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Abstract

We are concerned with a mathematical modeling of vague predi-
cates and vague partitions (or equivalences or similarities) by the help
of nonstandard sets of integers. Nevertheless, it is not applicable to
concrete phenomena, since nonstandard numbers are too big to be
used in actual counting. The properties of a vague measurable simi-
larity ∼ which we consider as most important and which are captured
in the present modeling are: To ∼ there corresponds an assignment
µ(x) of integral values to the objects of the domain of discourse, and
a corresponding distance d(x, y) = |µ(x)− µ(y)|, such that:

(i) If x ∼ y and d(x, z) ≤ d(x, y), then x ∼ z.
(ii) For any two∼-similar objects x, y and for any two∼-non-similar

objects x′, y′, d(x, y) < d(x′, y′).
(iii) For any x, y such that x ∼ y, we can find a z in the same class,

i.e., x ∼ y ∼ z, such that d(x, y) < d(x, z).
(iv) For any ∼-non-similar objects x, y, such that µ(x) < µ(y),

there is a third object z, non-similar to both x and y such that µ(x) <
µ(z) < µ(y).

Further we discuss the issue of what a “right” nonstandard model
of numbers would be and some related questions.

Keywords: Vague predicate, nonstandard model of arithmetic, cut, sat-
uration.
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1 The aim of this approach and comparison with
other ones

In this paper we are concerned with a mathematical representation-interpretation
of vagueness. The emphasis is on its theoretical aspects rather than its prac-
tical ones. It means that the representation succeeds in modeling the most
essential characteristics of the notion, but it fails to be applicable to concrete
vague situations. This is because the representation makes use of “gener-
alized” integers (called nonstandard) which, though have all the familiar
properties with respect to addition, multiplication, etc., in fact exceed all
standard ones, and hence are absolutely infeasible objects.

Apart from applications however, one might be interested in the structure
of vagueness, and this is what we are primarily trying to grasp in this paper
through mathematical modeling. The main features of this structure are
the following:

(i) There are no jumps when passing from a vague predicate P to its
negation ¬P , or from one class of a vague partition ∼ to another. The
transition is smooth and continuous.

(ii) Despite (i), one always believes that any two objects x, y are objec-
tively similar or dissimilar with respect to the (P,¬P )-partition or to ∼, as
if there were a strict distance relation d(x, y) among them, such that x ∼ y
if and only if d(x, y) < something (this something, clearly, cannot be an
ordinary number if we want ∼ to be transitive).

(iii) In the case of a partition ∼, given any two classes of it (colors,
species, etc.), we always consider it possible to find an intermediate class
for them, lying between, as if the totality of the ∼-classes were actually
dense with respect to the distance d above, and eventually infinite. (For
example, between the zebra and the horse, there had always been room for
an intermediate species. And indeed the missing hybrid, called “zebroid”
was recently obtained.)

We distinguish two basic manifestations of vagueness:
(a) Vague predicates or, equivalently, vague two-class partitions of the

universe into objects satisfying P and those satisfying ¬P (which also gen-
eralize to n-class partitions for finite n).

(b) Vague partitions of the universe (or some totality of objects) with
infinitely many classes, which correspond to various taxonomies of objects
into “kinds”.

Of course, apart from predicates and partitions, there are also vague ob-
jects. A vague object is one with uncertain boundaries like Atlantic Ocean,
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or Mount Everest or “that tree”. But, clearly, any such object can be iden-
tified with the set of elementary units of matters (e.g. molecules) comprised
within the boundaries, or the property P (x): “to be a molecule of”. Thus
objects exhibit essentially the same type of vagueness as that of (a). So we
may confine ourselves to vague predicates and vague partitions.

Of the preceding two manifestations of vagueness, we believe that the
second one is by far more genuine and interesting. Vagueness of predicates,
on the contrary (hence also vagueness of objects), admits precisifications.
The ability to make a predicate P more and more precise, by sharpening
more and more the boundaries separating P from non-P , in fact invalidates
vagueness itself as a notion of theoretical significance, and the issue enters
the scope of the usual approximation techniques. This is particularly clear in
the case of (physical) objects (seas, mountains, etc.) where the boundaries
are certain lines drawn by mere convention. Whether a particular molecule
of water is or is not part of Atlantic Ocean is what we call in this paper con-
ventional vagueness. It has to do mainly with the problem of measurement
of continuous magnitudes using reals. Yet, this is the type of vagueness that
most authors (e.g. [1], [6]) are primarily engaged in.

According to Kit Fine, vagueness is “deficiency of meaning. As such, it is
to be distinguished from generality, undecidability and ambiguity” [1, p. 265].
An immediate outcome of this deficiency is of course the existence of truth-
value gaps. Vague predicates like “small”, “green”, “clever”, etc., cannot be
said true or false for certain borderline arguments. So the approaches taken
by many authors aim at remedying this situation by raising the gaps. This
“logicistic” approach has two subdirections: (i) the so called “truth-value”
approach (Fine’s terminology) is attempting to raise the gaps by modifying
appropriately the underlying logic (typical work of this kind is [7], using
Kleene’s three-valued logic to this effect), and (ii) the “super-truth-value”
approach, mainly taken by Fine [1].

