are then asked to list the variables that contain the portfolio weights to be attached to
each of the assets returns. In the box editor type

C C C C C C

where C is a variable with all values being equal to unity. This implies that each asset has
equal weight in the portfolio. The next screen is a menu entitled Testing the Validity of
Multivariate GARCH Menu; choose option 1. You will be presented with a list of available
diagnostic tests based on the probability integral transforms. If you select option 1, Micro�t
produces an output with the Lagrange Multiplier (LM) test statistic of serial correlation
on the probability integral transform variable (see Section 23.2.3 for further information
on these diagnostics). The results are shown in Table 20.5. Under the null hypothesis of
correct speci�cation of the t-DCC model, the probability transform estimates are serially
uncorrelated and uniformly distributed over the range (0; 1). The LM test, equal to 17:46
with a p-value of 0:133, is not statistically signi�cant, thus supporting the validity of the
t-DCC model.

Table 20.5: Testing serial correlation on the probability transform estimates

If you select option 2, Figure 20.4 should appear on the screen. The graph compares
the empirical cumulative distribution function of the probability integral transform variable
with that of a uniform. The Kolmogorov-Smirnov test statistic (0:045) is smaller than its
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5 per cent critical value (0:596), and hence it does not reject the null hypothesis that the
probability integral transforms are uniformly distributed.5

Figure 20.4: Kolmogorov-Smirnov test of normality

Close the graph and select option 3 to view the histograms of the probability integral
transform variable. You will be presented with Figure 20.5.

Choose option 0 to return to the Testing the Validity of Multivariate GARCH Menu,
and select option 2 to test for V aR violations. Enter 0:01 as tolerance probability of the
V aR, and press the button. You can now list, plot or save the estimated Value at Risk
under the selected tolerance probability, or compute the diagnostic statistics �̂N and z� for
the t-DCC model, based on the V aR (see Section 23.2.3). Notice that the V aR is computed
in percentage points. The plot of the Value at Risk of the portfolio for the forecasting period
from 03-Jan-05 to 01-Jan-07 is obtained choosing option 2 and is shown in Figure 20.6.
Notice the decreasing pattern indicating a diminishing portfolio risk over time.

By choosing option 5 you can obtain the mean hit rate �̂N (equal to 0.998) level, and z�
(1.854) under the tolerance probability 0.01 (see Table 20.6). Notice that �̂N is very close to
its expected value (0.990), and that the test statistic z� is not signi�cant, both supporting
the validity of the t-DCC model. Finally note that the probability integral transform, the
indicator variable, and the V aR can be saved to the workspace for later use.

5For details of the Kolmogorov-Smirnov test and its critical values see, for example, Neave and Worthington
(1992), pp.89-93, and Massey (1951).
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Figure 20.5: Histogram of the probability integral transform of the V aR

Table 20.6: VaR violations and the associated test statistics

20.5 Lesson 20.5: Forecasting conditional correlations

In this lesson we use the t-DCC model estimated above to compute forecasts of conditional
correlations of Euro futures returns with other currency futures returns. Read the special
Micro�t �le FUTURESDATA.FIT, and follow the steps in Lesson 20.1 to obtain the esti-
mates of an unrestricted t-DCC model with asset-speci�c volatility parameters, common
conditional correlation parameters, over the period from 02-Jan-95 to 31-Dec-04. Select
option 7 from the Multivariate GARCH Post Estimation Menu. When prompted, choose
as the forecast period the interval from 03-Jan-05 to 31-Jan-05 and click . Now select

option 2 to plot the forecasts of conditional volatilities and correlations and click .
Select all correlations of Euro with other currency futures returns, and use the Start and
the Finish drop-down lists to select sample period from 02-Jan-03 to 31-Jan-05. The plot
is reproduced in Figure 20.7.
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Figure 20.6: Plot of the Value at Risk of the portfolio for � = 0:01, over the period from
03-Jan-05 to 01-Jan-07

20.6 Lesson 20.6: MGARCH applied to a set of OLS residuals

In this lesson we use the FUTURESDATA.FIT �le to estimate a t-DCC model on residuals
obtained from a regression of returns on currency futures on their past values. To this end,
we use option 3 �MGARCH applied to the OLS residuals of a set of regressions�from the
Volatility Modelling Menu. This option performs a two-step estimation method, where in
the �rst step residuals are obtained by running separate OLS regressions for each variable,
and in the second step the DCC model is applied to these residuals.

Read the special Micro�t �le FUTURESDATA.FIT, and in the Commands and Data
Transformation box write6

AD AD(�1) C;
BP BP (�1) C;
CD CD(�1) C;
CH CH(�1) C;
EU EU(�1) C;
JY JY (�1) C

where C is a variable with all values being equal to unity. The above instructions specify a
�rst-order autoregressive process for each of the six currency futures returns. Set the sample

6Alternatively you can retrieve the content of the OLSFUTURES.EQU from the tutorial directory using

the button.
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Figure 20.7: Forecast of conditional correlations of Euro with other currency futures returns
(02-Jan-03 to 31-Jan-05)

period as
02-Jan-95 31-Dec-04

and click . In the Multivariate GARCH window select the �Unrestricted�option in
the panels �Decay factor for the variance�and �Decay factor for the covariance�. Make sure
that the option �Same for all assets�is unchecked, choose the multivariate t-distribution, and
select the �Rolling historical volatility�option with rolling window equal to 20. Click

to accept the default number of observations (20) used to initialize the estimation, and the
default initial values for the parameters. The results are reported in Table 20.7.
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Table 20.7: ML estimates of t-DCC model on OLS residuals

The asset-speci�c estimates of the volatility and correlation decay parameters are highly
signi�cant and very close to the estimates reported in Table 20.2. You can now inspect
regression results for each equation by closing the output window and choosing option 8.
Select, for example, the equation for the Euro futures returns (EU). You will be presented
with Table 20.8. The estimated parameter for the temporal lag of the variable EU is close
to zero (�0:042), though signi�cant at the 5 per cent signi�cance level.
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Table 20.8: Estimation of the EU equation

20.7 Exercises in Multivariate GARCH Estimation

20.7.1 Exercise 20.1

Repeat Lesson 20.1 using exponentially weighted returns. Check to see if the conclusions
obtained are robust to the way returns are standardized.

20.7.2 Exercise 20.2

Use the special Micro�t �le FUTURESDATA.FIT to test whether conditional correlations
of Euro with other currency futures returns are mean reverting, both in a Gaussian and
t-DCC model (see Lesson 20.3).

20.7.3 Exercise 20.3

Repeat the lessons in this chapter using the daily returns on bonds (BU, BE, BG, BJ) and
equities (SP, FTSE, DAX, CAC, NK) futures included in FUTURESDATA.FIT. What are
the main similarities and di¤erences in the MGARCH models for the three types of assets?
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Chapter 21

Econometrics of Single Equation
Models

This chapter provides the technical details of the econometric methods and the algorithms
that underlie the computation of the various estimators and test statistics in the case of
single equation models. It complements Chapter 6, which describes the estimation options
in Micro�t for single-equation models. Text-book treatments of some of the topics covered
here can be found in Harvey (1981), Amemiya (1985), Judge, Gri¢ ths, Hill, Lütkepohl, and
Lee (1985), Godfrey (1988), Maddala (1988), Chat�eld (2003), Greene (2002), Davidson and
MacKinnon (1993), and Hamilton (1994).

21.1 Summary statistics and autocorrelation coe¢ cients

The COR command applied to the observation xt; t = 1; 2; ::; n; computes the following
statistics:

Sample mean = �x =
nX
t=1

xt=n,

Standard deviation = Sx =

vuut nX
t=1

(xt � �x)2 /(n� 1)
!

Coe¢ cient of variation = Absolute value of (Sx=�x)

Skewness =
p
b1 = m3=m

3=2
2

Kurtosis = b2 = m4=m
2
2

where

mk =

nX
i=1

(xt � �x)k=n; k = 2; 3; 4

The program displays
p
b1 and b2�3. These estimates can be used to construct di¤erent tests

of departures from normality. A non-normal distribution which is asymmetrical has a value of

436
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p
�1 (the population value of

p
b1), which is non-zero.

p
�1 > 0 indicates the skewness to the

right, and
p
�1 < 0 indicates skewness to the left. The measure of Kurtosis (or curvature),

usually denoted by �2, is equal to 3 for the normal distribution. For unimodal non-normal
distributions with thicker tails than normal, we have �2 � 3 > 0, and for distributions with
thinner tails than normal, we have �2 � 3 < 0. (See, for example, D�Agostino et al. (1990)
for further details.)

The Jarque-Bera test of the normality of regression residuals in Section 21.6.2 can also
be computed using the COR command, and is given by

�2N (2) = n
�
1
6b1 +

1
24(b2 � 3)

2
	

where
p
b1 and b2 are computed by applying the COR command to the OLS residuals. (The

above expression assumes that an intercept term is included in the regression.)

The lth order autocorrelation coe¢ cient = Rl = Cl=C0; l = 1; 2; :::; [n=3]

Cl = n�1
nX

t=l+1

(xt � �x)(xt�l � �x)

The program also computes an approximate estimate of the standard error of Rl, using
Bartlett (1946) approximation reported in Kendall, Stuart, and Ord (1983), Chapter 48, p.
549:

Standard Error of Rl =

vuuut
24 1
n

0@1 + 2 l�1X
j=1

R2j

1A35 ; l = 1; 2; :::; [n=3]

The Box and Pierce (1970) Q-statistic (of order p):

Q = n

pX
j=1

R2j
a� �2p

The Ljung and Box (1978) statistic (of order p):1

Q� = n(n+ 2)

pX
j=1

R2j=(n� j)
a� �2p

21.1.1 Box-Pierce and Ljung-Box tests

Under the assumption that xt are serially uncorrelated, the Box-Pierce and the Ljung-Box
statistics are both distributed asymptotically as �2 variates with p degrees of freedom. The
two tests are asymptotically equivalent, although the Ljung-Box statistic is likely to perform
better in small samples. See, for example, Harvey (1981) p. 211, and Chapters 48 and 50 in
Kendall, Stuart, and Ord (1983), for more details.

1The symbol a� denotes �approximately distributed as�, and �2p denotes the chi-squared variate with p
degrees of freedom.
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When the COR command is followed by more than one variable, say x1t; x2t; :::; xkt,
t = 1; 2; :::; n, the program computes the correlation matrix of these variables over the
speci�ed sample period using the formula

�̂ij = estimated (or sample) correlation coe¢ cient of xi and xj
=
Pn
t=1(xit � �xi)(xjt � �xj)=(n� 1)SiSj ; i; j = 1; 2; :::; k

where �xi and Si are the mean and the standard deviation of xit, t = 1; 2; :::; n, respectively.

21.2 Non-parametric estimation of the density function

The non-parametric functions available in Micro�t 5.0 provide estimates of the density func-
tion f(�) of a set of data, x1; x2; :::; xn, using various kernel functions and window widths.
All functions generate the estimate f̂ at the point x using the formula

f̂(x) =
1

n

NX
i=1

1

hn
K

�
x� xi
hn

�
where K(�) is the kernel function, and hn is the window width, also called the smoothing
parameter or bandwidth. The following kernel functions are available in Micro�t :

1. Gaussian
K (x) =

1p
2�
e�

x2

2

2. Epanechnikov

K (x) =

�
3
4

�
1� 1

5x
2
�
=
p
5; if jxj <

p
5

0, otherwise

As for the choice of hn, Micro�t allows the following options:

1. Silverman rule of thumb:
hsrot = 0:9An

� 1
5 (21.1)

where A = min (�;R=1:34), � is the standard deviation of the variable x, R is the
interquartile range, and n is the number of observations. See Silverman (1986), p.47.

2. Least squares cross-validation: the window width is the value, hlscv, that minimizes
the following criterion

ISE (hn) =
1

n2hn

nX
i6=j

K2

�
xi � xj
hn

�
� 2
n

nX
i=1

f̂�i (xi) ; (21.2)

where K2(:) is the convolution of the kernel with itself, de�ned by

K2 (x) =

Z +1

�1
K (t)K (x� t) dt:
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and f̂�i (xi) is the density estimator obtained after omitting the ith observation. We
have

1

n

nX
i=1

f̂�i (xi) =
1

n (n� 1)hn

nX
i6=j

K

�
xi � xj
hn

�
:

If K is the Gaussian kernel, then K2 is N(0; 2), or

K2(x) = (4�)
�1=2e�x

2=4;

for the Epanechnikov kernel we have

K2 (x) =

(
3
p
5

100

�
4� x2

�
; if jxj <

p
5

0, otherwise.

For the Gaussian kernel the expression for ISE (hn) simpli�es to (see Bowman and
Azzalini (1997), p.37)

ISE (hn) =
1

(n� 1)�
�
0;
p
2hn

�
+

n� 2
n(n� 1)2

nX
i6=j

�
�
xi � xj ;

p
2hn

�
� 2

n(n� 1)

nX
i6=j

� (xi � xj ; hn) ;

where �(x; �) denotes the normal density function with mean 0 and standard deviation
�:

�(x; �) = (2��2)�1=2 exp

�
�x2
2�2

�
:

In cases where local minima is encountered we select the bandwith that corresponds
to the local minimum with the largest value for hn. See Bowman and Azzalini (1997),
p.33-34.

See also Sheather (2004), Pagan and Ullah (1999), Silverman (1986) and Jones, Marron,
and Sheather (1996) for further details.

21.3 Estimation of spectral density

The SPECTRUM command computes the estimates of the standardized spectrum of xt
multiplied by �, for the n observations x1; x2; :::; xn; using the formula

f̂(!j) =

 
�0 + 2

mX
k=1

�kRk cos(k!j)

!
where !j = j�=m; j = 0; 1; :::;m, m is the �window size�, Rk is the autocorrelation coe¢ cient
of order k de�ned by

Rk =

 
nX

t=k+1

(xt � �x)(xt�k � �x)
!, 

nX
t=1

(xt � �x)2
!
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and f�kg is a set of weights called the �lag window�. The program computes estimates of
f̂(!j); j = 0; 1; :::;m for the following lag windows:

Bartlett window �k = 1� k=m; 0 � k � m
Tukey window �k = 1

2 f1 + cos(�k=m)g ; 0 � k � m

Parzen window �k =

�
1� 6(k=m)2 + 6(k=m)3; 0 � k � m

2
2(1� k=m)3; m

2 � k � m

�
The default value for m is set equal to 2

p
n.

The standard errors reported for the estimates of the standardized spectrum are calcu-
lated according to the following formulae, which are valid asymptotically:

dS:E:(f̂(!j)) =
q

2
v f̂(!j); for j = 1; 2; :::;m� 1

=
q

4
v f̂(!j); for j = 0;m

where v = 2n=
Pm
k=�m(�

2
k): For the three di¤erent windows, v is given by

Bartlett window v = 3n=m

Tukey window v = 8n=3m

Parzen window v = 3:71n=m

The spectrum for the residuals is estimated using the Parzen window and does not display
the standard error bands for the estimates.

For an introductory text on the estimation of the spectrum see Chat�eld (2003), Chapter
7. For more advanced treatments of the subject see Priestley (1981) Chapter 6 and Brockwell
and Davis (1991), Chapter 10.

21.4 Hodrick-Prescott (HP) �lter

The HP �lter is a curve �tting procedure proposed by Hodrick and Prescott (1997), to
estimate the trend path, fy�t ; t = 1; 2; :::; ng of a series fyt; t = 1; 2; :::; ng subject to the
constraint that the sum of the squared second di¤erences of the trend series is not too large.
More speci�cally, fy�t ; t = 1; 2; :::; ng is computed from fyt; t = 1; 2; :::; ng by solving the
following optimization problem:

min
y�1 ;y

�
2 ;:::y

�
n

(
nX
t=1

(yt � y�t )2 + �
n�1X
t=2

(�2y�t+1)
2

)

The �smoothing�parameter � is usually chosen by trial and error, and for quarterly obser-
vations is set to 1,600. For a discussion of the statistical properties of the HP �lter, see,
for example, Cogley (1995), Harvey and Jaeger (1993) and Söderlind (1994). In particular,
Harvey and Jaeger show that the use of the HP �lter can generate spurious cyclical patterns.
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21.5 Pesaran-Timmermann non-parametric test of predictive
performance

Let xt = Ê(yt j
t�1 ) be the predictor of yt found with respect to the information set 
t�1,
and suppose that the observations (y1; x1); (y2; x2); :::; (yn; xn) are available on these vari-
ables. The test proposed by Pesaran and Timmermann (1992), and Pesaran and Timmer-
mann (1994) is based on the proportion of times that the direction of change in yt is correctly
predicted by xt. The test statistic is computed as

Sn =
P̂ � P̂�n

V̂ (P̂ )� V̂ (P̂�)
o 1
2

a� N(0; 1)

where

P̂ = n�1
nX
t=1

Sign(ytxt); P̂� = P̂yP̂x + (1� P̂y)(1� P̂x)

V̂ (P̂ ) = n�1P̂�(1� P̂�)
V̂ (P̂�) = n�1(2P̂y � 1)2P̂x(1� P̂x) + n�1(2P̂x � 1)2P̂y(1� P̂y)

+4n�2P̂yP̂x(1� P̂y)(1� P̂x)

P̂y = n�1
nX
t=1

Sign(yt); P̂x = n�1
nX
t=1

Sign(xt)

and Sign(A) is the sign (or the indicator) function that takes the value of unity if A > 0 and
zero otherwise.

Under the null hypothesis that yt and xt are distributed independently (namely xt has
no power in prediction yt), Sn is asymptotically distributed as a standard normal. This test
does not require quantitative information on y and uses only information on the signs of yt
and xt. The test statistic is unde�ned when P̂y or P̂x take the extreme values of zero or
unity.

21.6 Ordinary least squares estimates

The estimates computed using the OLS option are based on the following linear regression
model:

yt = �
0xt + ut; t = 1; 2; :::; n (21.3)

where yt is the dependent variable, � is a k � 1 vector of unknown coe¢ cients, xt is the
k� 1 vector of regressors, and ut is a disturbance term, assumed here to satisfy the classical
normal assumptions (A1 to A5), set out in Section 6.1. Writing the n relations in (21.3) in
vector and matrix notations we have

y = X� + u (21.4)
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where y is the n� 1 vector of observations on the dependent variable, X is the n� k matrix
of observations on the regressors (usually including an intercept term), and u is the n � 1
vector of disturbances (errors). We shall also assume that X has a full column rank, and
therefore X0X has an inverse.

21.6.1 Regression results

The program computes the OLS estimates using the following formulae:

�̂OLS = (X
0X)�1X0y (21.5)

V̂(�̂OLS) = �̂2OLS(X
0X)�1 (21.6)

where �̂OLS is the Standard Error (SE) of the regression given by

�̂2OLS = (y �X�̂OLS)0(y �X�̂OLS)=(n� k) (21.7)

Fitted values = ŷ = X�̂OLS (21.8)

Residuals = eOLS = y � ŷ (21.9)

A typical element of eOLS is given by

et = yt � x0t�̂OLS ; t = 1; 2; :::; n (21.10)

where xt is the k � 1 vector of the regressors observed at time t

RSS = residual sum of squares =
nX
t=1

e2t = e
0
OLSeOLS

mean of the dependent variable = �y =
nX
t=1

yt=n:

TSS = total sum of squares = Syy =

nX
t=1

(yt � �y)2

standard deviation (SD) of the dependent variable = �̂y

=
q
Syy=(n� 1) (21.11)

R-squared = R2 = 1� (RSS=TSS) (21.12)

R-bar-squared = �R2 = 1� (�̂OLS=�̂y)2 (21.13)

Notice also that we have the following relationship between R2 and �R2:

1� �R2 =

�
n� 1
n� k

�
(1�R2)
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Maximized Value of the Log-Likelihoood Function (21.14)

= LLOLS =
�n
2

�
1 + log(2�~�2)

	
where e�2 = e0e=n, is the Maximum Likelihood (ML) estimator of �2. Notice that unlike
�̂2OLS , which is an unbiased estimator of �

2 under the classical assumptions, e�2 is biased.
But for large enough sample sizes, the two estimators (�̂2OLS and ~�

2) are equivalent.
In addition to the above statistics, the regression results also include the following test

statistics and model selection criteria:

F -statistic =
�

R2

1�R2

��
n� k
k � 1

�
� F (k � 1; n� k) (21.15)

which is appropriate only when the regression equation includes an intercept (or a constant)
term. Under classical assumptions the F -statistic can be used to test the statistical signi�-
cance of the included regressors other than the intercept term. The F -statistic is distributed
as F with k�1 and n�k degrees of freedom under the null hypothesis that all the regression
coe¢ cients, except for the intercept terms, are zero.

DW statistic = DW =

nX
t=2

(et � et�1)2
,

nX
t=1

e2t (21.16)

This is the familiar Durbin andWatson (1950), Durbin andWatson (1951) statistic for testing
residual serial correlation. It is valid only when lagged values of the dependent variable are
not included amongst the regressors.

In the case where the regressors include a single one-period lag of the dependent variable
(yt�1), and this is speci�ed explicitly at the estimation stage, we have

yt = �yt�1 + �
0xt + ut (21.17)

the program also reports the Durbin (1970) h-statistic

h-statistic = h =

�
1� DW

2

�rn
n=[1� nV̂ (�̂)]

o
(21.18)

where V̂ (�̂) is the estimated variance of the OLS estimator of the coe¢ cient of the lagged de-
pendent variable, �.2 In situations where nV̂ (�̂) � 1, the h-statistic is not de�ned, and it will
be set equal to �NONE� by the program. Under the null hypothesis of non-autocorrelated
disturbances, the h-statistic is asymptotically distributed as a standardized normal variate.
For a two-sided test, a value of h, exceeding 1:96 (the 5 per cent critical value of the stan-
dard normal distribution), in absolute value indicates rejection of the null hypothesis that
the disturbances ut in (21.17) are serially uncorrelated.

2Notice also that 1 � (DW=2) � r1; where r1 is the �rst order autocorrelation of the OLS residuals. For
more detail see, for example, Harvey (1981), pp. 274-275.
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21.6.2 Diagnostic test statistics (the OLS case)

In the case of the OLS option the diagnostic statistics are computed according to the fol-
lowing formulae.

Godfrey�s test of residual serial correlation

The Lagrange multiplier (LM) version of the test statistic is computed using the formula
(see Godfrey (1978b), Godfrey (1978c))

�2SC(p) = n

 
e0OLSW(W0MxW)�1W0eOLS

e0OLSeOLS

!
a� �2p (21.19)

where
Mx = In�X(X0X)�1X0

eOLS = y �X�̂OLS = (e1; e2; :::; en)0

W =

2666666664

0 0 ::: 0
e1 0 ::: 0
e2 e1 ::: 0
... e2

...
...

... en�p�1
en�1 en�2 ::: en�p

3777777775
(21.20)

and p is the order of the error process.
The F -version of (21.19) is given by3

FSC(p) =

�
n� k � p

p

��
�2SC(p)

n� �2SC(p)

�
a� Fp;n�k�p (21.21)

The expression for �2SC(p) is already given by (21.19). The above statistic can also be
computed as the F -statistic for the (joint) test of zero restrictions on the coe¢ cients ofW
in the auxiliary regression

y = X�+W� + v

Harvey (1981) p. 173, refers to the F -version of the LM statistic (21.19) as the �modi�ed
LM�statistic. The two versions of the test of residual serial correlation, namely �2SC(p) and
FSC(p), are asymptotically equivalent.

3For a derivation of the relationship between the LM -version, and the F -version of the test statistics see,
for example, Pesaran (1981) pp. 78-80.
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Ramsey�s RESET test of functional form

The form of Ramsey�s RESET test statistic is the same as those given by (21.19)and (21.21),
for the LM - and the F -versions, respectively (Anscombe (1961), Ramsey (1969), and Ramsey
(1970)). In the case of the RESET test, the columns of W are set equal to the powers of
�tted values, ŷ = X�̂OLS . In the Diagnostic Tests Table, the statistics reported for the
RESET test are computed for the simple case where the elements ofW are speci�ed to be
equal to the square of �tted values. That is

W = (ŷ21; ŷ
2
2; :::; ŷ

2
n)
0

Higher-order RESET tests can be computing using the variable addition test in the Hy-
pothesis Testing Menu, using ŷ2t ; ŷ

3
t ; :::; ŷ

p
t as the additional variables.

Jarque-Bera�s test of the normality of regression residuals

The LM version of the statistic for the normality test is given by

�2N (2) = n
�
�23=(6�

3
2) + (1=24)(�4=�

2
2 � 3)2

	
(21.22)

+n
�
3�21=(2�2)� �3�1=�22

	 a� �2(2)

where

�j =
nX
t=1

ejt=n; j = 1; 2; :::

Notice that in situations where an intercept term is included in the regression, �1 = 0 (see
Jarque and Bera (1980) and Bera and Jarque (1981)).

Test of homoscedasticity

The statistics reported for this test (the equality of error-variances) are based on the auxiliary
regression

e2t = constant+ �ŷ2t (21.23)

and gives the LM - and the F -statistics for the test of � = 0, against � 6= 0.

Predictive failure test

Consider the following linear regression models speci�ed for each of two sample periods:

y1 = X1�1 + u1; u1 � N(0; �21In1) (21.24)

y2 = X2�2 + u2; u2 � N(0; �22In2) (21.25)

where yi;Xi; i = 1; 2; are ni � 1 and ni � k observation matrices on the dependent variable
and the regressors for the two sample periods, and In1and In2 are identity matrices of order
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n1 and n2, respectively. Combining (21.24) and (21.25) by stacking the observations on the
two sample periods now yields�

y1
y2

�
=

�
X1 0
X2 In2

� �
�1
�

�
+

�
u1
u2

�
The above system of equations may also be written more compactly as

y0 = X0�1 + S2� + u0 (21.26)

where y0 = (y01;y
0
2)
0;X0 = (X01;X

0
2)
0, and S2 represents the (n1 + n2) � n2 matrix of

n2 dummy variables, one dummy variable for each observation in the second period. The
predictive failure test can now be carried out by testing the hypothesis of � = 0 against
� 6= 0 in (21.26). This yields the following F -statistic:

FPF =
(e00e0 � e01e1)=n2
e01e1=(n1 � k)

� F (n2; n1 � k) (21.27)

where

e0 is the OLS residual vector of the regression of y0 on X0 (based on the �rst and the
second sample periods together).

e1 is the OLS residual vector of the regression of y1 on X1 (based on the �rst sample
period).

Under the classical normal assumptions, the predictive failure test statistic, FPF , has an
exact F -distribution with n2 and n1 � k degrees of freedom.

The LM version of the above statistic is computed as

�2PF = n2FPF
a� �2(n2): (21.28)

which is distributed as a chi-squared with n2 degrees of freedom for large n1 (see Chow
(1960), Salkever (1976), Dufour (1980) and Pesaran, Smith, and Yeo (1985) Section III).

A test of the stability of the regression coe¢ cients: the Chow test

This is the �rst test proposed by Chow (1960) and is aimed at testing the hypothesis that
in (21.24) and (21.25) �1 = �2, conditional on equality of variances (�

2
1 = �22). The Chow

test is also known as the analysis of covariance test (see Sche¤e (1959)). The F -version of
the Chow test statistic is de�ned by

FSS =
(e00e0 � e01e1 � e02e2)=k

(e01e1 + e
0
2e2)=(n1 + n2 � 2k)

� F (k; n1 + n2 � 2k) (21.29)

where

e0 is the OLS residual vector for the �rst two sample periods together
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e1 is the OLS residual vector for the �rst sample period

e2 is the OLS residual vector for the second sample period

The LM version of this test statistic is computed as

�2SS = kFSS
a� �2(k) (21.30)

For more details see, for example, Pesaran, Smith, and Yeo (1985), p. 285.

21.7 Statistical model selection criteria

Model selection in econometric analysis involves both statistical and non-statistical consider-
ations. It depends on the objective(s) of the analysis, the nature and the extent of economic
theory used, and the statistical adequacy of the model under consideration compared with
other econometric models. (For a discussion of the general principles involved in model selec-
tion see Pesaran and Smith (1985)). The various choice criteria reported byMicro�t are only
concerned with the issue of �statistical �t�and provide di¤erent approaches to trading-o¤ ��t�
and �parsimony�of a given econometric model.

The program automatically computes Theil�s �R2 criterion for choosing between linear
(and non-linear) regression models estimated by least squares, and the GR2 criterion pro-
posed by Pesaran and Smith (1994) for choosing between linear and non-linear single equation
regression models estimated by the instrumental variables method. See Sections 21.6.1 and
21.10.4 for details.

In addition Micro�t computes the values of the criterion function proposed by Akaike
(1973), Akaike (1974), Schwarz (1978), and Hannan and Quinn (1979), both for single and
multi-equation models. All these three model selection criteria measure the ��t�of a given
model by its maximised value of the log-likelihood function, and then use di¤erent penalty
functions to take account of the fact that di¤erent number of unknown parameters may have
been estimated for di¤erent models under consideration.

21.7.1 Akaike information criterion (AIC)

Let `n(e�) be the maximized value of the log-likelihood function of an econometric model,
where e� is the maximum likelihood estimator of e�, based on a sample of size n. The Akaike
information criterion (AIC) for this model is de�ned as

AIC` = `n(e�)� p (21.31)

where
p � Dimension (�) � The number of freely estimated parameters

In the case of single-equation linear (or non-linear) regression models the AIC` can also be
written equivalently as

AIC� = log(~�
2) +

2p

n
(21.32)
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where ~�2 is the ML estimator of the variance of regression disturbances, ut, given by ~�2 =
e0e=n in the case of linear regression models (see Section 21.6.1). The two versions of the
AIC in (21.31) and (21.32) yield identical results. When using (21.31), the model with
the highest value of AIC` is chosen. But when using the criterion based on the estimated
standard errors (21.32), the model with the lowest value for AIC� is chosen.4

21.7.2 Schwarz Bayesian criterion (SBC)

The SBC provides a large sample approximation to the posterior odds ratio of models under
consideration. It is de�ned by

SBC` = `n(e�)� 1
2p log n (21.33)

In applying the SBC across models, the model with the highest SBC value is chosen. For
regression models an alternative version of (21.33), based on the estimated standard error of
the regression, ~�, is given by

SBC� = log(~�
2) +

�
log n

n

�
p

According to this criterion, a model is chosen if it has the lowest SBC� value.

21.7.3 Hannan and Quinn criterion (HQC)

This criterion has been primarily proposed for selection of the order of autoregressive-moving
average or vector autoregressive models, and is de�ned by

HQC` = `n(e�)� (log log n)p
or equivalently (in the case of regression models)

HQC� = log ~� +

�
2 log log n

n

�
p

21.7.4 Consistency properties of the di¤erent model selection criteria

Among the above three model selection criteria, the SBC selects the most parsimonious
model (a model with the least number of freely estimated parameters) if n � 8, and the
AIC selects the least parsimonious model. The HQC lies somewhere between the other

4For linear regression models the equivalence of (21.31) and (21.32) follows by substituting for `n(�̂) given
by (21.14) in (21.31):

AIC` = �
n

2
(1 + log 2�)� n

2
log ~�2 � p;

hence using (21.32)

AIC` = �
n

2
(1 + log 2�)� n

2
AIC�:

Therefore, in the case of regression models estimated on the same sample period, the same preference ordering
across models will result, irrespective of whether AIC` or AIC� criteria are used.
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two criteria. Useful discussion of these and other model selection criteria can be found in
Amemiya (1980), Judge, Gri¢ ths, Hill, Lütkepohl, and Lee (1985) Chapter 21, and Lütke-
pohl (2005), Section 4.3. The last reference is particularly useful for selecting the order of
the vector autoregressive models, and contains some discussion of the consistency property
of the above three model-selection criteria. Under certain regularity conditions it can be
shown that SBC and HQC are consistent, in the sense that for large enough samples they
lead to the correct model choice, assuming of course that the �true�model does in fact belong
to the set of models over which one is searching. The same is not true of the AIC or Theil�s
�R2 criteria. This does not, however, mean that the SBC (or HQC) is necessarily preferable
to the AIC or the �R2 criterion, bearing in mind that it is rarely the case that one is sure
that the �true�model is one of the models under consideration.

21.8 Non-nested tests for linear regression models

Consider the following two linear regression models:

M1 : y = X�1 + u1; u1 � N(0; �2In) (21.34)

M2 : y = Z�2 + u2; u2 � N(0; !2In) (21.35)

where y is the n� 1 vector of observations on the dependent variable, X and Z are n� k1
and n � k2 observation matrices for the regressors of models M1 and M2; �1 and �2 are
the k1 � 1 and k2 � 1 unknown regression coe¢ cient vectors, and u1 and u2 are the n � 1
disturbance vectors.

Broadly speaking, models M1 and M2 are said to be non-nested if the regressors of M1

(respectivelyM2) cannot be expressed as an exact linear combination of the regressors ofM2

(respectively M1). For a formal de�nition of the concepts of nested and non-nested models,
see Pesaran (1987a). A review of the literature of non-nested hypothesis testing can be found
in McAleer and Pesaran (1986).

The program computes the following statistics for the test of M1 against M2 and vice
versa.

The N-test

This is the Cox (1961) and Cox (1962) test originally derived in Pesaran (1974) pp. 157-8.
The Cox statistic for the test of M1 against M2 is computed as

N1 =
nn
2
log
�
!̂2=!̂2�

�o.
V̂1 (21.36)

where

!̂2 = e02e2=n

!̂2� = (e01e1 + �̂
0
1X

0M2X�̂1)=n

V̂ 21 = (�̂2=!̂4�)�̂
0
1X

0M2M1M2X�̂1

�̂2 = e01e1=n; �̂1 = (X
0X)�1X0y

M1 = In �X(X0X)�1X0; M2 = In � Z(Z0Z)�1Z0
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Similarly, the Cox statistic N2 is also computed for the test of M2 against M1.

