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Abstract

We adapt C. Freiling’s axioms of symmetry [5] to models of set
theory with classes by identifying small classes with sets getting thus
a sequence of principles An, for n ≥ 2, of increasing strength. Several
equivalents of A2 are given. A2 is incompatible both with the founda-
tion axiom and the antifoundation axioms AFA∼ considered in [1]. A
hierarchy of symmetry degrees of preorderings (and of classes carry-
ing such preorderings) is introduced and compared with An. Models
are presented in which this hierarchy is strict. The main result of the
paper is that (modulo some choice principles) a class X satisfies ¬An

iff it has symmetry degree n− 2.
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1 Introduction

This paper deals with a classification of proper classes in set theories without
foundation. If the universe is wellfounded the hierarchy simply collapses to
a single level. Classes are firstly classified according to symmetry principles
which are an adaptation of Freiling’s axioms proposed in [5] for real numbers.
The weakest of them, axiom A2, has a simple and intuitive characterization:
It holds iff there is no preordering of the universe whose initial segments are
sets. Thus it is incompatible with foundation, but it is also shown to be
incompatible with Aczel’s antifoundation axioms AFA∼.
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The case of the principles An, for n > 2, is more intriguing. Attempt-
ing to reduce them to more intuitive concepts, we are led to a hierarchy of
total preorderings with respect to degrees of symmetry. Comparing the two
hierarchies and showing that they do not collapse is the main content of the
paper (sections 5 and 6) and the main result is that they capture precisely
the same notion of symmetry.

C. Freiling [5] has proposed certain axioms for the continuum of the real
numbers intended to express the symmetric behavior of small subsets, like
the countable ones, the sets of cardinality less than the continuum, or the
sets of measure zero. For each such class we have corresponding symmetry
axioms. Typical is the following statement concerning countable subsets:

(A2
ℵ0

) (∀f : R→ Rℵ0)(∃x, y)(x /∈ f(y) & y /∈ f(x)).

For n > 2 it generalizes to

(An
ℵ0

) (∀f : Rℵ0 → Rℵ0)(∃X ∈ Rn)(∀x ∈ X)(x /∈ f(X\{x})),

as well as to

(Aℵ0
ℵ0

) (∀f : Rℵ0 → Rℵ0)(∃X ∈ Rℵ0)(∀x ∈ X)(x /∈ f(X\{x})),

where Rn and Rℵ0 are the sets of n-element subsets and countable subsets of
R respectively.

The intuition behind A2
ℵ0

is the following: Suppose we assign to each
real number x a countable set of reals f(x) (e.g. the rational multiples of
x). Then if we throw two darts at R, landing at x, y respectively, then the
second dart will miss (with probability 1) the set f(x). Then, by symmetry
(“the real line does not know which dart is thrown first or second”), the
first dart should also miss f(y). The interesting thing is that, over ZFC,
An
ℵ0
⇔ 2ℵ0 ≥ ℵn for every n ≥ 2.

Although these axioms can be given a very general formulation and ap-
plied to any second-order structure with respect to some appropriate class
of small sets definable in the structure (see [7]), in this paper we shall con-
centrate on set theory with classes and shall identify small classes with sets.
In section 2 we give various equivalents of A2 in terms of (nonexistence of)
preorderings of the universe. In section 3 we examine the connections of A2

with the antifoundation axioms studied in [1]. In section 4 we show that

2



Fraenkel-Mostowski models with a proper class of reflexive sets are natural
models of A∞. Sections 5 and 6 are the main ones. There we introduce
symmetry degrees for total preorderings and classes and show that there are
models where the hierarchy is genuine. The main result says that a class X
satisfies ¬An iff it has symmetry degree n− 2.

2 Symmetry and preorderings

It is well-known that sets are “small” classes and most of the axioms of set
theory (pair, union, powerset, infinity, subset, replacement) express closure
properties of the ideal Set of sets. In order to formulate Freiling’s axioms
with respect to this ideal we have to work in a set theory accommodating
also classes. Such theories are GB (Gödel-Bernays) and KM (Kelley-Morse)
of predicatively and impredicatively defined classes respectively. GB suffices
for our purpose because in no place we need impredicative definitions. GBC
is GB plus the AC (AC is the set form of the axiom of choice), while GBC− is
GBC minus the foundation axiom and similarly for GB−. Our main theory in
this paper will be GBC− augmented in the last two sections with the choice
scheme SSC and the maximal principle MP saying that every preordering
has a maximal sub-wellordering.

We use both lowercase and uppercase letters x, y, z, X, Y, Z to denote sets
or classes. The size of the letter is not a safe indication of the size of the
class denoted. The rule is as follows: (a) Every lowercase letter denotes a
set. (b) Every proper class is denoted by an uppercase letter. But uppercase
letters (as well as the term “class”) are ambiguous, ranging over either sets
or proper classes. The letters F, G denote class-functions.

We shall also frequently talk about classes of classes. Such classes will
always be definable, i.e., given by a formula φ(X) with one class variable
and we feel free to write informally {X : φ(X)}, although this is not an
object of the universe. A class of classes is said to be coded (with code X)
if it is of the form {X(x) : x ∈ dom(X)}, where X is a class of pairs and
X(x) = {y : (x, y) ∈ X}. A coded class of classes will be also referred to as a
family of classes and we often write Xi, i ∈ I, instead of X(i), i ∈ dom(X).

V , On, Cn are the classes of all sets, ordinals and cardinals respectively.
M,N denote models of GB or variants of it. For a definable class X and a
model M , XM is the corresponding element of M . For every class X, S(X)
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is the class of subsets of X and C(X) the class of all subclasses of X. If X
is a set S(X) is the usual powerset.

N is the set of nonnegative integers. For every n ∈ N and every class X,
[X]n = {x ∈ S(X) : |x| = n} is the class of n-subsets of X and [X]∞ is the
class of subsets of X of infinite cardinality.

