Study of the Magnetoresistance Mechanisms in Pd - Ni multilayer system

M. Angelakeris and N.K. Flevaris
Outline

① Introduction
② Sample Preparation
③ Structure & Magnetic Profile
④ Electrical Measurements
 Experimental
 Data Analysis
⑤ Summary - Conclusions
Introduction

Magnetic multilayers: key configurations in Magnetoelectronics

- Utilization of unique micromagnetic, magnetooptic magneto-electronic phenomena which cannot be realized on the basis of conventional materials
- Interesting phenomena arising from: surface/interface effects, low-dimensional properties, coupling
- Anisotropic Magnetoresistance effect (AMR) is a galvanomagnetic mechanism known for more than 140 years
- Prototype hard disks heads based on AMR thin films
- Relation between microstructure, magnetism & electrical transport

Giant or Anisotropic magnetoresistance?
Sample Preparation

System

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd_m-Ni_n</td>
<td></td>
</tr>
<tr>
<td>Deposition Technique</td>
<td>e-beam evaporation</td>
</tr>
<tr>
<td>Parameters</td>
<td>$P=10^{-8}$ Torr, $T=400$ K</td>
</tr>
<tr>
<td>Buffer / Overlayer</td>
<td>30 nm Pd/5 nm Pd</td>
</tr>
<tr>
<td>Substrate</td>
<td>mica</td>
</tr>
<tr>
<td>Total Thickness Structure</td>
<td>200 - 400 nm</td>
</tr>
<tr>
<td>XRD, TEM</td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- **Pd**: 5 nm, 30 nm layers
- **Ni**: 1 < m < 20
- **Total Thickness**: 200-400 nm
- **Substrate**: mica
Structure & Magnetic Profile - 1

- epitaxial growth
- [111] direction
- small-angle grain boundaries
- double-positioning &
- embedded twinning
- wavy form
- no columnar growth

non monotonic dependence on m,n for short wavelengths

structural modification & interlayer coupling
Structure & Magnetic Profile

$Pd_m\text{-}Ni_2$

![Graph showing magnetic properties](image)

m
- 2
- 3
- 4

$M_s : 50 \text{-} 70\%$

m increase

Development of PMA
Structure & Magnetic Profile

\[K = K_{u1} - 2\pi M_s^2 \]

- \(K_{u1} \) max values
- \(M_s \) variation 36%
- Shape anisotropy \(\sim M_s^2 \)
- \(K_{u1} \sim M_s^3 \)

\(Pd_4-Ni_2 \)
Electrical Measurements

Experimental setups

1st: ramping applied field at fixed angle

2nd: rotation of constant field

\[\rho_{//} \leftrightarrow \rho_{\perp} - \rho_{//} \leftrightarrow \rho_{T} - \rho_{\perp} \leftrightarrow \rho_{T} \]

\[\Delta \rho/\rho \% = [\rho(0,T) - \rho(0,T)]/ \rho(0,T) \]
Electrical Measurements – Experimental 1

\[\rho_{\parallel} \leftrightarrow \rho_T \]

Pd\textsubscript{2}-Ni\textsubscript{2}

![Graph showing MR as a function of angle and magnetic field](image)

\[\rho_{\parallel} \leftrightarrow \rho_\perp \]
Electrical Measurements – Experimental 2

\[\Delta \rho / \rho \% \]

- **LN2 Temperature**
- **Room Temperature**

\[m = n \]

\[T = 300 \text{ K} \]

\[H_s (Oe) \]

\[M_{rem} / \text{m} \]
$$\rho(\Theta) = \rho_\perp + \Delta\rho_{AMR} \cos^2 \Theta$$

$$\Delta\rho_{AMR} = \rho_\parallel - \rho_\perp$$
AMR = Δρ/ρ_{av}, \quad Δρ = ρ_{∥} - ρ_{⊥}, \quad ρ_{av} = \frac{1}{3} ρ_{∥} + \frac{2}{3} ρ_{⊥}
\[\rho = \rho_0(c) + \rho_{el-ph}(T) + \rho_m(T,H,\theta) \]
Summary - Conclusions

Anisotropic magnetoresistance was studied via two experimental setups in Pd-Ni multilayer system in correlation with structure and magnetic features.

A simple model to isolate the magnetic term from the over-all electrical resistance is proposed.

Size effects seem to play an important role to overall electrical response of multilayer systems.

Interface/bulk scattering mechanism becomes dominant by adjusting modulation parameters.

The optimization of anisotropic magnetoresistance may be achieved and tailor made electric response materials may be fabricated.

Acknowledgements

Dr. J.B.Soussa and Dr. St.Visnovsky for the provision of MR Measuring Facilities

Work is supported by the HPRN-CT-1999-00150 EU contract