The NT-test

This is the adjusted Cox test derived in Godfrey and Pesaran (1983), p. 138, which is referred
to as the ~N -test (or the NT -test). The NT -statistic for the test of M1 against M2 is given
by the following (see also equations (20) and (21) in Godfrey and Pesaran (1983))

~N1 = ~T1

,rn
~V1( ~T1)

o
(21.37)

where

~T1 = 1
2(n� k2) log(~!

2=~!2�)

~!2 = e02e2=(n� k2); ~�2 = e01e1=(n� k1)

~!2� =
n
~�2Tr(M1M2) + �̂

0
1X

0M2X�̂1

o
=(n� k2)

~V1( ~T1) = (~�2=~!4�)
n
�̂
0
1X

0M2M1M2X�̂1 +
1
2 ~�

2Tr(B2)
o

Tr(B2) = k2 � Tr(A1A2)2 �
fk2 � Tr(A1A2)g2

n� k1
A1 = X(X0X)�1X0; A2 = Z(Z

0Z)�1Z0 (21.38)

Similarly, the ~N -test statistic, eN2, is also computed for the test of M2 against M1.

The W-test

This is the Wald-type test of M1 against M2 proposed in Godfrey and Pesaran (1983), and
is based on the statistic

W1 =
(n� k2)(~!2 � ~!2�)n

2~�4Tr(B2) + 4~�2b�01X0M2M1M2X�̂1

o1=2 (21.39)

All the notations are as above. The program also computes a similar statistic, W2, for the
test of M2 against M1.

The J-test

This test is due to Davidson and MacKinnon (1981), and for the test of M1 against M2 is
based on the t-ratio of � in the �arti�cial�OLS regression

y = X�1 + �(Z�̂2) + u

The relevant statistic for the J-test ofM2 againstM1 is the t-ratio of � in the OLS regression

y = Z�2 + �(X�̂1) + v
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where �̂1 = (X
0X)�1X0y, and �̂2 = (Z

0Z)�1Z0y. The J-test is asymptotically equivalent to
the above non-nested tests, but as demonstrated by extensive Monte Carlo experiments in
Godfrey and Pesaran (1983), for small samples the ~N -test, and the W -test, de�ned above,
are preferable to it.

The JA-test

This test is due to Fisher and McAleer (1981), and for the test of M1 against M2 is based
on the t-ratio of � in the OLS regression

y = X�1 + �(A2X�̂1) + u

The relevant statistic for the JA-test of M2 against M1 is the t-ratio of � in the OLS
regression

y = Z�2 + �(A1Z�̂2) + v

The matrices A1 and A2 are already de�ned by (21.38).

The encompassing test

This test has been proposed in the literature by Deaton (1982), Dastoor (1983), Gourierous,
Holly, and Monfort (1982), and Mizon and Richard (1986). In the case of testingM1 against
M2, the encompassing test is the same as the classical F -test, and is computed as the F -
statistic for testing � = 0 in the combined OLS regression

y = Xa0 + Z
�� + u

where Z� denotes the variables in M2 that cannot be expressed as exact linear combinations
of the regressors of M1. Similarly, the program computes the F -statistic for the test of
M2 againstM1. The encompassing test is asymptotically equivalent to the above non-nested
tests under the null hypothesis, but in general it is less powerful for a large class of alternative
non-nested models (see Pesaran (1982a)).

A Monte Carlo study of the relative performance of the above non-nested tests in small
samples can be found in Godfrey and Pesaran (1983).

Choice criteria

Let the maximized log-likelihood functions of models M1 and M2 be LL1 and LL2 respec-
tively.

The Akaike information criterion (AIC) for the choice between models M1 and M2 is
computed as (Akaike (1973), and Akaike (1974)):

AIC(M1 :M2) = LL1 � LL2 � (k1 � k2)

Model M1 is preferred to M2 if AIC(M1 :M2) > 0; otherwise M2 is preferable to M1.
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The Schwarz Bayesian criterion (SBC) for the choice between models M1 and M2 is
computed as (Schwarz (1978)):

SBC(M1 :M2) = LL1 � LL2 � 1
2(k1 � k2) log(n)

Model M1 is preferred to M2 if SBC(M1 : M2) > 0, otherwise M2 is preferable to M1 (see
also Section 21.7).

21.9 Non-nested tests for models with di¤erent transforma-
tions of the dependent variable

The program computes four non-nested test statistics and two choice criteria for pairwise
testing and choice between non-nested models, where their right-hand-side variables are dif-
ferent known functions of a given underlying dependent variable. More speci�cally, Micro�t
enables you to consider the following non-nested models:

Mf : f(y) = X�1+u1; u1 � N(0; �2In) (21.40)

Mg : g(y) = Z�2+u2; u2 � N(0; !2In) (21.41)

where f(y) and g(y) are known transformations of the n � 1 vector of observations on the
underlying dependent variable of interest, y. You can either specify your particular choice
for the functions f(y) and g(y), or you can select one of the following speci�cations:

1. Linear form f(y) = y
2. Logarithmic form f(y) = log (y)
3. Ratio form f(y) = y=z
4. Di¤erence form f(y) = y � y(�1)
5. Log-di¤erence form f(y) = logy� logy(�1)

where z is a variable in the workspace. Notice that log(y) refers to a vector of observations
with elements equal to log(yt), t = 1; 2; :::; n. Also y � y(�1) refers to a vector with a typical
element equal to yt � yt�1; t = 1; 2; :::; n.

21.9.1 The PE Test Statistic

This statistic is proposed by MacKinnon, White, and Davidson (1983) and in the case of
testing Mf against Mg is given by the t-ratio of �f in the auxiliary regression

f(y) = Xb+ �f [Z�̂2 � gff�1(X�̂1)g] + Error (21.42)

Similarly, the PE statistic for testing Mg against Mf is given by the t-ratio of �g in the
auxiliary regression

g(y) = Zd+ �g[X�̂1 � ffg�1(Z�̂2)g] + Error (21.43)
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Functions f�1(�) and g�1(�) represent the inverse functions for f (�) and g(�), respectively,
such that f(f�1(y)) = y, and g(g�1(y)) = y. For example, in the case where Mf is linear
(i.e., f(y) = y) and Mg is log-linear (i.e. g(y) = log y), we have

f�1(yt) = yt

g�1(yt) = exp(yt)

In the case where Mf is in �rst-di¤erences (f(yt) = yt � yt�1) and Mg is in log-di¤erences
(g(yt) = log(yt=yt�1)) we have

f�1(yt) = f(yt) + yt�1

g�1(yt) = yt�1 exp fg(yt)g

�̂1 and �̂2 are the OLS estimators of �1 and �2 under Mf and Mg, respectively.

21.9.2 The Bera-McAleer test statistic

The statistic proposed by Bera and McAleer (1989) is for testing linear versus log-linear
models, but can be readily extended to general known one-to-one transformations of the
dependent variable of interest, namely yt. To compute the Bera-McAleer (BM) statistic for
testing Mf against Mg, the program �rst computes the residuals �̂g from the regression of
g[f�1(X�̂1)] on Z. It then computes the BM statistic for testing Mf against Mg as the
t-ratio of �f in the auxiliary regression

f(y) = Xb+ �f �̂g + Error (21.44)

The BM statistic for the test of Mg against Mf is given by the t-ratio of �g in the auxiliary
regression

g(y) = Zd+ �g�̂f + Error (21.45)

where �̂f is the residual vector of the regression of ffg�1(Z�̂2)g on X.

21.9.3 The double-length regression test statistic

The double-length (DL) regression statistic was proposed by Davidson and MacKinnon
(1984), and for the test of Mf against Mg is given by

DLf = 2n� SSRf (21.46)

where SSRf denotes the sums of squares of residuals from the DL regression�
e1=�̂

�

�
=

�
�X
0

�
b+

�
e1=�̂

��

�
c+

�
�e2
�̂v̂

�
d+ Error (21.47)

where
e1= f(y)�X�̂1; �̂2 = e01e1=(n� k1)
e2= g(y)� Z�̂2; !̂2 = e02e2=(n� k2)
v̂ = (v̂1; v̂2; :::; v̂n)

0; v̂t = g0(yt)=f 0(yt)
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� = (1; 1; :::; 1)0 is an n � 1 vector of ones, and g0(yt) and f 0(yt) denote the derivatives of
g(yt) and f(yt) with respect to yt.

To compute the SSRf statistic we �rst note that

SSRf = ~y
0~y � ~y0 ~X(~X0 ~X)�1 ~X0~y

where

~y =

�
e1=�̂

�

�
; ~X =

�
�X
0

e1=�̂

��
�e2
�̂v̂

�
but ~y0~y = e01e2=�̂

2 + n = 2n� k1

~y0 ~X =
h
0; �k1; �̂� 0v̂ �

e1e2
�̂

i
and

~X0 ~X =

26664
X0X 0 X0e2

0 2n� k1
�e01e2
�̂
� �̂(� 0v̂)

e02X
�e01e2
�̂
� �̂(� 0v̂) e02e2 + �̂

2v̂0v̂

37775
Using these results, and after some algebra, we obtain

DLf =
1

D

�
k21R1 + (2n� k1)R23 � 2k1R2R3

�
(21.48)

where

R1 = (e02M1e2)=�̂
2 + v̂0v̂

R2 = (� 0v̂) + (e01e2)=�̂
2

R3 = (� 0v̂)� (e01e2)=�̂2

D = (2n� k1)R1 �R22

A similar statistic is also computed for the test of Mg against Mf .

21.9.4 The Cox non-nested statistics computed by simulation

The simulated Cox test statistics were introduced in Pesaran and Pesaran (1993) and sub-
sequently applied to tests of linear versus log-linear models, and �rst-di¤erence versus log-
di¤erence stationary models in Pesaran and Pesaran (1995) (or PP(95)).

Three versions of the simulated Cox statistic is considered by PP(95). The three test
statistics have the same numerator and di¤er by the choice of the estimator of the variance
used to standardize the Cox statistic. In Micro�t 5.0 we have only programmed the SCc
statistic which seems to have much better small sample properties than the other two test
statistics (namely SCa and SCb) considered by PP(95).5 (In the program this is referred to

5The Monte Carlo results reported in PP (95) also clearly show that the SCc and the DL tests are more
powerful than the PE or BM tests discussed in Section 21.9.1 and 21.9.2.
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as the SC_c test statistic.) The numerator of the SCc statistic for testing Mf against Mg

is computed as

n1=2Tf (R) = �12n
1=2 log(�̂2=!̂2) + n�1=2

nX
t=1

log(
���f 0 (yt)=g0(yt)���)

+1
2n

�1=2(k1 � k2)� n1=2CR(�̂; ̂�(R)) (21.49)

where �̂ =
�b�01; �̂2�0, R is the number of replications, and ̂�(R) is the simulated pseudo-ML

estimator of  =
�
�02; !

2
�0 under Mf

̂�(R) = R�1
RX
j=1

̂j (21.50)

where ̂j is theML estimator of  computed using the arti�cially simulated independent ob-
servations Yj= (Yj1;Yj2; :::;Yjn) obtained under Mf with � = �̂. CR(�̂; ̂�(R)) is the sim-
ulated estimator of the �closeness�measure of Mf with respect of Mg (see Pesaran (1987a)):

CR(�̂; ̂�(R)) = R�1
RX
j=1

[Lf (Yj ; �̂)� LgfYj ; ̂�(R)g] (21.51)

where Lf (Y;�) and Lg(Y;) are the average log-likelihood functions under Mf and Mg,
respectively:

Lf (Y;�) = �12 log(2��
2)� 1

2�2

"
nX
t=1

ff(yt)� �01xtg2=n
#

+n�1
nX
t=1

log
��f 0(yt)�� (21.52)

Lg(Y;) = �12 log(2�!
2)� 1

2!2

"
nX
t=1

fg(yt)� �02ztg2=n
#

+n�1
nX
t=1

log
��g0(yt)�� (21.53)

The denominator of the SCc statistic is computed as

V 2�d(R) = (n� 1)�1
nX
t=1

(d�t � �d�)2 (21.54)

where �d� = n�1
nP
t=1

d�t, and

d�t = �12 log
�
�̂2=!̂2�(R)

�
� 1

2�̂2
e2t1

+
1

2!̂2�(R)

h
g(yt)� z0t�̂�2(R)

i2
+ log

���f 0(yt)=g0(yt)���
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and
et1 = f(yt)� x0tb�1

Recall also that b��2(R) and !̂2�(R) are given by (21.50), where ̂�(R) = �b�0�2(R); !̂2�(R)�0 .
The standardized Cox statistic reported by Micro�t 5.0 for the test of Mf against Mg is

given by
SCc(R) = n

1
2Tf (R)=V�d(R)

where n
1
2Tf (R) is de�ned by (21.49) and V�d(R) by (21.54). A similar statistic is also

computed for the test of Mg against Mf .

21.9.5 Sargan and Vuong�s likelihood criteria

The Sargan (1964) likelihood criterion simply compares the maximized values of the log-
likelihood functions under Mf and Mg:6

LLfg = nfLf (Y; �̂)� Lg(Y; ̂)g

or using (21.52) and (21.53)

LLfg = �
n

2
log(�̂2=!̂2) +

nX
t=1

log
��f 0(yt)=g0(yt)��+ 1

2(k1 � k2) (21.55)

Known model selection criteria such as AIC and SBC could also be applied to the models
Mf and Mg (see Section 21.7). For example, in the case of the AIC we have

AIC(Mf :Mg) = LLfg � (k1 � k2)

Vuong�s criterion is motivated in the context of testing the hypothesis that Mf and Mg

are equivalent, using the Kullback and Leibler (1951) information criterion as a measure
of goodness of �t. The Vuong (1989) test criterion for the comparison of Mf and Mg is
computed as

Vfg =

nP
t=1

dt�
nP
t=1
(dt � �d)2

�1=2 (21.56)

where �d = n�1
nP
t=1

dt, and

dt = �12 log(�̂
2=!̂2)� 1

2

�
e2t1
�̂2
� e2t2
!̂2

�
+ log

���f 0(yt)=g0(yt)���
et1 = f(yt)� b�01xt; et2 = g(yt)� b�02zt

Under the null hypothesis that �Mf andMg are equivalent�, Vfg is approximately distributed
as a standard normal variate.

6Notice that throughout, �̂2 = e01e1=(n� k1) and !̂2 = e02e2=(n� k2) are used as estimators of �2 and !2,
respectively.
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21.10 The generalized instrumental variable method

Consider the linear regression model:

y = X � + u
n� 1 n� k k � 1 n� 1

and suppose that there exists an n� s matrix Z containing observations on s instrumental
variables (s � k). Then the Generalized Instrumental Variable Estimator (GIV E)7 of � is
given by

�̂IV = (X
0PzX)

�1X0Pzy (21.57)

where Pz is the n� n projection matrix

Pz= Z(Z
0Z)�1Z0 (21.58)

The estimator of the variance matrix of �̂IV is given by

V̂ (�̂IV ) = �̂2IV (X
0PzX)

�1 (21.59)

where �̂2IV is the IV estimator of �2 (the variance of ut):

�̂2IV = (n� k)�1ê0IV êIV (21.60)

where êIV is the IV residuals given by

êIV = y �X�̂IV (21.61)

The estimator �̂IV can also be derived by minimizing the weighted quadratic form

Q(�) = (y �X�)0Pz(y �X�) (21.62)

with respect to �. The program reports the minimized value of Q(�) (namely Q(�̂IV ))
under the heading �value of IV minimand�. Notice that Q(�̂IV ) will be identically equal to
zero when the number of instruments is exactly equal to the number of the regressors (when
s = k).

21.10.1 Two-stage least squares

The IV estimator, �̂IV , can also be computed using a two-step procedure, known as the two-
stage least squares (2SLS), where in the �rst step the �tted values of the OLS regression
of X on Z, X̂ = PzX are computed. Then �̂IV is obtained by the OLS regression of y on
X̂. Notice, however, that such a two-step procedure does not, in general, produce a correct
estimator of �2, and hence of V̂ (�̂IV ). This is because the IV residuals, êIV , de�ned by

7The idea of the generalized IV estimator is due to Sargan (1958).
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(21.61), used in the estimation of �̂2IV is not the same as the residuals obtained at the second
stage of the 2SLS method. To see this denote the 2SLS residuals by e2SLS and note that

e2SLS = y � X̂�̂IV
= (y �X�̂IV ) + (X� X̂)�̂IV (21.63)

= eIV + (X� X̂)�̂IV
Where X� X̂ are the residual matrix (n� k) of the regressions of X on Z. Only in the case
where Z is an exact predictor of X, the two sets of residuals will be the same.

21.10.2 Generalized R2 for IV regressions

The use of R2 and �R2 as measures of goodness of �t in the case of IV regressions is not
valid. As is well known, there is no guarantee that R2 of a regression model estimated by the
IV method is positive, and this result does not depend on whether or not an intercept term
is included in the regression. (See, for example, Maddala (1988) p. 309). An appropriate
measure of �t for IV regressions is the Generalized R2; or GR2, measure proposed by Pesaran
and Smith (1994). In the case of IV regressions, Micro�t reports this measure along with
the other summary statistics. The GR2 is computed as

GR2 = 1�
�
e02SLSe2SLS

�, 
nX
t=1

(yt � �y)2
!

(21.64)

where e2SLS , given by (21.63), is the vector of residuals from the second stage in the 2SLS
procedure. Notice also that

e2SLS = eIV + (X� X̂)�̂IV (21.65)

A degrees-of-freedom adjusted Generalized R2 measure is given by

GR
2
= 1�

�
n� 1
n� k

��
1�GR2

�
(21.66)

Pesaran and Smith (1994) show that under reasonable assumptions the use of GR2 is a valid
discriminator for models estimated by the IV method, asymptotically.

21.10.3 Sargan�s general mis-speci�cation test

This test is proposed in Sargan (1964) pp. 28-9, as a general test of misspeci�cation in the
case of IV estimation, and is based on the statistic (s > k)

�2SM = Q(�̂IV )=�̂
2
IV

a� �2(s� k) (21.67)

where Q(�̂IV ) is the value of IV minimand given by

Q
�
�̂IV

�
= (y �X�̂IV )0Pz(y �X�̂IV )

= y0[Pz�PzX(X
0PzX)

�1X0Pz]y (21.68)

= ŷ0[I� X̂(X̂0X̂)�1X0]ŷ
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Under the null hypothesis that the regression equation (21.4) is correctly speci�ed, and that
the s (s > k) instrumental variables Z are valid instruments, Sargan�s mis-speci�cation
statistic, �2SM , is asymptotically distributed as a chi-squared variate with s � k degrees of
freedom. The J-statistic proposed by Hansen (1982) is a generalization of Sargan�s mis-
speci�cation statistic.

21.10.4 Sargan�s test of residual serial correlation for IV regressions

The statistic underlying this test is given in Appendix B of Breusch and Godfrey (1981),
and can be written as

�2SC(p) = ne
0
IVW(W0HW)�1W0eIV =e

0
IV eIV

a� �2(p) (21.69)

where eIV is the vector of IV residuals de�ned by (21.61):

eIV = y �X�̂IV = (e1;IV ; e2;IV ; :::; en;IV )0

W is the n� p matrix consisting of the p lagged valued of eIV , namely

W =

2666666664

0 0 : : : 0
e1;IV 0 : : : 0
e2;IV e1;IV : : : 0

� �
...

...
... en�p�1;IV

en�1;IV en�2;IV : : : en�p;IV

3777777775
(21.70)

and
H = In�X(X̂

0
X̂)

�1
X̂0�X̂(X̂0X̂)�1X0+X(X̂0X̂)�1X0

in which X̂ = PzX.8 Notice that when Z includes X, then X̂ = X, and (21.69) reduces to
(21.19). Under the null hypothesis that the disturbances in (21.4) are serially uncorrelated,
�2SC(p) in (21.69) is asymptotically distributed as a chi-squared variate with p degrees of
freedom.

21.11 Exact ML/AR estimators

This estimation method (option 3 in the Linear Regression Estimation Menu, 6.5), provides
exact Maximum Likelihood (ML) estimates of the parameters of (21.3) under the assumption
that the disturbances ut follow stationary

AR(1) : ut = �ut�1 + �t; �t � N(0; �2� ); t = 1; 2; :::; n (21.71)

or
AR(2) : ut = �1ut�1 + �2ut�2 + �t; �t � N(0; �2� ); t = 1; 2; :::; n (21.72)

8See Breusch and Godfrey (1981) p. 101, for further details. The statistic in (21.69) is derived from the
results in Sargan (1976).
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processes with �stochastic initial values�. This estimation procedure assumes that the under-
lying AR error processes are started a long-time prior to the �rst observation date (t = 1)
and are stationary. This implies that the initial values (u1 for the AR(1) process, and u1 and
u2 for the AR(2) process) are normally distributed with zero means and a constant variance
given by

AR(1) Case : V (u1) =
�2�

1� �2

AR(2) Case :

8>>>><>>>>:
V (u1) = V (u2) =

�2� (1� �2)
(1 + �2)

3 � �21(1 + �2)

Cov(u1; u2) =
�2��1

(1 + �2)
3 � �21(1 + �2)

The exact ML estimation procedure then allows for the e¤ect of initial values on the para-
meter estimates by adding the logarithm of the density function of the initial values to the
log-density function of the remaining observations obtained conditional on the initial val-
ues. For example, in the case of the AR(1) model the log-density function of (u2; u3; :::; un)
conditional on the initial value, u1, is given by:

log ff(u2; u3; :::; un ju1)g = �
(n� 1)
2

log(2��2� )�
1

2�2�

 
nX
t=2

�2t

!
(21.73)

and

log ff(u1)g = �
1

2
log(2��2� ) +

1

2
log(1� �2)� (1� �

2)

2�2�
u21

Combining the above log-densities yields the full (unconditional) log-density function of
(u1; u2; ::; un)

log ff(u1; u2; :::; un)g = �n
2
log(2��2� ) +

1

2
log(1� �2)

� 1

2�2�

 
nX
t=2

(ut � �ut�1)2 + (1� �2)u21

!
(21.74)

Asymptotically, the e¤ect of the distribution of the initial values on the ML estimators
is negligible, but it could be important in small samples where xts are trended and � is
suspected to be near but not equal to unity. See Pesaran (1972), and Pesaran and Slater
(1980) Chapters 2 and 3, for further details. Also see Judge, Gri¢ ths, Hill, Lütkepohl, and
Lee (1985) Section 8.2, Davidson and MacKinnon (1993) Section 10.6, and the papers by
Hildreth and Dent (1974), and Beach and MacKinnon (1978). Strictly speaking, the ML
estimation will be exact if lagged values of yt are not included amongst the regressors. For a
discussion of the exactML estimation of models with lagged dependent variable and serially
correlated errors, see Pesaran (1981).
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21.11.1 The AR(1) case

For this case, the ML estimators are computed by maximizing the log-likelihood function9

LLAR1(�) = �n
2
log(2��2� ) +

1
2 log(1� �

2) (21.75)

� 1

2�2�
(y �X�)0R(�)(y �X�)

with respect to the unknown parameters � = (�0; �2� ; �)
0, where R(�) is the n� n matrix

R(�) =

2666664
1 �� 0 0 : : : 0
�� 1 + �2 �� 0 : : : 0
...

...
0 0 : : : : : : �� 1 + �2 ��
0 0 : : : : : : 0 �� 1

3777775 (21.76)

and j�j < 1.
The computations are carried out by the �inverse interpolation�method, which is certain

to converge. See Pesaran and Slater (1980) pp. 36-38, for further details.
The concentrated log-likelihood function in this case is given by

LLAR1(�) = �n
2
[1 + log(2�)] + 1

2 log(1� �
2) (21.77)

�n
2
logf~u0R(�)~u=ng; j�j < 1

where ~u is the n� 1 vector of ML residuals:

~u = y �X[X0R(�)X]�1X0R(�)y

21.11.2 The AR(2) case

For this case, the ML estimators are obtained by maximizing the log-likelihood function

LLAR2(�) = �n
2
log(2��2� ) + log(1 + �2) (21.78)

+1
2 log

�
(1� �2)2 � �21

�
� 1

2�2�
(y �X�)0R(�)(y �X�)

9This result follows readily from (21.74), and can be obtained by substituting ut = yt � �0xt in (21.74).
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with respect to � = (�0; �2� ;�)
0, where � = (�1; �2)

0

R(�) =

26666666664

1 ��1 ��2 0 0 : : : 0 0
��1 1 + �21 ��1 + �1�2 ��2 0 : : : 0 0
��2 ��1 + �1�2 1 + �21 + �

2
2 ��1 + �1�2 ��2 : : : 0 0

0 ��2 ��1 + �1�2 1 + �21 + �
2
2 : : : 0 0

...
...

...
...

...
...

0 0 0 0 : : : 1 + �21 ��1
0 0 0 0 : : : ��1 1

37777777775
(21.79)

The estimation procedure imposes the restrictions

1 + �2 > 0;
1� �2 + �1 > 0
1� �2 � �1 > 0

9=; (21.80)

needed if the AR(2) process, (21.72), is to be stationary.

21.11.3 Covariance matrix of the exact ML estimators for the AR(1) and
AR(2) options

The estimates of the covariance matrix of the exact ML estimators de�ned in the above
sub-sections are computed on the assumption that the regressors xt do not include lagged
values of the dependent variable.10

For the AR(1) case we have

~V (~�) =�̂2� [X
0R(~�)X]�1 (21.81)

~V (~�) = n�1(1� ~�2) (21.82)

where R(~�) is already de�ned by (21.76), and �̂2� is given below by (21.91).
For the AR(2) case we have

~V (~�) =�̂2� [X
0R(~�1;~�2)X]

�1 (21.83)

~V (~�1) = ~V (~�2) = n�1(1� ~�22) (21.84)gCov(~�1; ~�2) = �n�1~�1(1 + ~�2) (21.85)

where R(~�1; ~�2) is de�ned by (21.79). Here the ML estimators are designated by �.
10When the regression contains lagged values of the dependent variable, the Cochrane-Orcutt or the Gauss-

Newton options 4 or 5 in the Linear Regression Estimation Menu should be used (see Sections 21.12 and
21.13).
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21.11.4 Adjusted residuals, R2, R̄2, and other statistics

In the case of the exactML estimators, the �adjusted�residuals are computed as follows (see
Pesaran and Slater (1980), pp. 49, 136):

~�1 = ~u1

q�
[(1� ~�2)2 � ~�21](1 + ~�2)=(1� ~�2)

	
(21.86)

~�2 = ~u2

q
(1� ~�22)� ~u1 ~�1

p
[(1 + ~�2)=(1� ~�2)] (21.87)

~�t = ~ut � ~�1~ut�1 � ~�2~ut�2; t = 3; 4; :::; n: (21.88)

where
~ut = yt � x

0
t
~�; t = 1; 2; :::; n

are the �unadjusted�residuals, and

~� =
�
X0R(~�)X

��1
X0R(~�)y (21.89)

Recall that ~� = (~�1; ~�2)
0. The program also takes account of the speci�cation of the AR-

error process in computations of the �tted values. Denoting these adjusted (or conditional)
�tted values by ~yt, we have

~yt = ~E(yt jyt�1; yt�2; :::; xt;xt�1; :::) = yt � ~�t; t = 1; 2; :::; n (21.90)

The standard error of the regression is computed using the formula

�̂2� = ~u
0R(~�)~u=(n� k �m) (21.91)

where m = 1, for the AR(1) case, and m = 2 for the AR(2) case. Given the way the adjusted
residuals ~�t are de�ned above, we also have

�̂2� = ~u
0R(~�)eu=(n� k �m) = nX

t=1

~�2t =(n� k �m) (21.92)

Notice that this estimator of �2� di¤ers from the ML estimator given by

~�2� =
nX
t=1

~�2t =n

and the estimator adopted in Pesaran and Slater (1980). The di¤erence lies in the way the
sum of squares of residuals,

Pn
t=1 ~�

2
t , is corrected for the loss in degrees of freedom arising

from the estimation of the regression coe¢ cients, �; and the parameters of the error process,
� = (�1; �2)

0:
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The R2; �R2, and the F -statistic are computed from the adjusted residuals:

R2 = 1�
 

nX
t=1

~�2t

,
nX
t=1

(yt � �y)2
!

�R2 = 1� (�̂2�=�̂2y) (21.93)

where �̂y is the standard deviation of the dependent variable, de�ned as before by �̂2y =Pn
t=1(yt � �y)2=(n� 1):
The Durbin-Watson statistic is also computed using the adjusted residuals, ~�t:

gDW =

nP
t=2
(~�t � ~�t�1)2

nP
t=1
~�2t

The F -statistics reported following the regression results are computed according to the
formula

F -statistic =
�

R2

1�R2

��
n� k �m
k +m� 1

�
a� F (k +m� 1; n� k �m) (21.94)

with
m = 1; under AR(1) error speci�cation

and
m = 2; under AR(2) error speci�cation

Notice that R2 in (21.94) is given by (21.93). The above F -statistic can be used to test the
joint hypothesis that except for the intercept term, all the other regression coe¢ cients and
the parameters of the AR-error process are zero. Under this hypothesis the F -statistic is
distributed approximately as F with k +m� 1 and n� k �m degrees of freedom. The chi-
squared version of this test can be based on nR2=(1�R2), which under the null hypothesis
of zero slope and AR coe¢ cients is asymptotically distributed as a chi-squared variate with
k +m� 1 degrees of freedom.

21.11.5 Log-likelihood ratio statistics for tests of residual serial correlation

The log-likelihood ratio statistic for the test of AR(1) against the non-autocorrelated error
speci�cation is given by

�2AR1;OLS = 2(LLAR1 � LLOLS)
a� �21

The log-likelihood ratio statistic for the test of the AR(2)-error speci�cation against the
AR(1)-error speci�cation is given by

�2AR1;OLS = 2(LLAR2 � LLAR1)
a� �21

Both of the above statistics are asymptotically distributed, under the null hypothesis, as a
chi-squared variate with one degree of freedom.

The log-likelihood values, LLOLS ; LLAR1 and LLAR2, represent the maximized values of
the log-likelihood functions de�ned by (21.14), (21.75) and (21.78), respectively.
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21.12 The Cochrane-Orcutt iterative method

This estimation method employs the Cochrane and Orcutt (1949) iterative procedure to
computeML estimators of (21.4) under the assumption that the disturbances, ut, follow the
AR(m) process

ut =
mX
i=1

�iut�i + �t; �t � N(0; �2� ); t = 1; 2; :::; n (21.95)

with ��xed initial�values. The ��xed initial value�assumption is the same as treating the
values, y1; y2; :::; ym as given or non-stochastic. This procedure in e¤ect ignores the possible
contribution of the distribution of the initial values to the overall log-likelihood function
of the model. Once again the primary justi�cation of treating initial values as �xed is
asymptotic, and is plausible only when (21.95) is stationary and n is reasonably large (see
Pesaran and Slater (1980) Section 3.2, and Judge, Gri¢ ths, Hill, Lütkepohl, and Lee (1985)
Section 8.2.1c) for further discussion).

The log-likelihood function for this case is de�ned by

LLCO(�) = �
(n�m)
2

log(2��2� )�
1

2�2�

nX
t=m+1

�2t + c (21.96)

where � = (�0; �2� ;�
0)0 with � = (�1; �2; :::; �m)

0. Notice that the constant term c in (21.96) is
unde�ned, and is usually set equal to zero. The Cochrane-Orcutt (CO) method maximizes
LLCO(�); or equivalently minimizes �nt=m+1�

2
t with respect to � by the iterative method

of �successive substitution�. Each iteration involves two steps: in the �rst step, LLCO is
maximized with respect to �; taking � as given. In the second step � is taken as given,
and the log-likelihood function is maximized with respect to �. In each of these steps the
optimization problem is solved by running OLS regressions. To start the iterations, � is
initially set equal to zero. The iterations are terminated if

mX
i=1

���~�i;(j) � ~�i;(j�1)��� < m=1000 (21.97)

where �(j) = (~�1;(j); ~�2;(j); :::; ~�m(j))
0; and �(j�1) denotes estimators of � in the jth and

(j � 1)th iterations, respectively. The estimator of �2� is computed as

�̂2� =
nX

t=m+1

~�2t =(n� 2m� k) (21.98)

where ~�t, the adjusted residuals, are given by

~�t = ~ut �
mX
i=1

~�i~ut�i; t = m+ 1;m+ 2; :::; n (21.99)
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where

~ut = yt �
kX
i=1

~�ixit; t = 1; 2; :::; n (21.100)

As before, the symbol � on top of an unknown parameter stands for ML estimators (now
under �xed initial values). The estimator of �2� in (21.98) di¤ers from the ML estimator,
given by ~�2� =

Pn
t=m+1 ~�

2
t =(n � m): The estimator �̂2� allows for the loss of the degrees of

freedom associated with the estimation of the unknown coe¢ cients, �, and the parameters of
the AR process, �. Notice also that the estimator of �2� is based on n�m adjusted residuals,
since the initial values y1; y2; :::; ym are treated as �xed.

The adjusted �tted values, ~yt, in the case of this option are computed as

~yt = Ê(yt jyt�1; yt�2; :::;xt;xt�1; :::) = yt � ~�t (21.101)

for t = m+ 1;m+ 2; :::; n. Notice that the initial values ~y1; ~y2; :::; ~ym, are not de�ned.
In the case where m = 1, the program also provides a plot of the concentrated log-

likelihood function in terms of �1, de�ned by

LLCO(~�1) = �
(n� 1)
2

[1 + log(2�~�2� )] (21.102)

where

~�2� =

nX
t=2

~�2t =(n� 1)

and ~�t = ~ut � ~�1~ut�1:

21.12.1 Covariance matrix of the CO estimators

The estimator of the asymptotic variance matrix of ~� = (~�
0
; ~�0)0 is computed as

V̂ (~�) = �̂2�

�
~X
0
� ~X� ~X

0
�S

S0 ~X� S0S

��1
(21.103)

where ~X� is the (n�m)� k matrix of transformed regressors11

~X� =
mX
i=1

~�iX�i (21.104)

11A typical element of ~X� is given by

~x�jt = xjt �
mX
i=1

~�ixj;t�i t = m+ 1;m+ 2; :::; n; j = 1; 2; :::; k:
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and S is an (n � m) � m matrix containing the m lagged values of the CO residuals, ~ut,
namely

S =

26664
~um ~um�1 : : : ~u1
~um+1 ~um : : : ~u2
...