In order to translate the principles An
ℵ0

into our context, just put V and
[V ]n in place of R and Rn respectively and note that Rℵ0 , the class of small
subsets of R, is translated to the class of small subclasses of V , i.e. the class of
subsets of V , which is V again. Thus the translation of An

ℵ0
is the statement:

(An) : (∀F : [V ]n−1 → V )(∃x ∈ [V ]n)(∀y ∈ x)(y /∈ F (x\{y})).

For n = 2 the axiom is written:

(A2) : (∀F : [V ]1 → V )(∃x, y)(x 6= y & x /∈ F ({y}) & y /∈ F ({x})).

We can also relativize An to any particular class X. This time however the
class of small subclasses of X is S(X) (the class of subsets of X) rather than
X. Thus

An(X) : (∀F : [X]n−1 → S(X))(∃x ∈ [X]n)(∀y ∈ x)(y /∈ F (x\{y}))

and

A∞(X) : (∀F : [X]∞ → S(X))(∃x ∈ [X]∞)(∀y ∈ x)(y /∈ F (x\{y})).

So An is just An(V ). We shall work mostly with ¬An(X), which is an
existential formula, rather than An(X). Namely

¬An(X) : (∃F : [X]n−1 → S(X))(∀x ∈ [X]n)(∃y ∈ x)(y ∈ F (x\{y})).

We shall call a function F realizing ¬An(X) ( resp. ¬A∞(X)), (n − 1)-ary
total on X (resp. infinitary total). Thus ¬An(X) can be restated as follows:

¬An(X) : There is an (n-1)-ary total function on X.,

and similarly for ¬A∞(X).

Lemma 2.1 (i) For every n, X ⊆ Y & An(X) ⇒ An(Y ).
(ii) An ⇐⇒ (∃X)An(X).
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Proof. (i) Equivalently it suffices to check that X ⊆ Y &¬An(Y ) imply
¬An(X). By ¬An(Y ), there is an (n − 1)-ary total function F on Y . Since
X ⊆ Y , it follows [X]n ⊆ [Y ]n and S(X) ⊆ S(Y ). Thus putting for every
x ∈ [X]n−1 G(x) = F (x) ∩ X, it is easy to check that G is an (n − 1)-ary
total function on X.

(ii) Since An ≡An(V ), ⇒ is obvious. The converse follows from (i). 2

Concerning the relative strength of An(X), for n ∈ N, we have the fol-
lowing:

Lemma 2.2 For every class X and every n ∈ N, n ≥ 2,
(i) An+1(X) ⇒ An(X), and
(ii) A∞(X) ⇒ An(X)

Proof. (i) We show the contrapositive. Suppose ¬An(X) holds and let F
be an (n − 1)-ary total function on X. Define G : [X]n → S(X) by putting
G(x) =

⋃{F (y) : y ⊂ x & y ∈ [X]n−1}. Clearly G(x) ∈ S(X) and G is n-ary.
To see that it is total, let x ∈ [X]n+1. Take some y ⊂ x, y ∈ [X]n. By the
totality of F , there is z ∈ y such that z ∈ F (y\{z}). Since y\{z} ⊂ x\{z}, it
follows that z ∈ G(x\{z}). Hence G is n-ary total on X and An+1(X) fails.

(ii) Similarly, if F is (n−1)-ary total on X, define the ∞-ary G as follows:
G(x) =

⋃{F (y) : y ⊆ x & y ∈ [X]n−1}. By replacement G(x) ∈ S(X) and
as before we see that G is total. 2

Definition 2.3 Let X be a class. A total preordering of X is a binary
reflexive and transitive relation ¹⊆ X ×X such that x ¹ y ∨ y ¹ x, for all
x, y ∈ X.

If (X,¹) is a total preordering, for every x ∈X, ¹x denotes the initial
segment of X determined by x, i.e., ¹x= {y ∈ X : y ¹ x}.

(X,¹) is said to be asymmetric if ¹x is a set for all x ∈ X.

Warning. Throughout the symbol ¹, often with subscripts, denotes a
total preordering. On the contrary, the symbol ¹ or ¹i with superscript an
element, e.g. ¹x

i , used frequently below, denotes just a set-an initial segment
of (X,¹i). Realizing that this may be visually misleading we beg the reader’s
understanding. Perhaps ¹x

i is a bad notation, but the alternative ones would
be worse!
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Trivially every preordering on a set is asymmetric. The term “asymmet-
ric” is used to indicate that for a proper class X, ¹ splits X at every point
x into two asymmetric parts, a set ¹x and a coset X\ ¹x. Note that a
wellordering of a proper class X need not be asymmetric. (On,≤), however,
is asymmetric.

Theorem 2.4 (GB−) For every class X the following are equivalent.
(i) ¬A2(X).
(ii) There is a total asymmetric (t.a.) preordering on X.

Proof. (ii)⇒(i). Let (X,¹) be a t.a. preordering. Then the function
F : [X]1 → S(X) such that F ({x}) =¹x is unary and total since for any
x, y ∈ X, either x ∈ F ({y}) or y ∈ F ({x}), hence ¬A2(X) holds.

(i)⇒(ii). Let F : [X]1 → S(X) be a unary total function on X. Put
xRy := (x = y) ∨ x ∈ F ({y}). R is a binary reflexive total relation on X
whose segments are sets. If ¹ is the transitive closure of R, then, clearly, ¹
is a total asymmetric preordering on X. 2

Corollary 2.5 GB ` ¬A2, or equivalently, GB ` (∀X)¬A2(X).

Proof. The axiom of foundation of GB says that the set universe V is
wellfounded, or V =

⋃
α∈On Rα, where Rα are the sets of the cumulative

hierarchy. The ordering induced by the rank function is a total asymmetric
preordering of V . The second claim follows from lemma 2.1 (ii). 2

In the presence of AC, for every t.a. preordered class (X,¹) and every
x ∈ X, the segment ¹x is assigned a cardinal | ¹x |. Thus ¹ induces an
ordering ¹c on X, the cardinal completion of ¹, defined by:

x ¹c y := | ¹x | ≤ | ¹y |.

