Approximate Unification in Description Logics

Pavlos Marantidis

Technische Universität Dresden

pavlos.marantidis@tu-dresden.de

March 30, 2016
Overview

1. Description Logics
2. Solving Linear Equations
3. Approximate Solutions
4. Banach’s Fixed Point Theorem
5. Linear Programming
6. Synopsis
Description Logics are a family of knowledge representation languages with a formal, logic-based semantics.

Description comes from concept description, i.e. a formal expression that determines a set of individuals with common properties.

Logics comes from the fact that the semantics of concept descriptions can be defined using logic.
Pavlos gives a boring talk
Pavlos gives a boring talk
Let’s try again:

Pavlos gives Talk

Boring
Given sets $\mathcal{C} = \{A, B, \ldots\}$ (concept names) and $\mathcal{R} = \{r, s, \ldots\}$ (role names), define complex concepts by using constructors:

- $C := A$ | concept names
- \top, \bot | top, bottom concepts
- $C \sqcap D$ | conjunction
- $C \sqcup D$ | disjunction
- $\exists r.C$ | existential restriction
- $\forall r.C$ | value restriction

Plenty other constructors:
number restrictions, role inversion and composition, nominal concepts...
Using model theory!

Interpretation

Consider a non-empty set Δ and a function \mathcal{I} such that:

- Concepts are mapped to sets: $A^\mathcal{I} \subseteq \Delta$
- Roles are mapped to binary relations: $r^\mathcal{I} \subseteq \Delta \times \Delta$

Furthermore, the interpretation maps:

- \top to the domain: $\top^\mathcal{I} = \Delta$
- \bot to the empty set: $\bot^\mathcal{I} = \emptyset$
- Conjunction to intersection: $(C \cap D)^\mathcal{I} = C^\mathcal{I} \cap D^\mathcal{I}$
- Disjunction to union: $(C \cup D)^\mathcal{I} = C^\mathcal{I} \cup D^\mathcal{I}$
- $(\exists r. C)^\mathcal{I} = \{d \in \Delta \mid (d, c) \in r^\mathcal{I} \land c \in C^\mathcal{I} \text{ for some } c \in \Delta\}$
- $(\forall r. C)^\mathcal{I} = \{d \in \Delta \mid (d, c) \in r^\mathcal{I} \rightarrow c \in C^\mathcal{I}\}$
Subsumption and Equivalence

Subsumption and equivalence

- $C \subseteq D$ iff $C^I \subseteq D^I$ for all interpretations
- $C \equiv D$ iff $C \subseteq D$ and $D \subseteq C$

Examples

$C = \text{Human} \sqcap \forall \text{hasChild}.\text{Smart} \sqcap \forall \text{hasChild}.\text{Strong}$

$D = \text{Human} \sqcap \forall \text{hasChild}.(\text{Smart} \sqcap \text{Strong})$

It can be deduced that

- $C \subseteq \text{Human}$
- $C \equiv D$
Idea

some concepts may be defined differently by different users or developers of a knowledge base

\[
\text{Woman} \sqcap \forall \text{hasChild}. \text{Woman} \\
\text{Person} \sqcap \text{Female} \sqcap \forall \text{hasChild}.(\text{Person} \sqcap \text{Female}) \\
\text{Human} \sqcap \text{Male} \sqcap \exists \text{loves}. \text{ExtremeSports} \\
\text{Man} \sqcap \exists \text{loves}.(\text{Sport} \sqcap \text{Dangerous})
\]
Consider a partition $\mathcal{C} = \mathcal{C}_c \cup \mathcal{C}_v$. A substitution σ is a mapping from concept variables \mathcal{C}_v to concept terms containing only constant concept names.

Unification Problem

Given concepts C, D, find a unifier σ, i.e. a substitution σ such that

$$\sigma(C) \equiv \sigma(D)$$
Given sets $C = C_C \cup C_Y$ and R
the set of \mathcal{FL}_0 concept terms only uses the constructors:

$C := A$ \hspace{1cm} \text{concept names}

\top \hspace{1cm} \text{top concept}

$C \sqcap D$ \hspace{1cm} \text{conjunction}

$\forall r. C$ \hspace{1cm} \text{value restriction}

$Woman \sqcap \forall \text{hasChild}. Woman$

$Speaker \sqcap \forall \text{gives}. (Talk \sqcap \text{Boring})$
Reduction to linear equations