The present paper does not share any of the aims of logicistic approach.
Quite modestly it seeks to describe a kind of “structure” for vagueness, by
giving quantitative expression to the characteristic features of the notion. If
we should give a name to such an approach we might call it “representa-
tional”.

This paper bears a certain analogy with Parikh’s [5] in the following
sense. Parikh’s idea is that the main source of vagueness is measuring by
using reals, namely the discrepancy between the “real sizes” of things, ex-
pressed by real numbers, and the outcomes of our actual measurements
which are always rational numbers. So he proposes a theory of “vague real
numbers” expressed as intervals [p, q] of rationals. In accordance with this he
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devices a specific truth-value assignment for propositions containing claims
of that type. The analogy lies in that we also shift from measurement with
standard integers to that with nonstandard ones, and further to measure-
ment with “cuts”, which may be thought of as “generalized” numbers. But
the analogy stops here. As already said above, we do not think that the
kind of vagueness manifested in measurement impreciseness is of real inter-
est. The question e.g of whether a certain piece of matter belongs to Mount
Everest or not (the example is extensively treated in [7]) is of conventional
character. There is no compelling similarity among pieces of matter belong-
ing to Mount Everest, which breaks down when a piece belongs and another
does not to the Mount.

In contrast, the question of whether a given citrus is a lemon or not is
not conventional; it is a matter of taxonomy obeying objective criteria. In
terms of the distance d, the conventionality of the first partition is revealed
by the fact that we can find a point x belonging to Everest and a point y not
belonging to it, arbitrarily close to each other. While the citrus c will be a
lemon if and only if, given a lemon x and a non-lemon y, d(c, x) < d(c, y). In
other words, a lemon and a non-lemon are always farther apart than any two
lemons. It is these natural vague predicates and partitions, not produced
by conventional divisions of the reality, that we shall be mainly interested
in here.

More related to the present work seems to be Novák’s work [4], but this
is only superficially true. Novák is working in P. Vopeěnka’s alternative set
theory (AST) (a theory designed to deal with semisets) and is concerned
with a very special approximation of semisets by certain sets that he calls
fuzzy. As a consequence, his results are technical contributions to the the-
ory AST rather than contributions to the phenomenon of fuzziness itself. Of
course the universe of AST is a nonstandard one, in the sense precisely used
here, hence suitable for representing vague collections. However, as we shall
explain in the last section, “semisets” are not entirely new mathematical
objects. They are in fact nonstandard segments of numbers dressed in set-
theoretic covers. Therefore, instead of exploring the connection of vagueness
with semisets, it seems much more natural to go deeper and explore prop-
erly the connection of vagueness with the very source of semisets, namely
nonstandardness itself.
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2 Vague predicates and their measures

A typical vague predicate (concerning numbers) is P (n): “n is small”, or
(concerning people) B(x): “x is bald”.

In the first example, the meaning of the predicate P (n) is complete (and
the truth-value “true”) for as long as we keep down to admittedly small
numbers. The deficiency of meaning begins and grows larger and larger,
as we are going upward to bigger and bigger numbers. As the meaning
is gradually obscured, the truth-value gaps emerge. But if we continue to
move farther, and when we will have been adequately far away, the meaning
will be gradually restored and soon will become clear again (together with
the truth-value “false”). If we denote by P (n) ↑ the fact that “P (n) is
neither true nor false”, the above situation concerning the predicate P can
be illustrated in Fig. 1.

→
N

p
0

)
P (n)↑

)
¬P (n)P (n)

Fig. 1

The sign “)” used to denote the corresponding separation of the set
N of integers into intervals, does not indicate a cut-point but just a gap,
an ordinary order-gap, i.e., a cut of the number line into two segments of
which the first one has no last and the second one has no first point. This is
because if n is small, then apparently n+1 must be small too. The preceding
separation consists of three intervals of N but the number of intervals is not
a key-factor of the situation. On the contrary, it may prove misleading.
The intermediate interval P (n) ↑ simply represents the agent’s period of
uncertainty with respect to the supposed objective fact of P (n) or ¬P (n).
We similarly might assume another period of uncertainty between P (n) and
P (n)↑, as well as between P (n)↑ and ¬P (n), and so on ad infinitum. Instead,
it is much simpler to ignore intervals of subjective uncertainty and admit
just one vague transition, namely from P (n) to ¬P (n), the latter supposed
to be objective facts (Fig. 2).

Figs. 1 and 2 already depict a rather strange situation, since N appears
to contain bounded subsets without greatest element, a fact contradicting
the induction principle. (In fact this is the Sorites or Wang’s Bald Man
Paradox.)
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→
N

p
0

)
P (n) ¬P (n)

agent’s uncertainty →←

Fig. 2

Concerning now the predicate B(x) of baldness, we have two options:
The hairy part of a man’s head can be considered to be either a continuum,
and thus its area should be measured by the help of reals, or a discrete set,
in which case we have to count the hairs one by one by the help of integers.
In both cases we assign to each man x a measure µ(x), where µ(x) ∈ R or
µ(x) ∈ N , which “measures” baldness in the following sense:

(1) If x is bald and µ(y) ≤ µ(x), then y is bald too.
(2) If x is not bald and µ(x) ≤ µ(y), then y is not bald too.