Obviously ¹⊆¹c and ¹c is total but we don’t know if it is asymmetric.
For every x ∈ X, if y ∈¹x

c , then ¹y⊆¹x
c , i.e., ¹x

c is an initial segment of
(X,¹) but we cannot be sure that it is a proper one. It may be the case
that X =¹x

c for some x, which means that there is a cardinal κ such that
(∀x ∈ X)(| ¹x | ≤ κ).
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Definition 2.6 A proper class X is said to be normal if for every κ ∈ Cn
there is a x ⊂ X such that |x| = κ.

Clearly V , as well as every class containing a proper subclass of On, is
normal. Also if V is wellfounded, every class is normal. Models of GBC−

with non-normal classes are easy to construct. For example if M contains
a proper class of urelements A and N is the submodel of M such that V N

contains the sets x built on A with finite support (i.e. TC(x) ∩ A=finite)
and classes the definable subclasses of V N in M , then A ∈ M and the only
subsets of A in N are the finite ones (see [4] for details). It is unknown to
us whether there is a model M containing a non-normal X which has a t.a.
preordering. However we can eliminate non-normal classes if we add to GB−

the following choice scheme:

(SC): (∀x)(∃y)φ(x, y) ⇒ (∃F )(∀x)φ(x, F (x)),
for every formula φ without class quantifiers.

Lemma 2.7 (GB−+SC) Every proper class is normal.

Proof. Let X be a proper class. Then (∀x)(X 6⊆ x), i.e., (∀x)(∃y)(y ∈
X\x). By SC there is an F such that (∀x)(F (x) ∈ X\x). Fix some set x and
define inductively (yα), α ∈ On as follows: y0 = F (x) and yα = F (x ∪ {yβ :
β < α}). The elements yα are all distinct and {yβ : β < α} ⊆ X, hence X
contains sets of any cardinality. 2

The principle SC is stronger than AC, namely it implies the existence of
a universal choice function F such that F (x) ∈ x for every nonempty set x.
However in the absence of foundation it is strictly weaker than the principle
that there is a bijection between V and On (see [3]). For normal classes a
further characterization of A2(X) is possible.

Lemma 2.8 If X is normal and (X,¹) is a t.a. preordering, then (X,¹c)
is also a t.a. preordering.

Proof. It suffices to show the every ¹x
c is a set. As mentioned above ¹x

c

is an initial segment of (X,¹). By normality clearly ¹x
c 6= X. Thus ¹x

c is
bounded in (X,¹). If y /∈¹x

c , then ¹x
c⊆¹y. Since the latter is a set, the

claim follows. 2

7



A class X is said to be set-stratifiable if X =
⋃

α∈On xα for some family
(xα)α∈On of sets. The family (xα)α∈On is called a set-stratification of X.

Given a preordering ¹, x ≺ y means x ¹ y and y 6¹ x. ¹ is said to be
a prewellordering if ≺ is wellfounded. Equivalently this can be expressed as
follows: On X consider the equivalence relation x ∼ y := x ¹ y & y ¹ x.
Let x̂ be the equivalence class of x, and ¹̂ be the induced total ordering on
X̂ = X/ ∼. Then (X,¹) is an (asymmetric) prewellordering iff (X̂, ¹̂) is an
(asymmetric) wellordering. Note every two asymmetric wellorderings (X,¹1

), (Y,¹2) with X, Y proper classes, are isomorphic. Hence (X,¹) ∼= (On,≤)
for every asymmetric wellordering (X,¹).

Theorem 2.9 (GBC−) For every proper class X the following are equiva-
lent:

(i) X is normal and ¬A2(X).
(ii) There is an asymmetric prewellordering on X.
(iii) X is set-stratifiable.

Proof. (i)⇒(ii). Let (i) hold. By theorem 2.4 there is a t.a. preordering
¹ of X. By lemma 2.8 (X,¹c) is a t.a. preordering. But it is also a
prewellordering since x ≺c y ⇔ | ¹x | < | ¹y |.

(ii)⇒(iii). Let (X,¹) be an asymmetric prewellordering. Then by the
comments above (X̂, ¹̂) is an asymmetric wellordering and there is an iso-
morphism F : (On,≤) ∼= (X̂, ¹̂). Then F (α) are sets and X =

⋃
α∈On F (α).

(iii)⇒(i). Let X =
⋃

α∈On xα be a set-stratification of X. Clearly the rank
function induced by this stratification is a t.a. preordering of X. Since X is
proper we may assume that xα ⊂ xβ for α < β. For every cardinal κ use a
choice function f on S(xκ) with dom(f) = κ and such that f(α) ∈ xα+1\xα.
Then rang(f) ⊂ X and |rang(f)| = κ. Hence X is normal. 2

3 Symmetry and non-foundation

We have seen that A2 implies that the set universe is unfounded but the
converse is false. In this section we show that Aczel’s antifoundation axioms
AFA∼ are also incompatible with A2.

As is well-known, to every set x there corresponds a directed graph G
whose points are the elements of TC(x) and the arrows y → z depict the
relation z ∈ y. If x is wellfounded, so is G. Following P.Aczel [1], we call G a
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picture of x and x a decoration of G. Thus in ZF− every set has a picture. If
x is wellfounded, the picture is a unique (up to isomorphism) directed tree.
But a non-wellfounded set may have class-many pictures. This is the case
for example with “reflexive” sets x = {x}, if they exist.

P. Aczel [1] went also the other way around. He started from graphs
and asked for sets decorating them. Throughout this section we follow the
terminology and notation of [1]. We recall here some basic definitions and
facts but the reader must consult Aczel’s work for details. A graph is always
a directed graph. An accessible pointed graph, or apg for short, is a graph
with a distinguished node a and such that every other node is joined with
a by a finite path. An apg is said to be wellfounded if it has no infinite or
circular paths. If the nodes and edges of the graph form a class we call it
system. The letter M ranges over systems. a, b, x, y ∈ M means a, b, x, y are
nodes of M . For a, b ∈ M we write a → b for the fact that (a, b) ∈ M is an
edge. The universe V itself is a system with nodes the sets and edges the
pairs (x, y) such that y ∈ x. Given M and a ∈ M , we set:

aM = {b ∈ M : a → b} (the set of children nodes of a in M),
Ma = the apg with point a and nodes and edges those of M lying on

paths starting from a.
Thus every apg can be written in the form Ga where G is a graph and

a ∈ G. A system M is extensional if

aM = bM ⇒ a = b.