...
...

~un�1 ~un�2 : : : ~un�m

37775 (21.105)

The unadjusted residuals, ~ut; are already de�ned by (21.100). The above estimator of the
variance matrix of ~� and ~� is asymptotically valid even if the regression model (21.4) contains
lagged dependent variables.

21.13 ML/AR estimators by the Gauss-Newton method

This method provides an alternative numerical procedure for the maximization of the log-
likelihood function (21.96). In cases where this log-likelihood function has a unique maxi-
mum, the Gauss-Newton and the CO iterative methods should converge to nearly identical
results. But in general this need not be the case. However, the Gauss-Newton method is
likely to perform better than the CO method when the regression equation contains lagged
dependent variables.

The computations for the Gauss-Newton procedure are based on the following iterative
relations: �~�

~�

�
j

=

�~�
~�

�
j�1

+

�
~X
0
� ~X� ~X

0
�S

S0 ~X� S0S

��1
j�1

�~X0
�~�

S0~�

�
j�1

(21.106)

where the subscripts j and j � 1 refer to the jth and the (j � 1)th iterations; and ~� =
(~�m+1;~�m+2; :::;~�n)

0, ~X�, and S have the same expressions as those already de�ned by (21.99),
(21.104), and (21.105) respectively. The program starts the iterations with

~�(0) = ~�OLS = (X
0X)�1X0y

~�(0) = 0

and ends them if either the number of iterations exceeds 20, or if the condition (21.97) is
satis�ed.

On exit from the iterations the program computes a number of statistics including esti-
mates of �2� , the variance matrices of ~� and ~�, R

2; �R2, and so on, using the results already
set out in Sections 21.12.1 and 21.11.4.

21.13.1 AR(m) error process with zero restrictions

The program applies the Gauss-Newton iterative method to compute estimates of the re-
gression equation when the AR(m) error process (21.95) is subject to zero restrictions (see
option 5 in the Linear Regression Estimation Menu, and Section 6.10). Notice that in the
restricted case the estimator of the standard error of the regression is given by

�̂2� =
nX

t=m+1

~�2t =(n�m� r � k); n > m+ r + k (21.107)
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where r represents the number of non-zero parameters of the AR(m) process.
Similarly, the appropriate formula for the F -statistic (21.15) is now given by

F =

�
R2

1�R2

��
n�m� k � r
k + r � 1

�
a� F (k + r � 1; n�m� k � r) (21.108)

The chi-squared version of this statistic can, as before, be computed by nR2=(1�R2); which is
asymptotically distributed (under the null hypothesis) as a chi-squared variate with k+r�1
degrees of freedom.

21.14 The IV/AR estimation method

This procedure provides estimates of the following linear regression model with AR(m) errors
by the instrumental variable method:

yt = x0t� + ut; t = 1; 2; :::; n

ut =
mX
i=1

�iut�i + �t; t = m+ 1;m+ 2; :::; n

The method assumes that there exists an n � s matrix Z containing observations on the s
instrumental variables zt(s � k+m): Then the IV=AR estimators of � and � are computed
by minimizing the criterion function (see Sche¤e (1959)):

Q(�;�) = �0Pz� (21.109)

with respect to � and �, where Pz is the projection matrix de�ned by (21.58), and � =
(�m+1; �m+1; :::; �n)

0, is the (n�m)� 1 vector of �adjusted�residuals.
Application of the Gauss-Newton method to solve the above minimization problem yields

the following iterative relations that are a generalization of (21.106):�~�
~�

�
j

=

�~�
~�

�
j�1

+

�
~X
0
�Pz ~X� ~X

0
�PzS

S0Pz ~X� S0PzS

��1
j�1

�~X0�Pz~�
S0Pz~�

�
j�1

(21.110)

The notations are as before (see Section 21.12).
The program starts the iterations with

~�(0) = ~�IV = (X
0PzX)

�1X0Pzy

and
~�(0) = 0

See Section 21.13 for details of the iterative process.
In addition to the usual summary statistics, the program also reports the minimized

value of Q(�;�), namely Q(~�; ~�), where here ~� and ~� represent the IV/AR estimators of �
and �, respectively. The program reports Q(~�; ~�) as the �value of IV minimand�.
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21.14.1 Sargan�s general mis-speci�cation test in the case of the IV/AR
option

This is the generalization of the Sargan (1964) test described in Section 21.10.3, and is based
on the statistic

�2SM = Q(~�; ~�)=�̂2�
a� �2(s� k � r) (21.111)

where, as before,

�̂2� =

nX
t=m+1

~�2t =(n�m� r � k)

andQ(~�; ~�) is the minimized value of the IV minimand (21.109).12 Under the null hypothesis
that the regression equation (21.4) and the AR-error process (21.95) are correctly speci�ed,
and that the s(s > k + r) instrumental variables zt are valid instruments, Sargan�s mis-
speci�cation statistic �2SM in (21.111) is asymptotically distributed as a chi-squared variate
with s� k � r degrees of freedom.

21.14.2 R2,R̄2,GR2,GR
2
, and other statistics: AR options

The summary statistics reported in the case of the AR and IV=AR options are computed
using the adjusted residuals ~�t, de�ned by (21.99). The R2 of the regression is computed as

R2 = 1�
(

nX
t=m+1

~�2t

,
nX

t=m+1

(yt � �ym)2
)

(21.112)

where

�ym =

nX
t=m+1

yt=(n�m) (21.113)

Notice that in the case of the CO and IV=AR options the initial values y1; y2; :::; ym are
assumed �xed.

The �R2 is computed as

R
2
= 1�

�
n�m� 1

n�m� r � k

��
1�R2

�
(21.114)

The F -statistic in the case of the AR options is computed as

F -statistic =
�

R2

1�R2

��
n�m� r � k
k + r � 1

�
a� F (k + r � 1; n�m� k � r) (21.115)

On the null hypothesis that all the regression coe¢ cients other than the intercept term are
zero, and that � = 0, the above F -statistic is approximately distributed as F with k+ r� 1,
and n �m � k � r degrees of freedom. Notice that in the case of the CO option, r = m.
Also asymptotically,

nR2=(1�R2) a� �2k+r�1
12Recall that r is the number of non-zero coe¢ cients of (21.95).
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The DW statistic is computed for this option using the adjusted residuals, ~�t; namely

DW =

nP
t=m+2

(~�t � ~�t�1)2

nP
t=m+1

~�2t

The computation of the GR2 and GR
2
statistics are based on the one-step ahead (in-

sample) prediction errors de�ned by

~�t = ~�t + ~�
0
(xt � x̂t); t = m+ 1;m+ 2; :::; n (21.116)

where x̂t, t = 1; 2; :::; n are the �tted values from the regression of xt on the instrumental
variables zt. Relation (21.116) is a generalization of (21.65) to the case of serially correlated
errors. More speci�cally we have

GR2 = 1�
 

nX
t=m+1

~�
2
t

!, 
nX

t=m+1

(yt � �ym)2
!

GR
2
= 1�

�
n�m� 1

n�m� r � k

��
1�GR2

�
(21.117)

where �ym is de�ned by (21.113). Clearly, these measures reduce to the corresponding least
squares measures in (21.112) and (21.114) when zt is a sub-set of xt . See also Section
21.10.2.

21.15 Exact ML/MA estimators

The moving-average (MA) estimation option in the Linear Regression Estimation Menu (see
Section 6.5) computes estimates of the parameters of the regression model:

yt = x
0
t� + ut; t = 1; 2; :::; n (21.118)

where

ut =

qX
i=0

i�t�i; �t � N(0; �2� ); 0 � 1 (21.119)

by maximizing the log-likelihood function

LLMA(�) = �
n

2
(2��2� )� 1

2 log j
j �
1

2�2�
(y �X�)0
�1(y �X�) (21.120)

where u = y � X�, and E(uu0) = �2�
: This yields exact ML estimates of the unknown
parameters � = (�0; 1; 2; :::; q; �

2
� )
0; when the regressors xt do not include lagged values

of yt.
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The numerical method used to carry out the above maximization problem is similar to
the Kalman �lter procedure and is described in Pesaran (1988a).13

The method involves a Cholesky decomposition of the variance-covariance matrix 
. For
the MA(1) error speci�cation we have:


 =

2666664
1 + 21 1 0 : : : 0 0
1 1 + 21 1 : : : 0 0
...

...
...

...
...

1 + 21 1
0 0 0 : : : 1 1 + 21

3777775 = HWH0 (21.121)

whereW is a diagonal matrix with elements wt; t = 1; 2; :::; n, and H is the upper triangular
matrix

H =

26666666664

1 h1 0 : : : 0
1 h2 : : : 0

�
...

�
0 � 0

1 hn�1
1

37777777775
(21.122)

The elements wt and ht satisfy the following forward recursions:14

ht = 1=wt+1; for t = n� 1; n� 2; :::; 1
wt = 1 + 21 � wt+1h2t ; for t = n� 1; n� 2; :::; 1

starting with the terminal value of wn = 1 + 21:
Using (21.121) in (21.120) now yields (notice that 
�1 = H0�1W�1H�1 and j
j =

jWj = w1w2; :::; wn)

LLMA(�) = �n2 log(2��
2
� )� 1

2

nX
t=1

logwt �
1

2�2�
(y� �X��)0(y� �X��) (21.123)

where

y�t = w
�1=2
t yft

x�t = w
�1=2
t xft

13For a description of the Kalman �lter algorithm and its use in the estimation of MA processes see, for
example, Harvey (1989).
14 In Pesaran (1988a), H is chosen to be a lower triangular matrix, and the resultant recursions are conse-

quently backward in wt and ht. In the case of the MA option both the backward and the forward recursion
methods yield identical results, but forward recursion is the appropriate method to use for estimation of
certain classes of rational expectations models. See Section 21.16.
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and yft and x
f
t represent the forward �ltered values of yt and xt de�ned by

yft = yt � htyft+1; for t = n� 1; n� 2; :::; 1
xft = xt � htxft+1; for t = n� 1; n� 2; :::; 1

with the terminal values yfn = yn, x
f
n = xn. The ML estimators of � and �2� are given by

~� = (X�
0
X�)�1X�

0
y�

~�2� = (y� �X�~�)0(y� �X�~�)=n

The estimation of 1 is carried out iteratively using the modi�ed Powell conjugate direction
algorithm that does not require derivatives (see below for further details and references).

The above procedure can be readily extended to higher-order MA processes. For a
general MA(q) process the generalization of (21.122) is given by

H =

26666666666664

1 h11 h21 : : : hq1 : : : 0
1 h12 h22 : : : hq2 0

� � � . . .
...

� � � hq;n�q

� �
...

0 � � h2;n�2
1 h1;n�1

1

37777777777775

wt = �0 �
qX
i=1

h2itwt+i; t = n� 1; n� 2; :::; 1

hjt = w�1t+j

0@�j � qX
i=j+1

hithi�j;t+jwt+i

1A ;
t = n� j; n� j � 1; :::; 1;
j = q � 1; q � 2; :::; 1

hqt = w�1t+q�q;

�s =

8<:
qP
i=1

ii�s 0 � s � q;

0 s > q:

The forward �lters on yt and xt are given by

yft = yt �
qX
i=1

hity
f
t+i; for t = n� 1; n� 2; :::; 1

xft = xt �
qX
i=1

hitx
f
t+i; for t = n� 1; n� 2; :::; 1
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and as before, y�t = w
�1=2
t yft ; x

�
t = w

�1=2
t xft ; The terminal values for the above recursions

are given by

wn = �0 = 1 + 
2
1 + 

2
2 + : : :+ 

2
q

hjn = hj;n�1 = � � � = hj;n�j+1 = 0

yfn = yn

xfn = xn

For a given value of  = (1; 2; :::; q)
0, the estimator of � is computed by theOLS regression

of y�t on x
�
t . The estimation of  is carried out iteratively by the modi�ed Powell�s method

of conjugate directions that does not require derivatives of the log-likelihood function. See
Powell (1964), Brent (1973) Chapter 7, and Press, Flannery, Teukolsky, and Vetterling (1989)
Section 10.5. The application of the Gauss-Newton method to the present problem requires
derivatives of the log-likelihood function which are analytically intractable, and can be very
time-consuming if they are to be computed numerically.

21.15.1 Covariance matrix of the unknown parameters in the MA option

In the case of the MA option the covariance matrix of ~ = (~�; ~) is computed as�
�@2LLMA(�)

@ @ 0

��1
 =~ 

where the Hessian matrix, �@2LLMA(�)=@ @ 
0 is computed by taking second numerical

derivatives of the log-likelihood function de�ned by (21.123) at the ML estimators ~ =
(~�; ~). Notice that this estimator of the variance matrix of ~� and ~ is asymptotically valid
even if the regression model (21.118) contains lagged values of the dependent variable.15

21.16 The IV/MA estimators

Consider the regression model (21.118) with the moving average errors (21.119), and suppose
that there exists an n�s matrix, Z; containing observations on the s instrumental variables,
zt. Then the IV=MA estimators of � and  are computed by minimizing the criterion
function

S(�;) = (n=2)u�
0
Pzu

� + 1
2 log j
j (21.124)

where u� are the forward �ltered values of u = y � X�; E(uu0) = �2�
, and Pz is the
projection matrix de�ned by (21.58). The forward �lter procedure applied to the uts is the

15The program reports standard errors and probability values for the MA parameters only when none of
the roots of

qX
i=0

iz
i = 0; 0 � 1;

fall on the unit circle. The Lahmer-Schur algorithm is used to check whether any of the roots of the above
polynomial equation falls on the unit circle. See, for example, Acton (1970) Chapter 7.
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same as that described in Section 21.15. The term u�
0
Pzu

� is the same as the IV criterion
used in the Hayashi and Sims (1983) estimation procedure. Notice that only yt and xits are
forward �ltered, and not the instruments. The second term in (21.124) is asymptotically
negligible when the MA process in (21.119) is invertible, but as argued in Pesaran (1990),
its inclusion in the criterion function helps ensure that in small samples S(�;) achieves a
minimum when the roots of the MA process are close to the unit circle.

For given values of i, i = 1; 2; :::; q, the regression coe¢ cients � are estimated by the
IV regression of the forward �ltered variables y� on X� (see Section 21.15 for the relevant
expressions for the forward �ltering procedure). The estimation of  is carried out iteratively
by the modi�ed Powell�s conjugate direction algorithm that does not require derivatives of
the IV minimand de�ned in (21.124) (see Section 21.15 and Pesaran (1990) for further
details.) The computation of the variance-covariance matrix of the parameter estimates,
and the various summary statistics reported by the program for this option, are also carried
out along the lines set out in Sections 21.15.1 and 21.16.1.

21.16.1 R2; �R2; GR2; GR
2
, and other statistics: MA options

The summary statistics reported in the case of the MA and the MA=IV options are com-
puted using the adjusted residuals ~�t de�ned by

~�t = �
qX
i=1

i~�t�i + ~ut; t = 1; 2; :::; n

where the initial values ~�0;~��1; :::;~��q+1 are set equal to zero, and

~ut = yt �
kX
i=1

~�ixit; t = 1; 2; :::; n

Assuming that the MA(q) process (21.119) is estimated with q� r zero restrictions, �2� , the
variance of �t is estimated by (q 6= 0)

�̂2� =

nX
t=1

~�2t =(n� r � k); n > r + k

The other statistics included in the result table are computed as

R2 = 1�
 

nX
t=1

~�2t

!, 
nX
t=1

(yt � �y)2
!

�R2 = 1�
�

n� 1
n� r � k

��
1�R2

�
; (21.125)

F =

�
R2

1�R2

��
n� k � r
k + r � 1

�
a� F (k + r � 1; n� k � r) (21.126)
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and

DW =
nX
t=2

(~�t � ~�t�1)2
,

nX
t=1

~�2t (21.127)

Under the null hypothesis that all the regression coe¢ cients other than the intercept term
are zero and  = 0, the F -statistic (21.126) is approximately distributed as F with k+ r� 1
and n� k � r degrees of freedom.

As in the case of the IV=AR option, the computation of the GR2 and GR
2
statistics are

based on the one-step ahead (in-sample) prediction errors de�ned by

~�t = ~�t + ~�
0
(xt � x̂t); t = 1; 2; :::; n (21.128)

where x̂t, t = 1; 2; :::; n are the �tted values from the regression of xt on the instrumental
variables zt. More speci�cally we have

GR2 = 1�
 

nX
t=1

~�
2
t

!, 
nX
t=1

(yt � �y)2
!

GR
2
= 1�

�
n� 1

n� r � k

��
1�GR2

�
(21.129)

21.17 Recursive regressions

The econometric model underlying the recursive regressions is given by

yt = x0t �t + ut
1� 1 1� k k � 1 1� 1 ; t = 1; 2; :::; n (21.130)

where the coe¢ cients �t, and the variances of the disturbance terms, �
2
t , are now allowed to

vary with t, typically a time subscript. (Notice that for this option it is necessary that the
observations are ordered.)

21.17.1 The CUSUM test

The Cumulative Sum (CUSUM) test is described in Brown, Durbin, and Evans (1975), and
is based on the CUSUM of recursive residuals de�ned by

Wr =
1

�̂OLS

rX
j=k+1

vj ; r = k + 1; k + 2; :::; n (21.131)

where vt is the recursive residual based on the �rst j observations given below by (21.136),
and �̂OLS is already de�ned by (21.7).

The test employs a graphic technique and involves plotting Wr and a pair of straight
lines for values of r = k + 1; k + 2; :::; n. The straight lines are drawn assuming 5 per cent
signi�cance level.
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The equations of the lines are given by

W = �
n
0:948

p
(n� k) + 1:896(r � k)

p
(n� k)

o
(21.132)

for r = k + 1; k + 2; :::; n:
For further details see Brown, Durbin, and Evans (1975) Section 2.3, and Harvey (1981)

pp. 151-154.

21.17.2 The CUSUM of squares test

This test is described fully in Brown, Durbin, and Evans (1975), and employs the squared
recursive residuals v2j . It is based on the quantities

WWr =

rX
j=k+1

v2j

,
nX

j=k+1

v2j ; r = k + 1; k + 2; :::; n (21.133)

and involves plotting WWr and a pair of lines whose equations are given by

WW = �c0 + (r � k)=(n� k); r = k + 1; k + 2; :::; n (21.134)

where c0 is determined by the signi�cance level chosen for the test. The program uses the
values of c0 appropriate for a �ve per cent signi�cance level. These are based on the critical
values in Harvey (1981) Table C, pp. 364-5.

21.17.3 Recursive coe¢ cients: the OLS option

Let

Xr = (x1;x2; :::;xr)
0

yr = (y1; y2; :::; yr)
0

then the recursive coe¢ cients are de�ned by

�̂r = (X
0
rXr)

�1X0ryr; r = k + 1; k + 2; :::; n (21.135)

The program computes �̂r recursively, using the results (3) and (4) in Brown, Durbin, and
Evans (1975) p. 152.

21.17.4 Standardized recursive residuals: the OLS option

The standardized recursive residuals based on the �rst r observations are de�ned by16

vr = (yr � x0rb�r�1)=dr; r = k + 1; k + 2; :::; n (21.136)

16Notice that under

H0:

�
�1= �2= � � � = �n= �
�21 = �

2
2 = � � � = �2n = �2

the recursive residuals vr, r = k + 1; :::; n are independent, N(0; �2). See Lemma 1 in Brown, Durbin, and
Evans (1975).
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where �̂r are de�ned by (21.135), and

dr =

rn
1 + x0r(X

0
r�1Xr�1)

�1xr
o

(21.137)

21.17.5 Recursive standard errors: the OLS option

Denoting the estimator of �2t based on the �rst r observations by �̂
2
r , we have

b�2r = Sr=(r � k); r = k + 1; k + 2; :::; n (21.138)

where
Sr = Sr�1 + v

2
r ; r = k + 1; k + 2; :::; n;

with Sk = 0. Equivalently Sr = (yr�Xr�̂r)0(yr�Xr�̂r):

21.17.6 Recursive estimation: the IV option

Recursive coe¢ cients In the IV case the recursive coe¢ cients are computed using
the relations

�̂r;IV= (X
0
rPrXr)

�1X0rPryr (21.139)

V̂ (�̂r;IV )=�̂
2
r;IV (X

0
rPrXr)

�1 (21.140)

for r = k + 1; k + 2; :::; n, where

Pr = Zr(Z
0
rZr)

�1Z0r
Zr = (z1; z2; :::; zr)

0

�̂2r;IV is de�ned by (21.143) below and zt; t = 1; 2; :::; n are the s� 1 vectors of observations
on the s instrumental variables

Standardized recursive residuals

vr;IV = (yr � x0r�̂r�1;IV )=dr;IV ; r = k + 1; k + 2; :::; n (21.141)

where �̂r;IV is de�ned by (21.139) and

dr;IV =
n
1 + x0r(X

0
r�1Pr�1Xr�1)

�1xr
o1=2

(21.142)

Recursive standard errors

�̂2r;IV = (yr�Xr�̂r;IV )
0(yr�Xr�̂r;IV )=(r � k) (21.143)

for r = k + 1; k + 2; :::; n:
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21.17.7 Adaptive coe¢ cients in expectations formation models under in-
complete learning

Starting with the parameter varying model (21.130), as shown in Pesaran (1987b) Section
9.3.2, the augmented adaptive learning model under incomplete information can be written
as

ty
�
t+1 �t�1 y�t = �t(yt �t�1 y�t ) + (�xt)

0�̂t�1 + error

where ty�t+1 denotes the expectations of yt+1 formed at time t. The adaptive coe¢ cients in
this model are computed as

�t = x
0
t

0@ tX
j=1

xtx
0
j

1A�1 xt= x0t(X0tXt)�1xt; t = k + 1; k + 2; :::; n (21.144)

21.17.8 Recursive predictions

Two sets of recursive predictions are computed by the program:

1. conditional on the actual values of xt

2. conditional on the k variables wt (typically predictors of xt)

In case 1, recursive predictions of yt are computed as

ŷRt = x
0
t
b�t�1; t = k + 1; k + 2; :::; n (21.145)

In case 2 predictions of yt are computed as

ŷRt = w
0
t
b�t�1; t = k + 1; k + 2; :::; n (21.146)

where �̂t is de�ned by (21.135) in the case of the OLS option, and by (21.139) in the case
of the IV option.

The standard errors of the recursive forecasts are computed using the results

OLS option V̂ (ŷRt) = �̂2t�1w
0
t(X

0
t�1Xt�1)

�1wt (21.147)

where �̂2t�1 is de�ned by (21.138), and

IV option V̂ (ŷRt) = �̂2t�1w
0
t(X

0
t�1Pt�1Xt�1)

�1wt (21.148)

where �̂2t�1 is de�ned by (21.143).
In the case where the forecasts are based on the actual values of the regressors, in the

above formula wt is replaced by xt. The matrices Xt and Pt are already de�ned in Sections
21.17.3 and 21.17.6.
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21.18 Phillips-Hansen fully modi�ed OLS estimators

This estimator was proposed by Phillips and Hansen (1990), and is appropriate for estimation
and inference when there exists a single cointegrating relation between a set of I(1) variables.
Consider the following linear regression model:

yt = �0 + �
0
1xt + ut; t = 1; 2; :::; n (21.149)

where the k � 1 vector of I(1) regressors are not themselves cointegrated. Therefore, xt has
a �rst-di¤erence stationary process given by

�xt = �+ vt; t = 2; 3; :::; n (21.150)

in which � is a k� 1 vector of drift parameters and vt is a k� 1 vector of I(0), or stationary
variables. It is also assumed that �t = (ut;v

0
t)
0 is strictly stationary with zero mean and a

�nite positive-de�nite covariance matrix, �.
The computation of the FM -OLS estimator of � is carried out in two stages. In the

�rst stage yt is corrected for the long-run interdependence of ut and vt. For this purpose let
ût be the OLS residual vector in (21.149), and write

�̂t =

�
ût
v̂t

�
; t = 2; 3; :::; n (21.151)

where v̂t = �xt � �̂; for t = 2; 3; :::; n; and �̂ = (n� 1)�1
nP
t=2
�xt:

A consistent estimator of the long-run variance of �t is given by

b
 = b�+ b�+ b�0 =
2664

b
11
1� 1

b
12
1� kb
21

k � 1
b
22
k � k

3775 (21.152)

where b� = 1

n� 1

nX
t=2

�̂t�̂
0
t (21.153)

and b� = mX
s=1

!(s;m)b�s (21.154)

b�s = n�1
n�sX
t=1

�̂t�̂
0
t+s (21.155)

and !(s;m) is the lag window with horizon (or truncation) m.
Now let b� = b�+ b� = " b�11

b�12b�21
b�22

#
(21.156)
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bZ = b�21 � b�22
b
�122 b
21; (21.157)

ŷ�t = yt � b
12 b
�122 v̂t; (21.158)

D

(k + 1)� k =

26664
0

1� k

Ik
k � k

37775 (21.159)

In the second stage the FM �OLS estimator of � is given by

b�� = (W0W)�1(W0ŷ��nDbZ) (21.160)

where ŷ� = (ŷ�1; ŷ
�
2; :::; ŷ

�
n)
0,W = (�n;X), and �n = (1; 1; :::; 1)

0.

21.18.1 Choice of lag windows !(s,m)

The computation of the FM -OLS estimators can be carried out in Micro�t for the following
four choices of lag windows:

Uniform window
!(s;m) = 1; 0 � s � m

Bartlett window
!(s;m) = 1� s=m; 0 � s � m

Tukey window

!(s;m) = 1
2 f1 + cos(�s=m)g ; 0 � s � m

2

Parzen window

!(s;m) =

�
1� 6(s=m)2 + 6(s=m)3; 0 � s � m

2 ;
2(1� s=m)3; m

2 < s � m:

Notice, however, that the use of the uniform window may lead to an estimate of b
 which
is not a positive-de�nite matrix. The other three lag windows generally result in estimates
of 
 that are positive de�nite.

21.18.2 Estimation of the variance matrix of the FM-OLS estimator

A consistent estimator of the variance matrix of b��de�ned in (21.160) is given bybV(b��) = !̂11:2(W
0W)�1 (21.161)

where
!̂11:2 = b
11 � b
12 b
�122 b
21 (21.162)
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The t-ratios of the FM -OLS estimators reported by Micro�t are computed as the ratio ofb��i to the square-root of the ith diagonal element of the matrix de�ned by (21.161).
The program also computes FM -OLS �tted values, ŷFM�OLS =Wb��, FM -OLS resid-

uals, eFM -OLS = y �Wb��, autocorrelation coe¢ cients of the FM -OLS residuals, and en-
ables the user to estimate and test linear and/or non-linear functions of the coe¢ cients, �.
The relevant formulae are in Sections 21.24 and 21.25, with b� = b��, and �̂2 bV(b�) = bV(b��),
given by (21.160) and (21.161), respectively.

21.19 Autoregressive distributed lag models

Consider the following augmented autoregressive distributed lagARDL(p; q1; q2; :::; qk)model:17

�(L; p)yt =
kX
i=1

�i(L; qi)xit + �
0wt + ut (21.163)

where
�(L; p) = 1� �1L� �2L2 � :::� �pLp (21.164)

�i(L; qi) = �i0 + �i1L+ :::+ �iqiL
qi ; i = 1; 2; :::; k (21.165)

L is a lag operator such that Lyt = yt�1, and wt is a s� 1 vector of deterministic variables
such as the intercept term, seasonal dummies or time trends, or exogenous variables with
�xed lags.

The ARDL option in Micro�t (option 6 in the Single Equation Estimation Menu) �rst
estimates (21.163) by the OLS method for all possible values of p = 0; 1; 2; :::;m, qi =
0; 1; 2; :::;m, i = 1; 2; :::; k; namely a total of (m+ 1)k+1 di¤erent ARDL models. The
maximum lag, m, is chosen by the user, and all the models are estimated for the same
sample period, namely t = m+ 1;m+ 2; :::; n.

In the second stage the user is given the option of selecting one of the (m+ 1)k+1 es-
timated models using one of the following four model selection criteria: the �R2 criterion,
Akaike information criterion (AIC), Schwarz Bayesian criterion (SBC), and the Hannan
and Quinn criterion (HQC).18 The program then computes the long-run coe¢ cients and
their asymptotic standard errors for the selected ARDL model. It also provides estimates
of the error correction model (ECM) that corresponds to the selected ARDL model. The
long-run coe¢ cients for the response of yt to a unit change in xit are estimated by

b�i = b�i(1; q̂i)b�(1; p̂) =
b�i0 + b�i1 + :::+ b�iq̂i
1� b�1 � b�2 � :::� b�p̂ ; i = 1; 2; :::; k (21.166)

where p̂ and q̂i, i = 1; 2; :::; k are the selected (estimated) values of p and qi, i = 1; 2; :::; k.
Similarly, the long-run coe¢ cients associated with the deterministic/exogenous variables

17For a comprehensive early review of ARDL models see Hendry, Pagan, and Sargan (1984).
18These model selection criteria are described in Section 21.7.
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with �xed lags are estimated by

b = b�(p̂; q̂1; q̂2; :::; q̂k)
1� b�1 � b�2 � :::� b�p̂ (21.167)

where b�(p̂; q̂1; q̂2; :::; q̂k) denotes the OLS estimate of � in (21.163) for the selected ARDL
model. The estimates of the asymptotic standard errors of �̂1; �̂2; :::; �̂k and b are computed
using the Bewley (1979) regression approach, which yields the same result as when applying
the �-method described in Section 21.24, to (21.166) and (21.167).

The error correction model associated with the ARDL(p̂; q̂1; q̂2; :::; q̂k) model can be ob-
tained by writing (21.163) in terms of the lagged levels and the �rst di¤erences of yt; x1t; x2t; :::; xkt,
and wt. First note that

yt = �yt + yt�1

yt�s = yt�1 �
s�1X
j=1

�yt�j ; s = 1; 2; :::; p

and similarly

wt = �wt +wt�1

xit = �xit + xi;t�1

xi;t�s = xi;t�1 �
s�1X
j=1

�xi;t�j ; s = 1; 2; :::; qi

Substituting these relations into (21.163), and after some rearrangements, we have

�yt = ��(1; p̂)ECt�1 +
kX
i=1

�i0�xit + �
0�wt

�
p̂�1X
j=1

��j�yt�j �
kX
i=1

q̂i�1X
j=1

��ij�xi;t�j + ut (21.168)

where ECt is the correction term de�ned by

ECt = yt �
kX
i=1

�̂ixit �c 0wt
Recall that �(1; p̂) = 1 � b�1 � b�2 � ::: � b�p̂, which measures the quantitative importance
of the error correction term. The remaining coe¢ cients, ��j and �

�
ij , relate to the short-run

dynamics of the model�s convergence to equilibrium. These are given by

��1 = �p̂ + �p̂�1 + :::+ �3 + �2
��2 = �p̂ + �p̂�1 + :::+ �3
...

...
...

��p̂�1 = �p̂
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and similarly
��i1 = �i;q̂i + �i;q̂i�1 + :::+ �i;3 + �i;2
��i2 = �i;q̂i + �i;q̂i�1 + :::+ �i;3
...

...
...

��i;q̂i�1 = �i;q̂i

The estimates �̂i and  ̂ are already computed using relations (21.166) and (21.167).
The estimates of the parameters of the error correction model (ECM) (21.168) are ob-

tained from the coe¢ cient estimates of the ARDL model using the above relations. The
standard errors of these estimates are also obtained using the variance formula (21.196), and
allow for possible non-zero covariances between the estimates of the short-run and the long-
run coe¢ cients. Notice that the covariances of the short-run and the long-run coe¢ cients
are asymptotically uncorrelated only in the case where it is known that the regressors are
I(1), and that they are not cointegrated among themselves.

Also see Pesaran, Shin, and Smith (2001) for an analysis of ARDL models when it is not
known if the regressors, xit, are I(1) or I(0). In this case the distribution of the F or Wald
statistics for testing the existence of the level relations in the ARDL model are non-standard
and must be computed by stochastic simulations. In Micro�t 5 these critical value bounds
are computed automatically and reported after the ARDL regression estimates. These are
close to the ones provide in Appendix B, but have the advantage that unlike the critical
values in Tables B.1 and B.2 they continue to be applicable even if shift dummy variables
are included amongst the deterministic variables, wt.

Dynamic forecasts can also be generated using the error correction equation (21.168).
The relevant formulae and other details are the same as those described in Section 21.26.2
on computation of univariate dynamic forecasts.