As a result of (1) and (2) we have immediately that
(3) For every bald x and for every nonbald y, µ(x) < µ(y).
(1)-(3) above hold independently of whether truth-value gaps exist or

not. This, in turn, depends on how we measure baldness. If we measure it
as an area, i.e., µ(x) ∈ R, then the only thing we can do is specify some real
a, and define (by convention) x to be bald if the hairy part of his head is
less than or equal to a; else he is nonbald. In such a case, and in view of
the agreements (1) and (2), the only uncertainty stems from the process of
measuring and concerns just men of hairy area very close to a. We have, in
fact, a quite thin gap of meaning, created by the one-point gap of the dense
ordering of R as shown in Fig. 3.

a· ( →
R

p
0

)
B(x) ¬B(x)

Fig. 3

The most striking defect of measuring baldness by reals is that we lose
the sense of “internal affinity” between members belonging to the same side
of the boundary a. Specifically, one expects any two bald men or any two
nonbald men to be closer to each other (w.r.t. this characteristic of course),
than a bald and a nonbald man. But once nearness is measured by the
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distance |µ(x) − µ(y)|, any notion of affinity collapses, since the distance
between objects from both sides of a can be arbitrarily small, hence smaller
than the distance between objects on one side. We see this in Fig. 4 below,
where we find the bald man y to be “farther” from the bald man x than from
the nonbald z. Fig. 4 exemplifies what we previously called “conventional
vagueness”.

x zy

> ε← −→ < ε← →
a· ( →

R
p
0

)
B(x) ¬B(x)

Fig. 4

If, on the other hand, µ(x) counts the number of hairs of a man’s head as
discrete items, the situation is similar to that of the predicate P (n). There
are objectively bald man (for µ(x) small) and nonbald men (for µ(x) big)
only, though the observer may have difficulty to decide (for µ(z) such that
P (µ(z)) ↑) (see Fig. 5).

→
N

p
0

)
µ(x) µ(y)

B(x) ¬B(y)agent’s uncertainty →←

Fig. 5

The situation of having bounded subsets of N with no last elements
appears again (whence the name “Bald Man Paradox”).

The preceding examples motivate the following definition.

Definition 2.1 A predicate P (x) on a set X is said to be measurable if
there is a function µ : X → N such that either for all x, y ∈ X,

(i) µ(x) ≤ µ(y) &P (y) ⇒ P (x),
or for all x, y ∈ X,

(ii) µ(x) ≤ µ(y) &P (x) ⇒ P (y).
(Since, clearly, P satisfies (i) if and only if ¬P satisfies (ii), P is measurable if
and only if ¬P is measurable.) A measurable predicate is said to be vague if
either {µ(x) : P (x)} or {µ(x) : ¬P (x)} is bounded and contains no greatest
element.
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A great deal of commonly used vague predicates, like “tall”, “far”,
“heavy”, “big”, “strong”, etc., are obviously measurable. But even “red”,
“dark”, “soft”, “smooth”, etc., may become measurable by choosing more
refined techniques of measurement. Others, like “nice”, “ugly”, “happy”,
“fair”, “moral” and so on, may remain for ever essentially nonmeasurable,
but to the extend they do so, we are allowed to consider them ambiguous
rather, than simply vague, i.e., as exhibiting a high degree of personal or
social taste and habit.

3 Vague partitions and their measures

The case of partitions differs from that of predicates in the number of
equivalence classes produced. Instead of having just two ({x : P (x)} and
{x : ¬P (x)}) as in the case of predicates, we now have, in general, infinitely
many classes [x] = {y : y ∼ x}, for x belonging to the ground set. For
most partitions ∼, we can again attribute values µ(x)’s to the values x’s
(preferably integers), and the distance d(x, y) = |µ(x)−µ(y)| represents the
nearness relation corresponding to ∼. For instance, if ∼ is the sameness of
color, µ(x) could be the wavelength measured in an appropriate scale. Then
the desired properties that d should satisfy in order for ∼ to be a vague
partition are the following:

(i) If x ∼ y and d(x, z) ≤ d(x, y), the x ∼ z (simply by the fact that d
“measures” ∼).

(ii) For any two ∼-similar objects x, y, and for any two ∼-nonsimilar
objects x′, y′, d(x, y) < d(x′, y′). This captures the intuitive idea that any
two objects within the same color shade are “closer” to each other than any
two of distinct shades.

(iii) For any x, y such that x ∼ y, we can find a z in the same class, i.e.,
x ∼ y ∼ z, such that d(x, y) < d(x, z). We can always move farther and
farther in the same class.

(iv) For any ∼-nonsimilar objects x, y, there is always a third one z non-
similar to both x and y but “lying between” them, e.g. d(x, z) = d(y, z) =
d(x, y)/2. This represents the fact that the classes of ∼ are densely spread,
or that no class has an immediate neighbor. This is clearly the case of colors,
species, etc.