A decoration of an apg Ga is a mapping d : G → V such that for any two
nodes a, b ∈ G, a → b iff d(a) ∈ d(b). The apg Ga is a a picture of a set x, if
there is a decoration d of Ga such that d(a) = x. The decoration d of Ga is
injective if it is 1-1. In this case Ga is called an exact picture of d(a).

Let V0 be the class of apg’s. This can be seen as a system if we consider
as edges the pairs (Ga,Gb) such that a → b is an edge of G. Let ∼ be a
bisimulation on V0. ∼ is said to be a regular bisimulation if:

(1) ∼ is an equivalence relation on V0.
(2) Ga ∼= G′a′ ⇒ Ga ∼ G′a′.
(3) aG = a′G ⇒ Ga ∼ Ga′, for any a, a′ ∈ G.
A system M is said to be ∼-extensional if Ma ∼ Mb ⇒ a = b. Each

regular bisimulation ∼ gives rise to an antifoundation axiom AFA∼ which
reads as follows:
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AFA∼: An apg is an exact picture if it is ∼-extensional.

This is equivalent to the conjunction of the following two statements:

AFA∼
1 : Every ∼-extensional graph has an injective decoration.

AFA∼
2 : V is ∼-extensional, i.e., V x ∼ V y ⇒ x = y.

We stop here the citation of notions and facts from Aczel’s book and
come to their connections with symmetry. We shall prove that for every
regular bisimulation ∼, AFA∼

2 is incompatible with A2. The key lemma is
the following.

Lemma 3.1 For every regular bisimulation ∼, AF∼2 implies the following:
If Ga is an exact picture and d1, d2 are two injective decorations of Ga, then
d1(a) = d2(b). That is, every exact picture is an exact picture of a unique
set.

Proof. Let d1, d2 be two injective decorations of Ga. Then the graphs
V d1(a), V d2(a) are obviously the graphs (TC(d1(a)),∈), (TC(d2(a)),∈) of
the transitive closures of d1(a), d2(a) respectively. It is easy to see that they
are isomorphic. Indeed define an isomorphism π between them as follows:
If i is a node of Ga, put π(d1(i)) = d2(i). Since d1, d2 are injective, clearly
this is an isomorphism. Hence V d1(a) ∼= V d2(a). By condition (2) of regular
bisimulations, V d1(a) ∼ V d2(a). Then by AFA∼

2 , d1(a) = d2(a). 2

Now for any exact picture Ga, let

ID(Ga) = {x : (∃d)(d is an injective decoration of Ga & d(a) = x)}.

Theorem 3.2 (GBC−) If for every exact picture Ga, ID(Ga) is a set, then
¬A2.

Proof. Suppose the hypothesis holds. For every cardinal κ let Γκ be the
class of exact pictures whose nodes form a subset of κ. Clearly Γκ is a set
since its elements are binary relations on κ × κ. Let also Sκ =

⋃{ID(Ga) :
Ga ∈ Γκ}. Since by assumption each ID(Ga) is a set, so is Sκ, for every
κ. On the other hand for every set x, there is an exact picture Ga and an
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injective decoration d of Ga such that d(a) = x. (Indeed it suffices to consider
any apg and its decoration d by the elements of the transitive closure of x
and then identify the nodes i, j for which d(i) = d(j).) That is, x ∈ ID(Ga).
If |Ga| ≤ κ, clearly we can take Ga to be in Γκ, hence x ∈ Sκ. It follows
that V =

⋃
κ∈Cn Sκ. By AC, Cn is a subclass of On, hence Sκ yield a set-

stratification of V . By theorem 2.9, ¬A2. 2

Corollary 3.3 For every regular bisimulation ∼, GBC−+AFA∼
2 ` ¬A2.

Proof. Lemma 3.1 says that for every regular bisimulation, AFA∼
2 ⇒

|ID(Ga)| = 1 for every exact picture Ga. Thus the claim follows immediately
from theorem 3.2. 2

Instances of the axioms AFA∼ are the axioms AFA, FAFA and SAFA (due
to Aczel, Finsler and Scott, respectively) for the special regular bisimulations
≡, ∼=∗ and ∼=t, respectively (see [1]).

Especially ≡ is the relation:

x ≡ y ⇔ there is an apg that is a picture of both x and y,

and

AFA: Every apg has a unique decoration.

In the opposite direction of AFA∼ is Boffa’s axiom BAFA ([1], §5). This
axiom is the conjunction of the following statements:

BA1: An apg is an exact picture iff it is extensional.

BA2: If f : (x,∈) ∼= (y,∈), where x, y are transitive sets and x′ ⊇ x
is also transitive, then f can be extended to f ′ : (x′,∈) ∼= (y′,∈) for some
transitive y′ ⊇ y.

An immediate consequence of BA1 is the following:

Lemma 3.4 If BA1 holds, then there are class-many reflexive sets x = {x}.
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Proof. For every cardinal κ consider the apg having point m, nodes nα,
α < κ, and edges m → nα, and nα → nα for all α < κ. This is an extensional
graph, and by BA1 it has an injective decoration d. If d(nα) = aα, then
aα = {aα} and aα 6= aβ, for every α < κ. Thus for every κ there are κ
distinct reflexive sets. 2

Aczel proves that if the real world satisfies |V | = |On|, there is a unique
model (up to isomorphism) M ⊆ V of ZFC−+BAFA. This is shown by a
back and forth argument using the enumeration of V and using BAFA for
extending small isomorphisms to larger and larger ones. Given this we shall
prove that this unique model of ZFC−+BAFA satisfies also A∞.