21.20 Probit and Logit models

Probit and Logit models represent particular formulations of the univariate binary quanti-
tative response models de�ned by

Pr(yi = 1) = F (�0xi); i = 1; 2; :::; n (21.169)

where yi, i = 1; 2; :::; n are independently distributed binary random variables taking the
value of 1 or 0, xi is a k � 1 vector of explanatory variables, � is a k � 1 vector of unknown
coe¢ cients, and F (�) is a known function. Under the Probit model F (�0xi) is speci�ed as

F (�0xi) =�(�
0xi) =

Z �0xi

�1

1p
2�
exp

�
�12 t

2
	
dt (21.170)

which is the cumulative distribution function of the standard normal. Under the Logit model
F
�
�0xi

�
is speci�ed as

F (�0xi) = �(�
0xi) =

e�
0xi

1 + e�
0xi

(21.171)
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The maximum likelihood estimator of � is obtained by maximizing the following log-likelihood
function

`(�) =
nX
i=1

yi log
�
F (�0xi)

�
+

nX
i=1

(1� yi) log
�
1� F (�0xi)

�
(21.172)

using the Newton-Raphson iterative algorithm. The �rst and the second derivatives of the
log-likelihood function, are given by

@`(�)

@�
=

nX
i=1

(yi � Fi) fixi
Fi (1� Fi)

(21.173)

and

@2`(�)

@�@�0
= �

nX
i=1

(yi � Fi)2

Fi (1� Fi)
f2i xix

0
i (21.174)

+
nX
i=1

�
yi � Fi

Fi(1� Fi)

�
fixix

0
i

where fi = f(�0xi), and Fi = F (�0xi). These derivative functions simplify when F (�) takes
the logistic form and are given by:

@`(�)

@�
=

nX
i=1

(yi � �i)xi (21.175)

and
@2`(�)

@�@�0
= �

nX
i=1

�i(1� �i)xix0i (21.176)

where �i = �(�0xi).
For the Probit model we have

@`(�)

@�
=

nX
i=1

�ixi (21.177)

and
@2`(�)

@�@�0
= �

nX
i=1

�i(�i + �
0xi)xix

0
i (21.178)

where

�i =

8><>:
��i
1� �i

; if yi = 0

�i
�i
; if yi = 1

(21.179)

�i = (2�)
� 1
2 exp

�
�12(�

0xi)
2
�

(21.180)
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and
�i = �(�

0xi) (21.181)

It is easily seen that the matrix of the second derivatives, @2`(�)=@�@�0, is negative de�nite
under both models, and therefore the ML estimator of � (when it exists) is unique.19

The numerical computation of �̂ (the ML estimator of �) is carried out by the Scoring
Method using the following iterations:

�(j) = �(j�1) �
�
E

�
@2`(�)

@�@�0

���1
�=�(j�1)

�
@`(�)

@�

�
�=�(j�1)

; j = 0; 1; 2; ::: (21.182)

where �(j�1) is the estimator of � at the (j � 1) iteration, and

E

�
@2`(�)

@�@�0

�
= �

nX
i=1

�
f2i

Fi(1� Fi)

�
xix

0
i (21.183)

Due to the global concavity of the log-likelihood function, in cases where the ML estimator
of � exists, this iterative procedure is sure to converge, and in practice often converges in
less than ten iterations.20

The estimator of the variance matrix of �̂ is computed as

V̂ (�̂) =

�
�E

�
@2`(�)

@�@�0

���1
�=�̂

=
nX
i=1

�
f2i

Fi(1� Fi)

�
xix

0
i (21.184)

where

Fi = �(�0xi) = �i; and fi = �i(1� �i); in the case of the Logit model,
Fi = �(�0xi) = �i; and fi = �i; in the case of the Probit model.

Comprehensive surveys of the literature on binary choice models and their various extensions
can be found in Amemiya (1981), Maddala (1983), andCramer (1991). Also see Judge,
Gri¢ ths, Hill, Lütkepohl, and Lee (1985) Chapter 18, and Greene (2002) Chapter 21.

21.20.1 Estimating and testing vector functions of �

To estimate linear/non-linear vector functions of �, or test linear/non-linear restrictions
on elements of �, the variance formula (21.184) can be used in the relations (21.196) and
(21.198) given below. The necessary computations can be carried out using options 5 and 6
in the Logit/Probit Post Estimation Menu.

19See, for example, Maddala (1983) and Amemiya (1985).
20For an example when �̂ does not exist see the example by Albert and Anderson (1984), discussed in

Amemiya (1985) p. 271-272.
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21.20.2 Fitted probability and �tted discrete values

Micro�t reports �tted probability values, �(�̂
0
xi) and �(�̂

0
xi) for the Probit and Logit

models, respectively. The estimates under the column ��tted�values refer to

ŷi = 1; if F (�̂
0
xi) � 0:5

= 0; if F (�̂
0
xi) < 0:5

(21.185)

where F (�) could be either the Probit or the Logit speci�cation.

21.20.3 Measures of goodness of �t and related test statistics

The following statistics are reported after Logit or Probit estimation:

Maximized value of the log-likelihood function = `(�̂)

Akaike information criterion = `(�̂)� k
Schwarz Bayesian criterion = `(�̂)� k

2 log(n)

Hannan and Quinn criterion = `(�̂)� k log log n
Mean of y =

Pn
i=1 yi=n

Mean of predicted (�tted) y =
Pn
i=1 ŷi=n

Goodness of �t =
Pn
i=1 sign(yiŷi)=n

Pseudo-R2 = 1� (`(�̂)=`(�0))
Chi-squared statistic = 2

�
`(�̂)� `(�0)

�
where ŷi is de�ned by (21.185), and the goodness of �t statistic measures the proportion of
observations with correctly predicted (�tted) values of y.

The Pesaran-Timmermann test statistic is computed by applying the PTTEST function
to yi (actual) and ŷi (�tted) values. Under the null hypothesis that yi and ŷi are indepen-
dently distributed, the PTTEST statistic is asymptotically distributed as a standard normal
variate. See Section 21.5 for more details.

Pseudo-R2 is a popular measure of the model�s performance in the binary choice literature
and compares the �t of the model (as measured by the maximized log-likelihood value, `(�̂))
relative to the maximized value of the log-likelihood function when all the coe¢ cients except
the intercept term (if any) in �0xi are set equal to zero. In the case where �0xi contains an
intercept term

`(�0) = m log(
m

n
) + (n�m) log(n�m

n
)

where m =
Pn
i=1 yi=n. See, for example, Judge, Gri¢ ths, Hill, Lütkepohl, and Lee (1985)

pp. 766-768. When �0xi does not contain an intercept term we have `(�0) = n log(1=2).

The chi-squared statistic, 2
�
`(�̂)� `(�0)

�
; is asymptotically distributed as a �2 variate

with k � 1 degrees of freedom when �0xi contains an intercept term, and it will be asymp-
totically distributed as a �2 variate with k degrees of freedom when �0xi does not contain
an intercept term.
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21.20.4 Forecasting with Probit/Logit models

The forecasts of y are obtained by �rst computing the probability values �
�
�̂
0
xn+j

�
; or

�
�
�̂
0
xn+j

�
, and then setting

ŷ�n+j = 1 if �
�
�̂
0
xn+j

�
� 0:5

= 0 if �
�
�̂
0
xn+j

�
< 0:5

for the Probit model, and

ŷ�n+j = 1 if �
�
�̂
0
xn+j

�
� 0:5

= 0 if �
�
�̂
0
xn+j

�
< 0:5

for the Logit model. The index for j = 1; 2; :::; p; where p is the forecast horizon. It is
assumed that xis do not include lagged values of yi.

The following summary statistics are computed for the estimation and forecast periods:

Estimation Period Forecast Period
Mean of y

Pn
i=1 yi=n

Pp
j=1 yn+j=p

Mean of predicted y
Pn
i=1 ŷi=n

Pp
j=1 ŷ

�
n+j=p

Goodness of �t
Pn
i=1 sign(yiŷi)=n

P
j=1 sign(yn+j ŷ

�
j+j)

Pesaran-Timmermann PTTEST (y; ŷ) PTTEST (y�; ŷ�)
statistic

where y = (y1; y2; :::; yn)
0; ŷ = (ŷ1; ŷ2; :::; ŷn)

0, y� = (yn+1; yn+2; :::; yn+p)
0, and ŷ� =

(ŷ�n+1; ŷ
�
n+2; :::; ŷ

�
n+p):

21.21 Non-linear estimation

Consider the non-linear regression equation with additive errors:

yt = f(xt;�) + ut; ut � i:i:d(0; �2) (21.186)

where xt is a k � 1 vector of explanatory variables, and � is a p-dimensional vector of
unknown parameters. It is assumed that the ut�s are serially uncorrelated with mean zero
and variance, �2. The case where futg follows an AR process can be easily dealt with by
�rst transforming the regression equation to remove the residual serial correlation and then
applying the non-linear estimation method to the resultant regression. For example, suppose
the uts have the AR(1) speci�cation

ut = �ut�1 + �t

where the �t�s are serially uncorrelated. Then (21.186) may be transformed to yield the
following non-linear equation

yt =  (xt;xt�1;yt�1;�) + �t
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with serially uncorrelated residuals, where

 (xt;xt�1;yt�1;�) = f(xt;�)� �f(xt�1;�) + �yt�1

and � = (�0;�)0: This method does not work if the error process, ut, has an MA representa-
tion.

21.21.1 The non-linear least squares (NLS) method

The NLS estimates of � are computed by �nding a p� 1 vector �̂NLS that minimizes

QLS(�) = fy � f(X;�)g0 fy � f(X;�)g (21.187)

where y is the n� 1 vector of observations on the dependent variable yt, and X is the n� k
matrix of observations on xt. The computation of �̂NLS is achieved by means of the Gauss-
Newton method. Let �(j) be the estimate of � in the jth iteration, and denote the n � p
matrix of the �rst derivatives of f(X;�) evaluated at �(j) by

F(j) = @f(X;�)=@�
���� = �(j) (21.188)

Then the iterations

�(j+1) = �(j) + (F
0
(j)F(j))

�1F0(j)

n
y � f(X;�(j))

o
(21.189)

are carried out until convergence is achieved. It is worth noting that the second term on the
right-hand side of (21.189) can be computed as the coe¢ cient estimates in the regression of
the residual vector u(j) = y � f(X;�(j)) on F(j).

The convergence criterion used is

pX
i=1

����̂i(j) � �̂i(j�1)��� < 0:00001p
where �̂i(j) is the estimate of the ith element of � in the jth iteration, and p is the number
of parameters. The derivatives F(j) are computed numerically.

The estimate of �2 is computed as

�̂2 = û0û=(n� p)

and the asymptotic variance-covariance matrix of �̂OLS as

V̂ (�̂NLS) = �2(F̂0F̂)�1

where F̂ is the value of @f(X;�)=@� evaluated at the NLS estimates, �̂NLS . The diagnostic
statistics reported for the Non-Linear Least Squares option are computed using the formulae
in Section 21.6.2 with

et = ût = yt � f(xt; �̂NLS)
and X replaced by F̂.
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21.21.2 The non-linear instrumental variables (NL/IV) method

The NL=IV estimates of � in (21.186) are computed by �nding a p � 1 vector �̂IV that
minimizes

QIV (�) = fy � f(X;�)g0Pz fy � f(X;�)g (21.190)

where Pz is the n�n projection matrix Z(Z0Z)�1Z0, and Z is the n�s matrix of observations
on s(� p) instruments.

The numerical procedure followed is similar to the one used for the computation of NLS
estimates (see Section 21.21) and utilizes the following iterative algorithm:

�(j+1) = �(j) +
�
F0(j)PzF(j)

��1
F0(j)Pz

n
y � f(X;�(j))

o
where F(j) is de�ned by (21.188). The convergence criterion and other details are as in
Section 21.21.1.

The other estimates and statistics reported by Micro�t are computed as in Section 21.10,

with X replaced by F̂ = @f(X;�)@�
����=�̂IV ; where �̂IV is the NL=IV estimator.

For a comprehensive discussion of non-linear least squares and non-linear instrumental
variables methods see Amemiya (1974) and Gallant (1987).

21.22 Heteroscedasticity-consistent variance estimators

In situations where the homoscedasticity assumption, A2 does not apply (see Section 6.1),
the estimator of the covariance matrices of the OLS and the IV estimators given, respec-
tively, by (21.6) and (21.59) are not generally valid, and can result in misleading inferences.
Consistent estimators of the covariance matrix of the OLS and the IV estimators when
the form of the heteroscedasticity is unknown have been suggested by Eicker (1963), Eicker,
LeCam, and Neyman (1967), Rao (1970), White (1980), and White (1982). In the case of
the OLS option, the program computes a degrees of freedom corrected version of the White
(1980) estimator using the following formula:21

\HCV (�̂OLS) =
�

n

n� k

�
(X0X)�1

 
nX
t=1

e2txtx
0
t

!
(X0X)�1 (21.191)

where et = yt�x0t�̂OLS are the OLS residuals (see Section 21.6 for the computational details
of the OLS option.)

In the case of the IV option, the heteroscedasticity-consistent estimator of the covariance
matrix of �̂IV is computed according to White (1982) p. 489:

\HCV (�̂IV ) =
�

n

n� k

�
Q�1n P

0
nV̂nPnQ

�1
n (21.192)

21The correction for the degrees of freedom is suggested, amongst others, in MacKinnon and White (1985).
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where

Qn = X0PzX; Pz = Z(Z
0Z)�1Z0

Pn = (Z0Z)�1Z0X; V̂n =

nX
t=1

e2t;IV ztz
0
t

and, as before, Z = (z1; z2; :::; zn)
0 is the n�s matrix of instrumental variables, and et;IV ; t =

1; 2; :::; n are the IV residuals. (For more details of the computations in the case of the IV
option see Section 21.10.)

Notice that (21.192) can also be written as

\HCV (�̂IV ) =
�

n

n� k

�
(X̂0X̂)�1

 
nX
t=1

e2t;IV x̂tx̂
0
t

!
(X̂0X̂)�1 (21.193)

where

X̂ = PzX

x̂t = X0Z(Z0Z)�1zt

Hence, it readily follows that if Z is speci�ed to include X, then X̂ = X, x̂t = xt; et = et;IV ,

and \HCV (�̂OLS) =\HCV (�̂IV ).
The relevant expressions for the heteroscedasticity-consistent estimators in the case of the

non-linear least squares and the non-linear IV options discussed in Section 21.12 are given
by (21.191) and (21.192), respectively, with X replaced by the matrix of the �rst derivatives
of the non-linear function, namely F̂, de�ned in Section 21.21.

21.23 Newey-West variance estimators

The Newey and West (1987) heteroscedasticity and autocorrelation consistent variance ma-
trix is a direct generalization of White�s estimators described in Section 21.21. In the general
case where the non-linear regression model (21.186) is estimated by the IV method, the
Newey-West variance matrix is computed according to the following formula:

V̂ (�̂IV ) =

�
n

n� k

�
Q�1n P

0
nŜnPnQ

�1
n (21.194)

where

Qn = F̂0PzF̂; Pz = Z(Z
0Z)�1Z0

Pn = (Z0Z)�1Z0F̂; F̂ =
@f(X;�)

@�

����=�̂IV
and

Ŝn = 
̂0 +

mX
j=1

w(j;m)(
̂j + 
̂
0
j)
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in which


̂j =
nX

t=j+1

ûtût�jztz
0
t�j

ût = yt � f(xt; �̂IV )

zt is the s � 1 vector of instruments, and w(j;m) is the lag window used. Micro�t allows
three choices for the lag window:

Uniform (or rectangular) window

w(j;m) = 1; for j = 1; 2; :::;m

Bartlett window

w(j;m) = 1� j

m+ 1
; j = 1; 2; :::;m

Parzen window

w(j;m) = 1� 6
�

j

m+ 1

�2
+ 6

�
j

m+ 1

�3
; 1 � j � m+ 1

2

= 2

�
1� j

m+ 1

�2 m+ 1

2
< j � m

The �window size�or the �truncation point�, m, is speci�ed by the user.
Newey and West (1987) use the Bartlett window and do not introduce the small sample

correction proposed by MacKinnon and White (1985). Users interested in exactly replicating
the Newey-West adjusted standard errors should therefore choose the Bartlett window and
multiply the standard errors computed byMicro�t by f(n� k)=ng1=2. Also note that White�s
heteroscedasticity-consistent estimators outlined in Section 21.22 can be computed using the
Newey-West option by setting the window size, m, equal to zero.

The equal weight (or the uniform) window option is appropriate when estimating a
regression model with moving average errors of known order. This type of model arises
in testing the market e¢ ciency hypothesis where the forecast horizon exceeds the sampling
interval (see, for example, Pesaran (1987b), section 7.6). In other situations a Parzen window
is generally preferable to the other two windows. Notice that the positive semi-de�niteness
of the Newey-West variance matrix is only ensured in the case of the Bartlett and Parzen
windows. The choice of the uniform window can result in a negative-de�nite variance matrix,
especially if a large value for m is chosen relative to the number of available observations, n.
Also see the discussion in Andrews (1991) and Andrews and Monahan (1992).
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21.24 Variance of vector function of estimators

Let � = �(�) be an r � 1 �rst-order di¤erentiable function of the k � 1 parameter vector,
�, of a given econometric model. Suppose also that �(�) = @�(�)=@�0 is an r� k matrix of
rank r(� k). Then the estimator of � and the estimator of its asymptotic variance are given
by

�̂ = �(�̂) (21.195)

and

V̂ (�) = �̂2
�
@�(�)

@�0

�
�=�̂

V̂(�̂)

�
@�(�)

@�0

�0
�=�̂

(21.196)

where �̂ represents the estimator of �, and �̂2V̂ (�̂) is the estimator of the variance matrix of
�̂. The above procedure for estimation of the variance of �̂ is also known as the �-method.
See, for example, Ser�ing (1980).

21.25 Wald statistic for testing linear and non-linear restric-
tions

Option 7 in the Hypothesis Testing Menu (see Section 6.23) allows the user to compute Wald
statistics for testing r independent linear or non-linear restrictions on the parameters of the
regression model �. Let the r restrictions on � be given by

�(�) = 0 (21.197)

where �(�) is an r � 1 �rst-order di¤erentiable function of the unknown parameters of the
regression model, and denotes the estimator of the (asymptotic) variance matrix of �̂ by
�̂2V̂(�̂), where �̂ stands for the estimator of �. Then the Wald statistic for testing the r
restrictions in (21.197) is given by

W = �̂
0 h
�̂V̂(�)�̂0

i�1
�̂=�̂2

a� �2(r) (21.198)

where
�̂ = �(�̂); �̂ = (@�(�)=@�)0

�=�̂
(21.199)

Before calculating the W statistic, the program �rst checks the rank condition on �̂, and
proceeds with the computations only if �̂ is of full rank, namely when Rank[�̂] = r:

21.26 Univariate forecasts in regression models

This section considers the problem of forecasting with single-equation linear and non-linear
regression models. Forecasting with Probit and Logit models is discussed in Section 21.20.
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The following general dynamic regression model underlies the forecasts computed by the
program for the linear regression model:

yt =
X̀
i=1

�iyt�i + g
0
t�+ ut (21.200)

= x0t� + ut; xt = (yt�1; yt�2; :::; yt�`;g
0
t)
0 (21.201)

where for the AR options

ut =

mX
i=1

�iut�i + �t (21.202)

and for the MA options

ut = �t +

qX
i=1

i�t�i (21.203)

and �t are serially uncorrelated random disturbances with zero means. The program com-
putes univariate dynamic forecasts if the regression equation is speci�ed explicitly to include
lagged values of the dependent variable (` � 1). Otherwise, it will generate static forecasts.

21.26.1 Univariate static forecasts

The static forecasts are computed taking as given the values of the regressors xt+j . The
values of yt+j ; j = 1; 2; :::; p, are forecast by

ŷ�t+j = x
0
t+j
b� + û�t+j (21.204)

For the OLS and the IV options, û�t+j = 0 and the estimators of ŷ
�
t+j are given by

ŷ�t+j;OLS = x
0
t+j
b�OLS

and
ŷ�t+j;IV = x

0
t+j
b�IV

respectively. The forecasts for the non-linear options are given by

ŷ�t+j = f
�
xt+j ; �̂

�
For the AR options, û�t+j ; j = 1; 2; :::; p in (21.204) are computed recursively according to
the following relations:

û�t+1 =
mP
i=1

�iût+1�i

û�t+2 = �̂1û
�
t+1 +

mP
i=2

�̂iût+2�i

û�t+3 = �̂1û
�
t+2 + �̂2û

�
t+1

mP
i=3

�̂iût+3�i

...
...

û�t+m =
m�1P
i=1

�̂iû
�
t+m�i + �̂mût
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and

û�t+j =
mX
i=1

�̂iû
�
t+j�i; for j = m+ 1;m+ 2; :::; p

For the MA options, û�t+j in (21.204) are computed as

û�t+j = ̂j �̂t + ̂j+1�̂t�1 + :::+ ̂q �̂t+j�q for j � q
= 0 for j > q

and the �̂ts are obtained recursively:

�̂t = �
qX
i=1

̂i�̂t�i + ût; t = 1; 2; :::

with the initial values �̂0 = �̂�1 = �̂�2 = ::: = �̂q+1 = 0:

21.26.2 Univariate dynamic forecasts

In computing dynamic forecasts the program takes the values of gt+j ; j = 1; 2; ::; p in (21.200)
as given, and computes yt+j ; j = 1; 2; :::; p as j-step ahead forecasts using the following
recursive relations:

y�t+1 =
lX
i=1

�iyt+1�i + g
0
t+1�+ u

�
t+1

y�t+2 = �1y
�
t+1 +

lX
i=2

�iyt+1�i + g
0
t+2�+ u

�
t+2

...
...

y�t+l =
l�1X
i=1

�iy
�
t+`�i + �lyt + g

0
t+l�+ u

�
t+l

and

y�t+j =
lX
i=1

�iy
�
t+j�i + g

0
t+j�+ u

�
t+j ; for j = l + 1; l + 2; :::; p

where, as before, estimates of u�t+j are obtained by means of the recursive relations given in
Section 21.26.1 above. The program computes estimates of y�t+j by replacing the unknown
parameters �1; :::; �q;�; �1; :::; �m; 1; 2; :::; q by their appropriate ML estimators de�ned
in Sections 21.6 to 21.16.

21.26.3 Standard errors of univariate forecast errors: the OLS and IV
options

The program computes standard errors of the forecast errors

e�t+j = yt+j � ŷ�t+j ; j = 1; 2; :::; p



CHAPTER 21. ECONOMETRICS OF SINGLE EQUATION MODELS 495

only for the OLS and the IV options.
Let e� = (e�n+1; e

�
n+2; :::; e

�
n+p)

0 be the p � 1 vector of forecast errors. For the static
forecasts given in Section 21.26.1 we have

OLS option: V̂(e�) = �̂2OLS

n
Ip +X

�(X0X)�1X�
0
o

(21.205)

IV option: V̂(e�) = �̂2IV

n
Ip +X

�(X0PzX)
�1X�

0
o

(21.206)

where Ip is an identity matrix of order p, X� is the p� k matrix of observations on xt over
the forecast period, X is the n� k matrix of observations on xt over the estimation period,
and Pz is the projection matrix de�ned by (21.58).

The variance matrix of the dynamic forecast errors are computed according to the fol-
lowing formula due to Pagan and Nicholls (1984):

OLS option: V̂ (e�) = �̂2OLSD
�1
n
Ip +X

�(X0X)�1X�
0
o
D0�1 (21.207)

IV option: V̂(e�) = �̂2IVD
�1
n
Ip +X

�(X0PzX)
�1X�

0
o
D0�1 (21.208)

where

D =

2666666666666666664

�1 0 : : : 0 : : : 0 0

�̂1 �1 : : : 0 : : : 0 0

�̂2 �̂1 �1 0 : : : 0 0
: : : : : :
: : : : : :
: : : : : :

�̂l �̂l�1 : : : �1 0 0 0
: : : : :
: : : : :
: : : : 0

0 : : : 0 �̂l : : �̂2 �̂1 �1

3777777777777777775
and �̂1; �̂2; :::; �̂l are the estimates of �i in (21.200). The p� k matrix of observations on xt
in the case of dynamic forecasts is given by

X� =

26664
yn yn�1 : : : yn�l gn+1
yn+1 yn : : : yn+1�l gn+2
...

...
...

...
ŷn+p�1 ŷn+p�2 : : : ŷn+p�l gn+p

37775 :

21.26.4 Forecasts based on non-linear models

Dynamic forecasts are computed for the non-linear least squares and the non-linear IV op-
tions, when the non-linear equation is speci�ed to contain lagged values of yt. For example,
in the case of the non-linear equation:

yt = f(yt�1;gt;�) + ut
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Dynamic forecasts are computed recursively:22

ŷ�t+1 = f(yt;gt+1; �̂)

and
ŷ�t+j = f(ŷ�t+j�1;gt+j ; �̂); for j = 2; 3; :::; p

21.26.5 Measures of forecast accuracy

The program also computes the following summary statistics for the forecast values (ŷ�t+j ; j =
1; 2; ::; p):

Mean prediction errors =

0@ pX
j=1

e�t+j

1A /p (21.209)

where
e�t+j = yt+j � ŷ�t+j ; j = 1; 2; :::; p (21.210)

Sum of squares of
prediction errors

=

pX
j=1

(e�t+j)
2 (21.211)

Root mean sum of
squares of prediction
errors

=

vuuut
0@ pX
j=1

(e�t+j)
2=p

1A (21.212)

Mean sum of absolute
prediction errors

=

pX
j=1

��e�t+j�� =p (21.213)

In the table giving the above summary statistics for the OLS option, the program also
reports the F -statistics for the predictive failure, and the structural stability tests, de�ned
by relations (21.27) and (21.29) respectively. The latter test statistic is reported only if
p > k.

22Notice that the dynamic forecasts in the non-linear case are not necessarily equal to the conditional
expectations of yt+j , for j > 1, and can therefore be viewed as a �certainty equivalent� approximation to
E(yt+j j
t) ; for j > 1.



Chapter 22

Econometrics of Multiple Equation
Models

This chapter complements Chapter 7 and provides the technical details of the econometric
methods and algorithms used in Micro�t for the analysis of multiple time-series models. It
covers a number of recent developments in the areas of impulse response analysis and long-
run structural modelling. The chapter starts in Section 22.1 with a review of the seemingly
unrelated regression equations (SURE) originally analyzed by Zellner (1962). Section 22.3
deals with estimation of SURE models subject to general linear restrictions, possibly involv-
ing cross-equation restrictions. Section 22.4 reviews the estimation and hypothesis testing
in augmented vector autoregressive models. Impulse response analysis, and forecast error
variance decomposition of unrestricted V AR models, are set out in Sections 22.5 and 22.6.
The remaining sections deal with the long-run structural modelling approach: reviewing the
literature on testing for cointegration, identi�cation and maximum likelihood estimation of
long-run (or cointegrating) relations, and impulse response and persistence pro�le analysis
in cointegrating V AR models.

Recent detailed treatments of multivariate time-series analysis can be found in Lütkepohl
(2005) and Hamilton (1994). More general text-book accounts of SURE estimation and
V AR modelling are available in Judge, Gri¢ ths, Hill, Lütkepohl, and Lee (1985) Chapter
16, and Greene (2002) Chapters 17-18. The more recent developments in the areas of impulse
response analysis (including generalized impulse response functions and persistence pro�les)
are covered in Pesaran, Pierce, and Lee (1993), Lee and Pesaran (1993), Koop, Pesaran,
and Potter (1996), Pesaran and Shin (1996), and Pesaran and Shin (1998). An excellent
survey of the early developments in the literature on cointegration can be found in Banerjee,
Dolado, Galbraith, and Hendry (1993), and Watson (1994). For more recent developments
and further references to the literature on long-run structural modelling see Pesaran and
Shin (1999), Pesaran and Shin (2002), Pesaran, Shin, and Smith (1996), Pesaran, Shin, and
Smith (2000), and Pesaran (1997).

497
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22.1 Seemingly unrelated regression equations (SURE)

Consider the following m �seemingly�separate linear regression equations:

yi = Xi�i + ui; i = 1; 2; :::;m (22.1)

where yi is an n� 1 vector of observations on the dependent variable yit, i = 1; 2; :::;m; t =
1; 2; :::; n; and Xi is an n�ki matrix of observations on the ki vector of regressors explaining
yit, �i is a ki � 1 vector of unknown coe¢ cients, and ui is an n � 1 vector of disturbances
or errors, for i = 1; 2; :::;m. It is further assumed that for each i the regressors Xi and the
disturbance ui satisfy the classical assumptions A1 to A5, set out in Section 6.1.

In econometric analysis of the system of equations in (22.1), three cases can be distin-
guished:

1. Contemporaneously uncorrelated disturbances, namely E
�
uiu

0
j

�
= 0; for i 6= j.

2. Contemporaneously correlated disturbances, with identical regressors across all the
equations, namely

E
�
uiu

0
j

�
= �ijIn 6= 0

where In is an identity matrix of order n, and

Xi = Xj , for all i; j

3. Contemporaneously correlated disturbances, with di¤erent regressors across the equa-
tions, namely

E
�
uiu

0
j

�
= �ijIn 6= 0

and
Xi 6= Xj , at least for some i; and j

In the �rst case where E
�
uiu

0
j

�
= 0, for i 6= j, there is nothing to be gained by consid-

ering the equations in (22.1) as a system, and the application of single equation methods to
the individual relations in (22.1) will be valid. There is also no e¢ ciency gain in estimating
the equations in (22.1) as a system under case 2 where Xi = Xj , for all i and j. Once again
the application of single-equation methods to each of the equations in the system will be
valid. See Zellner (1962), and Section 22.1.1.

It is therefore only under case 3 where there is likely to be some e¢ ciency gains in large
samples by estimating the equations in (22.1) as a system in large samples.

22.1.1 Maximum likelihood estimation

In order to compute the maximum likelihood (ML) estimators of the parameters of (22.1),
namely

� =
�
�01;�

0
2; :::;�

0
m; �11; �12; :::; �1m; �22; �23; :::; �2m; :::; �mm

�0
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it is convenient to stack the di¤erent equations in the system in the following manner:0BBB@
y1
y2
...
ym

1CCCA =

0BBB@
X1 0

X2
. . .

0 Xm

1CCCA
0BBB@
�1
�2
...
�m

1CCCA+
0BBB@
u1
u2
...
um

1CCCA (22.2)

or more compactly
y = X� + u (22.3)

where y, X, � and u have the dimensions mn� 1, mn� k, k � 1 and mn� 1, respectively,
where k =

Pm
i=1 ki. Under the classical assumptions where E(ui) = 0, E

�
uiu

0
j

�
= �ijIn,

we have
E
�
uu0
�
= 
 = �
 In

where � is the m � m matrix of covariances with its (i; j) elements equal to �ij , and 

stands for Kronecker products.1 More speci�cally, we have:


 = �
 In =

0BBB@
�11In �12In : : : �1mIn
�21In �22In : : : �2mIn
...

�m1In �m2In : : : �mmIn

1CCCA (22.4)

If we now assume that u has a Gaussian distribution, the log-likelihood function of the
stacked system (22.3) can be written as

`(�) = �nm
2
log(2�)� 1

2 log j
j �
1
2 (y �X�)

0
�1 (y �X�)

since

 = �
 In; j
j = j�
 Inj = j�jn jInjm = j�jn

and hence

`(�) = �nm
2
log(2�)� n

2
log j�j � 1

2 (y �X�)
0 ���1 
 In� (y �X�) : (22.5)

Denoting the ML estimators by e� = �e�01; e�02; :::; e�0m; ~�11; ~�12; :::�0, it is easily seen that
~�ij =

�
yi �Xie�i�0 �yj �Xje�j�

n
(22.6)

and e� = �X0 �e��1 
 In�X��1X0 �e��1 
 In�y (22.7)

1For the de�nition of Kronecker products, the vec(�) operators and the rules of their operations see, for
example, Magnus and Neudecker (1988).
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The computation of the ML estimators e� =
�e�01; e�02; :::; e�0m�0 ; and ~�ij , i; j = 1; 2; :::;m

are carried out in Micro�t by iterating between (22.6) and (22.7) starting from the OLS
estimators of �i, namely b�i;OLS = (X0iXi)

�1X0iyi. This iterative procedure is continued
until the following convergence criteria are met:

kiX
`=1

����(r)i` � �(r�1)i`

��� < (0:00001)ki; i = 1; 2; :::;m (22.8)

where �(r)i` denotes the estimate of the `th element of �i at the rth iteration. On convergence,
Micro�t reports b�i; i = 1; 2; :::;m, and the estimates of their covariances computed as

dCov(e�) = �X0 �b��1 
 In�X��1 (22.9)

where b� = (�̂ij) is a degrees-of-freedom adjusted version of e� whose (i; j) element is given
by

�̂ij =
~u0i~ujp

(n� ki) (n� kj)
; i; j = 1; 2; :::;m (22.10)

For further details see, for example, Judge, Gri¢ ths, Hill, Lütkepohl, and Lee (1985) Chapter
12.

The �tted values, residuals and other statistics such as DW , R2, �R2 and maximized
log-likelihood values for each equation in the system is computed as in Section (21.6.1). The
maximized value of the system log-likelihood function is given by

`(e�) = �nm
2
log(2�)� n

2 log
��� e���� (22.11)

The system�s Akaike and Schwarz criteria are computed as

System AIC = `(e�)� k (22.12)

System SBC = `(e�)� k
2 log(n) (22.13)

where k =
Pm
i=1 ki.

22.2 Three-stage least squares

This approach is useful when the dependent variables in some or all equations of system
(22.1) appear also as regressors (see Zellner and Theil (1962)). In this case we have the
following system of simultaneous equations:

yi = Xi�i +Yii + "i (22.14)

= Wi�i + "i i = 1; 2; :::;m

where yi is a T � 1 vector of observations on the �normalized�endogenous variable of the ith
equation in the system, Xi are the T � ki vector of observations on the exogenous variables
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in the ith equation, and Yi is the T � pi vector of endogenous variables in the ith equation
whose coe¢ cients are not normalized. Hence equation i has pi endogenous and ki exogenous
variables. Wi is T � si where si = ki + pi. Also �i =

�
�0i;

0
i

�0
:

Choice of the variable to normalize (or equivalently the choice of the left-hand-side vari-
able) can be important in practice and is assumed to be guided by economic theory or other
forms of a priori information. The order condition for identi�cation of parameters of equa-
tion i is given by k�ki � pi, namely the number of excluded exogenous variables in equation
i must be at least as large as the number of included endogenous variables minus one (the
normalization constant applied to yi).