Typical of this kind are the partitions (equivalences) x ∼ y: “x, y are of
the same color”, or “x, y are of the same species”. The symbol ∼ will be
used for any such partition. Another name for this relation is “similarity”,
in which case the equivalence class is called “kind”. The notion of similarity
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lies at the very basis of our knowledge about the world, since every cognitive
activity comprises classification of things into kinds. As Quine puts it in [6]:

“The notion of a kind and the notion of similarity or resemblance
seem to be variants or adaptations of a single notion. Similarity
is immediately definable in terms of kind; for, things are similar
when they are of a kind. (...) We cannot imagine a more familiar
or fundamental notion than this, or a notion more ubiquitous in
its applications. On this score it is likely the notions of logic: like
identity, negation, alternation and the rest. And yet, strangely,
there is something logically repugnant about it. One’s first hasty
suggestion might be to say that things are similar when they have
all or most or many properties in common. But any such course
only reduces our problem to the unpromising task of settling
what to count as a property [6, p. 117].

Yet a paradox is lurking here. The term “similarity” is commonly at-
tributed to relations weaker than equivalences, namely those which are re-
flexive and symmetric but miss transitivity. If µ(x)’s are as before measures
assigned to the objects x’s of our domain, then typical similarity relations
between them are the relations ∼n, for n ∈ N , where

x ∼n y iff |µ(x)− µ(y)| ≤ n.

The failure of transitivity is thought not only to be in accordance with
vagueness, but even to capture it. The classical view holds that transitivity
and vagueness are incompatible. If we wish to save transitivity, then we
must drop vagueness and vice-versa. The paradox here is that at the same
time, when talking about kinds, we think of them as normal non-overlapping
classes which partition the domain of discourse, though such classes can
be produced by nontransitive relations. When talking about colors, for
example, we implicitly assume that colors are distinct non-overlapping and
exhaust the range of colorful objects. There is no pink which is, at the same
time, red, and no yellow which is also orange. Yet the boundary between
yellow and orange remains unclear.

A way out of the paradox is to show that vagueness and transitivity
are in fact compatible. That the relation ∼, though a real equivalence, can
produce classes with unclear boundaries. Such relations are made possible
in the nonstandard approach, if we replace the similarity ∼n by ∼I :

x ∼I y iff |µ(x)− µ(y)| ∈ I,
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where I is a cut (cf. section 5), and show∼I to have the right properties. The
properties we want a vague partition to satisfy have already been mentioned
in the beginning of this section (while their motivation was also discussed
in section 1). Let us restate them here in the form of an official definition.

Definition 3.1 An equivalence ∼ on a set X is said to be measurable, if
there is a function µ : X → N such that, if we put d(x, y) = |µ(x) − µ(y)|,
then the distance d has the following properties:

(i) If x ∼ y and d(x, z) ≤ d(x, y), then x ∼ z.
(ii) For any x, y such that x ∼ y and x′, y′ such that x′ 6∼ y′, d(x, y) <

d(x′, y′).
The measurable equivalence ∼ is said to be vague if, in addition, it holds

that:
(iii) For any (or, at least, some) x, the set {d(x, y) : y ∼ x} has no

greatest element, and
(iv) For any x, y such that x 6∼ y, and µ(x) < µ(y), there is a z such

that x 6∼ z and y 6∼ z and µ(x) < µ(z) < µ(y).

The problem both with vague predicates and partitions as defined in
Definitions 2.1 and 3.1 is just (!?) their existence. Specifically, it is clear
from the examples cited that vague partitions in the sense of Definition 2.1
exist if and only if bounded sets of integers without last element, like those
in Figs. 1 and 5, exist. We will also see that if such sets exist, then we
can easily find partitions satisfying the properties of Definition 3.1. Thus
the crucial factor is proved to be the structure of the system of numbers by
which we measure the objects of our domain of discourse. It is therefore
necessary to give some background information on such systems without
heavy technical details. This will be done in the next two sections, where
also the existence of relations defined in Definitions 2.1 and 3.1 is shown.
The reader interested in more technical details of the facts mentioned may
consult, say, [2].

4 Basic facts about models of arithmetic and cor-
relations with vague predicates

The set of integers ω = {0, 1, 2, . . .}, with its operations +, · and its or-
dering <, is the least controversial object in the entire mathematics. The
word “arithmetic”, however, or “number theory”, is more ambiguous. The
vast majority of people mean by that the “true facts of ω”, i.e., the totality

10



of propositions of the language of numbers that hold true in the struc-
ture ω. This (semantic) interpretation of the term is also called “complete
arithmetic” and is denoted Th(ω), “the theory of ω”. In logical notation,
Th(ω) = {φ ∈ L : ω |= φ}, where L = {0,′ , +, ·} is the “language of arith-
metic”, and |= means satisfaction.

Early in this century, on the other hand, Peano isolated a few basic
truths about numbers and proposed them as axioms of the system known
today as “Peano Arithmetic”, or PA. PA is also called “formal arithmetic”
and contains precisely the propositions of the language of numbers that can
be proved from the axioms of PA by purely syntactic means. Since ω is the
archetype structure for numbers, the axioms of PA must of course hold in ω,
hence PA ⊆ Th(ω). But Gödel in 1931 showed that PA is a theory strictly
weaker than Th(ω), and Skolem in 1934 found that there is an immense
variety of systems M,N, . . . which “look like” ω, but are not isomorphic to
that or to each other, and which satisfy the axioms of PA. If M |= PA is any
such model, it is an easy exercise to show that M contains (an isomorphic
copy of) ω as an initial segment, i.e., ω ⊆ M , +, · and < of M and ω agree
and all elements of M − ω lie after all elements of ω, i.e.,

(∀m ∈ ω)(∀n ∈ M − ω)(m < n).