Theorem 3.5 Let |V | = |On| and let M ⊆ V be the model of ZFC−+BAFA.
Then (M,Def(M)) |= A∞.

Lemma 3.6 Let M be the above model of BAFA, and let A be the proper
class of reflexive sets of M (whose existence follows from 3.4). Then every
automorphism π of A can be extended to an automorphism π̄ of M .

Proof. Let π : A → A be a permutation of the class of reflexive sets.
For each x ∈ V , let supp(x) = TC(x) ∩ A. supp(x) is trivially transitive
and π¹supp(x) : (supp(x),∈) ∼= (π′′supp(x),∈). By BAFA, π¹supp(x) can be
extended to a mapping f : (TC(x),∈) ∼= (TC(x′),∈). Taking an enumeration
of M by On and using this fact, we can construct by back and forth an
automorphism π̄ extending π. 2

Proof of Theorem 3.5. Suppose F is a definable ∞-ary total function on
M defined with parameters c1, . . . , ck and let B be an infinite subset of the
class A of reflexive sets such that B ∩ (

⋃
i≤n supp(ci)) = ∅. There is a b ∈ B

such that b ∈ F (B\{b}). Let D = A\(⋃i≤n supp(ci)∪B). D is a proper class
and for every d ∈ D consider the permutation of A interchanging b and d and
fixing the rest elements. By the previous lemma this permutation extends to
an automorphism f of M that fixes F and B\{b}. Then d ∈ F (B\{b}) for
all d ∈ D, i.e., D ⊆ F (B\{b}). This contradicts the fact that the latter is a
set. 2
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4 Models of full symmetry

It is easy to construct models of GBC−+A∞, i.e. with the greatest degree
of symmetry. It suffices to take models of GBC− with a proper class A of
urelements (or atoms), which can be taken to be reflexive sets a = {a} (see
e.g. [2]).

We start with a ground model N of GBC− containing a proper class of
atoms A, and let W (A) be the cumulative hierarchy of sets of V built on A.
Namely, let

W0(A) = A ∪ {∅}, Wα = S(
⋃

β<α

Wβ), W (A) =
⋃

α∈On

Wα(A),

where recall that S(X) is the class of subsets of X. Let M = Def(W (A)),
where Def(W (A)) is the class of definable classes of W (A). Each set being
definable (with parameters), W (A) = V M and A ∈ M\V M . Clearly M |=
GB− and M |= GBC− provided the initial ground model N satisfies AC.

Note that M is almost wellfounded, i.e. every set x is assigned a rank
r(x) ∈ On with r(a) = 0 for every atom a ∈ A. For every x ∈ W (A),
let supp(x) = TC(x) ∩ A be the support of x. Let Aut(A) be the class of
permutations of A belonging to M . Every π ∈ AutM(A) is extended, using
the rank function, to an automorphism of M in the obvious way which we
denote again π, and π(X) = π′′X.

Theorem 4.1 M |= A∞.

Proof. Assume the contrary, i.e. there is an ∞-ary total function F
on W (A) defined over W (A) by a formula with parameters c1, . . . , ck. Let
C =

⋃
i≤k supp(ci). Take an infinite set B ⊆ A such that B ∩ C = ∅. By the

totality of F there is b ∈ B such that b ∈ F (B\{b}). Now A\(B ∪ C) is a
proper class and for every c ∈ A\(B∪C) the permutation π exchanging only
b and c is definable, thus π ∈ M . The corresponding automorphism fixes
B\{b} and C pointwise, hence it fixes the parameters ci and so it fixes F .
Thus π(b) = c ∈ F (B\{b}) for every c ∈ A\(B ∪ C) which contradicts the
fact that FB\{b} is a set. 2

For a class X ∈ M , let supp(X) =
⋃{supp(x) : x ∈ X}. The above

theorem can be generalized in a straightforward way as follows:
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Theorem 4.2 Let M be as above and X ∈ M . Then
(i) If supp(X) ∈ V M then M |= ¬A2(X).
(ii) If supp(X) /∈ V M then M |= A∞(X).

5 Degrees of symmetry

In section 2 we characterized the principle A2(X) in terms of t.a. preorderings
of X. These preorderings have the greatest degree of asymmetry (or the
smallest degree of symmetry) since they split X at every point into a set and
a coset. Assigning to t.a. preorderings symmetry degree 0, we can go on and
define inductively preorderings of growing symmetry degrees n, for n ∈ N.
We shall show that the hierarchy of symmetry degrees reflects precisely the
hierarchy of the principles An.

The definition below can in fact be given along all ordinals but we shall
confine ourselves to finite ones.

Definition 5.1 Let (X,¹) be a total preordering. For every m ∈ N, the
property “(X,¹) is m-symmetric” , will be defined inductively. The class
X will be called also m-symmetric if there is a ¹ such that (X,¹) is an
m-symmetric total preordering.

(a) (X,¹) is 0-symmetric if ¹ is asymmetric, i.e., for every x ∈ X, ¹x is
a set.

(b) (X,¹) is (m + 1)-symmetric if for every x ∈ X, ¹x is m-symmetric.
For every m ∈ N let Sm be the class of m-symmetric classes. Let also

S =
⋃{Sn : n ∈ N}. For a model M , SM

m is the usual relativization of Sm to
M . More generally for any class X, we put

SX
m = Sm ∩ C(X) = {Y ∈ Sm : Y ⊆ X}.

m-symmetric preorderings in fact generalize initial ordinals in two ways:
First by relaxing wellorderings to total preorderings and second by referring
to classes rather than sets. For example, if M |= GBC− is such that OnM =
α, and a class X ∈ M has a wellordering ≤ in M of order-type α, then (X,≤)
is 0-symmetric, since every segment ≤x has cardinality less than α, therefore
≤x∈ V M . If (X,≤) has order-type α+, then X is 1-symmetric, because for
every x | ≤x | ≤ α, hence it can be ordered by a wellordering of type α or β
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for β ∈ V M and thus it is 0-symmetric. And so on. This fact will be used in
the existence theorem 5.4 below.