Notation

\[
\forall r. (C \cap D) \rightarrow \forall r. C \cap \forall r. D \\
\forall r_1 \ldots \forall r_m. A \rightarrow \forall r_1 \ldots r_m. A = \forall w. A \\
\forall w_1. A \cap \ldots \cap \forall w_n. A \rightarrow \forall L. A \\
\forall \varepsilon. A = A \quad \forall \emptyset. A = T
\]

Normal Form

Given \(C_C = \{A_1, \ldots, A_k\}, C_V = \{X_1, \ldots, X_n\}, R \), if \(C \) is an \(\mathcal{FL}_0 \) concept term, it can be rewritten as

\[
C \equiv \forall S_1. A_1 \cap \ldots \cap \forall S_k. A_k \cap \forall T_1. X_1 \cap \ldots \cap \forall T_n. X_n
\]

for finite sets of words \(S_1, \ldots, S_k, T_1, \ldots, T_n \).

Example!
Lemma (Baader, Narendran, 2001)

Let $C = \{A_1, \ldots, A_k\}$ and consider the \mathcal{FL}_0 concept terms C, D in normal form:

$$C \equiv \forall U_1 . A_1 \cap \cdots \cap \forall U_k . A_k$$
$$D \equiv \forall V_1 . A_1 \cap \cdots \cap \forall V_k . A_k$$

Then $C \equiv D$ iff $U_i = V_i$ for all i.

Theorem (Baader, Narendran, 2001)

Let C, D be \mathcal{FL}_0 concept terms:

$$C \equiv \forall S_{0,1} . A_1 \cap \cdots \cap \forall S_{0,k} . A_k \cap \forall S_{1} . X_1 \cap \cdots \cap \forall S_{n} . X_n$$
$$D \equiv \forall T_{0,1} . A_1 \cap \cdots \cap \forall T_{0,k} . A_k \cap \forall T_{1} . X_1 \cap \cdots \cap \forall T_{n} . X_n$$

Then, C, D are unifiable iff

$$S_{0,i} \cup S_{1}X_{1,i} \cup \cdots \cup S_{n}X_{n,i} = T_{0,i} \cup T_{1}X_{1,i} \cup \cdots \cup T_{n}X_{n,i}$$

has a solution for every i.
Proof.

\[C \equiv \forall S_{0,1}.A_1 \cap \ldots \cap \forall S_{0,k}.A_k \cap \forall S_1.X_1 \cap \ldots \cap \forall S_n.X_n \]

Suppose that \(\sigma(X_i) = \forall L_{i,1}.A_1 \cap \ldots \cap \forall L_{i,k}.A_k \). Then

\[
\sigma(C) = \forall S_{0,1}.A_1 \cap \ldots \cap \forall S_{0,k}.A_k \cap \\
\forall S_1.(\forall L_{1,1}.A_1 \cap \ldots \cap \forall L_{1,k}.A_k) \cap \ldots \cap \\
\forall S_n.(\forall L_{n,1}.A_1 \cap \ldots \cap \forall L_{n,k}.A_k) \\
= \forall S_{0,1}.A_1 \cap \ldots \cap \forall S_{0,k}.A_k \cap \\
\forall S_1 L_{1,1}.A_1 \cap \ldots \cap \forall S_1 L_{1,k}.A_k \cap \ldots \cap \\
\forall S_n L_{n,1}.A_1 \cap \ldots \cap \forall S_n L_{n,k}.A_k \\
= \forall (S_{0,1} \cup S_1 L_{1,1} \cup \ldots \cup S_n L_{n,1}).A_1 \cap \ldots \cap \\
\forall (S_{0,k} \cup S_1 L_{1,k} \cup \ldots \cup S_n L_{n,k}).A_k
\]
Thus, Unification Problem reduces to Solving Language Equations.

Example
see blackboard!
Language equations

Alphabet Σ, variables X_1, \ldots, X_n

\[K_0^{(1)} \cup K_1^{(1)} X_1 \cup \ldots \cup K_n^{(1)} X_n = L_0^{(1)} \cup L_1^{(1)} X_1 \cup \ldots \cup L_n^{(1)} X_n \]

\[\vdots \]

\[K_0^{(m)} \cup K_1^{(m)} X_1 \cup \ldots \cup K_n^{(m)} X_n = L_0^{(m)} \cup L_1^{(m)} X_1 \cup \ldots \cup L_n^{(m)} X_n \]

where $K_i^{(\ell)}$, $L_i^{(\ell)}$ are finite languages over Σ.
Language equations

Alphabet Σ, variables X_1, \ldots, X_n

\[
\phi_1(X_1, \ldots, X_n) = \psi_1(X_1, \ldots, X_n) \\
\vdots \\
\phi_m(X_1, \ldots, X_n) = \psi_m(X_1, \ldots, X_n)
\]

for expressions ψ_i, ξ_i over $X_1, \ldots X_n$.