The three-stage least squares (3SLS) computes the �tted values:cWi = X
�
X0X

��1
X0Wi (22.15)

and estimates the following system of equations by the SURE procedure (see Section 22.1.1):

yi = cWi�i + �i (22.16)

To obtain explicit expression for the 3SLS estimators stack the m equations as

y = cW� + � (22.17)

where

y =

0BBB@
y1
y2
...
ym

1CCCA ; cW =

0BBBB@
cW1 0 � � � 0

0 cW2 � � � 0

0
...

. . .
...

0 0 � � � cWm

1CCCCA

� =

0BBB@
�1
�2
...
�m

1CCCA ; � =

0BBB@
�1
�2
...
�m

1CCCA
Then

�̂3SLS =
hcW0

�
�̂�1 
 IT

� cWi�1 cW0
�
�̂�1 
 IT

�
y (22.18)

with

�̂ = (�̂ij); �̂ij =

�
yi �Wi�̂i;2SLS

�0 �
yj �Wj �̂j;2SLS

�
T

(22.19)

�̂i;2SLS =
�cW0

i
cWi

��1 cW0
iyi (22.20)

The covariance matrix of the 3SLS estimator is given by

V ar
�
�̂3SLS

�
=
hcW0

�
�̂�1 
 IT

� cWi�1
(22.21)

The estimates �̂ and �̂3SLS are updated iteratively until convergence is achieved, as in the
SURE estimation (see Section 22.1.1).



CHAPTER 22. ECONOMETRICS OF MULTIPLE EQUATION MODELS 502

22.2.1 Testing linear/non-linear restrictions

Under fairly general conditions theML estimators, e� = �e�01; e�02; :::; e�0m�0, are asymptotically
normally distributed with mean e� and the covariance matrix given by (22.9). It is therefore
possible to test linear or non-linear restrictions on the elements of � using the Wald proce-
dure. (see Section 21.25). Notice that the restrictions to be tested could involve coe¢ cients
from di¤erent equations (there could be cross-equation restrictions). To be more precise,
suppose you are interested in testing the following r� 1 general non-linear restrictions on �:

H0 : h(�) = 0

H1 : h(�) 6= 0

where h(�) is known r � 1 vector function of �, with continuous partial derivatives. The
Wald statistic for testing h(�) = 0 against h(�) 6= 0 is given by

W = h(e�)0 hH(e�)dCov(e�)H0(e�)i�1 h(e�) (22.22)

where H(e�) is given by @h(�)=@�0 at � =e�. It will be assumed that Rank(H(�)) = r:

22.2.2 LR statistic for testing whether � is diagonal

Suppose it is of interest to test the hypothesis that

H0 : �12 = �13 = � � � = �1m = 0
�23 = � � � = �2m = 0
. . .

�mm = 0

against the alternative that one or more of the o¤-diagonal elements of � are non-zero. The
relevant log-likelihood ratio statistic for testing this hypothesis can be computed in Micro�t
as

LR = 2

"
`(~�)�

mX
i=1

`i(�̂i;OLS)

#
(22.23)

where `(~�) is given by (22.11) and `i(�̂i;OLS) is the log-likelihood function of the ith equation
computed at the OLS estimators. Equivalently, we have

LR = T

"
mX
i=1

log ~�2i � log
��� e����# (22.24)

where
~�ii = n�1

�
yi �Xib�i;OLS�0 �yi �Xib�i;OLS�
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Under H0, LR is asymptotically distributed as a �2 with m(m � 1)=2 degrees of freedom.2
See Lesson 18.2 for an implementation of this test.

22.3 System estimation subject to linear restrictions

Consider now the problem of estimating the system of equations (22.1) where the coe¢ cient
vectors �i, i = 1; 2; :::;m are subject to the following r � 1 linear restrictions:

R� = b (22.25)

where R and b are r�k matrix and r� 1 vector of known constants, and as in Section 22.1,
� =

�
�01;�

0
2; :::;�

0
m

�0, is a k � 1 vector of unknown coe¢ cients, k =Pm
i=1 ki.

In what follows we distinguish between the cases where the restrictions are applicable to
the coe¢ cients �i in each equation separately, and when there are cross-equation restrictions.
In the former case the matrix R is block diagonal, namely

R =

0BBB@
R1 0

R2
. . .

0 Rm

1CCCA (22.26)

where Ri is the ri � ki matrix of known constants applicable to �i only. In the more
general case where the restrictions involve coe¢ cients from di¤erent equations R is not
block-diagonal.

The computations of the ML estimators of � in (22.1), subject to the restrictions in
(22.25), can be carried out in the following manner. Initially suppose � is known, and de�ne
the mn�mn matrix P such that

P (�
 In)P0 = Imn (22.27)

where Imn is an identity matrix of order mn. Such a matrix always exists, since � is a
symmetric positive de�nite matrix. Then compute the transformations

X� = PX; y� = Py (22.28)

Using familiar results from estimation of linear regression models subject to linear restrictions
we have (see, for example, Amemiya (1985) Section 1.4)

e� = �X0�X���1X0�y� � �X0�X���1R0~q (22.29)

2An alternative LM test statistic proposed by Breusch and Pagan (1980) is given by

LM = n

mX
i=2

i�1X
j=1

s2ij ;

where s2ij = ~�ij;OLS= f~�ii;OLS~�jj;OLSg
1
2 . This statistic is also asymptotically distributed as a �2 with m(m�

1)=2 degrees of freedom.
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where
~q =

�
R
�
X0�X�

��1
R0
�n
R
�
X0�X�

��1
X0�y� � b

o
(22.30)

In practice, since � is not known we need to estimate it. Starting with unrestricted SURE,
or other initial estimates of �i (say b�i;OLS), an initial estimate of � = (�ij) can be obtained.
Using the OLS estimates of �i, the initial estimates of �ij are given by

�̂ij;OLS =
û0i;OLSûj;OLS

n
; i; j = 1; 2; :::;m

where
ûi;OLS = yi �Xib�i;OLS ; i; j = 1; 2; :::;m

With the help of these initial estimates, constrained estimates of �i can be computed using
(22.29). Starting from these new estimates of �i, another set of estimates for �ij can be
computed. This process can be repeated until the convergence criteria in (22.8) are met.

The covariance matrix of e� in this case is given by
dCov(e�) = �bX0� bX���1 � �bX0� bX���1R0�R�bX0� bX���1R0��1R�bX0� bX���1

Notice that bX0� bX� = X0bP0bPX = X0
�b��1 
 In�X

The (i; j) element of b� is computed di¤erently depending on whether or not the matrix R
in (22.26) is block diagonal. When R is block diagonal, �ij is estimated by

�̂ij =
u0iujp

(n� si)(n� sj)
; i; j = 1; 2; :::;m (22.31)

where si = ki �Rank(Ri) = ki � ri. When R is not block diagonal �ij is estimated by

~�ij =
u0iuj
n

; i; j = 1; 2; :::;m (22.32)

The divisor in (22.31) ensures that the results from the unrestricted and the restricted SURE
options in Micro�t are compatible when there are no cross-equation restrictions. In the case
where R is not block diagonal, an appropriate degrees-of-freedom correction is not available,
and hence the ML estimator of �ij is used in the computation of the covariance matrix of
the ML estimators of �.

The maximum value of the log-likelihood function is computed as in (22.11), and the
system AIC and SBC are computed as:

AIC = `(e�)� (k � r)
and

SBC = `(e�)� 1
2(k � r) log n

where k =
Pm
i=1 ki, and r = Rank(R). When R is block, r =

Pm
i=1 ri:

Wald statistics for testing linear and/or non-linear restrictions on the elements of � can
also be computed after the restricted SURE option. The relevant formula is given by (22.22).
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22.4 Augmented vector autoregressive models

Micro�t allows estimation of the following augmented vector autoregressive model:3

zt = a0 + a1t+

pX
i=1

�izt�i +	wt + ut; t = 1; 2; :::; n (22.33)

= A0gt+ut

where zt is an m�1 vector of jointly determined dependent variables, and wt is a q�1 vector
of deterministic or exogenous variables. For example, wt could include seasonal dummies, or
exogenously given variables such as oil prices, foreign interest rates and prices in the case of
small open economies. The m� 1 vector of disturbances satisfy the following assumptions:

B1 E(ut) = 0:
B2 E(utu

0
t) = � for all t;

B3 E(utu
0
t0) = 0 for all t 6= t0;

where � is an m�m positive de�nite matrix.

B4 E(ut jwt ) = 0:
B5 The augmented V AR(p) model, (22.33), is stable;

that is, all the roots of the determinantal equation��Im ��1���2�2 � � � � ��p�p�� = 0 (22.34)

fall outside the unit circle4

B6 The m� 1 vector of disturbances have a multivariate normal distribution
B7 The observations gt = (1; t; zt�1; zt�2; :::; zt�p;wt); for t = 1; 2; :::; n

are not perfectly collinear

Since the system of equations (22.33) is in the form of a SURE model with all the equations
having the same set of regressors gt = (1; t; zt�1; zt�2; :::; zt�p;wt) in common, it then follows
that when uts are Gaussian theML estimators of the unknown coe¢ cients can be computed
by OLS regressions of zt on gt. Writing (22.33) in matrix notation we have

Z
n�m

= G
n� s

A
s�m

+ U
n�m

(22.35)

where s = mp+ q + 2;
Z

n�m
= (z1; z2; : : : zn)

0

3 In the analysis of trend-stationary V AR models, without any loss of generality, the intercept and the
trend terms �n and tn can be subsumed in wt. However, as it should become clear later, an explicit modelling
of intercepts and trends is required in the case of cointegrating VAR models. See section 22.7.

4The case where one or more roots of (22.34) fall on the unit circle will be discussed in Section 22.7.
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A0

m� s
= (a0;a1;�1;�2; :::;�p;	)

G
n� (mp+ q + 2)

= (�n; tn;Z�1;Z�2; :::;Z�p;W)

where �n and tn are the n-dimensional vectors (1; 1; :::; 1)0 and (1; 2; :::; n)0; respectively, and

W
n� q

= (w1;w2; :::;wn)
0

The ML estimators of A and � are given by

bA = (G0G)�1G0Z (22.36)

and e� = n�1(Z�GbA)0(Z�GbA) (22.37)

The maximized value of the system�s log-likelihood function is given by

`
�bA; e�� = �nm

2
(1 + log 2�)� n

2
log
��� e���� (22.38)

The covariance matrix of the coe¢ cients of the individual equations in the V AR model are
computed using the standard least squares formula given in Section 21.6.1, making the usual
degrees of freedom corrections, namely � is estimated by

b� = (n� s)�1(Z�GbA)0(Z�GbA) (22.39)

The individual equation log-likelihood function, R2; �R2 and other summary and diagnostic
statistics for individual equations are also computed using the formulae in Section 21.6.1.

22.4.1 VAR order selection

The order of the augmented V AR model (22.33), p, can be selected either with the help
of model selection criteria such as the Akaike information criterion (AIC) and the Schwarz
Bayesian criterion (SBC), or by means of a sequence of log-likelihood ratio tests. The values
of the AIC and SBC for model (22.33) are given by

AICp =
�nm
2

(1 + log 2�)� n

2
log
��� e�p����ms (22.40)

and
SBCp =

�nm
2

(1 + log 2�)� n

2
log
��� e�p���� ms

2
log(n) (22.41)

where s = mp + q + 2, and e�p is de�ned by (22.37). Micro�t reports AICp and SBCp
for values of p = 0; 1; 2; :::; P , where P is the maximum order of the V AR model chosen
by the user. The same augmenting set of variables, �n, tnand wt (if any) are used in the
computations as the order of V AR is changed.
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The log-likelihood ratio statistic for testing the hypothesis that the order of the V AR is
p against the alternative that it is P (P > p) are given by

LRP;p = n
�
log
��� e�p���� log ��� e�P ���� (22.42)

For p = 0; 1; 2; :::; P � 1, where P is the maximum order for the V AR model selected by the
user, e�p is de�ned by (22.37), and e�0 refers to the ML estimator of the system covariance
matrix in the regression of zt on �n, tnand wt.

Under the null hypothesis, the LR statistic in (22.42) is asymptotically distributed as a
chi-squared variate with m2(P � p) degrees of freedom.

In small samples the use of the LR statistic (22.42) tends to result in over-rejection of
the null hypothesis. In an attempt to take some account of this small sample problem, in
practice the following degrees of freedom adjusted LR statistics are also computed:.

LR�P;p = (n� q � 2�mP )
�
log
��� e�p���� log ��� e�P ���� (22.43)

for p = 0; 1; 2; :::; P � 1. These adjusted LR statistics have the same asymptotic distribution
as the unadjusted statistics given by (22.42).

22.4.2 Testing the deletion of deterministic/exogenous variables

Micro�t computes log-likelihood ratio statistics for testing the deletion of �n, tnand wt or a
sub-set of these variables from the V AR(p) model (22.33). For notational convenience, from
here onwards until notice to the contrary we shall be subsuming the intercept and the trend
terms, �n and tn, in wt: Let

wt
q � 1

=

0@ w1t
w2t

; q1 � 1
q2 � 1

1A and 	
m� q

=

0@ 	1

m� q1
; 	2

m� q2

1A (22.44)

where q = q1 � q2. The log-likelihood ratio statistic for testing the null hypothesis

H0 : 	1 = 0; against H1 : 	1 6= 0

is computed as
LR(	1 = 0) =2 fLLU � LL (	1 = 0)g (22.45)

where LLU is the unrestricted maximized value of the log-likelihood function given by (22.38)
and LL(	1 = 0) is the maximized value of the log-likelihood function obtained under	1 = 0.
Asymptotically LR(	1 = 0) is distributed as a chi-squared variate with mq1 degrees of
freedom.

22.4.3 Testing for block Granger non-causality

Let zt = (z01t; z
0
2t)

0, where z1t and z2t are m1 � 1 and m2 � 1, (m1 +m2 = m) variables, and
partition the system of equations (22.33) (or equivalently (22.35)) into the two sub-systems

Z1 = Y1A11 +Y2A12 +WA13 +U1 (22.46)
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Z2 = Y1A21 +Y2A22 +WA23 +U2 (22.47)

where Z1 and Z2 are n�m1 and n�m2 matrices of observations on z1t and z2t respectively;
Y1 and Y2 are n � pm1 and n � pm2 matrices of observations on the p lagged values of
z1;t�`; and z2;t�`, for t = 1; 2; :::; n, ` = 1; 2; :::; p, respectively. The hypothesis that �z2t do
not Granger cause z1t�is de�ned by the m1m2p restrictions A12 = 0.5

The log-likelihood ratio statistic for the test of these restrictions is computed as

LRG (A12 = 0) = 2
�
log
��� e�R���� log ��� e�����

where e� is ML estimator of � for the unrestricted (full) system (22.37), and e�R is the ML
estimator of � when the restrictions A12 = 0 are imposed. Under the null hypothesis that
A12 = 0, LRG is asymptotically distributed as a chi-squared variate with m1m2p degrees of
freedom.

Since under A12 = 0, the system of equations (22.46) and (22.47) are block recursive,e�R can be computed in the following manner:
1. Run OLS regressions of Z1 on Y1 andW, and compute the n�m1 matrix of residuals,bU1.

2. Run the OLS regressions

Z2 = Y1A
�
21 +Y2A

�
22 +WA

�
23 +

bU1A
�
24 +V2 (22.48)

and compute the n�m2 matrix of residuals:bU2 = Z2 �Y1 bA�21 �Y2 bA�22 �W bA�23
where bA�21, bA�22 and bA�23 are the OLS estimators of A�21, A�22 and A�23, in (22.48).
De�ne bU =

�bU1 : bU2

�
Then e�R = n�1

�bU0 bU� (22.49)

22.5 Impulse response analysis

The impulse response function measures the time pro�le of the e¤ect of shocks on the future
states of a dynamical system. In the case of the V AR(p) model (22.33), two di¤erent impulse
response functions can be computed using Micro�t :

1. The Orthogonalized Impulse Response Function (IRF) advanced by Sims (1980) and
Sims (1981).

5See Engle, Hendry, and Richard (1983) for a discussion on the notions of predeterminedness, strict
exogeneity and causality.
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2. The Generalized IR Function (GIRF) proposed by Koop, Pesaran, and Potter (1996),
and Pesaran and Shin (1998).

Both impulse response functions work with the m � m coe¢ cient matrices Ai, in the
in�nite moving average representation of (22.33):6

zt =
1X
j=0

Ajut�j +
1X
j=0

Bjwt�j ; (22.50)

where the matrices Aj are computed using the recursive relations

Aj = �1Aj�1 +�2Aj�2 + :::+�pAj�p; j = 1; 2; :::; (22.51)

with A0 = Im, and Aj = 0, for j < 0, and Bj = Aj	; for j = 1; 2; ::

22.5.1 Orthogonalized impulse responses

Sims�approach employs the following Cholesky decomposition of � (the covariance matrix
of the shocks, ut):

� = TT0 (22.52)

where T is a lower triangular matrix. Sims then rewrites the moving average representation
(22.50) as

zt =
1X
j=0

(AjT)
�
T�1ut�j

�
+

1X
j=0

Bjwt�j

=

1X
j=0

A�j�t�j +
1X
j=0

Bjwt�j (22.53)

where
A�j = AjT; and �t = T

�1ut

It is now easily seen that

E
�
�t�

0
t

�
= T�1E

�
utu

0
t

�
T0�1 = T�1�T0�1 = Im

and the new errors �t obtained using the transformation matrix, T, are now contempo-
raneously uncorrelated and have unit standard errors. In other words the shocks �t =
(�1t; �2t; :::; �mt)

0 are orthogonal to each other.
The Orthogonalized IR function of a �unit shock�(equal to one standard error) at time

t to the ith orthogonalized error, namely �it, on the jth variable at time t+N , is given by
the jth element of:

Orthogonalized IR function to
the ith variable (equation)

= A�Nei = ANTei (22.54)

6Notice that the existence of such an in�nite MA representation is ensured by condition (B5).
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where ei is the m� 1 selection vector,

ei = (0; 0; ::: 0; 1; 0; ::: 0)0

" (22.55)

ith element

or, written more compactly

OIij;N = e
0
jANTei; i; j;= 1; 2; :::;m (22.56)

These orthogonalized impulse responses are not unique and in general depend on the par-
ticular ordering of the variables in the V AR. The orthogonalized responses are invariant to
the ordering of the variables only if � is diagonal (or almost diagonal).7 The non-uniqueness
of the orthogonalized impulse responses is also related to the non-uniqueness of the matrix
T in the Cholesky decomposition of � in (22.52). For more details see Lütkepohl (2005)
Section 2.3.2.

22.5.2 Generalized impulse responses

The main idea behind the Generalized IR function is to circumvent the problem of the depen-
dence of the orthogonalized impulse responses to the ordering of the variables in the V AR.
The concept of the Generalized Impulse Response function, advanced in Koop, Pesaran, and
Potter (1996) was originally intended to deal with the problem of impulse response analysis
in the case of non-linear dynamical systems, but can also be readily applied to multivariate
time-series models such as V AR, as set out in Pesaran and Shin (1998).

The Generalized IR analysis deals explicitly with three main issues that arise in impulse
response analysis:

1. How was the dynamical system hit by shocks at time t? Was it hit by a variable-speci�c
shock or system-wide shocks?

2. What was the state of the system at time t�1, before the system was hit by shock(s)?
Was the trajectory of the system in an upward or in a downward phase?

3. How would one expect the system to be shocked in the future, namely over the interim
period from t+ 1, to t+N?

In the context of the V AR model (22.33), the Generalized Impulse Response function
for a system-wide shock, u0t , is de�ned by

GIz
�
N;u0t ;


0
t�1
�
= E

�
zt+N

��ut = u0t ;
0t�1 �� E �zt+N ��
0t�1 � (22.57)

where E (� j�) is the conditional mathematical expectation taken with respect to the V AR
model (22.33), and 
0t�1 is a particular historical realization of the process at time t � 1.

7Tests of the diagonality of � are discussed in Section 22.2.2.
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In the case of the V AR model having the in�nite moving-average representation (22.50) we
have

GIz
�
N;u0t ;


0
t�1
�
= ANu

0
t (22.58)

which is independent of the �history� of the process. This history invariance property of
the impulse response function (also shared by the traditional methods of impulse response
analysis) is, however, speci�c to linear systems, and does not carry over to non-linear dynamic
models.

In practice, the choice of the vector of shocks, u0t , is arbitrary; one possibility would be to
consider a large number of likely shocks and then examine the empirical distribution function
of ANu0t for all these shocks. In the case where u

0
t is drawn from the same distribution as

ut, namely a multivariate normal with zero means and a constant covariance matrix �, we
have the analytical result that
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The diagonal elements of AN�A0N , when appropriately scaled, are the �persistence pro�les�
proposed in Lee and Pesaran (1993) and applied in Pesaran and Shin (1996) to analyze the
speed of convergence to equilibrium in cointegrated systems (see Section 22.9.5). It is also
worth noting that when the underlying V AR model is stable (i.e. condition B5 is met),
the limit of the persistence pro�le as N ! 1 tends to the spectral density function of zt
(without the wts) at zero frequency (apart from a multiple of �).

Consider now the e¤ect of a variable-speci�c shock on the evolution of zt+1; zt+2; :::; zt+N ,
and suppose that for a given wt, the V AR model is perturbed by a shock of size �i =

p
�ii

to its ith equation at time t. By the de�nition of the Generalized IR function we have:
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Once again using the in�nite moving-average representation (22.50), we obtain

GIz
�
N; �i;


0
t�1
�
� ANE (ut juit = �i ) (22.61)

which is history invariant (it does not depend on 
0t�1). The computation of the conditional
expectations E (ut juit = �i ) depends on the nature of the multivariate distribution assumed
for the disturbances, ut. In the case where ut � N (0;�), we have

E (ut juit = �i ) =

0BBB@
�1i=�ii
�2i=�ii
...

�mi=�ii

1CCCA �i (22.62)

where as before, � = (�ij). Hence for a �unit shock�de�ned by �i =
p
�ii; we have
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CHAPTER 22. ECONOMETRICS OF MULTIPLE EQUATION MODELS 512

where ei is a selection vector given by (22.55). The Generalized Impulse Response Function
(GIRF) of a unit shock to the ith equation in the V AR model (22.33) on the jth variable at
horizon N is given by the jth element of (22.63), or expressed more compactly

GIij;N =
e0jAN�eip

�ii
; i; j;= 1; 2; :::;m (22.64)

Unlike the Orthogonalized Impulse Responses in (22.54), the Generalized Impulse Responses
in (22.63) are invariant to the ordering of the variables in the V AR. It is also interesting to
note that the two impulse responses coincide only for the �rst variable in the V AR, or when
� is a diagonal matrix. See Pesaran and Shin (1998).

22.6 Forecast error variance decompositions

The forecast error variance decomposition provides a decomposition of the variance of the
forecast errors of the variables in the V AR at di¤erent horizons.

22.6.1 Orthogonalized forecast error variance decomposition

In the context of the orthogonalized moving-average representation of the V AR model given
by (22.53), the forecast error variance decomposition for the ith variable in the V AR is given
by

�ij;N =

NP̀
=0

(e0iA`Tej)
2

NP̀
=0

e0iA`�A
0
`ei

; i; j = 1; 2; :::;m (22.65)

where T is de�ned by the Cholesky decomposition of �, (22.52), ei is the selection vector
de�ned by (22.55), and A`; ` = 0; 1; 2; ::: are the coe¢ cient matrices in the moving-average
representation, (22.50). Notice that e0iA`�A

0
`ei is simply the ith diagonal element of the ma-

trix A`�A0`, which also enters the persistence pro�le analysis (see Lee and Pesaran (1993)).
�ij;N measures the proportion of the N -step ahead forecast error variance of variable i,

which is accounted for by the orthogonalized innovations in variable j. For further details,
see, for example, Lütkepohl (2005) Section 2.3.3.8 As with the Orthogonalized Impulse
Response function, the orthogonalized forecast error variance decompositions in (22.65) are
not invariant to the ordering of the variables in the V AR.

22.6.2 Generalized forecast error variance decomposition

An alternative procedure to the orthogonalized forecast error variance decomposition would
be to consider the proportion of the variance of the N -step forecast errors of zt that are

8Notice also that
mP
j=1

�ij;N = 1.
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explained by conditioning on the non-orthogonalized shocks, uit; ui;t+1; :::; ui;t+N , but explic-
itly allowing for the contemporaneous correlations between these shocks and the shocks to
the other equations in the system.

Using the MA representation (22.50),9 the forecast error of predicting zt+N conditional
on the information at time t� 1 is given by

�t(N)
m� 1

=

NX
`=0

A`ut+N�` (22.66)

with the total forecast error covariance matrix

Cov (�t(N)) =
NX
`=0

A`�A
0
` (22.67)

Consider now the forecast error covariance matrix of predicting zt+N conditional on the
information at time t � 1, and given values of the shocks to the ith equation, uit; ui;t+1;
:::; ui;t+N . Using (22.50) we have10

�
(i)
t (N)
m� 1

=
NX
`=0

A` (ut+N�` � E (ut+N�` jui;t+N�` )) (22.68)

As in the case of the Generalized Impulse Responses, assuming ut � N (0;�) we have

E (ut+N�` jui;t+N�` ) =
�
��1ii �ei

�
ui;t+N�` for ` = 0; 1; 2; :::; N

i = 1; 2; :::;m

Substituting this result back in (22.68)
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Therefore, using (22.67) and (22.69) it follows that the decline in the N -step forecast error
variance of zt obtained as a result of conditioning on the future shocks to the ith equation
is given by

�iN = Cov [�t(N)]� Cov
h
�
(i)
t (N)

i
= ��1ii

NX
`=0

A`�eie
0
i�A

0
`: (22.70)

9We continue to assume that wts are given.
10Notice that since uts are serially uncorrelated, E (ut+n�` juit; ui;t+1; :::; ui;t+n) =

E (ut+N�` jui;t+n�` ) ; ` = 0; 1; 2; :::; N .
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Scaling the jth diagonal element of �iN , namely e0j�iNej , by the N -step ahead forecast
error variance of the ith variable in zt, we have the following generalized forecast error
variance decomposition:

	ij;N =

��1ii
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(e0jA`�ei)
2

NX
`=0

e0jA`�A
0
`ej

(22.71)

Note that the denominator of this measure is the ith diagonal element of the total forecast
error variance formula in (22.67), and is the same as the denominator of the orthogonalized
forecast error variance decomposition formula (22.65). Also �ij;N = 	ij;N when zit is the
�rst variable in the V AR, and/or � is diagonal. However, in general the two decompositions
di¤er.

For computational purposes it is worth noting that the numerator of (22.71) can also be
written as the sum of squares of the generalized responses of the shocks to the ith equation
on the jth variable in the model, namely

PN
`=0 (GIij;`)

2, where GIij;` is given by (22.64).

22.7 Cointegrating VAR

The statistical framework for the cointegrating V AR options in Micro�t is the following
general vector error correction model (V ECM):

�yt = a0y + a1yt��yzt�1 +

p�1X
i=1

�iy�zt�i +	ywt + �t; t = 1; 2; :::; n (22.72)

where

� zt = (y0t;x0t)
0, yt is an my � 1 vector of jointly determined (endogenous) I(1) variables

� xt is an mx � 1 vector of exogenous I(1) variables11

�xt = a0x +

p�1X
i=1

�ix�zt�i +	xwt + vt (22.73)

� wt is a q� 1 vector of exogenous/deterministic I(0) variables, excluding the intercepts
and/or trends

� The disturbance vectors �t and vt satisfy the following assumptions:

ut =

�
�t
vt

�
� IID (0;�) ; (22.74)

where � is a symmetric positive-de�nite matrix
11Notice that (22.73) allows for feedbacks from �y to �x, but does not allow for level feedbacks, and hence

assumes that xts are not themselves cointegrated.
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� The disturbances in the combined model, ut, are distributed independently of wt

E (ut jwt ) = 0 (22.75)

The intercept and the trend coe¢ cients, a0y and a1y are my � 1 vectors, �y is the long-
run multiplier matrix of order my �m, where m = mx+my, �1y;�2y; :::;�p�1;y are my �m
coe¢ cient matrices capturing the short-run dynamic e¤ects, and 	y is the my � q matrix of
coe¢ cients on the I(0) exogenous variables.

The V ECM in (22.72) di¤ers in a number of important respects from the usual V AR
formulation for the V ECM analyzed inter alia by Johansen (1991). Firstly, (22.72) allows
for a sub-system approach in which the mx-vector of random variables xt are the forcing
variables, or common �stochastic trends�, in the sense that the error correction terms do
not enter in the sub-system for xt (given by (22.73)). Therefore, cointegrating analysis in
Micro�t allows for contemporaneous and short-term feedbacks from yt to xt, but requires
that no such feedbacks are possible in the long-run. We refer to xt as the �long-run forcing�
variables of the system. Secondly, the cointegration analysis critically depends on whether
the underlying V ECM contains intercepts and/or time trends, and whether the intercepts,
a0y; and the trend coe¢ cients, a1y; are restricted. Accordingly, the cointegration analysis in
Micro�t distinguishes between �ve cases of interest ordered according to the importance of
the trends:

Case I: a0y = a1y = 0 (no intercepts and no trends)

Case II: a1y = 0, and a0y = �y�y (restricted intercepts and no trends)

Case III: a1y = 0, and a0y 6= 0 (unrestricted intercepts and no trends)

Case IV: a0y 6= 0 and a1y = �yy (unrestricted intercepts and restricted trends)

Case V: a0y 6= 0, and a1y 6= 0 (unrestricted intercepts and trends)

The rationale behind the restricted intercepts and the restricted trend cases are discussed
below.

22.7.1 Cointegrating relations

The cointegrating V AR analysis is concerned with the estimation of (22.72) when the rank of
the long-run multiplier matrix, �, could at most be equal to my. Therefore, rank de�ciency
of � can be represented as

Hr : Rank (�y) = r < my:

In this case we can write
�y = �y�

0

where �y and � are my � r and m� r matrices, each with full column rank, r. In the case
where �y is rank de�cient we have yt � I(1), �yt � I(0); and �0zt � I(0). The r�1 trend-
stationary relations, �0zt; are referred to as the cointegrating relations, and characterize the
long-run equilibrium (steady state) of the V ECM (22.72).
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It is, however, important to recognize that in the case where the V ECM (22.72) contains
deterministic trends (a1y 6= 0), in general there will also be a linear trend in the cointegrating
relations. To see this, combining the equation systems (22.72) and (22.73) we have

�zt = a0 + a1t��zt�1 +
p�1X
i=1

�i�zt�i +	wt + ut (22.76)

for t = 1; 2; :::; n, where
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�
; ut =

�
uyt
vt

�
; a0 =

�
a0y
a0x

�
; a1 =

�
a1y
0

�
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0

�
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�
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�
which is the vector error correction form of (22.33).

In the case where � is rank de�cient, the solution of (22.76) involves common stochastic
trends, and is given by,12

zt = z0 + b0t+ b1

�
t (t+ 1)

2

�
+C(1)St +C

�(L) (ht � h0) (22.77)

where
ht = 	wt + ut (22.78)

St =
tX
i=1

ui; t = 1; 2; ::: (22.79)

b0 = C(1)a0 +C
�(1)a1 (22.80)

b1 = C(1)a1 (22.81)

C(L) = C(1) + (1� L)C�(L); (22.82)

C�(L) =
1X
i=0

C�iL
i

where L is the one-period lag operator and the m�m matrices C�i are obtained recursively
from

C�i = C
�
i�1�1 + � � �+C�i�p�p (22.83)

i = 1; 2; ::; with C�0 = Im �C(1); C�i = 0, i < 0, and

�C(1) = 0 = C(1)� (22.84)

12See, for example, Pesaran and Shin (2002), and Pesaran, Shin, and Smith (1996).
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The matrices �1;�2; :::;�p are the coe¢ cient matrices in the V AR form of (22.76), and in
terms of �; �1, �2; :::; and �p�1 are given by

�1 = Im ��+ �1
�i = �i � �i�1; i = 2; 3; :::; p� 1
�p = ��p�1

From solution (22.77) it is clear that in general zt will contain a quadratic trend. When
a1 6= 0, the quadratic trend disappears only if C(1)a1 = 0, otherwise the number of inde-
pendent quadratic trend terms in the solution of zt will be equal to the Rank of C(1) and
hence depends on the number of cointegrating relations. Note that Rank [C(1)] = m � r.
Therefore, without some restrictions on the trend coe¢ cients, a1, the solution (22.77) has the
unsatisfactory property that the nature of the trend in zt varies with the assumed number of
cointegrating relations. This outcome can be avoided by restricting the trend coe¢ cients as
in Case IV, namely by setting a1 = �. Under these restrictions using (22.81) and (22.84)
we have

b1 = C(1)a1 = C(1)� = 0

and the V ECM in (22.76) becomes

�zt = a0 �� (zt�1 � t) +
p�1X
i=1

�i�zt�i +	wt + ut (22.85)

A similar consideration also applies where the V ECM contains intercepts, but no trends.
In this case, unless the intercepts are appropriately restricted (as in Case II) the nature of
the trend in zt will vary with the number of the cointegrating relations.