Our aim in this section is to correlate the symmetric degrees with the
axioms of symmetry. The full correlation needs two rather strong choice
principles, namely the Strong Scheme of Choice (SSC), which is a strength-
ening of SC mentioned in section 2 (see [3] for the relative strength of this
principle), and a Maximal Principle (MP).

(SSC) (∀x)(∃Y )φ(x, Y ) ⇒ (∃Y )(∀x)φ(x, Y(x)),
for every formula φ without class quantifiers.

(MP) For every preordering R there is a maximal wellordering T ⊆ R.

Note that SSC is necessary when we treat families of m-symmetric classes
in order to choose total preorderings for the classes of the family. Namely, if
(Xi)i∈I is a family such that Xi ∈ Sm, then SSC enables one to have a family
(¹i)i∈I such that for every i ∈ I, (Xi,¹i) is an m-symmetric preordering.

Main Theorem (GB−+SSC+MP) For every class X and every m ≥ 0,
X ∈ Sm ⇔ ¬Am+2(X). In particular V ∈ Sm ⇔ ¬Am+2.

In this section we shall prove direction ⇒ in GBC−, as well as ⇐ for
m ≤ 1 in GB−+SSC. In the next section we shall prove the full ⇐ in
GB−+SSC+MP.

The next lemma contains some easy consequences of definition 5.1.

Lemma 5.2 (i) V ⊆ S0 and On ∈ S0.
(ii) m < k ⇒ Sm ⊆ Sk.
(iii) Every Sm is closed under subsets, i.e., X ∈ Sm &Y ⊆ X ⇒ Y ∈ Sm.
(iv) V M ∈ SM

m ⇐⇒ SM
m = M .

(v) ¬A2(X) ⇐⇒ X ∈ S0.
(vi) M |= ¬A2 ⇐⇒ SM

0 = M .
(vii) X ∈ SX

m ⇐⇒ X ∈ Sm ⇒ SX
m = SX

m+1.

Proof. (i) For every set x, (x, =) is a trivial 0-symmetric total preordering,
and so is the natural ordering of On.

(ii) Let (X,¹) ∈ S0. For every x ∈ X, ¹x is a set hence 0-symmetric by
(i). Thus X ∈ S1. Then use induction.
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(iii) If (X,¹) ∈ S0 and Y ⊆ X, then the restriction of ¹ to Y is 0-
symmetric. Then use induction again.

(iv) follows from (iii).
(v) By the preceding section A2(X) holds iff there is a t.a. preordering

¹ on X, and these are precisely the 0-symmetric orderings.
(vi) follows from (iv) and (v).
(vii) Trivial. 2

Lemma 5.3 (i) If for some m > 0, Sm−1 ⊂ Sm, then for every i < m
Si−1 ⊂ Si.

(ii) Therefore either Sm ⊂ Sm+1 for every m ≥ 0, or S0 ⊂ S1 ⊂ · · · ⊂
Sm−1 ⊂ Sm = S for some m.

Proof. (ii) follows immediately from (i). Suppose (X,¹) ∈ Sm\Sm−1.
For every x ∈ X ¹x∈ Sm−1. If for all x, ¹x∈ Sm−2, X would belong to
Sm−1. Thus for some x, ¹x∈ Sm−1\Sm−2. It follows that Sm−2 ⊂ Sm−1. Let
X1 =¹x and ¹1 its (m− 1)- symmetric preordering. Working similarly with
(X1,¹1) as before we see that Sm−3 ⊂ Sm−2 and so on for all i < m. 2

First we must make sure that the hierarchy Sm does not collapse in gen-
eral. In fact (using a large cardinal hypothesis) we can find models satisfying
any one of the cases mentioned in lemma 5.3.

Theorem 5.4 If there is a model N of ZFC containing an inaccessible car-
dinal, then:

(i) For every m ∈ N there is M |= GBC− such that

SM
0 ⊂ SM

1 ⊂ · · · ⊂ SM
m−1 ⊂ SM

m = M.

(ii) There is M |= GBC− such that SM
i ⊂ SM

i+1 for all i ∈ N.

Proof. Let N be a model of ZFC+GCH containing an inaccessible cardinal
κ = ωκ.

(i) Given m ∈ N, consider the cardinal λ = ωκ+m. As in [2], Chapter III,
we produce a set of reflexive sets of size λ considering the permutation F of
N defined as follows:
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F (x) =





{x} if x ∈ λ\{1},
y if x = {y} & y ∈ λ\{1}
x otherwise.

Let ∈F be the relation defined by x ∈F y iff F (x) ∈ y. Let

A = {{α} : α ∈ λ\{1}}.
(N,∈F ) satisfies the same axioms as (N,∈) except foundation, that is

(N,∈F ) |= ZFC− + GCH + κ is inaccessible.

Moreover (N,∈F ) |= a = {a} for every a ∈ A and

(N,∈F ) |= A has a wellordering of order-type λ.

We are working in (N,∈F ). Let W (A) be the cumulative hierarchy of sets
constructed from A as in section 4 and let Hκ(A) = {x ∈ W (A) : |TC(x)| <
κ} be the sets of W (A) of hereditary cardinality less than κ. Since κ is
strongly inaccessible Hκ(A) |= ZFC−. Let M = Hκ(A) ∪ S(Hκ(A)) with
V M = Hκ(A). It is not hard to see that M is as required. Indeed M |=
GBC−, OnM = κ, and if X ∈ M and ≤ is a wellordering of X in N , then
≤∈ M .

Claim. For every i ≤ m, SM
i = {X ∈ M : N |= |X| ≤ ωκ+i}.

Proof of the claim. By induction on i. Let i = 0. Let X ∈ M and
N |= |X| = ωκ = κ. There is a wellordering ≤∈ M of order-type κ. Then
X ∈ SM

0 because for every x ∈ X, the initial segment ≤x has cardinality
< κ, hence ≤x∈ Hκ(A) = V M . Therefore

{X ∈ M : N |= |X| ≤ ωκ} ⊆ SM
0 .