The elements of ω are called standard, those of M −ω nonstandard and the
structure M |= PA is said to be a nonstandard model of (formal) arithmetic,
the standard model being, of course, ω. Therefore the picture of a nonstan-
dard model is as in Fig. 6. (For a brief account of the construction of a
concrete nonstandard model see Appendix A).

→← ← →
→
M

p
0

)
ω

p
m n

p
standard part nonstandard part

Fig. 6

The multiplicity of models of PA is due of course to the specific axioms
of the latter, which fail to characterize uniquely the worlds they describe.
PA consists of a finite part PA− containing trivial truths, like “0 is the
first number”, “x + 0 = x”, etc., and the Induction Scheme, denoted Ind,
consisting of all formulas of the (syntactic) form

(Iφ) [φ(0) & (∀x)(φ(x) ⇒ φ(x + 1))] ⇒ (∀x)φ(x),
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where φ(x) ranges over the formulas of the first-order language L in one
free variable x. (“L is first-order” means that each sentence of L talks only
about numbers, neither about sets of numbers, nor sets of sets of numbers,
etc.) The scheme Ind = {Indφ : φ ∈ L} is the heart of the system PA. It
tells us how a certain collection of “good” sets behave in a structure.

Given a model M |= PA (either standard or nonstandard), each formula
φ(x) of L produces a set X ⊆ M , which is defined by φ in M , namely the
set of elements of M which satisfy φ(x), i.e., X = {m ∈ M : M |= φ(m)}.
Each such set is called definable and let Def(M) be the collection of all
definable subsets of M . In contrast to the arbitrary X ⊆ M , each element
of Def(M) has a “description” in L, hence Def(M) is only countable, since
the descriptions φ(x) available in the language are only countably many.
Now it is a simple exercise to show that the induction scheme Ind can be
informally and equivalently rephrased as follows:

(Ind) Every definable set of numbers has a least element.

Complete arithmetic differs from the formal one essentially in the fact
that it replaces Ind above by the much stronger, obviously second-order,
principle:

(Ind∗) Every set of numbers has a least element.

Ind∗ says that the set of integers is well-ordered. And, indeed, ω is such
by its very construction, as the least set which contains an initial object 0
and whenever contains x it also contains x ∪ {x}. Conversely, if a number
structure M satisfies Ind∗, the M ∼= ω. Consequently, Ind∗ characterizes
completely the world of numbers.

Thus, to choose between formal and complete arithmetic is to choose
between Ind and Ind∗. From a mathematical point of view PA−+Ind∗ does
not constitute a theory, since the latter always means an axiomatized set of
claims, and Ind∗ is, clearly, not (first-order) axiomatizable.

A strong evidence against Ind∗ is the existence of various sorites occur-
ring very frequently in all contexts of real life. A heap of sand considered
as a set of grains, the set of hairs of a nonbald man, the set of units of a
big number, the set of moments of one’s childhood, etc., are all sorites. The
stepwise passing from the property to be a sorite to its negation remains
mysterious (this is the Sorite Paradox), in so far as we measure such col-
lections with standard numbers. In standard mathematical formalizations
such collections simply do not exist. Ind∗ does not permit their existence.
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If we consciously reject Ind∗ in favor of Ind, then it would be more
consistent to choose to live in a nonstandard world than in ω, since the
latter still satisfies Ind∗. (For the problem of how to pick such a world out
of a multitude of candidates, see section 6.) A nonstandard model M always
leaves room for “intractable”, “uncontrolled”, vague sets of numbers. For
instance, within such an M , the set ω ⊆ M of standard elements is non-
definable (otherwise the set M − ω would have a least element, hence ω
would have a greatest one). Consequently, ω is one of those “vague” subsets,
apparently the simplest one.

To return to the situation of the examples of Figs. 2 and 5 and to the
Definition 2.1 of vague predicate, a glance comparing Figs. 2 and 5 with 6
suffices to convince us that vague phenomena of this type occur if and only
if the structure of numbers used to measure them contain initial segments
with no greatest element. Such segments have traditionally been called cuts.
ω is one such but in fact there exist many many more. So, as a conclusion
of what has been said so far, we can state the following.

Proposition 4.1 The following statements are equivalent:
(i) There are measurable vague predicates.
(ii) There are proper cuts of integers.
(iii) Axiom Ind∗ is false.

Proof. (i)⇒(ii): Let P (x) be measurable and vague and let φ(x) be a
measure such that µ(x) ≤ µ(y) and P (y) imply P (x). Then {µ(x) : P (x)}
obviously forms a proper cut of N .

(ii)⇒(iii): Let I ⊂ N be a proper cut. Then the set N − I, clearly does
not have a least element. (If it did have a least element n, then n− 1 would
be the greatest element of I, a contradiction.) Thus Ind∗ fails.