Using (22.77) the cointegrating relations, �0zt, can also be derived in terms of the shocks
ut�i, i = 0; 1; 2; :::; and the current and past values of the I(0) exogenous values. Pre-
multiplying (22.77) by �0, and bearing in mind the cointegration restrictions �0C(1) = 0,
we obtain13

�0zt = �
0z0 +

�
�0b0

�
t+ �0C�(L) (ht � h0) (22.86)

Using (22.80) we also have
�0b0 = �

0C�(1)a1 (22.87)

and hence when a1 6= 0, the cointegrating relations �0zt, in general, contain deterministic
trends, which do not disappear even if a1 is restricted as in Case IV. When a1 = �, the
coe¢ cients of the deterministic trend in the cointegrating relations are given by

�0b0 = �
0C�(1)�:

But as shown in Pesaran and Shin (2002), C�(1)� = Im, and �0b0 = �0 6= 0. Using this
result in (22.86) we have

�0zt = �
0z0 +

�
�0

�
t+ �0C�(L) (ht � h0) (22.88)

13Notice that �0b1 = �0C(1)a1 = 0, irrespective of whether or not the trend coe¢ cients a1 are restricted.
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A test of whether the cointegrating relations are trended can be carried out by testing the
following r restrictions:

�0 = 0 (22.89)

We shall refer to these as the �cotrending�restrictions.14

22.8 ML estimation and tests of cointegration

Suppose that n observations z1; z2; :::; zn and w1;w2; :::;wn are available on the variables
zt = (y

0
t;x

0
t)
0, and wt. Then, stacking the V ECM in (22.72) we have

�Y = �na
0
0y + tna

0
1y � Z�1�0

y +�Zp�
0
y +W	0

y +E (22.90)

where
�Y = (�y1;�y2; :::;�yn)

0

E = (�1; �2; :::; �n)
0

�n = (1; 1; :::; 1)
0 ; tn = (1; 2; :::; n)

0

�y = (�1y;�2y; :::;�p�1;y)

�Zp = (�Z�1;�Z�2; :::;�Z1�p)

�Z�i = (�z1�i;�z2�i; :::;�zn�i)
0 ; i = 1; 2; :::; p� 1

The log-likelihood function of (22.90) is given by

`n ('; r) =
�nmy

2
log 2� � n

2
log j�yj � 1

2Tr
�
��1y E

0E
�

(22.91)

where �y = E (�t�
0
t), ' denotes for the vector of the unknown parameters of the model,

and r is the assumed rank of �y. Writing �y = �y�
0, and maximizing the log-likelihood

function with respect to the elements of �y, a0y, a1y, �iy, i = 1; 2; :::; p� 1, �y and 	y, we
have the following concentrated log-likelihood function:

`cn(�; r) =
�nmy

2
(1 + log 2�)� n

2
log
��� e�y (�)��� (22.92)

where ��� e�y (�)��� = jS00j ���0An������0Bn��� (22.93)

An = S11 � S10S�100 S01, and Bn = S11 (22.94)

Sij = n�1
nX
t=1

ritr
0
jt; i; j = 0; 1 (22.95)

and r0t and r1t for t = 1; 2; :::; n are the residual vectors obtainable from the following
regressions:
14Also see Park (1992) and Ogaki (1992).
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Case I: (a0y = a1y = 0)

r0t is the residual vector from theOLS regressions of�yt on (�zt�1;�zt�2; :::;�zt�p+1;wt),
and r1t is the residual vector from theOLS regressions of zt�1 on (�zt�1;�zt�2; :::;�zt�p+1;wt) :

Case II:
�
a1y = 0;a0y = �y�y

�
r0t is the residual vector from theOLS regressions of�yt on (�zt�1;�zt�2; :::;�zt�p+1;wt) ;

and r1t is the residual vector from theOLS regressions of
�
1

zt�1

�
on (�zt�1;�zt�2; :::;�zt�p+1;wt) :

Case III: (a1y = 0;a0y 6= 0)

r0t is the residual vector from theOLS regressions of�yt on (1;�zt�1;�zt�2; :::;�zt�p+1;wt) ;
and r1t is the residual vector from theOLS regressions of zt�1 on (1;�zt�1;�zt�2; :::;�zt�p+1;wt) :

Case IV:
�
a0y 6= 0;a1y = �yy

�
r0t is the residual vector from theOLS regressions of�yt on (1;�zt�1;�zt�2; :::;�zt�p+1;wt),

and r1t is the residual vector from theOLS regressions of
�

t

zt�1

�
on (1;�zt�1;�zt�2; :::;�zt�p+1;wt) :

Case V: (a0y 6= 0;a1y 6= 0)

r0t is the residual vector from theOLS regressions of�yt on (1; t;�zt�1;�zt�2; :::;�zt�p+1;wt) ;
and r1t is the residual vector from theOLS regressions of zt�1 on (1; t;�zt�1;�zt�2; :::;�zt�p+1;wt).

Substituting (22.93) in (22.92) yields

`cn(�; r) =
�nmy

2
(1 + log 2�)� n

2
log jS00j (22.96)

�n
2

�
log
���0An���� log ���0Bn���	

The dimension of � depends on whether or not the intercepts, a0y, and/or the trend coef-
�cients, a1y; are restricted. For example, in Case IV where a0y 6= 0, and a1y = �yy, the
term tna

0
1y � Z�1�0yin (22.90) can be written as

tna
0
1y � Z�1�0

y = �Z��1��0
y

where
��
y = �y

�
�y; Im

�
Z��1 =

�
z�0; z

�
1; :::; z

�
n�1
�

and z�t =
�

t

zt�1

�
. In this case the cointegrating vectors are de�ned by

��
y = �y�

0
�
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and � in (22.96) should be replaced by the (m+ 1)� r matrix ��.
The unconstrained maximization of `cn (�;r) will not lead to unique estimates of � (or

��), and � can only be identi�ed up to post-multiplication by an r� r non-singular matrix.
It is easily seen that

`cn (�;r) = `cn (�Q;r)

where Q is any non-singular r � r matrix. Therefore, r2 just-identifying restriction on �
(or ��) are required for exact identi�cation. The resultant maximized concentrated log-
likelihood function `cn (�;r) at the ML estimator of � does not, however, depend on Q, and
is given by

`cn(r) =
�nmy

2
(1 + log 2�)� n

2
log jS00j �

n

2

rX
i=1

log
�
1� b�i� (22.97)

for all exactly identi�ed choices of �, where b�1 > b�2 > � � � b�r > 0 are the r largest eigenvalues
of S�100 S01S

�1
11 S10 (or equivalently the eigenvalues of S

�1
11 S10S

�1
00 S01).

22.8.1 Maximum eigenvalue statistic

Suppose the interest is in testing the null hypothesis of r cointegrating relations

Hr : Rank(�y) = r (22.98)

against the alternative hypothesis that

Hr+1 : Rank(�y) = r + 1 (22.99)

r = 0; 1; 2; :::;my � 1, in the V ECM (22.72). Then the appropriate test statistic is given by
the log-likelihood ratio statistic

LR (Hr jHr+1 ) = �n log
�
1� b�r+1� (22.100)

where b�r is the rth largest eigenvalue of S�100 S01S�111 S10, and the matrices S00, S01, and S11
are de�ned by (22.95).

The bootstrapped critical values are also provide in Micro�t.

22.8.2 Trace statistic

Suppose the interest is in testing the null hypothesis H(r) de�ned in (22.98) against the
alternative of trend-stationarity, that is

Hmy : Rank (�y) = my (22.101)

for r = 0; 1; 2; :::;my � 1. The log-likelihood ratio statistic for this test is given by

LR
�
Hr
��Hmy

�
= �n

myX
i=r+1

log
�
1� b�r+1� (22.102)
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where b�r+1, b�r+1, ..., b�my are the largest eigenvalues of S
�1
00 S01S

�1
11 S10, where the matrices

S00, S01, and S11 are de�ned by (22.95).
The critical values for the maximum eigenvalue and the trace statistics de�ned by (22.100)

and (22.102), respectively, depend on my � r, mx, whether the V ECM (22.72) contains
intercepts and/or trends, and whether these are restricted; namely, which one of the �ve
cases set out above is applicable. They are computed in Pesaran, Shin, and Smith (1996),
using stochastic simulation techniques. They cover all the �ve cases and allow for up to
twelve endogenous I(1) variables and up to �ve exogenous I(1) variables in the V ECM
(22.72). The critical values do not, however, depend on the order of the V AR, p, and the
stochastic properties of the I(0) exogenous variables, wt at least in large samples.

Following the Johansen (1991) approach, Osterwald-Lenum (1992) also provided the
critical values of both trace and the maximum eigenvalue statistic only in the case where up
to eleven endogenous variables and no I(1) exogenous variables are considered in the system.
There are also di¤erences between his critical values and the critical values tabulated by
Pesaran, Shin, and Smith (1996) for Cases III and V, because Johansen does not restrict the
intercept coe¢ cient in Case III or the trend coe¢ cients in Case V.

Monte Carlo simulation results indicate that these cointegrating rank test statistics gen-
erally tend to under-reject in small samples see Pesaran, Shin, and Smith (2000)). Boot-
strapped critical values can be obtained in Micro�t.

22.8.3 Model selection criteria for choosing the number of cointegrating
relations

The model selection criteria AIC, SBC andHQC, de�ned in Section 21.7, are also computed
for di¤erent values of r, the rank of the long-run matrix �y in (22.72). We have

AIC = `cn(r)� s (22.103)

SBC = `cn(r)�
� s
2

�
log n (22.104)

HQC = `cn(r)�
� s
2

�
log log n (22.105)

where `cn(r) is given by (22.97), and s is the total number of coe¢ cients estimated. The value
of s depends on whether the intercepts and the trend coe¢ cients in (22.72) are restricted.
The value of s for the �ve cases distinguished in Micro�t are as follows:15

Case I: (a0y = a1y = 0)

s = mmy(p� 1) + (m+my) r � r2 + qmy

15The number of free parameters in themy�m long-run matrix�y depends on its rank. When Rank(�y) =
r, �y contains (my +m) r � r2 free parameters (or equivalently �y will be subject to (m� r) (my � r)
restrictions). This result follows from the so-called �UDV�decomposition of �y = UDV, where U, D, and
V are my � r, r � r and r �m matrices such that U0U = Ir, V0V = Ir, and D is a diagonal matrix of rank
r.
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Case II:
�
a1y = 0;a0y = �y�y

�
s = mmy(p� 1) + (m+my + 1) r � r2 + qmy

Case III: (a1y = 0;a0y 6= 0)

s = mmy(p� 1) + (m+my) r � r2 + (q + 1)my

Case IV:
�
a0y 6= 0;a1y = �yy

�
s = mmy(p� 1) + (m+my + 1) r � r2 + (q + 1)my

Case V: (a0y 6= 0;a1y 6= 0)

s = mmy(p� 1) + (m+my) r � r2 + (q + 2)my

Recall also that m = mx +my.

22.9 Long-run structural modelling

As we have seen already, the estimation of the V ECM (22.72) subject to de�cient rank
restrictions on the long-run multiplier matrix, �y, does not generally lead to a unique choice
for the cointegrating relations. The identi�cation of � (in �y = �y�

0) requires at least r
restrictions per each of the r cointegrating relations.16 In the simple case where r = 1, the
one restriction needed to identify the cointegrating relation can be viewed as a �normalizing�
restriction which could be applied to the coe¢ cient of any one of the integrated variables
that enter the cointegrating relation. However, in the more general case where r > 1, the
number of such �normalizing�restrictions is just equal to r, which needs to be supplemented
with further r2�r a priori restrictions, preferably derived from a suitable economic theory.17

22.9.1 Identi�cation of the cointegrating relations

The structural estimation of the cointegrating relations requires maximization of the con-
centrated log-likelihood function (22.96) subject to appropriate just-identifying or over-
identifying restrictions on �. The just-identifying restrictions utilized in Johansen (1988),
and Johansen (1991) estimation procedure involve the observation matrices An and Bn de-
�ned by (22.94), and are often referred to as �empirical�or �statistical�identifying restrictions,
as compared to a priori restrictions on � which are independent of particular values of An
and Bn. Johansen�s estimates of �, which we denote by b�J , are obtained as the �rst r
eigenvectors of Bn � An with respect to Bn, satisfying the following �normalization� and
�orthogonalization�restrictions: b�0JBnb�J = Ir (22.106)

16Readers interested in more details should consult Pesaran and Shin (2002).
17The role of economic theory in providing suitable identifying restrictions on the cointegrating vectors is

discussed in Pesaran (1997).
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and b�0iJ (Bn �An) b�jJ = 0; i 6= j; i; j = 1; 2; :::; r (22.107)

where b�iJ represents the ith column of b�J . The conditions (22.106) and (22.107) together
exactly impose r2 just-identifying restrictions on �. It is, however, clear that the r2 re-
strictions in (22.106) and (22.107) are adopted for their mathematical convenience, and not
because they are meaningful from the perspective of any long-run economic theory.

A more satisfactory procedure would be to directly estimate the concentrated log-likelihood
function (22.96) subject to exact or over-identifying a priori restrictions obtained from the
long-run equilibrium properties of a suitable underlying economic model (see Pesaran (1997)).
Micro�t enables you to compute ML estimates of � (and hence the other parameters in the
V ECM (22.72)), when the elements of � are subject to the following general linear restric-
tions:

R vec(�) = b (22.108)

where R and b are k� rm matrix and k�1 vector of known constants (with Rank(R) = k),
and vec(�) is rm� 1 vector of long-run coe¢ cients, which stacks the r columns of � into a
vector. As in Section 22.3, we can distinguish between the cases where the restrictions are
applicable to columns of � separately, and when they involve parameters from two or more
cointegrating vectors. In the former case the matrix R is block-diagonal and (22.108) can
be written as

Ri�i = bi ; i = 1; 2; :::; r (22.109)

where �i is the ith cointegrating vector, andRi is the ith block in matrixR, and bi is de�ned
by b0 = (b01;b

0
2; :::;b

0
r). In this case the necessary and su¢ cient conditions for identi�cation

of the cointegrating vectors are given by

Rank (Ri�) = r; i = 1; 2; :::; r (22.110)

This result also implies that there must be at least r independent restrictions on each of the
r cointegrating vectors.

The identi�cation condition in the case where R is not block diagonal is given by

Rank fR (Ir 
 �)g = r2 (22.111)

A necessary condition for (22.111) to hold is given by the order condition k � r2. As with
the Cowles Commission approach, three cases of interest can be distinguished:

1. k < r2; the under-identi�ed case

2. k = r2; the exactly identi�ed case

3. k > r2; the over-identi�ed case.

22.9.2 Estimation of the cointegrating relations under general linear re-
strictions

Here we distinguish between two cases: when the long-run restrictions are exactly identi�ed
(k = r2), and when there are over-identifying restriction on the cointegrating vectors (k >
r2).
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Exactly identi�ed case
�
k = r2

�
In this case theML estimator of � that satisfy the restrictions (22.108) are readily computed
using Johansen�s estimates, b�J . We have:

vec(b�) = �Ir 
 b�J� hR�Ir 
 b�J�i�1 b (22.112)

where 
 denotes the Kronecker product. It is easily veri�ed that this estimator satis�es
the restriction (22.108), and is invariant to non-singular transformations of the cointegrating
space spanned by columns of b�:18
Over-identi�ed case

�
k > r2

�
In this case there are k�r2 additional restrictions that need to be taken into account at the es-
timation stage. This can be done by maximization of the concentrated log-likelihood function
given by (22.96), subject to the restrictions given by (22.108). We assume that the normaliza-
tion restrictions on each of the r cointegrating vectors is also included in R vec (�) = b. The
advantage of working with (22.96) lies in the fact that the data matrices An and Bn ,de�ned
by (22.94), need to be computed only once, and the speed of convergence of the proposed
algorithm does not depend on the sample size, T . The Lagrangian function for this problem
is given by

� (�; �) =
1

n
`cn(�; r)�

1

2
�0(R� � b)

= constant� 1
2

�
log
���0An���� log ���0Bn���	� 1

2
�0(R� � b)

where � =vec(�); � is a k � 1 vector of Lagrange multipliers, and An and Bn are de�ned
in (22.94). Then, �rst order conditions are given by

dn

�e�� = R0e� (22.113)

Re� = b (22.114)

where e� and e� denote the restricted ML estimators, and dn(e�) is the score function de�ned
by

dn(e�) = ���e�0Ane���1 
An�� ��e�0Bne���1 
Bn�� e� (22.115)

Here we propose two di¤erent but related numerical procedures for the computation
of e�. The �rst procedure is a �back-substitution�algorithm and uses only the information
on the �rst derivatives. It involves solving the system of equations, (22.113) and (22.114)

numerically for e� �= vec(e�)�, after eliminating e�. De�ne
Pn =

�e�0Ane��
A�1n , and Fn =
�e�0Ane���e�0Bne���1 
A�1n Bn (22.116)

18For a derivation of this result see Pesaran and Shin (2002)
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and pre-multiply (22.113) by Pn to obtain19e� = Fne� +PnR0e� (22.117)

Now multiplying both sides of this relation by R we have

Re� = RFne� + (RPnR0)e� = b (22.118)

Since by assumption Pn is non-singular, then Rank(RPnR0) = Rank (R) = k, which means
that RPnR0 is also non-singular, and e� is given bye� = (RPnR0)�1(b�RFne�) (22.119)

Next, eliminating e� from (22.117) using (22.119), we have

e� = f �e�� (22.120)

where
f
�e�� = S�1n PnR0(RPnR0)�1b (22.121)

Sn = Imr � Fn +PnR0(RPnR0)�1RFn (22.122)

The mr� 1 vector function f(�) depends on e� through the positive de�nite matrices e�0AT e�
and e�0BT e�. The numerical problem to be solved is to �nd the �xed point of e� = f

�e��.
This can be achieved by starting with an initial estimate of �, say e�(0), and using (22.120)
to compute a new estimate of �, namely e�(1) = f �e�(0)�, and so on until convergence.

The second procedure (which we shall refer to as the generalized Newton-Raphson pro-
cedure) makes use of both the �rst and second derivatives of the concentrated log-likelihood
function to solve numerically for e�.

Let ~�
(0)
and ~�

(0)
be the initial estimates of the ML estimators of � and �. Taking the

Taylor series expansion of (22.113) around e�(0) and e�(0), and using (22.114) we obtain"
Gn(e�(0)) R0

R 0

#"
n(e� � e�(0))e�� e�(0)

#
=

"
dn(e�(0))�R0e�(0)
�n(Re�(0)�b)

#
+ op(1) (22.123)

where Gn(e�) is given by
Gn(e�) = �n�1(e�0Ane�)�1 
 [(Ane�)(e�0Ane�)�1(e�0An)]

+n�1(e�0Bne�)�1 
 [(Bne�)(e�0Bne�)�1(e�0Bn)]
�n�1Crmf[(Ane�)(e�0Ane�)�1]
 [(e�0Ane�)�1(e�0An)]
+n�1Crmf[(Bne�)(e�0Bne�)�1]
 [(e�0Bne�)�1(e�0Bn)]
+n�1(e�0Ane�)�1 
An � n�1(e�0Bne�)�1 
Bn

19The computations are carried out assuming that r, the number of cointegrating vectors, is known, and
hence �0AT� and �0BT� are of full rank. Notice that the data matrices AT and BT are assumed to be
non-singular.
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and Crm is the rm � rm commutation matrix (see section 3.7 in Magnus and Neudecker
(1988)). To deal with the singularity of Gn(�), partition R = (R0A;RB)

0, where RA and
RB are matrices of order r2 � rm, and (k � r2) � rm; representing the r2 just-identifying
restrictions, and the (k � r2), over-identifying restrictions, respectively, and let Jn(e�) =
Gn(e�) +R0ARA. Then, the solution of (22.123) using a generalized inverse based on Jn(e�)
is given by20"

n(e� � e�(0))e�� e�(0)
#
=

"
V��(e�(0)) V��(e�(0))
V0
��(
e�(0)) V��(e�(0))

#"
dn(e�(0))�R0e�(0)
�n(Re�(0) � b)

#
+ op(1) (22.124)

where
V��(e�) = J�1n (e�)� J�1n (e�)R0(RJ�1n (e�)R0

)�1RJ�1n (e�) (22.125)

V��(e�) = J�1n (e�)R0(RJ�1n (e�)R0
)�1

V��(e�) = (RJ�1n (e�)R0
)�1

Hence, we obtain the following generalized version of the Newton-Raphson algorithm:" e�(i)e�(i)
#
=

" e�(i�1)e�(i�1)
#"

V��(e�(i�1)) V��(e�(i�1))
V0
��(
e�(i�1)) V��(e�(i�1))

#"
n�1fdn(e�(i�1))�R0e�(i�1)g

�n(Re�(i�1) � b)
#

(22.126)

For the initial estimates, e�(0), we use the linearized exactly identi�ed estimators given by
(22.112), and for e�(0) we start from zero. Our experience with using this algorithm in a
number of applications suggests that the generalized Newton-Raphson algorithm based on
(22.109) has good convergence properties, and converges reasonably fast. Finally, a consistent
estimator of the asymptotic variance of e� is given by (22.125).
22.9.3 Log-likelihood ratio statistics for tests of over-identifying restric-

tions on the cointegrating relations

Consider now the problem of testing over-identifying restrictions on the coe¢ cients of the
cointegrating (or long-run) relations. Suppose there are r cointegrating relations and the
interest is to test the restrictions

R vec(�) = b (22.127)

where R is a k�mr matrix, and b is a k�1 vector of known constants such that Rank(R) =
k > r2. As before, let � = vec(�) and decompose the k restriction de�ned by (22.127) into
r2 and k � r2 set of restrictions

RA
r2 � rm

�
rm� 1 =

bA
r2 � 1 (22.128)

20 In general, the Newton-Raphson algorithm gives the same solution when R instead of RA is used in
construction of Jn(e�). See Pesaran and Shin (2002) for more details.



CHAPTER 22. ECONOMETRICS OF MULTIPLE EQUATION MODELS 527

RB
(k � r2)� rm

�
rm� 1 =

bB
(k � r2)� 1 (22.129)

where R = (R0A;R
0
B)
0, and b = (bA;bB), such that Rank(RA) = r2, Rank(RB) = k � r2,

and bA 6= 0. Without loss of generality, the restriction, characterized by (22.128), can be
viewed as the just-identifying restrictions, and the remaining restriction de�ned by (22.129)
will then constitute the k � r2 over-identifying restrictions. Let b� be the ML estimators of
� obtained subject to the r2 exactly-identifying restrictions, and e� be the ML estimators of
� obtained under all the k restriction in (22.127). Then, the log-likelihood ratio statistic for
testing the over-identifying restrictions is simply given by

LR (R jRA ) = 2
n
`cn

�b�; r�� `cn �e�; r�o (22.130)

where `cn
�b�; r� is given by (22.97) and represents the maximized value of the log-likelihood

function under the just-identifying restriction, (say RA� = bA), and `cn
�e�; r� is the maxi-

mized value of the log-likelihood function under the k just- and over-identifying restrictions
given by (22.127).

Under the null hypothesis that the restrictions (22.127) hold, the log-likelihood ratio
statistic (LR)(R jRA ) de�ned by (22.130) is asymptotically distributed as a �2 variate with
degrees of freedom equal to the number of the over-identifying restrictions, namely k�r2 > 0.

The above testing procedure is also applicable when interest is on testing restrictions
in a single cointegrating vector of a sub-set of cointegrating vectors. For this purpose, one
simply needs to impose just-identifying restrictions on all the vectors except for the vector(s)
that are to be subject to the over-identifying restrictions. The resultant test statistic will
be invariant to the nature of the just-identifying restrictions. Notice that this test of the
over-identifying restrictions on the cointegrating relations pre-assumes that the variables
zt = (y

0
t;x

0
t)
0, are I(1), and that the number of cointegrating relations, r, is correctly chosen.

Another application of the above log-likelihood ratio procedure is to the problem of
testing the �co-trending�restriction (22.89), discussed in Section 22.7.1. The relevant test
statistic is given by

LR
�
�0 = 0

�
= 2

n
`cn

�b�; r�� `cn �e�; r�o (22.131)

where, as before, `cn
�b�; r� is the maximized value of the log-likelihood function when the

cointegrating relations are just-identi�ed, and `cn
�e�; r� is the maximized value of the log-

likelihood function obtained subject to the just-identi�ed restrictions plus the additional r
co-trending restrictions, �0 = 0. Under the co-trending null hypothesis, LR

�
�0 = 0

�
is

asymptotically distributed as a �2 with r degrees of freedom.

22.9.4 Impulse response analysis in cointegrating VAR models

The impulse response analysis of the cointegrating model given by the equation systems
(22.72) and (22.73) can be carried out along the lines set out in Section 22.5. In the present
application it is important that the parametric restrictions implied by the de�ciency in the
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rank of the long-run multiplier matrix, �, is taken into account. It is also important to note
that due to the rank de�ciency of the long-run multiplier matrix, shocks (whether equation-
speci�c or system-wide shocks) will have persistence e¤ects on the individual variables in the
model, and their e¤ects do not generally die out.

The computation of the impulse response function for the cointegrating V AR model can
be based on the V ECM (22.76), which combines the equation systems for yt and xt given
by (22.72) and (22.73), respectively. The solution of the combined model is given by (22.77),
and the orthogonalized impulse response function of the e¤ect of a unit shock to the ith
variable at time t in (22.76) on the jth variable at time t+N is given by

OIij;N = e
0
j (C(1) +C

�
N )Tei (22.132)

where, as before, T is a lower triangular matrix such that � = TT0, ei is the selection vector
de�ned by (22.55), and C(1) and C�N are de�ned by relations (22.82)-(22.84). Alternatively,
let

Ai = C(1) +C
�
i (22.133)

Then substituting C�i = Ai �C(1) in (22.83) and using (22.84) it also follows that

Ai = Ai�1�i + � � �+Ai�p�p; i = 1; 2; ::: (22.134)

where A0 = Im, and Ai = 0, for i < 0.21 However, from (22.133) it is clear that

lim
i!1

Ai = C(1) (22.135)

which is a non-zero matrix with rank m � r.22 Therefore, the orthogonalized impulse re-
sponses for the cointegrating V AR model can be computed in exactly the same way as
in the case of stationary V AR models; the main di¤erence being that the matrices Ai, in
the moving-average representation of the zt-process tend to zero when the underlying V AR
model is trend-stationary, and tends to a non-zero rank de�cient matrix C(1) when the
underlying V AR model is �rst-di¤erence stationary.23

The generalized impulse response function, the orthogonalized and the generalized fore-
cast error variance decomposition can also be computed for the cointegrating V AR models,
along similar lines as in Sections 22.5.2 and 22.6.

22.9.5 Impulse response functions of cointegrating relations

We saw in the previous section that e¤ects of shocks on individual variables in a cointegrating
V AR model do not die out and persist for ever! An alternative approach would be to
consider the e¤ect of system-wide shocks or variable-speci�c shocks on the cointegrating
relations, �0zt, rather than on the individual variables in the model. The e¤ect of shocks on

21For an alternative derivation of this result see Appendix A in Pesaran and Shin (1996). Also, note that
the recursive relations de�ned by (22.134) and (22.51) produce the same results.
22The matrices C�

n ; n = 0; 1; 2; ::: belong to the stationary component of zt and tend to zero as n!1.
23See Lütkepohl and Reimers (1992) and Mellander, Vredin, and Warne (1992) for more details and a

derivation of the asymptotic distribution of the estimators of the orthogonalized impulse responses.
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cointegrating relations is bound to die out, and their time pro�le contains useful information
on the speed of convergence of the model to its cointegrating (or �equilibrium�) relations. See
Lee and Pesaran (1993) and Pesaran and Shin (1996).

Consider �rst the time pro�le of the e¤ect of a unit shock to the variable in zt on the
jth cointegrating relation, namely �0izt. Once again we can obtain such a time pro�le both
using Sims�orthogonalization method or the generalized impulse response approach. Using
(22.86), we have:

OIi
�
�0jzt; N

�
= �0jANTei (22.136)

for i = 1; 2; :::;m; j = 1; 2; :::; r; N = 0; 1; 2; ::: which give the responses of a unit change in
the ith orthogonalized shock (equal to

p
�ii) on the jth cointegrating relation �0jzt.

24 The
corresponding generalized impulse responses are given by

GIi
�
�0jzt; N

�
=
�0jAN�eip

�ii
(22.137)

for i = 1; 2; :::;m, j = 1; 2; :::; r, and N = 0; 1; 2; ::::. Once again the two impulse response
functions coincide either if � is diagonal, or if i = 1.

22.9.6 Persistence pro�les for cointegrating relations and speed of conver-
gence to equilibrium

Given the ambiguities that surround the impulse response analysis with respect to variable-
speci�c shocks, it is of some interest to consider the e¤ect of system-wide shocks on cointegrat-
ing relations. Such a time pro�le, referred to as the persistence pro�le, has been proposed in
Pesaran and Shin (1996). The (scaled) persistence pro�le of the e¤ect of system-wide shocks
on the jth cointegrating relationship is given by

h
�
�0jzt; N

�
=
�0jAn�A

0
n�j

�0j��j
(22.138)

for j = 1; 2; :::; r, and N = 0; 1; 2; :::. The value of this pro�le is equal to unity on impact, but
should tend to zero as N !1, if �j is indeed a cointegrating vector. The persistence pro�le,
h
�
�0jzt; N

�
, viewed as a function of N , provides important information on the speed with

which the e¤ect of system-wide shocks on the cointegrating relation, �0jzt; disappears, even
though these shocks generally have lasting impacts on the individual variables in zt. This is
a useful addition to the long-run structural modelling techniques advanced in Micro�t, and
provides the users with estimates of the speed with which the economy or the markets under
consideration return to their equilibrium states.

The persistence pro�les are also useful in the case of time-series that are close to being I(1),
or �near integrated�. The persistence pro�les of near integrated variables eventually converge
to zero, but can be substantially di¤erent from zero for protracted periods.

24Notice that �0jC
�
N = �

0
j(AN �C(1)) = �0jAN . See (22.133) and recall that �0jC(1) = 0.
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22.10 VARX Models

In what follows, we provide a brief account of the econometric issues involved in the mod-
elling approach advanced by Pesaran, Shin, and Smith (2000). We start by describing a
general structural V ARX model, which allows for the possibility of distinguishing between
endogenous and weakly exogenous variables. We then turn our attention to the analysis of
cointegrating V ARX models, and discuss forecasting and impulse response analysis in this
framework.

For further details see Harbo, Johansen, Nielsen, and Rahbek (1998), Pesaran, Shin, and
Smith (2000), and Garratt, Lee, Pesaran, and Shin (2006).

22.10.1 The structural VARX model

The general structural V ARX model for an my � 1 vector of endogenous variables yt, is
given by

Ayt = A1yt�1 + � � �+Apyt�p +B0xt +B1xt�1 + � � �+Bqxt�q +Ddt + "t (22.139)

for t = 1; 2; :::; T , where dt is a s�1 vector of deterministic variables (for example, intercept,
trend and seasonal variables), xt is an mx � 1 vector of exogenous variables, and "t =
("1t; "2t; :::; "myt)

0 is anmy�1 vector of serially uncorrelated errors distributed independently
of xt with a zero mean and a constant positive de�nite variance-covariance matrix, 
 = (!ij);
where !ij is the (i; j)the element of 
.

For given values of dt and xt, the above dynamic system is stable if all the roots of the
determinantal equation ��A�A1��A2�2 � � � � �Ap�p�� = 0 (22.140)

lie strictly outside the unit circle. This stability condition ensures the existence of long-run
relationships between yt and xt, which will be cointegrating when one or more elements of
xt contain unit roots.

Model (22.139) is structural in the sense that it explicitly allows for instantaneous inter-
actions between the endogenous variables through the contemporaneous coe¢ cient matrix,
A. It can also be written as

A(L)yt = B(L)xt +Ddt + "t (22.141)

where
A(L) = A�A1L� � � � �ApLp; B(L) = B0 +B1L+ � � �+BqL

q

Of particular interest are the system long-run e¤ects of the exogenous variables which are
given by

A(1)�1B(1) =

�
A�

pP
i=1
Ai

��1 qP
i=0
Bi

Notice that since all the roots of (22.140) fall outside the unit circle by assumption, the
inverse of A(1); which we denote by A(1)�1, exists.
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The decision to work with a model of the type (22.139) presents the applied econometri-
cian with a number of important choices, namely:

1. The number and list of the endogenous variables to be included, (my;yt)

2. The number and list of the exogenous variables (if any) to be included, (mx;xt)

3. The nature of the deterministic variables (intercepts, trends, seasonals) and whether
the intercepts and/or the trend coe¢ cients need to be restricted

4. The lag orders p and q in the V ARX (the lag order of the yt and xt components of
the V ARX need not be the same)

5. The order of integration of the variables.

These choices change the maximised value of the log-likelihood so that, in principle, they
could be made on the basis of hypothesis testing exercises or by means of model selection
criteria such as the Akaike information criterion (AIC), or the Schwarz Bayesian criterion
(SBC) (see Section 22.4.1).

22.10.2 The reduced form VARX model

The reduced form of the structural model (22.139), which expresses the endogenous variables
in terms of the predetermined and exogenous variables, is given by

yt = �1yt�1 + � � �+�pyt�p +	0xt +	1xt�1 + � � �+	pxt�q +�dt + ut (22.142)

where �i = A�1Ai, 	i = A�1Bi, � = A�1D, ut = A�1"t is IID(0 ;�) with � =
A�1
A

0�1 = (�ij). The classical identi�cation problem is how to recover the structural
form parameters �

A;Ai+1;Bj ; i = 1; ::; p; j = 0; 1; :::; q; D and 

�

from the reduced form parameters

(�i;	i; i = 1; ::; p; j = 0; 1; :::; q;�; and �)

Exact identi�cation of the structural parameters requires m2
y a priori restrictions, of which

my restrictions would be provided by normalisation conditions.

22.10.3 The cointegrated VAR model with I(1) exogenous variables

Let zt = (y0t;x
0
t)
0, set n = max fp; qg, and consider the following extended vector error

correction model (V ECM) in zt:

�zt = a0 + a1t��zt�1 +
n�1P
i=1

�i�zt�i + ut (22.143)
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where the matrices f�ign�1i=1 are the short-run responses, and � is the long-run multiplier
matrix.