Conversely, if (X,¹) is a preordering in M such that ¹x∈ V M , (X,¹) is a
set in N and we can find by choice a cofinal wellordering of type ≤ κ, hence
N |= |X| ≤ κ = ωκ. Thus also

SM
0 ⊆ {X ∈ M : N |= |X| ≤ ωκ}.

For the induction step observe that if N |= |X| = ωκ+i, then taking a
wellordering ≤ of X of order-type ωκ+i, every segment ≤x has cardinality
≤ ωκ+i−1, hence a wellordering of this order-type, so we use the induction
hypothesis to prove the claim.
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It follows that for every 0 < i ≤ m and every X ∈ M such that N |=
|X| = ωk+i, X ∈ SM

i \SM
i−1. On the other hand V M ∈ SM

m , hence SM
m = M .

(ii) We work as before except that we take now λ > ωκ+m for every m ∈ N,
say λ = ωκ+ω. 2

If (X,¹) is 0-symmetric then for any two distinct x1, x2 ∈ X, either
x2 ¹ x1 and ¹x1 is a set or x1 ¹ x2 and ¹x2 is a set. For m ∈ N and m > 0
this can be generalized as follows:

Lemma 5.5 Let (X,¹) be m-symmetric for m ∈ N and m > 0. Then the
following condition holds:

(*) For every multiset u ⊆ X with |u| = m+2 (i.e., an element x ∈ u may
have finitely many occurrences and m+2 is the sum of all occurrences of ele-
ments of u) there is an enumeration x1, . . . , xm+2 of u and total preorderings
¹1, . . . ,¹m, such that:

(a) (¹x
1 ,¹1) is (m− 1)-symmetric and x2 ¹ x1.

(b) For every i < m + 1,
(¹xi

i−1,¹i) is (m− i)-symmetric and xi+1 ¹i−1 xi.
d) ¹xm+1

m is a set and xm+2 ∈¹xm+1
m .

Proof. By induction on m. Suppose (X,¹) is 1-symmetric and let u ⊆ X
be a multiset with |u| = 3. Since ¹ is total there is x1 ∈ u such that
u\{x1} ¹∗ x1 (where w ¹∗ x means that z ¹ x for all z ∈ w). Then ¹x1 is 0-
symmetric, i.e. there is ¹1 such that (¹x1 ,¹1) is 0-symmetric. u\{x1} ⊆¹x1

and let x2 ∈ u\{x1} such that u\{x1, x2} ¹1∗ x2. Then ¹x2
1 is a set and if

u\{x1, x2} = {x3}, x3 ∈¹x2
1 . Thus the enumeration x1, x2, x3 of u and ¹1

satisfy (*).
Suppose that every m-symmetric preordering satisfies (*). Let (X,¹)

be (m + 1)-symmetric and u ⊆ X be a multiset with |u| = m + 3. Let
x1 ∈ u be such that u\{x1} ¹∗ x1. Then there is ¹1 such that (¹x1 ,¹1) is
m-symmetric and u\{x1} ⊆¹x1 . Since |u\{x1}| = m + 2, by the induction
hypothesis there is an enumeration x2, x3, . . . , xm+3 of the elements of u\{x1}
and preorderings ¹2, . . . ,¹m+1 satisfying (*). Then clearly the sequences
x1, . . . , xm+3 and ¹1, . . . ,¹m+1 also satisfy (*). 2

The preceding lemma says that in an m-symmetric preordering (X,¹),
given any multiset u ⊆ X with at least m+2 elements, there are preorderings
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¹1, . . . ,¹m+1 and an arrangement x1, . . . , xm+2 of these elements that can
be used as stairs of a “ladder” to go down and hit a set. We abbreviate the
two sequences, of elements and of preorderings, by a common one of length
m + 2 writing

xm+2 ¹m xm+1 ¹m−1 xm ¹m−2 xm−1 ¹m−3 · · · ¹1 x2 ¹ x1.

The (m + 1)-subsequence

(∗∗) xm+1 ¹m−1 xm ¹m−2 xm−1 ¹m−3 · · · ¹1 x2 ¹ x1,

resulting from the first one by deleting its last element, and for which the
bottom element xm+1 defines a set in the preordering ¹m, will be called an
(m + 1)-ladder of u in X or just a ladder. The letters ξ, ζ denote ladders.
For every multiset u, let ladX(u) be the set of ladders of u. For every ladder
ξ let gr(ξ) be the ground set determined by the bottom element of ξ, i.e. if
ξ is the sequence (**),

gr(ξ) =¹xm+1
m .

Finally, for every m-symmetric X and every multiset u ⊆ X, with |u| ≥ m+1,
let

grX(u) =
⋃{gr(ξ) : ξ ∈ ladX(u)}.

Clearly for every X, u grX(u) is a set.
Using ladders and ground sets we can establish a first connection between

the hierarchy of symmetric classes and that of symmetric principles An(X).

Lemma 5.6 Let X be m-symmetric. For every set u ⊆ X with |u| ≥ m+2,
there is a x ∈ u such that x ∈ grX(u\{x}).

Proof. Take a set w ⊆ u with |w| = m + 2. By lemma 5.5 w has an
enumeration x1, . . . , xm+2 so that

xm+2 ¹m xm+1 ¹m−1 xm ¹m−2 xm−1 ¹m−3 · · · ¹1 x2 ¹ x1,

for certain preorderings ¹i, hence

xm+1 ¹m−1 xm ¹m−2 xm−1 ¹m−3 · · · ¹1 x2 ¹ x1

is a ladder ξ for u\{xm+2}. Moreover, by definition, xm+2 ∈ grX(ξ). Hence
xm+2 ∈ grX(u\{xm+2}). 2

The next theorem gives the direction ⇒ of the Main Theorem.
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Theorem 5.7 (GBC−) For every class X, X ∈ Sm ⇒ ¬Am+2(X). In par-
ticular

V ∈ Sm ⇒ ¬Am+2.