(iii)⇒(i): Let Ind∗ fail in N . It follows there is a set X ⊆ N with no
least element. Putting Y = {y ∈ N : (∀x ∈ X)(y < x)}, clearly Y is a
proper cut of N . If we define P (x) := x ∈ Y , then P (x) is measurable with
measure µ(x) = x, and vague, so we are done. a

5 Some facts about cuts of numbers and existence
of vague partitions

In the preceding section we showed that existence of vague predicates (in
the sense of Definition 2.1) is equivalent to simple existence of cuts. For
the existence of vague partitions as defined in Definition 3.1, a little closer
examination of cuts is needed.
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For the rest of the paper we fix some nonstandard model N of PA. We
do not assume any special properties of N for the time being. (But for
the extra nice properties that N might have, see the last section.) Let the
letters I, J, . . . range over cuts. Always we refer to proper cuts, i.e., I such
that I 6= N . ω is the least cut of N . Once a cut exists, numerous other
appear too. There are cuts in N arbitrarily long. For instance if k ∈ N ,
then the set ω · k = {x : x ≤ n · k, for some n ∈ ω} is a cut produced by the
sequence k, 2k, 3k, . . .. Cuts are linearly ordered in the obvious way (I < J
if I ⊂ J), as well as w.r.t. the numbers (k < I if k ∈ I, and I < k if n < k
for every n ∈ I). Thus, cuts behave in a sense like generalized numbers.
Addition, multiplication etc. can also be defined between cuts, as well as
between cuts and numbers, though not in a unique way. For example, there
are two versions of I + J : the “lower” one

{x : (∃m ∈ I)(∃n ∈ J)(x ≤ m + n)},
and the “upper” one

{x : (∀m /∈ I)(∀n /∈ J)(x < m + n)}.
Similarly for the other operations.

Cuts can also be seen as models of (weak) fragments of (formal) arith-
metic. For example, every cut is closed under succession ′. A bit stronger
are those closed under +. For instance the cuts of the form ω · k mentioned
earlier are easily seen to be such. The cut kω = {x : x ≤ kn, for some n ∈ ω}
is closed under ·, and so on. The strongest closure condition for a cut I is to
be a model of PA, like ω. Classification of cuts from this point of view, that
was initiated in [3], is an interesting topic that raises deep problems about
logical structure of formal arithmetic.

Given a cut I, let us try to simulate the sought vagues equivalence ∼ by
the relation ∼I on N defined by

x ∼I iff |x− y| ∈ I.

∼I is obviously reflexive and symmetric. If, moreover, I is closed under
addition, transitivity is guaranteed.

Proposition 5.1 If the cut I is closed under addition, then ∼I is an equiv-
alence relation.

Proof. Let x ∼I y and y ∼I z. Then |x − y| ∈ I and |y − z| ∈ I. By
closure under addition we have |x−z| ≤ |x−y|+|y−z| ∈ I, hence |x−z| ∈ I.
Therefore I is transitive. a
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Closure under addition yields also the following pretty nice phenomenon,
which is essential in modeling vagueness: Two numbers within the cut are
always less far apart than any two one of which is within and the other is
without the cut.

Proposition 5.2 Let I be closed under +, x, y ∈ I and z /∈ I. Then |x−y| <
I < |x− z|.

Proof. Clearly |x − y| < x < I. On the other hand, by assumption
x < I < z. Now if z−x ∈ I, then by the closure condition, (z−x)+x = z ∈ I,
contrary to the assumption. Thus z − x /∈ I, or I < |x− z|. a

Fig. 7 pictures the situation described in Proposition 5.2.
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Fig. 7

Notice that the picture above is illusory in the following sense: Although
the points x, z seem to be able to approach each other as much as we wish,
in fact they stand always too far apart, namely > I far. The illusion shows
that representing discrete number series by continuous lines my be proved
highly misleading. The bizarre properties of cuts cannot be pictured by
ordinary geometric figures.

Let xI be the equivalence class of x w.r.t. ∼I . Then the sets xI are
intervals without end-points (i.e., if y, z ∈ xI and y < w < z then w ∈ xI)
except from the first interval, of course that has 0 as least element. The
classes xI ’s are linearly ordered in the obvious way, i.e., xI < yI if x < y
and y − x > I. Recall that a linearly ordered set is dense if between any
two of its points there always exist a third one. Hence every dense set is
infinite. Density of classes is also a property necessary for simulating vague
partitions. The sufficient condition on I in order for ∼I to be dense is again
closure under addition.

Proposition 5.3 Let I be a cut closed under +. Then the set of classes of
∼I ordered in the natural way is dense.
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Proof. Let xI < yI . Then y−x > I. Let z = 1
2(y+x), or z = 1

2(y+x+1)
(according to whether y − x is even or odd, respectively). Suppose, for
simplicity, that y − x is even. Then |x − z| = |y − z| = 1

2(y − x). Because
of the closure under +, z = 1

2(y + x) > I, since y − x > I. Therefore
xI < zI < yI . This shows that the ordered set of classes is dense (see Fig.
8). a
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Fig. 8

Using facts 5.1- 5.3 above, we immediately get the following.

Proposition 5.4 Let I be a cut closed under addition. Then the relation
∼I is a vague equivalence in the sense of definition 3.1.