- every variable X_i is an expression
- every regular language L is an expression
- if ϕ is an expression, $L\phi$ is also an expression
- if ϕ, ψ are expressions, $\phi \cap \psi, \phi \cup \psi, \sim \phi$ are also expressions
Many to one

Normal Form

Transform all equations into a single one of the form

$$\phi(Z_1, \ldots, Z_k) = \emptyset$$

where constant regular languages occurring in ϕ are singletons from $\Sigma \cup \{\varepsilon\}$

- regular expressions $\rightarrow \Sigma \cup \{\varepsilon\}$
- $\phi = \psi \rightarrow (\phi \cap \sim \psi) \cup (\psi \cap \sim \phi) = \emptyset$
- $\phi = \emptyset, \psi = \emptyset \rightarrow \phi \cup \psi = \emptyset$

Every transformation leaves the set of solutions unchanged!

Example!
A Nondeterministic Finite Automaton (NFA) is a tuple

\[A = (Q, \Sigma, I, \delta, F) \]

where
- \(Q \) a set of states
- \(\Sigma \) alphabet
- \(I \subseteq Q \) set of initial states
- \(F \subseteq Q \) set of final states
- \(\delta : Q \times \Sigma \rightarrow 2^Q \) transition relation

Example!
Given an alphabet $\Sigma = \{a_1, \ldots, a_k\}$, consider the (k-ary, unlabeled) infinite tree T, representing Σ^*, where every branch corresponds to a different letter of Σ.

\[
\begin{align*}
\varepsilon &\quad \varepsilon \\
 &\quad a \\
 &\quad b \\
 &\qquad a \quad a \\
 &\qquad b \quad b \\
 &\qquad a \quad a \\
 &\qquad a \quad a \\
 &\qquad b \quad b \\
 &\qquad b \quad b \\
 &\quad \vdots
\end{align*}
\]
Definition of ILTA

Definition

A looping tree automaton with independent transitions (ILTA) induced by an NFA $A = (Q, \Sigma, I, \delta, F)$ working on a (k-ary, unlabeled) tree is a tuple

$$A = (Q, I, \Delta)$$

where $\Delta: Q \rightarrow 2^{Q^k}$ is the transition relation, defined as

$$\Delta(q): = \{(q_1, \ldots, q_k) \mid q_i \in \delta(q, a_i)\}$$

A run of A on the tree T

$$r: \Sigma^* \rightarrow Q$$

is a labeling of every node with a state.

A run is called successful, if $r(\varepsilon) \in I$.

Example!
Using ILTA to solve Equations

Remove “bad” states.
Check whether there is a successful run.

Complexity results

Solving equations of the above form is ExpTime-complete.

In ExpTime, because of the construction.
ExpTime-hard, by reduction from the intersection emptiness problem for deterministic top-down automata.
Language equations

Alphabet Σ, variables X_1, \ldots, X_n

\[
\begin{align*}
\phi_1(X_1, \ldots, X_n) &= \psi_1(X_1, \ldots, X_n) \\
\vdots \\
\phi_m(X_1, \ldots, X_n) &= \psi_m(X_1, \ldots, X_n)
\end{align*}
\]

for expressions ψ_i, ξ_i over X_1, \ldots, X_n.
Approximations

Suppose there is no solution. What is the “best” we can do?

- Define best
 An approximate solution that is least “bad” wrt some measure

- Define what is an approximate solution
 An approximate solution is an assignment $\sigma: \{X_1, \ldots, X_n\} \rightarrow 2^{\Sigma^*}$ that maps a constant language L_i to every variable X_i.

- Define a measure

- Find an algorithm that finds the best solution
Defining a measure

Idea

Assign a weight to every word of Σ^* and sum the weights of all violating words.

Given a language $L \subseteq \Sigma^*$ define

$$\mu(L) = \frac{1}{2} \sum_{w \in L} (2|\Sigma|)^{-|w|}$$

Has some good properties

- $0 \leq \mu(L) \leq 1$
- $\mu(\emptyset) = 0$
- $\mu(\Sigma^*) = 1$
- $\mu(\bigcup_{i \in I} A_i) = \sum_{i \in I} \mu(A)$
Lemma

Given a language $L \subseteq \Sigma^*$, it holds that

$$
\mu(L) = \frac{1}{2} \chi_L(\epsilon) + \frac{1}{2|\Sigma|} \sum_{a \in \Sigma} \mu(a^{-1}L)
$$

It induces automata!