By partitioning the error term ut conformably with zt = (y0t;x
0
t)
0 as ut =

�
u0yt;u

0
xt

�0 and
its variance matrix as

� =

�
�yy �yx
�xy �xx

�
we are able to express uyt conditionally in terms of uxt as

uyt = �yx�
�1
xxuxt + �t (22.144)

where �t � iid (0;���), ��� � �yy � �yx��1xx�xy and �t is uncorrelated with uxt by
construction. Substitution of (22.144) into (22.143) together with a similar partitioning
of the parameter vectors and matrices a0 =

�
a0y0;a

0
x0

�0, a1 = �
a0y1;a

0
x1

�0, � =
�
�0
y;�

0
x

�0,
�i =

�
�0yi;�

0
xi

�0
, i = 1; :::; n�1, provides a conditional model for �yt in terms of zt�1, �xt,

�zt�1; �zt�2; :::

�yt = c0 + c1t��yy:xzt�1 +��xt +
n�1P
i=1

	i�zt�i + �t (22.145)

where �yy:x � �y � �yx��1xx�x, � = �yx��1xx , 	i � �yi � �yx��1xx�xi, i = 1; :::; n � 1,
c0 � ay0 ��yx��1xxax0 and c1 � ay1 ��yx��1xxax1,

Following Johansen (1995), we assume that the process fxtg1t=1 is weakly exogenous with
respect to the matrix of long-run multiplier parameters �; namely

�x = 0 (22.146)

Therefore,
�yy:x = �y (22.147)

Consequently, from (22.143) and (22.145) we obtain the following system of equations:

�yt = ��yzt�1 +��xt +
n�1P
i=1

	i�zt�i + c0 + c1t+ �t (22.148)

�xt =
n�1P
i=1

�xi�zt�i + ax0 + uxt (22.149)

where now the restrictions on trend coe¢ cients are modi�ed to

c1 = �y (22.150)

The restriction�x = 0 in (22.146) implies that the elements of the vector process fxtg1t=1 are
not cointegrated among themselves. Moreover, the information available from the di¤erenced
V AR(p� 1) model (22.149) for fxtg1t=1 is redundant for e¢ cient conditional estimation and
inference concerning the long-run parameters �y as well as the deterministic and short-run
parameters c0, c1, � and 	i, i = 1; :::; p � 1, of (22.148). fxtg1t=1 may be regarded as
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long-run forcing for fytg1t=1. Note that this restriction does not preclude fytg
1
t=1 being

Granger-causal for fxtg1t=1 in the short run.
When there are r cointegrating relations among zt, we may express

�y = �y�
0 (22.151)

where �y (my � r) and � (m � r) are matrices of error correction coe¢ cients and of the
long-run (or cointegrating) coe¢ cients, both of which are of full column rank, r. For the
purpose of empirical analysis, we assume that the lag order p is large enough so that ut and
�t are serially uncorrelated, and have zero mean and positive de�nite covariance matrices,
� and ���, respectively. For the purpose of theML estimation, we also assume that ut and
�t are normally distributed, although this is not binding if the number of the time-series
observations available is large enough.

The analysis of a cointegrated V AR model containing exogenous I(1) variables follows
similar lines to that described in Section 22.7 above. Again, to avoid the unsatisfactory
possibility that there exist quadratic trends in the level solution of the data generating
process for zt when there is no cointegration, we can assume that there are restrictions on
the intercepts and/or time trends, as in the following �ve cases:

Case I (c0 = 0 and c1 = 0). The structural V ECM (22.148) becomes

�yt = ��yzt�1 +��xt +
n�1P
i=1

	i�zt�i + �t (22.152)

Case II (c0 = �y� and c1 = 0). The structural V ECM (22.148) is

�yt = �y���yzt�1 +��xt +
n�1P
i=1

	i�zt�i + �t (22.153)

Case III (c0 6= 0 and c1 = 0). In this case, the intercept restriction c0 = �y� is ignored, and
the structural V ECM estimated is

�yt = c0 ��yzt�1 +��xt +
n�1P
i=1

	i�zt�i + �t (22.154)

Case IV (c0 6= 0 and c1 = �y). Thus,

�yt = c0 + (�y) t��yzt�1 +��xt +
n�1P
i=1

	i�zt�i + �t: (22.155)

Case V (c0 6= 0 and c1 6= 0). Here, the deterministic trend restriction c1 = �y is ignored
and the structural V ECM estimated is

�yt = c0 + c1t��yzt�1 +��xt +
n�1P
i=1

	i�zt�i + �t (22.156)
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Tests of the cointegrating rank are obtained along exactly the same lines as those in
Sections 22.8.1 and 22.8.2.25 Estimation of the V ECM subject to exact- and over-identifying
long-run restrictions can be carried out by maximum likelihood methods as in Section 22.8,
applied to (22.148) subject to the appropriate restrictions on the intercepts and trends,
subject to Rank(�y) = r, and subject to k general linear restrictions. Having computed
ML estimates of the cointegrating vectors, estimation of the short-run parameters of the
conditional V ECM can be computed by OLS regressions.

The investigation of the dynamic properties of the system including exogenous I(1) vari-
ables does require a little care, however. For this, we require the full-system V ECM , ob-
tained by augmenting the conditional model for �yt, (22.148), with the marginal model for
�xt, (22.149). This is written as

�zt = ���0zt�1 +
n�1P
i=1

�i�zt�i + a0 + a1t+H�t (22.157)

where � is de�ned by (22.151),

� =

�
�y
0

�
; �i =

�
	i +��xi

�xi

�
; a0 =

�
c0 +�ax0
ax0

�
; a1 =

�
c1
0

�
; (22.158)

�t =

�
�t
uxt

�
; H =

�
Imy �
0 Imx

�
; Cov(�t) = ��� =

�
��� 0
0 �xx

�
: (22.159)

While estimation and inference on the parameters of (22.148) can be conducted without
reference to the marginal model (22.149), for forecasting and impulse response analysis the
processes driving the weakly exogenous variables must be speci�ed. In other words, one
needs to take into account the possibility that changes in one variable may have an impact
on the weakly exogenous variables, and that these e¤ects will continue and interact over time.
Hence, impulse response analysis can be conducted following the lines of the arguments set
out in Sections 22.9.4-22.9.6, but applied to the full system in (22.157) (for more details see
Section 22.10.4).

This last point is worth emphasising, and applies to any analysis involving counterfac-
tuals, including impulse response analysis and forecasting exercises. Macro-modellers fre-
quently consider the dynamic response of a system to a change in an exogenous variable
by considering the e¤ects of a once-and-for-all increase in the variable. This (implicitly)
imposes restrictions on the processes generating the exogenous variable, assuming that there
is no serial correlation in the variable, and that a shock to one exogenous variable can be
considered without having to take into account changes in other exogenous variables. These
counterfactual exercises might be of interest. But, generally speaking, one needs to take
into account the possibility that changes in one exogenous variable will have an impact on
other exogenous variables, and that these e¤ects might continue and interact over time. This

25Asymptotic distributions of the trace and maximum eigenvalue statistics are again non-standard, and
depend on whether the intercepts and/or the coe¢ cients on the deterministic trends are restricted or unre-
stricted.
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requires an explicit analysis of the dynamic processes driving the exogenous variables, as cap-
tured by the marginal model in (22.149). The whole point of the approach to investigating
model dynamics re�ected in the model of (22.157) and incorporated in the idea of generalised
impulse response analysis is to explicitly allow for the conditional correlation structure in
errors and the interactions between endogenous and exogenous variables to provide a �re-
alistic�counterfactual exercise based on the contemporaneous covariances and interactions
between all the variables (yt and xt ) observed historically in the data.

22.10.4 Forecasting and impulse response analysis in VARX models

Consider the full system (22.157), and rewrite it as follows:

zt =
nX
i=1

�izt�i + a0 + a1t+H�t (22.160)

where �1 = Im ���0 + �1, �i = �i � �i�1, i = 2; :::; n� 1, �n = ��n�1.
Equation (22.160) can be used for forecasting purposes and in impulse response analysis.
The generalized impulse responses are derived from the moving-average representation

of equation (22.160). Consider

�zt = C (L) (a0 + a1t+H�t)

where

C(L) =

1X
j=0

CjL
j = C(1) + (1� L)C�(L)

C�(L) =
1X
j=0

C�jL
j , and C�j = �

1X
i=j+1

Ci

Ci = �1Ci�1 +�2Ci�2 + :::+�pCi�p, for i = 2; 3; ::: (22.161)

and C0 = Im, C1 = �1 � Im and Ci = 0, for i < 0. Cumulating forward one obtains the
level moving average representation,

zt = z0 + b0t+C(1)
tX
j=1

H�j +C
�(L)H(�t � �0)

where b0 = C(1)a0 +C�(1)a1 and C(1)� = 0, with  being an arbitrary m� 1 vector of
�xed constants. The latter relation applies because the trend coe¢ cients are restricted to lie
in the cointegrating space.

The generalized and orthogonalized impulse response functions of individual variables
zt+N = (y0t+N ;x

0
t+N )

0 at horizon N to a unit change in the error, �it, measured by one
standard deviation, p��;ii are

GI (N; z : �i) =
1

p
��;ii

~CnH���ei; N = 0; 1; :::; i = 1; :::;m (22.162)
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OI (N; z : ��i ) = ~CnHP�ei; N = 0; 1; :::; i = 1; :::;m (22.163)

where �t is iid
�
0;���

�
, ��i is an orthogonalized residual, ��;ij is (i; j)

th element of ��� ,
~Cn =

Ph
j=0Cj , with Cj�s given by the recursive relations (22.161), H and ��� are given in

(22.159), ei is a selection vector of zeros with unity as its ith element, P� is a lower triangular
matrix obtained by the Cholesky decomposition of ��� = P�P0� , and m = mx +my. Also
see Pesaran and Shin (1998).

Similarly, the generalized and orthogonalized impulse response functions for the cointe-
grating relations with respect to a unit change in the error, �it are given by

GI (N; � : �i) =
1

p
��;ii

�0 ~CnH���ei; N = 0; 1; :::; i = 1; :::;m (22.164)

OI (N; � : ��i ) = �
0 ~CnHP�ei; N = 0; 1; :::; i = 1; :::;m (22.165)

where �t = �
0zt�1.

While the impulse responses show the e¤ect of a shock to a particular variable, the
persistence pro�le, as developed by Lee and Pesaran (1993) and Pesaran and Shin (1996),
show the e¤ects of system-wide shocks on the cointegrating relations. In the case of the
cointegrating relations the e¤ects of the shocks (irrespective of their sources) will eventually
disappear. Therefore, the shape of the persistence pro�les provide valuable information on
the speed of convergence of the cointegrating relations towards equilibrium. The persistence
pro�le for a given cointegrating relation de�ned by the cointegrating vector �j , in the case
of a V ARX model, is given by

h(�0jz; n) =
�0j eCnH���H0 eC0n�j
�0jH���H

0�j
, N = 0; 1; :::, j = 1; :::r

where �, eCn, H and ��� are as de�ned above.

22.11 Trend/cycle decomposition in VARs

The trend/cycle decomposition available inMicro�t allows partitioning of a vector of random
variables in the sum of a stationary process, called the transitory or cyclical component, and
a permanent component, which may be further sub-divided into a deterministic (trend) and
a stochastic part (Garratt, Lee, Pesaran, and Shin (2006), Mills (2003), Robertson, Garratt,
and Wright (2006), Evans and Reichlin (1994)). Such decomposition can be considered as a
modi�cation of the classic multivariate Beveridge-Nelson decomposition (see Beveridge and
Nelson (1981) and Engle and Granger (1987)), extended to include possible restrictions in
the intercept and/or trend, as well as the existence of long-run relationships.

Consider a m�1 vector of random variables zt = (y0t;x0t)
0. For any arbitrary partitioning

of zt into a permanent and cyclical component zPt and z
C
t , the cyclical part, since stationary,

must satisfy
lim
h!1

Et
�
zCt+h

�
= 0 (22.166)
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where Et(:) denotes the expectation operator conditional on the information at time t, taken
to be fzt; zt�1; :::; z0g. Hence, denote

zPdt = g0 + gt

as the deterministic part of zt, where g0 is an m�1 vectors of �xed intercepts, g is an m�1
vector of (restricted) trend growth rates, and t is a deterministic trend term. From (22.166)
it follows that (see Garratt, Robertson, and Wright (2005))

zPst = lim
h!1

Et (zt+h � (g0 + gh))

The above result is at the basis of the trend/cycle decomposition of zt available in Micro�t.
Suppose that zt has the following vector error correction representation with unrestricted in-
tercept and restricted trend (which inMicro�t corresponds to option 4 from the cointegrating
V AR option in the System Estimation Menu), then

�zt = a���
0
[zt�1 � (t� 1)] +

p�1X
i=1

�i�zt�i + ut (22.167)

where zt = (y0t;x
0
t)
0 is an m � 1 vector of random variables. Denote the deviation of the

variables in zt from their deterministic components as ezt, namely
ezt = zt � g0 � gt

Then, in terms of ezt we have
�ezt = a���0g0 �

 
Im�

p�1X
i=1

�i

!
g ���0 (g � ) (t� 1)���0ezt + p�1X

i=1

�i�ezt�i + ut
Since ezt has no deterministic components by construction, it must be that

a = ��
0
g0 +

 
Im �

p�1X
i=1

�i

!
g (22.168)

and
�0g = �0 (22.169)

Hence

�ezt = ���0ezt�1 + p�1X
i=1

�i�ezt�i + ut (22.170)

or, equivalently,

ezt = pX
i=1

�iezt�i + ut (22.171)
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where
�1 = Im + �1 ���0; �i = �i � �i�1; i = 2; ::::; p� 1; �p = ��p�1

If we then apply the classic multivariate Beveridge-Nelson decomposition to (22.171) (see
Stock and Watson (1988) and Evans and Reichlin (1994)), we determine that zt can be
written as

zt = z0 + gt+C (1)

tX
i=1

ui +C
� (L) (ut � u0) (22.172)

where

C(1) =
1P
i=0
Ci

C� (L) =
1X
i=0

C�iL
i

with

Ci = Ci�1�1 +Ci�2�2 + � � �+Ci�p�p for i = 1; 2; :::

C�i = C�i�1 +Ci

and C0 = Im; C1 = �(Im ��1), Ci = 0 for i < 0, C�0 = C0 �C(1).
Hence, the stochastic term and the cyclical component are de�ned respectively as

zPst = C (1)
tP
i=1
ui (22.173)

zCt = C
� (L) (ut � u0) (22.174)

As for the estimation of the various components, note that zPst can be easily estimated, since
the coe¢ cients forCi can be derived recursively in terms of�i, which in turn can be obtained
from the �i. Once zPst has been estimated, consider the di¤erence

ŵt = zt � Ĉ (1)
tP
i=1
ûi

and notice that this is also equal to

ŵt = z0 + ĝt+ ẑ
C
t

Hence, to obtain ĝ and ẑCt , one can perform a seemingly unrelated (SURE) regression of ŵt
on an intercept and a time trend t, subject to the restrictions

�̂
0
ĝ = �̂

0
̂ (22.175)

where ̂ and �̂ have already been estimated, under the assumption that the cointegrating
vectors are exactly identi�ed. Residuals obtained from such regression will be an estimate
of the cyclical component zCt .
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In the case of a cointegrating V AR with no intercept and no trends (option 1 from the
cointegrating V AR option in the System Estimation Menu), we have

wt = zt � Ĉ (1)
tP
i=1
ûi = z0 + ẑ

C
t

while the deterministic component is given by z0. In the case of a cointegrating V AR with
restricted intercepts and no trends (option 2 in the cointegrating V AR option in the System
Estimation Menu), consistent estimates of g and zCt can be obtained by running the SURE
regressions of wt on an intercept, subject to the restrictions

�̂
0
g0 = �̂

0
â

where, once again, �̂ and â have already been estimated from the V ECM model.
In the case of a cointegrating V AR with unrestricted intercepts and no trends (option 3

from the cointegrating V AR option in the System Estimation Menu), g = 0, and g0 can be
consistently estimated by computing the sample mean of wt (or running OLS regressions of
wt on the intercepts).

Finally, for a cointegrating V AR with unrestricted intercepts and trends (option 5 in the
cointegrating V AR option in the System Estimation Menu), consistent estimates of g can be
obtained by running OLS regressions of wt on an intercept and a linear trend. The cyclical
component ẑCt is in all cases the residual from the above regressions.

22.12 Principal components

Principal components (PC) are linear combinations of a given set of variables which have
special properties in terms of their variances. The �rst PC has the largest variance, the
second PC has the second largest variance and so on. The linear combinations are orthog-
onal to each other and summarize important characteristics of the original variables. The
PCs with largest variances are often used in statistics and econometrics as proxies for the
original set of high-dimensional variables, thus reducing the dimensionality of the data set
under consideration. For comprehensive treatments of the PC literature see Chapter 11 of
Anderson (2003) and Jolli¤e (2004).

Let x:t = (x1t; x2t; ::::; xnt)0 be an n � 1 vector of observations at time t on n variables.
Suppose that the elements of x:t have zero means, or are converted to zero mean variables
by de-meaning, and that there are T observations available on x:t, with T > n. Consider
the sample covariance matrix

S
n�n

=
X0X

T

where X = (x:1; :::;x:T )
0 is a T � n matrix of observations. Let

�1 � �2 � :::: � �n � 0

be the n eigenvalue of S, in descending order. Then the �rst k principal components are
given by

f̂
(k)
t = B̂0kx:t;for t = 1; 2; :::; T;
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where B̂0k =
�
�̂1; �̂2; :::; �̂k

�
is n� k, with �̂i is the n� 1 eigenvector of S corresponding to

�i, and is such that

�̂
0
i�̂i = 1; i = 1; :::; n

�̂
0
i�̂j = 0, i 6= j

In the context of a static factor model with k < n factors

xit = a
0
izt + �

(k)0
i f

(k)
t + "it; i = 1; 2; :::; n, t = 1; 2; ::::; T < n

�
(k)
i is the k � 1 vector of factor loadings, f (k)t is the k � 1 vector of unobserved common
factors, and zt is a s� 1 vector of observed common factors. For example, zt could include
an intercept, time trend or other common observed variables, such as oil prices. To identify
the unobserved factors we assume they have mean zero, unit variance and are mutually
uncorrelated. To ensure that factors have mean zero, one of the elements of zt must be
speci�ed to be equal to 1, unless x0its are already demeaned. When n is su¢ ciently large
the common factors can be estimated by the �rst k PCs of T�1X0X. Note also that by

construction the estimated factors are pair-wise uncorrelated, namely [Corr
�
f
(k)
t ; f

(s)
t

�
= 0

for all s 6= k and dV ar �f (k)t

�
= �k, for k = 1; 2; :::; n.

If n � T , Micro�t reports �i, i = 1; 2; :::; n, the associated eigenvectors (or factor load-
ings), �̂i, and the principal components f̂

(k)
t for k = 1; 2; :::; n; t = 1; 2; :::; T , and allows these

estimates to be saved as CSV or FIT �les. The PCs can also be saved on the workspace,
but not the eigenvectors or factor loadings.

Micro�t also allows estimating principal components for X, once these have been �ltered
by a set of variables, contained in a T � s matrix Z, that might in�uence X. In this case,
principal components are computed from eigenvectors and eigenvalues of the matrix

S =
X0MZX

T

where MZ = IT � Z (Z0Z)�1 Z0, and IT is a T � T identity matrix.
If n > T , eigenvalues and principal components are computed using the T � T matrix

n�1XX0. In this case factor loadings will have the same dimension as the observations on
the workspace and hence can be saved on the workspace as well.

22.12.1 Selecting the number of PCs or factors

There are a number of methods that can be used to select, k < n, the number of PC�s or
factors. The simplest and most popular procedures are the Kaiser criterion and the scree test.
To use the Kaiser (1960) criterion the observations are standardized so that the variables,

xit, have unit variances (in sample), and hence
nX
i=1

�i = Trace(S) = n.



CHAPTER 22. ECONOMETRICS OF MULTIPLE EQUATION MODELS 541

According to Kaiser (1960) criterion one would then retain only factors with eigenvalues
greater than 1. In e¤ect only factors that explain as much as the equivalent of one original
variable are retained.

The scree test is based on a graphical method, �rst proposed by Cattell (1966). A simple
line plot of the eigenvalues is used to identify a visual break in this time plot. There is
no formal method for identifying the threshold, and certain degree of personal judgment is
required. More formal procedures are suggested by Bai and Ng (2002), when n and T are
large.

22.13 Canonical correlations

Canonical correlations (CC) measure the degree of correlations between two sets of variables.
Let Y

T�ny
be a matrix of T observations on ny random variables, and X

T�nx
be a matrix of T

observations on nx random variables, and suppose that T > max fny; nxg. CC is concerned
with �nding linear combinations of theY variables and linear combinations of theX variables
that are most highly correlated. In particular, let

uit = �
0
(i)yt and vit = 

0
(i)xt; i = 1; 2; :::n = min fny; nxg

where yt = (y1t; y2t; :::; yny ;t)
0, xt = (x1t; x2t; :::; xnx;t)

0; and �i and j are the associated
ny � 1 and nx � 1 loading vectors, respectively. The �rst canonical correlation of yt and
xt is given by those values of �(1) and (1) that maximize the correlation of u1t and v1t.
These variables are known as canonical variates. The second canonical correlation refers to
�(2) and (2) such that u2t and v2t have maximum correlation subject to the restriction that
they are uncorrelated with u1t and v1t. The loadings are typically normalized so that the
canonical variates have unit variances. As shown in Chapter 12 of Anderson (2003), the
loading vectors should satisfy the following set of equations�

��Syy Syx
Sxy ��Sxx

��
�


�
= 0

where Syy = T�1(Y0Y), Sxx = T�1(X0X) and Syx = T�1(Y0X). Now set

Syxy = S
�1
yy SyxS

�1
xxSxy, if ny � nx

and
Sxyx = S

�1
xxSxyS

�1
yy Syx, if nx < ny

and let �21 � �22 � :::: � �2ny � 0 be the eigenvalues of Syxy. Then the kth squared canonical
correlation of Y and X is given by the kth largest eigenvalue associated to the matrix Syxy,
�2k. These coe¢ cients measure the strength of the overall relationships between the two
canonical variates, or weighted sums of Y and X.

The canonical variates, ukt and vkt, associated with the kth squared canonical correlation,
�2k is given by

ukt = �
0
(k)yt and vkt = 

0
(k)xt
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where �
��kSyy Syx
Sxy ��kSxx

��
�(k)
(k)

�
= 0

But it is easily seen that �
SyxS

�1
xxSxy � �2kSyy

�
�(k) = 0�

SxyS
�1
yy Syx � �2kSxx

�
(k) = 0

and hence �(k) can be computed as the eigenvector associated with the kth largest root of
Syxy = S�1yy SyxS

�1
xxSxy, and (k) can be computed as the eigen vector associated with the

kth largest root of Sxyx = S�1xxSxyS
�1
yy Syx: These eigenvectors are normalized such that

�0(k)Syy�(k) = 1; 
0
(k)Sxx(k) = 1; and �

0
(k)Syx(k) = �k

Under the null hypothesis H0 : Cov(X;Y) = 0, the statistic

T � Trace (Syxy)
a� �2(ny�1)(nx�1)

The above analysis can be extended to control for a third set of variables that might in�uence
Y andX. Consider the T�nz observation matrix Z , and suppose that T > max fny; nx; nzg.
Let Mz = IT � Z (Z0Z)�1 Z0. Compute

Ŷ =MzY; X̂ =MzX

Then in this case the S matrix is given by

Sŷx̂ŷ =

 
Ŷ0Ŷ

T

!�1 
Ŷ0X̂

T

! 
X̂0X̂

T

!�1 
X̂0Ŷ

T

!

if ny � nx and

Sx̂ŷx̂ =

 
X̂0X̂

T

!�1 
X̂0Ŷ

T

! 
Ŷ0Ŷ

T

!�1 
X̂0Ŷ

T

!
if ny > nx.

Similarly, the covariates in this case are de�ned by

ukt = �
0
(k)ŷt and vkt = 

0
(k)x̂t

where �(k) is the eigen vector of Sŷx̂ŷ associated with its kth largest eigenvalue, and (k) is
the eigenvector of Sx̂ŷx̂ associated with its kth largest eigenvalue.

Note that by construction [Corr(ukt; vkt) = �k; dV ar(ukt) = dV ar(vkt) = 1, for k =
1; 2; ::;min(ny; nx).

See also 4.4.7 and 10.17.



Chapter 23

Econometrics of Volatility Models

This chapter provides the technical details of the econometric methods and the algorithms
that underlie the computation of the various estimators and test statistics in the case of
univariate and multivariate conditionally heteroscedastic models. It complements Chapter
19, which describes the estimation options in Micro�t 5.0 for volatility modelling. Textbook
treatments of some of the topics covered here can be found in Hamilton (1994), Satchell
and Knight (2002), Campbell, Lo, and MacKinlay (1997), Bollerslev, Chou, and Kroner
(1992) and Engle (1995). For extensions to the multivariate case, see Bollerslev, Engle,
and Wooldridge (1988), Engle (2002), and Pesaran and Pesaran (2007). An application to
risk management can be found in Pesaran, Schleicherc, and Za¤aroni (2009), where a large
number of alternative multivariate volatility models are considered.

23.1 Univariate conditionally heteroscedastic models

Consider the following linear regression model:

yt = �
0xt + ut; t = 1; :::; n (23.1)

where yt is the dependent variable, � is a k�1 vector of unknown coe¢ cients, xt is the k�1
vector of regressors, and ut is a disturbance term. Under the classical normal assumptions
(A1 to A5) set out in Section 6.1, the disturbances ut, in the regression model (23.1) have a
constant variance both unconditionally and conditionally. However, in many applications in
macroeconomics and �nance, the assumption that the conditional variance of ut is constant
over time is not valid. Regression models that allow the conditional variance of ut to vary over
time as a function of past errors are known as Autoregressive Conditional Heteroscedastic
(ARCH) models.

23.1.1 GARCH-in-mean models

The ARCH model was introduced into the econometric literature by Engle (1982), and
was subsequently generalized by Bollerslev (1986), who proposed the Generalized ARCH
(or GARCH) models. Other related models where the conditional variance of ut is used

543
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as one of the regressors explaining the conditional mean of yt have also been suggested in
the literature, and are known as ARCH-in-Mean and GARCH-in-Mean (or GARCH-M)
models (see, for example, Engle, Lillien, and Robins (1987)).

The various members of the GARCH and GARCH-M class of models can be written
compactly as

yt = �
0xt + h

2
t + ut (23.2)

where

h2t = V (ut j
t�1) = E(u2t j
t�1)

= �0 +

qX
i=1

�iu
2
t�i +

pX
i=1

�ih
2
t�i (23.3)

and 
t�1 is the information set at time t� 1, containing at least observations on xt and on
lagged values of yt and xt; namely, 
t�1 = (xt;xt�1;xt�2; :::; yt�1; yt�2; ::). The unconditional
variance of ut is constant and is given by1

V (ut) = �2 =
�0

1�
qP
i=1

�i �
pP
i=1

�i

> 0 (23.4)

and the necessary condition for (23.2) to be covariance stationary is given by

qX
i=1

�i +

pX
i=1

�i < 1 (23.5)

In addition to the restrictions (23.4) and (23.5), Bollerslev (1986) also assumes that �i � 0,
i = 1; 2; :::; q, and �i � 0, i = 1; 2; :::; q. Although these additional restrictions are su¢ cient
for the conditional variance to be positive, they are not necessary (see Nelson and Cao
(1992)).

Micro�t computes approximate maximum likelihood estimates of the parameters of a
generalization of the GARCH-M model, where in addition to past disturbances, other vari-
ables could also in�uence h2t :

h2t = �0 +

qX
i=1

�iu
2
t�i +

pX
i=1

�ih
2
t�i + �

0wt (23.6)

where wt is a vector of covariance stationary variables in 
t�1. The unconditional variance
of ut in this case is given by

�2 =
�0 + �

0�w

1�
qP
i=1

�i �
pP
i=1

�i

> 0 (23.7)

1Notice that V (ut) = lim
s!1

E
�
u2t+s j
t�1

�
:
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where �! = E(wt).
TheML estimation of the above augmented GARCH-M model can be carried out inMi-

cro�t under two di¤erent assumptions concerning the conditional distribution of the distur-
bances, namely Gaussian and Student�s t-distribution. In both cases the exact log-likelihood
function depends on the joint density function of the initial observations, f(y1; y2; :::; yq),
which is non-Gaussian and intractable analytically. In most applications where the sample
size is large (as is the case with most �nancial time-series) the e¤ect of the distribution of
the initial observations is relatively small and can be ignored.2

23.1.2 ML estimation with Gaussian errors

The log-likelihood function used in computation of the ML estimators for the Gaussian case
is given by

`(�) = �(n� q)
2

log(2�)� 1
2

nX
t=q+1

log h2t

�12
nX

t=q+1

h�2t u2t (23.8)

where � = (�0; ; �0; �1; �2; :::; �q; �1; �2; :::; �p; �
0)0; and ut and h2t are given by (23.2) and

(23.6), respectively.

23.1.3 ML estimation with Student�s t-distributed errors

Under the assumption that conditional on 
t�1, the disturbances are distributed as a Stu-
dent�s t-distribution with v degrees of freedom (v > 2), the log-likelihood function is given
by

`(�; v) =
nX

t=q+1

`t(�; v) (23.9)

where

`t(�; v) = � log
�
B
�
v
2 ;
1
2

�	
� 1

2 log(v � 2)

�12 log h
2
t �

�
v + 1

2

�
log

�
1 +

u2t
h2t (v � 2)

�
(23.10)

and B
�
v
2 ;
1
2

�
is the complete Beta function.3

The degrees of freedom of the underlying t-distribution, v, is then estimated along with
the other parameters. The Gaussian log-likelihood function (23.8) is a special case of (23.10),
and can be obtained from it for large values of v. In most applications two log-likelihood

2Diebold and Schuermann (1992) examine the quantitative importance of the distribution of the initial
observations in the case of simple ARCH models, and �nd their e¤ect to be negligible.

3Notice that B( v
2
; 1
2
) = �

�
v+1
2

� �
�
�
v
2

�
�
�
1
2

�
: The constant term �

�
1
2

�
=
p
� is omitted from the expres-

sion used by Bollerslev (1987). See his equation (1).
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functions provide very similar results for values of v around 20. The t -distribution is particu-
larly appropriate for the analysis of stock returns, where the distribution of the standardized
residuals, ût=ĥt, are often found to have fatter tails than the normal distribution.

23.1.4 Exponential GARCH-in-Mean models

It is often the case that the conditional variance, h2t is not an even function of the past
disturbances, ut�1; ut�2; :::. The Exponential GARCH (or EGARCH) model proposed by
Nelson (1991) aims at capturing this important feature, often observed when analysing stock
market returns. Micro�t provides ML estimates of the following augmented version of the
EGARCH-M model:

yt = �
0xt + h

2
t + ut (23.11)

where as before h2t = V (ut j
t�1) = E(u2t j
t�1) . However, for h2t Nelson uses an exponential
functional form, which can be written as

log h2t = �0 +

qX
i=1

�i

�
ut�i
ht�i

�
+

qX
i=1

��i

�����ut�iht�i

����� ��

+

pX
i=1

�i log h
2
t�i + �

0wt (23.12)

where � = E

�����utht
�����. The value of � depends on the density function assumed for the

standardized disturbances, "t = ut=ht. We have

� =

r
2

�
; if "t � N(0; 1) (23.13)

and

� =
2(v � 2) 12

(v � 1)B
�
v
2 ;
1
2

� (23.14)

if "t has a standardized t-distribution with v degrees of freedom.4

The (approximate) log-likelihood function for the EGARCH model has the same form
as in (23.8) and (23.9) for the Gaussian and Student t-distributions, respectively. Unlike the
GARCH-M class of models, the EGARCH-M model always yields a positive conditional
variance, h2t , for any choice of the unknown parameters; it is only required that the roots of
1�

Pp
i=1 �iz

i = 0 should all fall outside the unit circle. The unconditional variance of ut in
the case of the EGARCH model does not have a simple analytical form.

4Notice that in this case E (jut=htj) = 2p
vB( v2 ;

1
2 )

R1
0
a
�
1 + a2

v

��(v+1)=2
da.
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23.1.5 Absolute GARCH-in-Mean models

This is the third class of conditionally heteroscedastic models that can be estimated in
Micro�t, and has the following speci�cation:5

yt = �
0xt + h

2
t + ut (23.15)

where ht is given by

ht = �0 +

qX
i=1

�i jut�ij+
pX
i=1

�iht�i + �
0wt (23.16)

The AGARCH model can also be estimated for di¤erent error distributions. The log-
likelihood functions for the cases where "t = ut=ht has a standard normal distribution, and
when it has a standardized Student-t distribution, these are given by (23.8) and (23.9), where
ut and ht are now speci�ed by (23.15) and (23.16), respectively.

23.1.6 Computational considerations

The computation of theML estimators for the above models are carried out by the Newton-
Raphson algorithm using numerical derivatives, after appropriate scaling of the parameters.
We also use a �damping factor�to control for the step-size in the iterations. The value of this
damping factor can be changed by the user in the range [0:01; 2:0].6 The convergence of the
iterations often depends on the nature of the conditional heteroscedasticity in the data and
the choice of the initial values for the parameters.

Once theML estimates are computed, Micro�t then computes their asymptotic standard
errors using the inverse of the Hessian matrix (the second partial derivatives of the log-
likelihood function).

23.1.7 Testing for ARCH (or GARCH) e¤ects

The simplest way to test for ARCH(p) e¤ects is to use the Lagrange Multiplier procedure
proposed by Engle (1982) (see, in particular, page 1000). The test involves two steps. In the
�rst step the OLS residuals, ût;OLS , from the regression of yt on xt, are obtained, and in
the second step û2t;OLS is regressed on a constant and p of its own lagged values

û2t;OLS = a0 + b1û
2
t�1;OLS + :::+ bqû

2
t�q;OLS + et

for t = q + 1; q + 2; :::; n. A test of the ARCH(q) e¤ect can now be carried out by testing
the statistical signi�cance of the slope coe¢ cients b1 = b2 = ::: = bq = 0. This statistic is
automatically computed by Micro�t using option 2 in the Hypothesis Testing Menu (after
the OLS regression).