Proof. Recall that the properties required in order for ∼I to be vague
are:

(i) If x ∼ y and d(x, z) ≤ d(x, y), then x ∼ z.
(ii) For any x, y such that x ∼ y and x′, y′ such that x′ 6∼ y′, d(x, y) <

d(x′, y′).
(iii) For any x, the set {d(x, y) : y ∼ x} has no greatest element, and
(iv) For any x, y such that x 6∼ y, and µ(x) < µ(y), there is a z such

that x 6∼ z and y 6∼ z and µ(x) < µ(z) < µ(y).
In our case d(x, y) = |µ(x)−µ(y)| = |x−y|, so (i) and (iii) are due to the

fact that I is a cut. (ii) and (iv) from propositions 5.2 and 5.3, respectively.
a

The relations ∼I may be called interval partitions (because of the form
of their classes). The simplest of them is of course ∼ω. Since ω represents
the “small” numbers of N and N − ω the “big” ones, x ∼ω y means that
|x− y| is a small “feasible” number.

Yet, as already said in the introduction, the above model is far from being
applicable to real phenomena. What it represents is the asymptotic behavior
of the system, when the ordinary bounds on counting and discerning ability
of humans are exceeded. To give an example, suppose x, y range over colors
and let µ(x) = l(x) =the wave length of x. The smaller the length unit
used to measure l(x) is chosen, the bigger the length l(x) becomes and the
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finer the partition of the colorful reality into kinds of colors. By repeatedly
shortening the unit, we get closer and closer, asymptotically, to the cut
situation. Meanwhile, our visual discerning ability fades out and soon comes
to an end. Thus, for a sufficiently small unit ε of wavelength (i.e., beyond
our visual discerning ability), we can specify two numbers l < m of N such
that for all shades x, y,

(i) if d(x, y) ≥ m · ε, then the shades x, y are discernibly distinct and
(ii) if d(x, y) ≤ l · ε, then the shades x, y are indiscernible.
The pair (l, m) is a real-life substitute for the ideal of the cut ω. If

the latter existed, then it would lie somewhere between l and m, i.e., l <
ω < m. Hence ω is the theoretical limit of the increasing sequence of the
lower bounds l’s and the decreasing sequence of the upper bounds m’s in
the preceding experiment.

6 Are there “standard” nonstandard models?

In this section I would like to comment on a possible natural question that
might be raised by the reader, having to do with the tremendous diversity of
nonstandard models. How can we choose to work on any particular model
as better qualified for a description of vagueness with respect to all the rest?
Would not that choice be highly arbitrary? To put it in other words: Can
there be “standard” nonstandard models for the treatment of vagueness?

I think the answer to the last question can, in a reasonable sense, be
“yes”. And the key property required for a nonstandard model to “behave
well” is saturation. This is a technical model-theoretic term but, intuitively,
a saturated model may be thought as a rich, full model, one which satisfies
every property that is consistent with the set of its truths. In fact there are
various degrees of saturation. What is appropriate for our discussion here is
the so-called ℵ1-saturation. We shall, instead refer to it simply as saturation.
For its classical definition, as well as some weakenings of it, see Appendix B.
Here I want to draw the reader’s attention on a simpler equivalent formula-
tion (due to Pabion) that helps to understand why a saturated model is the
best for modeling vagueness as a constituent of our world. In conjunction
with the fact that for cardinality ℵ1 the saturated model is unique, this will
provide a satisfactory answer to the question.

Given a nonstandard M , let the letters m,n, . . . range exclusively over
the standard part ω ⊂ M and let lower Greek letters α, β, . . . range over the
whole M . An ω-sequence of M is any set X ⊆ M enumerated by means
of ω, i.e., written in the form X = {xn : n ∈ ω}. (Clearly, no ω-sequence
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can be definable.) Recall that a function f from (a subset of) M to M is
definable (in M), if for some formula φ(x, y) in two free variables, for all
α, β ∈ M ,

f(α) = β iff M |= φ(α, β).

Saturation, then, can be stated a follows (cf. [3] for proofs).

Definition 6.1 A model M |= PA is said to be saturated if for every ω-
sequence (xn)n∈ω, of elements of M there is a definable function f from M
to M such that ω ⊆ dom(f) and f(n) = xn for all n ∈ ω.

In order to “translate” the preceding definition into real-life terms, one
should bear in mind the following:

(1) When referring to definable objects of a model M , it is helpful to
think of them as the objects of M which are exactly “seen”, or “perceived”,
or “comprehensible” by the residents of M , i.e., observers located inside M .

(2) The length of the cut ω (and possibly other cuts too) represents
reasonably the observer’s distance from the horizon (of whatever kind the
latter might be: visual, perceptual, historical, etc.). When watching e.g.
from the top of a hill a flat area spreading below across the horizon, then
the “vague distance” of our position from the horizon’s line can be put equal
to ω. Objects lying before the horizon are in a standard distance n ∈ ω,
while objects beyond the horizon are in a nonstandard distance α > ω from
the observer.

If (1) and (2) are agreed upon, then the saturation condition (Definition
6.1) has the following remarkable consequence:

(*) If a perceived (i.e., definable) state of affairs φ holds of every element
of a sequence (xn)n∈ω progressing towards the horizon, then (xn)n∈ω is ex-
tendible to a sequence (xβ)β≤α that crosses the horizon and its members
also satisfy φ.