Example

$L = \{ \epsilon, a, aba, bbb \}$
$L_1 = a^{-1}L = \{ \epsilon, ba \}$, $L_2 = b^{-1}L = \{ bb \}$

$$
\mu(L) = \frac{1}{2} \cdot 1 + \frac{1}{2 \cdot 2} (\mu(a^{-1}L) + \mu(b^{-1}L))
$$

$$
= \frac{1}{2} + \frac{1}{4} (\mu(L_1) + \mu(L_2)) = \cdots = \frac{41}{64}
$$
Consider the NFA

\[A = (Q, \Sigma, I, \delta, F) \]

defined as before, where \(F = \{ q \in Q \mid \phi \in q \} \).

For the best run(s) we have the system of equations

\[
\mu(q) = \frac{1}{2} \chi_F(q) + \frac{1}{2|\Sigma|} \sum_{a \in \Sigma} \min_{p \in \delta(q,a)} \mu(p)
\]
Theorem (Banach’s Fixed Point Theorem)

Let \((X, d)\) be a complete metric space and a function \(f : X \rightarrow X\) be a contraction. Then \(f\) has a unique fixed point i.e. there is a unique \(p \in X\) such that \(f(p) = p\).

Furthermore, the sequence \(x_0, f(x_0), f(f(x_0)), \ldots\) converges to the fixed point, for every \(x_0 \in X\).
Definitions

Definition

A metric space \((X, d)\) is called complete, if every Cauchy sequence converges to a point in \(X\).

Definition

A sequence \((a_n)\) is called a Cauchy sequence, if for every \(\epsilon > 0\), there exists an \(n_0 \in \mathbb{N}\), s.t. for every \(m, n \geq n_0\) it holds that \(d(a_n, a_m) < \epsilon\).

Definition

A function \(f : (X, d) \to (Y, d')\) is called a contraction if there is a \(\lambda \in (0, 1)\) such that \(d'(f(x), f(y)) \leq \lambda d(x, y)\) for any \(x, y \in X\).
Applications

- Picard’s Theorem
- Solving Systems of Linear Equations
- Google’s PageRank Algorithm
- and many more...
Our construction

Define $f_i: [0, 1]^n \to [0, 1]$ for every i

$$f_i(x_1, \ldots, x_n) = \frac{1}{2} \chi_F(q_i) + \frac{1}{2|\Sigma|} \sum_{a \in \Sigma} \min_{q_j \in \delta(q_i, a)} x_j$$

Then $f: [0, 1]^n \to [0, 1]^n$

$$f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n))$$

is a contraction and $[0, 1]^n$ complete.

By BFPT, there exists a unique fixed point, i.e. a tuple (x_1, \ldots, x_n) such that

$$x_i = \frac{1}{2} \chi_F(q_i) + \frac{1}{2|\Sigma|} \sum_{a \in \Sigma} \min_{q_j \in \delta(q_i, a)} x_j$$
Linear Programming Problem (LPP)

objective: \(\min/\max \ z = c_1 x_1 + \ldots + c_n x_n \)

restrictions: \(a_{1,1} x_1 + \ldots + a_{1,n} x_n \leq b_1 \)

\[\vdots \]

\(a_{m,1} x_1 + \ldots + a_{m,n} x_n \geq b_m \)
Define a new variable $x_{q,a}$, for every $q \in Q$, $a \in \Sigma$.

Intuitively, $x_{q,a} = \min_{p \in \delta(q,a)} \mu(p)$.

Then define:

$$\mu(q) = \frac{1}{2} \chi_F(q) + \frac{1}{2|\Sigma|} \sum_{a \in \Sigma} x_{q,a}$$

and $x_{q,a} \leq \mu(p)$ for all $a \in \Sigma$, for all $p \in \delta(q,a)$.

$$z = \max \sum_{q \in Q} \sum_{a \in \Sigma} x_{q,a}$$

Making use of BFPT, the feasible region is not empty, and the optimal solution corresponds to the fixed point of f.
Finding the optimal assignment

Transform the ILTA, to always make the most efficient choices.

- Set as initial state q_0 the state in I with minimum measure.
- For each $q \in Q$ and $a \in \Sigma$

$$\delta(q, a) := \{q'\}$$

where q' has the minimum measure from all states in $\delta(q, a)$.
Synopsis

- Description Logics
- Unification
- Reduction to Language Equations
- Reduction to Automata
- Approximate case
- Define a measure
- Reduction to automata
- Reduction to system of equations
- BFPT + LP

Mathematics is not that useless!
Thank you!