5The AGARCH model has been proposed in the literature by Heutschel (1991).
6The unobserved initial values of ht are set equal to ~�, the OLS estimator of the unconditional variance

of ut.
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23.1.8 Residuals, DW, R2 and other statistics

Micro�t reports the values of the unscaled residuals ût computed as

ût = yt � b�0xt � ̂ĥ2t ; t = 1; 2; :::; n
and the conditional standard errors, ĥt, ( namely theML estimates of ht,) using the relations
(23.6), (23.12) and (23.16). The scaled residuals, ût=ĥt, are used in the histogram plots. The
program also reports the maximized value of the log-likelihood function, AIC, and SBC,
DW ,R2 using formulae similar to those for the other estimation procedures.

The summary statistics are computed using the unscaled residuals. Those interested in
computing these statistics using the scaled residuals can do so by �rst saving the values of
ût and ĥt in the Post Regression Menu of the GARCH option, and then carrying out the
necessary computations at the data processing stage.

23.1.9 Forecasting with conditionally heteroscedastic models

There are two components in GARCH or GARCH-M models that require forecasting: the
conditional mean and the conditional variance. The forecasts of the former are given by

ŷ�t+j = �̂
0
tx̂t+j + ̂ tĥ

2
t+j ; j = 1; 2; :::; p

where �̂, and ̂ are ML estimators of the regression coe¢ cients, tx̂t+j is the j-step ahead
forecast of xt, and tĥ

2
t+j is the j-step ahead forecast of the conditional variance, namely

E(u2t+j j 
t); j = 1; 2; :::; p. The computation of tx̂t+j is carried out along the lines set out in
Section 21.26.2, and depends on whether xt contains lagged values of the dependent variable
or not.

The computation of tĥ2t+j varies depending on the conditional heteroscedasticity model
under consideration. For the GARCH speci�cation de�ned by (23.6), the one-step ahead
forecast of the conditional volatility is given by

tĥ
2
t+1 = �̂0 +

qX
i=1

�̂iû
2
t+1�i +

pX
i=1

�̂iĥ
2
t+1�i + �̂

0
tŵt+1

where tŵt+1 is the one-step ahead predictor of wt,

ût�i = yt�i � �̂
0
xt�i � ĥ2t�i; i = 0; 1; 2; :: (23.17)

and

ĥ2t�j = �̂0 +

qX
i=1

�̂iû
2
t�j�i +

pX
i=1

�̂iĥ
2
t�j�i + �̂

0
wt�j ; for j = 0; 1; 2; :::

with the unobserved initial values of ĥ2 set equal to the estimate of the unconditional variance
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of ut. Similarly, two- and three-step ahead forecasts are given by

tĥ
2
t+2 = �̂0 + (�̂1 + �̂1) tĥ

2
t+1 +

qX
i=2

�̂iû
2
t+2�i +

pX
i=2

�̂iĥ
2
t+2�i + �̂

0
tŵt+2

tĥ
2
t+3 = �̂0 + (�̂1 + �̂1) tĥ

2
t+2 + (�̂2 + �̂2) tĥ

2
t+1 +

qX
i=3

�̂iû
2
t+3�i

+

pX
i=3

�̂iĥ
2
t+3�i + �̂

0
tŵt+3

and so on.
For the EGARCH model de�ned by (23.12), the one-step ahead forecast of conditional

volatility is given by

\log th2t+1 = �̂0 +

pX
i=1

�̂i log ĥ
2
t+1�i + �̂

0
tŵt+1 (23.18)

where

log ĥ2t�j = �̂0 +

qX
i=1

�̂i

 
ût�i�j

ĥt�i�j

!
+

qX
i=1

�̂�i

 ����� ût�i�jĥt�i�j

������ �̂
!

+

pX
i=1

�̂i log ĥ
2
t�j�i + �̂

0
wt�j ; for j = 0; 1; 2; ::

and ût is already de�ned by (23.17). For higher-step ahead forecasts we have7

\log th2t+2 = �̂0 + �̂1
\log th2t+1 +

pX
i=2

�̂i log ĥ
2
t+2�i + �̂

0
tŵt+2;

\log th2t+3 = �̂0 + �̂1
\log th2t+2 + �̂2 \log th2t+1 +

pX
i=3

�̂i log ĥ
2
t+3�i + �̂

0
tŵt+3;

and so on.
For the Absolute GARCH model de�ned by (23.16) we have

tĥt+1 = �̂0 +

qX
i=1

�̂i jût+1�ij+
pX
i=1

�̂iĥt+1�i + �̂
0
tŵt+1

where

ĥt�j = �̂0 +

qX
i=1

�̂i jût�j�ij+
pX
i=1

�̂iĥt�j�i + �̂
0
w0t�j

0 for j = 0; 1; 2; ::

7The volatility forecasts for more than one-step ahead are computed assuming that exp( \log th2t+1) is ap-
proximately equal to tĥ2t+1. Exact computation of tĥ

2
t+1 involves computing integrals by stochastic simulation

techniques. The same point also applies to volatility forecasts based on the Absolute GARCH model.
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and ût�j , j = 0; 1; 2; :: are de�ned by (23.17). For higher-step ahead forecasts we have:8

tĥt+2 = �̂0 + (�̂1 + �̂1) tĥt+1 +

qX
i=2

�̂i jût+1�ij+
pX
i=2

�̂iĥt+1�i + �̂
0
tŵt+2

tĥt+3 = �̂0 + (�̂1 + �̂1) tĥt+2 + (�̂2 + �̂2) tĥt+1 +

qX
i=3

�̂i jût+1�ij

+

pX
i=3

�̂iĥt+1�i + �̂
0
tŵt+3

and so on.
In all the above formulae the forecasts of wt+j are obtained recursively if wt contains

lagged values of yt. Otherwise, actual values of wt+j will be used. Forecasts will not be
computed if future values of wt are not available or cannot be computed using recursive
forecasts of yt.

23.2 Multivariate conditionally heteroscedastic models

Let rt = (r1t; :::; rmt)
0 be an m � 1 vector of asset returns at close day t, with conditional

mean and variance

�t�1 = E (rt j
t�1 )
�t�1 = Cov (rt j
t�1 )

where 
t�1 is the information set available at close of day t � 1, and �t�1 is assumed to
be non-singular. Here we are not concerned with how mean returns are predicted, and take
�t�1 as given.

9 The conditional covariance matrix �t�1 may be uniquely expressed in terms
of the decomposition

�t�1 = Dt�1Rt�1Dt�1 (23.19)

where

Dt�1 =

266664
�1;t�1 0 ::: 0

0 �2;t�1
...

...
. . . 0

0 0 ::: �m;t�1

377775
8Here we are making use of the approximation E (jut+j j j 
t) ' tht+j :
9Although the estimation of �t�1 and �t�1 are interrelated, in practice mean returns are predicted by

least squares techniques (such as recursive estimation or recursive modelling) which do not take account of
the conditional volatility. This might involve some loss in e¢ ciency of estimating �t�1, but considerably
simpli�es the estimation of the return distribution needed in portfolio decisions and risk management.
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Rt�1 =

26666664
1 �12;t�1 �13;t�1 � � � �1m;t�1

�21;t�1 1 �23;t�1 � � � �2m;t�1
...

. . .
...

... �m�1;m;t�1
�m1;t�1 � � � � � � �m;m�1;t�1 1

37777775
Dt�1 is an m �m diagonal matrix with elements �i;t�1; i = 1; 2; : : : ;m denoting the con-
ditional volatilities of assets returns, and Rt�1 is the symmetric m �m matrix of pairwise
conditional correlations. More speci�cally, the conditional volatility for the ith asset return
is de�ned as

�2i;t�1 = V ar (rit j 
t�1)
and the conditional pair-wise return correlation between the ith and the jth asset is

�ij;t�1 = �ji;t�1 =
Cov (rit; rjt j 
t�1)

�i;t�1�j;t�1

Clearly, �1 � �ij;t�1 � 1, and �ij;t�1 = 1; for i = j.
The decomposition of �t�1 in (23.19) allows separate speci�cation for the conditional

volatilities and conditional cross-asset returns correlations. Micro�t allows estimating the
following GARCH(1,1) model for �2i;t�1

�2i;t�1 = ��
2
i (1� �1i � �2i) + �1i�2i;t�2 + �2ir2i;t�1 (23.20)

where ��2i is the unconditional variance of the ith asset return. Notice that in (23.20) we
allow the parameters �1i; �2i to di¤er across assets. Under the restriction �1i + �2i = 1,
the unconditional variance does not exist. In this case we have the integrated GARCH
(IGARCH) model used extensively in the professional �nancial community:10

�2i;t�1 (�i) = (1� �i)
1X
s=1

�s�1i r2i;t�s 0 < �i < 1 (23.21)

or, written recursively,
�2i;t�1 (�i) = �i�

2
i;t�2 + (1� �i) r2i;t�1

As for cross-asset correlations, Micro�t estimates the (i; j)th conditional correlation as

~�ij;t�1 (�) =
qij;t�1p

qii;t�1qjj;t�1

where qij;t�1 are given by

qij;t�1 = ��ij(1� �1 � �2) + �1qij;t�2 + �2~ri;t�1~rj;t�1 (23.22)

In (23.22), ��ij is the (i; j)th unconditional correlation, �1; �2 are parameters such that �1 +
�2 < 1, and ~ri;t�1 are the standardized assets returns. Returns are standardized to achieve
normality.
10See, for example, Litterman and Winkelmann (1998).
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Engle (2002) proposes the following standardization for returns:

~ri;t�1 = ~r
exp
i;t�1 =

rit
�i;t�1

(23.23)

where �i;t�1 is given either by (23.20) or, in the case of non-mean reverting volatilities, by
(23.21). We refer to (23.23) as the �exponentially weighted returns�.

An alternative way of standardizing returns is by using a measure of the actual or realized
volatility (Pesaran and Pesaran (2007)):

~ri;t�1 = ~r
devol
i;t�1 =

rit

�realizedi;t�1
(23.24)

where �realizedi;t�1 is a proxy of the realized volatility of the ith return in day t. Pesaran and
Pesaran (2007) have suggested the following approximation for the realized volatility:

~�2it(p) =

Pp�1
s=0 r

2
i;t�s

p
(23.25)

The lag order, p, needs to be chosen carefully; its default value for p in Micro�t is 20. We
refer to returns (23.24), where the realized volatility is estimated using (23.25) as �devolatized
returns�.

In a series of papers, Andersen, Bollerslev and Diebold show that daily returns on foreign
exchange and stock returns standardized by realized volatility are approximately Gaussian
(see, for example, Andersen, Bollerslev, Diebold, and Ebens (2001), and Andersen, Bollerslev,
Diebold, and Labys (2001)). The transformation of returns to Gaussianity is important,
since the use of correlation as a measure of dependence can be misleading in the case of
(conditionally) non-Gaussian returns (see Embrechts, Hoing, and Juri (2003)). In contrast,
estimation of correlations based on devolatized returns that are nearly Gaussian is likely to
be more generally meaningful.

In (23.22) it is required that �1 + �2 < 1, that is the process is mean reverting. In the
case �1 + �2 = 1, we have

qij;t�1 = �qij;t�2 + (1� �) ~ri;t�1~rj;t�1

In practice, the hypothesis that �1 + �2 < 1 needs to be tested.

23.2.1 Initialization, estimation and evaluation samples

Estimation and evaluation of the dynamic conditional correlation (DCC) model given by
(23.20) and (23.22) is carried out in a recursive manner.

Suppose daily observations are available on m daily returns in the m � 1 vector rt over
the period t = 1; 2; :::; T; T + 1; :::; T + N . The sample period can be divided into three
sub-periods, choosing s, T0 and T such that p < T0 < s < T . We call:

� Initialization sample: S0 = frt, t = 1; 2; :::; T0g. The �rst T0 observations are used for
initialization of the recursions in (23.20) and (23.22).
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� Estimation sample: Sest = frt, t = s; s+ 1; :::; Tg. A total of T � s + 1 observations
are used for estimation of (23.20) and (23.22) (see Section 23.2.2).

� Evaluation sample: Seval = frt, t = T + 1; T + 2; :::; T +Ng. The last N observations
are used for testing the validity of the model (see Section 23.2.3). In Micro�t N � 35.

This decomposition allows variations of the size of the estimation window by moving the
index s along the time axis in order to accommodate estimation of the unknown parameters
using expanding or rolling observation windows, with di¤erent estimation update frequencies.
For example, for an expanding estimation window we set s = T0+1, and for a rolling window
of size W we need to set s = T + 1�W . The whole estimation process can then be rolled
into the future with an update frequency of h by carrying the estimations at T + h; T + 2h,
..., using either expanding or rolling estimation samples from t = s.

23.2.2 Maximum likelihood estimation

ML estimation of the DCC model can be carried out inMicro�t under two di¤erent assump-
tions concerning the conditional distribution of assets returns: the multivariate Gaussian
distribution and the multivariate Student�s t-distribution.

In its most general formulation (the non-mean reverting speci�cations given by (23.20)
and (23.22)) the DCC model contains 2m + 2 unknown parameters: 2m coe¢ cients �1 =
(�11; �12; : : : ; �1m)

0 and �2 = (�21; �22; : : : ; �2m)
0, which enter the individual asset returns

volatilities, and the coe¢ cients �1 and �2 that enter the conditional correlations. In the
case of t-distributed returns, a further parameter, the degrees of freedom of the multivariate
Student t-distribution, v, need to be estimated.

The intercepts ��2i and ��ij in (23.20) and (23.22) refer to the unconditional volatilities
and return correlations and can be estimated as

��2i =

PT
t=1 r

2
it

T
(23.26)

��ij =

PT
t=1 ritrjtqPT

t=1 r
2
it

qPT
t=1 r

2
jt

(23.27)

In the non-mean reverting case these intercept coe¢ cients disappear, but for initialization of
the recursive relations (23.20) and (23.22) it is still advisable to use unconditional estimates
of the correlation matrix and asset returns volatilities.

ML estimation with Gaussian returns

Denote the unknown coe¢ cients by

� = (�1;�2; �1; �2)
0
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Based on a sample of observations on returns, r1; r2; :::; rt, available at time t, the time t
log-likelihood function based on the decomposition (23.19) is given by

lt (�) =
tX

�=s

f� (�)

where s < t is the start date of the estimation window and

f� (�) = �m
2
ln (�)� 1

2
ln j R��1 (�) j � ln j D��1(�1;�2) j

� ln
�
e0�D

�1
��1 (�1;�2)R

�1
��1 (�)D

�1
��1 (�1;�2) e�

�
= f�;R (�) + f�;C (�)

with
e� = r� � ���1

For estimation of the unknown parameters, �1; �2; ::::; �m; and �, Engle (2002) proposes a
two-step procedure whereby in the �rst step individual GARCH(1,1) models are estimated
for each of the m asset returns separately, and then the coe¢ cient of the conditional corre-
lations, �, is estimated by the Maximum Likelihood method assuming that asset returns are
conditionally Gaussian.

Note that under Engle�s speci�cation, Rt�1 depends on �1 and �2 as well as on �1 and
�2.

This procedure has two main drawbacks. First, the Gaussianity assumption in general
does not hold for daily returns, and its use can under-estimate the portfolio risk. Second,
the two-stage approach is likely to be ine¢ cient even under Gaussianity.

For further details on ML estimation using Gaussian returns, see Engle (2002).

ML estimation with Student�s t-distributed returns

Denote the unknown coe¢ cients by

� = (�1;�2; �1; �2; v)
0

where v are the (unknown) degrees of freedom of the t-distribution. The time t log-likelihood
function based on the decomposition (23.19) is given by

lt (�) =

tX
�=s

f� (�) (23.28)

where

f� (�) = �m
2
ln (�)� 1

2
ln j R��1 (�) j � ln j D��1(�1;�2) j

+ ln

�
�

�
m+ v

2

�
=�
�v
2

��
� m

2
ln (v � 2) (23.29)

�
�
m+ v

2

�
ln

"
1 +

e0�D
�1
��1 (�1;�2)R

�1
��1 (�)D

�1
��1 (�1;�2) e�

v � 2

#
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and e� = r� � ���1. Note that

ln j D��1(�1;�2) j=
mX
i=1

ln [�i;��1 (�1i; �2i)]

Under the speci�cation based on devolatized returns, Rt�1 does not depend on �1 and �2,
but depends on �1 and �2, and p, the lag order used in the devolatization process. Under
the speci�cation based on exponentially weighted returns, Rt�1 depends on �1 and �2 as
well as on �1 and �2.

The ML estimate of � based on the sample observations, rs; r2; :::; rT , can now be com-
puted by maximization of lt (�) with respect to �; which we denote by �̂t. More speci�cally

�̂t = Argmax
�
flt (�)g (23.30)

for t = T; T + h; T + 2h; ::::; T +N;where h is the (estimation) update frequency, and N is
the length of the evaluation sample (see Section 23.2.1). The standard errors of the ML
estimates are computed using the asymptotic formula

dCov(�̂t) = ( tX
�=s

�
�@2f� (�)
@�@�0

�
�=�̂t

)�1
In practice the simultaneous estimation of all the parameters of the DDC model could be
problematic, since it can encounter convergence problems, or could lead to a local maxima
of the likelihood function. When the returns are conditionally Gaussian one could simplify
(at the expense of some loss of estimation e¢ ciency) the computations by adopting Engle�s
two-stage estimation procedure. But in the case of t-distributed returns the use of such a
two-stage procedure could lead to contradictions. For example, estimation of separate t-
GARCH(1; 1) models for individual asset returns can lead to di¤erent estimates of v, while
the multivariate t-distribution requires v to be the same across all assets.11

23.2.3 Simple diagnostic tests of the DCC model

In the following, we assume that them�1 vector of returns rt follows a multivariate Student�s
t-distribution, though the same line of reasoning applies in the case of Gaussian returns.
Consider a portfolio based on m assets with returns rt, using a m�1 vector of predetermined
weights, wt�1. The return on this portfolio is given by

�t = w
0
t�1rt (23.31)

Suppose that we are interested in computing the capital Value at Risk (V aR) of this portfolio
expected at the close of business on day t � 1 with probability 1 � �, which we denote by
V aR(wt�1;�). For this purpose we require that

Pr
�
w0t�1rt < �V aR(wt�1;�) j
t�1

�
� �

11Marginal distributions associated with a multivariate t-distribution with v degrees of freedom are also
t-distributed with the same degrees of freedom.
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Under our assumptions, conditional on 
t�1, w0t�1rt has a Student t-distribution with mean
w0t�1�t�1, variance w

0
t�1�t�1wt�1; and degrees of freedom v. Hence

zt =

r
v

v � 2

0@w0t�1rt �w0t�1�t�1q
w0t�1�t�1wt�1

1A
conditional on 
t�1, will also have a Student t-distribution with v degrees of freedom. It is
easily veri�ed that E(ztj
t�1) = 0, and V (ztj
t�1) = v=(v � 2): Denoting the cumulative
distribution function of a Student�s t with v degrees of freedom by Fv(z), V aR(wt�1;�) will
be given a solution to

Fv

0@�V aR(wt�1;�)�w0t�1�t�1q
v�2
v

�
w0t�1�t�1wt�1

�
1A � �

But since Fv(z) is a continuous and monotonic function of z, we have

�V aR(wt�1;�)�w0t�1�t�1q
v�2
v

�
w0t�1�t�1wt�1

� = F�1v (�) = �c�

where c� is the � per cent critical value of a Student t-distribution with v degrees of freedom.
Therefore,

V aR(wt�1;�) = ~c�

q�
w0t�1�t�1wt�1

�
�w0t�1�t�1 (23.32)

where ~c� = c�

q
v�2
v .

Following Engle and Manganelli (2004), a simple test of the validity of t-DCC model can
be computed recursively using the indicator statistics

dt = I
�
w0t�1rt + V aR(wt�1;�)

�
(23.33)

where I(A) is an indicator function, equal to unity if A > 0 and zero otherwise. These
indicator statistics can be computed in-sample, or preferably can be based on recursive
out-of-sample one-step ahead forecast of �t�1 and �t�1, for a given (pre-determined set
of portfolio weights, wt�1). In such an out�of-sample exercise the parameters of the mean
returns and the volatility variables (� and �, respectively) could be either kept �xed at
the start of the evaluation sample, or changed with an update frequency of h periods (for
example, with h = 5 for weekly updates, or h = 20 for monthly updates). For the evaluation
sample, Seval = frt, t = T + 1; T + 2; :::; T +Ng ; the mean hit rate is given by

�̂N =
1

N

T+NX
t=T+1

dt (23.34)

Under the t-DCC speci�cation, �̂N will have mean 1�� and variance �(1��)=N , and the
standardized statistic,

z� =

p
N [�̂N � (1� �)]p

�(1� �)
(23.35)
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will have a standard normal distribution for a su¢ ciently large evaluation sample size, N .
This result holds irrespective of whether the unknown parameters are estimated recursively
or �xed at the start of the evaluation sample. In such cases the validity of the test procedure
requires that N=T ! 0 as (N;T ) ! 1. For further details on this statistic, see Pesaran,
Schleicherc, and Za¤aroni (2009).

The z� statistic provides evidence on the performance of �t�1 and �t�1 in an average
(unconditional) sense. An alternative conditional evaluation procedure can be based on
probability integral transforms:

Ût = Fv

0@ w0t�1rt �w0t�1�̂t�1q
v�2
v w

0
t�1�̂t�1wt�1

1A ; t = T + 1; T + 2; :::; T +N (23.36)

Under the null hypothesis of correct speci�cation of the t-DCC model, the probability trans-
form estimates, Ût; are serially uncorrelated and uniformly distributed over the range (0; 1).
Both of these properties can be readily tested. The serial correlation property of Ût can be
tested by Lagrange Multiplier tests using OLS regressions of Zt on an intercept, and the
lagged values Ût�1; Ût�2; ::::; Ût�s, where the maximum lag length, s, can be selected by using
the AIC criterion. The uniformity of the distribution of Ût over t can be tested using the
Kolmogorov-Smirnov statistic de�ned by KSN = supx

��FÛ (x)� U(x)�� ; where FÛ (x) is the
empirical cumulative distribution function (CDF ) of the Ût, for t = T + 1; T + 2; :::; T +N ,
and U(x) = x is the CDF of IIDU [0; 1]. Large values of the Kolmogorov-Smirnov statistic,
KSN , indicate that the sample CDF is not similar to the hypothesized uniform CDF .12

23.2.4 Forecasting volatilities and conditional correlations

Having obtained the recursive ML estimates, �̂t, given by (23.30), the following one step-
ahead forecasts can be obtained. For volatilities we have

\V (ri;T+1 j 
T ) = �̂2i;T = ��
2
i;T

�
1� �̂1i;T � �̂2i;T

�
+ �̂1i;T �̂

2
i;T�1 + �̂2i;T r

2
iT

where ��2i;T is the estimate of the unconditional mean of r
2
it, computed as

��2i;T = T�1
TX
�=1

r2i�

�̂1i;T and �̂2i;T are theML estimates of �1i and �2i computed using the observations over the
estimation sample Sest = frt, t = s; s+ 1; :::; Tg, and �̂2i;T�1 is the ML estimate of �2i;T�1;

based on the estimates ��2i;T�1; �̂1i;T�1 and �̂2i;T�1.
Similarly, the one step-ahead forecast of �ij;T (using either exponentially weighted returns

(23.23) or devolatilized returns (23.24)) is given by

�̂ij;T (�) =
q̂ij;Tp
q̂ii;T q̂jj;T

12For details of the Kolmogorov-Smirnov test and its critical values see, for example, Neave and Worthington
(1992), pp.89-93.
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where
q̂ij;T = ��ij;T (1� �̂1T � �̂2T ) + �̂1T q̂ij;T�1 + �̂2;T ~ri;T ~rj;T

As before, �̂1T and �̂2T are theML estimates of �1T and �2T computed using the estimation
sample, and q̂ij;T�1 is the ML estimate of qij;T�1, based on the estimates ��ij;T�1,�̂1T�1 and

�̂2T�1.
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Appendix A

Size Limitations

This version of Micro�t is subject to the following limits:

(a) At the data processing stage

NV = Total number of variables � 200
NO = Total number of observations � 5,000,000

(b) At the linear and non-linear estimation and hypothesis testing stage

IK =
Total number of regressors
(including an intercept if one is included) � 102

IN = Total number of observations in the estimation period � 3; 000
IP = Total number of parameters of the autoregressive (AR)

error process � 12
Stack = Size of the stack for the speci�cation of the non-linear restrictions

or equations � 600. This allows typing 600 �items�in the screen
editor provided. An item could be a bracket, a variable name, an
arithmetic operator or a function name.

MAR = Maximum order of the AR error process � 50
MMA = Maximum order of the MA error process � 12
INP = Number of observations used in the predictive

failure/structural stability tests
IN + INP � 3; 000; INP � 500
(IP + IK) � (IN �MAR) � 150; 000

(c) At the forecasting stage

For non-linear least squares, non-linear two-stage least squares, ARDL, Unrestricted
V AR, Cointegrating V AR and SURE estimation:

IQ = Number of observations in the forecast period � 500
IN + IQ � 3; 100

For all other options:

560
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IQ �Min(500; 3; 000=IK)
IN + IQ � 3; 100

(d) At the cointegrating V AR estimation stage

q = Number of I(0) variables � 18
m = Number of endogeneous I(1) variables � 12
k = Number of exogeneous I(1) variables � 5
MP = Maximum lag order of the V AR model

MP �Min

�
100� s�m

m+ k
; 24

�
(e) Unrestricted V AR

q = Number of deterministic/exogeneous variables � 18
m = Number of variables in the V AR � 12

MP �Min

�
102� s
m

; 24

�
(f) ARDL Estimation

s = Number of deterministic/�xed lag regressors � 18
m = Number of variables in the ARDL model � 10

MP �Min

�
102� s
m

; 24

�
(g) SURE Estimation

NEQ = Number of equations in the SURE model � 10
MPARM = Maximum number of total parameters in the SURE model � 200
MPEQ = Maximum number of regressors in each equation � 102

(h) GARCH; EGARCH and AGARCH Estimation

MAR = Maximum order of AR � 99
MMA = Maximum order of MA � 99

Maximum number of parameters in the AR part � 12
Maximum number of parameters in the MA part � 12
Maximum number of parameters included in the
GARCH model (inclusive of the number of parameters
in regression) � 102



Appendix B

Statistical Tables

B.1 Upper and lower bound F-test and W-test critical values
of Pesaran, Shin and Smith single-equation cointegration
test

The critical value bounds reported in Tables B.1 and B.2 below are computed using stochastic
simulation for T = 500 and 20; 000 replications in the case of Wald- and F -statistic for testing
the joint null hypothesis of � = 1 = 2 = ::: = k = 0 in the following models:

Case I: No trend and no intercept

�yt = �yt�1 +
kX
i=1

ixi;t�1 + ut;

Case II: With intercept, but without a trend

�yt = a0 + �yt�1 +
kX
i=1

ixi;t�1 + ut;

Case III: With an intercept and a linear trend

�yt = a0 + a1t+ �yt�1 +
kX
i=1

ixi;t�1 + ut;

where t = 1; :::; T , and k is the number of the forcing variables.
The critical values for k = 0 are the same as the square of the critical values of the Dickey-

Fuller unit root t-statistic. The columns headed �I(0)�refer to the lower-bound critical values,
computed when all the k regressors are I(0), and the �gures in the columns headed �I(1)�
refer to the upper-bound critical values, and are computed assuming all the k regressors are
I(1).
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When using ARDL option in Micro�t 5 the program automatically computes the critical
value bounds using stochastic simulations following a procedure similar to the above. These
simulated critical values are close to the ones provide in the following tables, but have the
advantage that unlike the tabulated values they continue to be applicable even if shift dummy
variables are included amongst the deterministic variables.

See Pesaran, Shin, and Smith (2001) for further details.
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Table B.1: Testing the existence of a long-run relationship: critical value bonds of the F -
statistic

Case I: no intercept and no trend
90% 95% 97.5% 99%

k I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

0 3.016 3.016 4.136 4.136 5.347 5.347 7.381 7.381
1 2.458 3.342 3.145 4.153 3.893 4.927 5.020 6.006
2 2.180 3.211 2.695 3.837 3.258 4.458 3.939 5.341
3 2.022 3.112 2.459 3.625 2.901 4.161 3.372 4.797
4 1.919 3.016 2.282 3.474 2.618 3.924 3.061 4.486
5 1.825 2.943 2.157 3.340 2.481 3.722 2.903 4.261
6 1.760 2.862 2.082 3.247 2.367 3.626 2.744 4.124
7 1.718 2.827 2.003 3.199 2.288 3.536 2.595 3.909
8 1.678 2.789 1.938 3.133 2.198 3.445 2.481 3.826
9 1.640 2.774 1.873 3.072 2.122 3.351 2.396 3.725
10 1.606 2.738 1.849 3.026 2.076 3.291 2.319 3.610

Case II: intercept and no trend
90% 95% 97.5% 99%

k I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

0 6.597 6.597 8.199 8.199 9.679 9.679 11.935 11.935
1 4.042 4.788 4.934 5.764 5.776 6.732 7.057 7.815
2 3.182 4.126 3.793 4.855 4.404 5.524 5.288 6.309
3 2.711 3.800 3.219 4.378 3.727 4.898 4.385 5.615
4 2.425 3.574 2.850 4.049 3.292 4.518 3.817 5.122
5 2.262 3.367 2.649 3.805 3.056 4.267 3.516 4.781
6 2.141 3.250 2.476 3.646 2.823 4.069 3.267 4.540
7 2.035 3.153 2.365 3.553 2.665 3.871 3.027 4.296
8 1.956 3.085 2.272 3.447 2.533 3.753 2.848 4.126
9 1.899 3.047 2.163 3.349 2.437 3.657 2.716 3.989
10 1.840 2.964 2.099 3.270 2.331 3.569 2.607 3.888

Case III: intercept and trend
90% 95% 97.5% 99%

k I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

0 9.830 9.830 11.722 11.722 13.503 13.503 16.133 16.133
1 5.649 6.335 6.606 7.423 7.643 8.451 9.063 9.786
2 4.205 5.109 4.903 5.872 5.672 6.554 6.520 7.584
3 3.484 4.458 4.066 5.119 4.606 5.747 5.315 6.414
4 3.063 4.084 3.539 4.667 4.004 5.172 4.617 5.786
5 2.782 3.827 3.189 4.329 3.573 4.782 4.011 5.331
6 2.578 3.646 2.945 4.088 3.277 4.492 3.668 4.978
7 2.410 3.492 2.752 3.883 3.044 4.248 3.418 4.694
8 2.290 3.383 2.604 3.746 2.882 4.081 3.220 4.411
9 2.192 3.285 2.467 3.614 2.723 3.898 3.028 4.305
10 2.115 3.193 2.385 3.524 2.607 3.812 2.885 4.135
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Table B.2: Testing the existence of a long-run relationship: critical value bonds of the W -
statistic

Case I: no intercept and no trend
90% 95% 97.5% 99%

k I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

0 3.016 3.016 4.136 4.136 5.347 5.347 7.381 7.381
1 4.916 6.684 6.291 8.307 7.786 9.853 10.040 12.011
2 6.541 9.632 8.086 11.512 9.774 13.374 11.816 16.023
3 8.086 12.449 9.836 14.501 11.603 16.645 13.489 19.189
4 9.593 15.078 11.412 17.370 13.092 19.622 15.305 22.429
5 10.949 17.657 12.940 20.042 14.888 22.330 17.417 25.565
6 12.323 20.036 14.575 22.729 16.566 25.385 19.207 28.866
7 13.742 22.616 16.025 25.590 18.301 28.290 20.759 31.272
8 15.100 25.105 17.444 28.196 19.779 31.003 22.325 34.434
9 16.405 27.738 18.730 30.724 21.215 33.509 23.958 37.245
10 17.671 30.116 20.339 33.289 22.839 36.203 25.507 39.715

Case II: intercept and no trend
90% 95% 97.5% 99%

k I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

0 6.597 6.597 8.199 8.199 9.679 9.679 11.935 11.935
1 8.085 9.576 9.867 11.528 11.552 13.463 14.114 15.630
2 9.546 12.378 11.380 14.566 13.211 16.571 15.864 18.926
3 10.844 15.199 12.875 17.512 14.907 19.591 17.540 22.460
4 12.124 17.868 14.252 20.247 16.460 22.591 19.085 25.612
5 13.569 20.205 15.896 22.831 18.339 25.601 21.097 28.689
6 14.989 22.751 17.330 25.520 19.760 28.486 22.868 31.783
7 16.279 25.223 18.920 28.421 21.322 30.965 24.215 34.367
8 17.601 27.766 20.448 31.021 22.797 33.774 25.634 37.136
9 18.993 30.466 21.634 33.488 24.368 36.574 27.158 39.891
10 20.238 32.609 23.087 35.967 25.640 39.262 28.673 42.766

Case III: intercept and trend
90% 95% 97.5% 99%

k I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

0 9.830 9.830 11.722 11.722 13.503 13.503 16.133 16.133
1 11.299 12.670 13.212 14.847 15.286 16.902 18.126 19.571
2 12.616 15.326 14.710 17.617 17.017 19.661 19.561 22.752
3 13.936 17.831 16.264 20.477 18.423 22.989 21.259 25.655
4 15.316 20.420 17.694 23.335 20.022 25.861 23.085 28.932
5 16.690 22.963 19.135 25.971 21.441 28.692 24.066 31.984
6 18.047 25.521 20.614 28.617 22.942 31.443 25.678 34.844
7 19.282 27.936 22.013 31.065 24.354 33.984 27.347 37.553
8 20.611 30.443 23.432 33.715 25.940 36.727 28.979 39.697
9 21.924 32.846 24.666 36.138 27.225 38.985 30.280 43.050
10 23.262 35.126 26.240 38.760 28.682 41.928 31.738 45.482
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