(Put a bit more naively: Any perceived totality that stretches till the
horizon, goes beyond that. When we see e.g. a row of trees, a river, a road,
etc., to extend till where our sight reaches, we are sure that this same object
continuous even further, where the eye cannot see.)

(*) is a straightforward consequence of saturation. Let us prove it for
the sake of completeness.

Proposition 6.2 Let M be a saturated model, let φ(x) be a property in the
language of arithmetic, and let (xn)n∈ω be an ω-sequence such that M |=
φ(xn) for all n ∈ ω. Then there is a nonstandard α ∈ M , (i.e., α > ω) such
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that the sequence extends to a definable one (xβ)β≤α, such that M |= φ(xβ)
for every β ≤ α.

Proof. Given (xn)n∈ω, as stated, there is, by saturation, a definable
function f such that f(n) = xn for all n ∈ ω. Let δ > ω be some nonstandard
integer. Put

Y = {γ ≤ δ : M |= (∀β ≤ γ)φ(f(β)}.
By hypothesis M |= φ(f(n)) for all n ∈ ω and hence ω ⊆ Y . Y is, clearly, a
definable and bounded initial segment of M , hence (by induction) it has a
greatest element α. Therefore Y = {β : β ≤ α}, and the required extension
of the sequence (xn)n∈ω is just the set X = {xβ : β ∈ Y }, where xβ = f(β).
a

Condition (*) and its mathematical expression 6.2 has been first explic-
itly formulated by Vopěnka in his so-called Alternative Set Theory (AST)
presented in [10]. This is a theory about finite sets, where, however, “fi-
nite” incorporates axiomatically nonstandardness. It is one of the earliest
attempts to implement nonstandard into a theory right from the beginning,
to the effect that every model of the theory contains a nonstandard (and
saturated) system of integers. Saturation is introduced there by the so-
called “prolongation axiom”, which is a disguised form of Definition 6.1.
The set-theoretic analog of cuts is called there semisets. Semisets and their
approximation by certain special sets, called there “fuzzy” (somewhat arbi-
trarily), is the content of Novák’s work [4].

Models satisfying Definition 6.1 are essentially unique (if of minimal un-
countable cardinality) and simulate pretty well the way things go in many
real situations: The sharp definable properties overspill smoothly and uni-
formly the horizons of vague partitions. For a concrete application of such
models to the study of transformations and identity change of artificial ob-
jects the reader may consult [8] and [9].

Appendix A

Concrete nonstandard models can be obtained by the help of “ultraprod-
ucts” and “ultrapowers”. Let me sketch very briefly for the reader’s sake the
construction of an ultrapower M = ωω/D. A (nontrivial) ultrafilter on ω is
a set D ⊆ P (ω) of subsets of ω such that: (a) If X, Y ∈ D then X ∩ Y ∈ D,
(b) If X ∈ D and X ⊆ Y , then Y ∈ D, (c) ∅ 6∈ D, (d) for every X ⊆ ω,
X ∈ D or ω − X ∈ D, and (e)

⋂
D = ∅. The existence of such objects

follows easily from the axiom of choice. Let ωω be the set of all mappings
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f : ω → ω. Any ultrafilter D on ω induces an equivalence relation =D on
ωω as follows: f =D g if {n ∈ ω : f(n) = g(n)} ∈ D. In words, f, g are
equal modulo D if they coincide on a set of D. Let M = ωω/D be the set
of equivalence classes with respect to =D. If we identify each n ∈ ω with
the constant function n∗ ∈ ωω such that n∗(m) = n for every m ∈ ω, then
ω ⊆ M . Moreover +, ·, <, etc., are extended to M in the modulo-D way,
i.e., f + g = h iff {n : f(n)+ g(n) = h(n)} ∈ D, etc. This way M becomes a
number structure and it is shown that M |= PA. That M contains nonstan-
dard elements is easily seen from the fact that e.g. id : ω → ω is distinct
from all standard n∗. The ultrapower M = ωω/D is uncountable and, upon
assuming the continuum hypothesis, it has cardinality ℵ1.

Appendix B

A model M for the language L is ℵ1-saturated if for every countable
set of formulas Φ = {φn(x, a) : n ∈ ω} in one free variable, containing
parameters a from a countable set A ⊆ M , the following holds:

If every finite subset of Φ is realized in M , i.e., for every n ∈ ω,

M |= (∃x)(φ1(x) ∧ φ2(x) ∧ · · · ∧ φn(x)),

then the entire Φ is realized in M , i.e, there is a c ∈ M such that M |= φi(c)
for every i ∈ ω.

It is easily shown that every ℵ1-saturated model is uncountable. More-
over any two ℵ1-saturated models of cardinality ℵ1 are isomorphic.

If in the above definition we change the set A of parameters from count-
able to finite, we get the notion of ℵ0-saturation. Again all ℵ0-saturated
models of PA are uncountable. Strangely, a further weakening of the no-
tion gets us closer to ℵ1-saturation, but now having in addition countable
models, namely, in the preceding definition replace the arbitrary set Φ by
a recursive one and let A be finite again. That way we get the notion of
recursive saturation, which is a property very close to ℵ1-saturation and, in
addition, satisfied by an abundance of countable structures.
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