Proof. Let X ∈ Sm. Recall that ¬Am+2(X) holds if there is a function
F : [X]m+1 → S(X) which is total, i.e., for every u ∈ [X]m+2 there is x ∈ u
such that x ∈ F (u\{x}). Now if we take F : [X]m+1 → S(X) such that
F (u) = grX(u), by lemma 5.6, F is total, so we are done. 2

By lemma 5.2, the converse of 5.7(v) holds for m = 0. We can see that it
holds also for m = 1. First we prove some closure properties for S0.

Recall that, by theorem 2.9, for normal X, X ∈ S0 iff X is set-stratifiable.
Recall also (lemma 2.7) that if we assume SC all proper classes are normal.
Thus we easily see that:

Lemma 5.8 (GB−+SC) (i) X ∈ S0 ⇔ X is set-stratifiable ⇔ |X| = |On|,
(where |X| = |Y | means that there is a bijection between X and Y ).

(ii) Every proper class X contains a proper subclass Y ∈ S0.

Lemma 5.9 (GB−+SSC) Let (Xi)i∈I be a family such that I, Xi ∈ S0. Then
X =

⋃
i∈I Xi ∈ S0.

Proof. By 5.8, |Xi| = |I| = |On|. Thus I can be identified with On
and using SSC we can find a family of bijections Fα : On → Xα. Thus
Xα = {xαβ : β ∈ On}. Then obviously |⋃α Xα| = |On|, hence

⋃
α Xα ∈ S0.

2

Corollary 5.10 (GB−+SSC) If (X,¹) ∈ S1 and X contains a cofinal sub-
class Y such that Y ∈ S0, then X ∈ S0.

Proof. Since Y is cofinal in (X,¹), X =
⋃

y∈Y ¹y and ¹y∈ S0. Hence if
Y ∈ S0 the claim follows from the preceding lemma. 2

Corollary 5.11 (GB−+SSC) Let R be a binary relation such that for every
x the initial segment Rx = {y : yRx} ∈ S0. If R̄ is the reflexive and transitive
closure of R then R̄x ∈ S0 for all x.
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Proof. Obviously R̄ =
⋃

n∈NRn where
Rx

0 = Rx ∪ x, and
Rx

n+1 =
⋃{Ry

n : y ∈ Rx
n}.

It follows inductively using lemma 5.9 that for all n, x Rx
n ∈ S0. Hence

also is R̄x =
⋃{Rx

n : n ∈ N} ∈ S0. 2

We generalize the notion of n-ary function on a class X to that of an
n-ary mapping on X by allowing its values to be subclasses of X instead just
subsets. We write F : [X]n → C(X) for n-ary mappings (recall that C(X)
is the class of subclasses of X). As before F is said to be total if for every
u ∈ [X]n+1 there is x ∈ u such that x ∈ F (u\{x}).

Theorem 5.12 (GB−+SSC) For every class X, X ∈ S1 ⇔ ¬A3(X). In
particular

V ∈ S1 ⇔ ¬A3.

Proof. ⇒ follows from 5.7. We assume X is a proper class, otherwise the
claim holds trivially. Suppose ¬A3(X) holds and let F : [X]2 → S(X) be a
binary total function on X. Take a proper 0-symmetric E ⊆ X and consider
the unary mapping FE : [X]1 → C(X) defined by

FE({x}) =
⋃{F ({x, e}) : e ∈ E & e 6= x}.

Since F ({x, e}) are sets (hence 0-symmetric), and E is 0-symmetric, it follows
from lemma 5.9 that FE({x}) is 0-symmetric for every x. Moreover FE is
also total. Indeed assume there are x1 6= x2 ∈ X such that x1 /∈ FE({x2})
and x2 /∈ FE({x1}). It follows that

(∀e ∈ E\{x1, x2})(x1 /∈ F ({x2, e}) & x2 /∈ F ({x1, e})).
By the totality of F , (∀e ∈ E\{x1, x2})(e ∈ F ({x1, x2})), or E\{x1, x2} ⊆
F ({x1, x2}), which is a contradiction since F ({x1, x2}) is a set and E\{x1, x2}
is proper. Thus the relation

xRy ⇐⇒ x ∈ FE(y)

on X is total. If ¹ is the transitive and reflexive closure of R, then ¹ is
a preordering and by corollary 5.11, for every x ∈ X, ¹x is a normal 0-
symmetric class. Therefore ¹ is 1-symmetric. 2
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The general implication ¬Am+2(X) ⇒ X ∈ Sm is open without further
assumptions about Sm. The first such assumption concerns the closure of Sm

under unions of classes of elements of Sm indexed by a class of Sm (i.e. the
condition analogous to that of lemma 5.9 for S0).

Definition 5.13 We say that Sm is closed if for any family (Xi)i∈I of classes
such that Xi ∈ Sm and I ∈ Sm,

⋃
i∈I Xi ∈ Sm.

In GB−+SSC we do not know even whether S1 is closed. The other
assumption concerns the collapsing of Si. The best we can prove for the time
being is the next result. Recall that SX

m = Sm ∩ C(X).

Theorem 5.14 (GB−+SSC) Let X be a proper class and let m ≥ 2 such
that:

(a) SX
m−1\SX

m−2 6= ∅.
(b) Si is closed for all i ≤ m− 1.

Then ¬Am+2(X) ⇒ X ∈ Sm.

Proof. Let ¬Am+2(X) hold and F : [X]m+1 → S(X) be a total function.
By (a) we can show as in lemma 5.3 that SX

i \SX
i−1 6= ∅ for all i ≤ m − 1.

So for every i ≤ m − 1 let Ei ∈ SX
i \SX

i−1 and define Fi : [X]m−i → C(X)
inductively as follows:

F0(u) =
⋃{F (u ∪ {e}) : e ∈ E0\u},

Fi(u) =
⋃{Fi−1(u ∪ {e}) : e ∈ Ei\u}.

The following claims are easily proved by induction on i:
Claim 1. For every i ≤ m− 1, and for every u ∈ dom(Fi), Fi(u) ∈ Si.

By induction on i and using the fact that Si are closed.
Claim 2. Every Fi is total.

Suppose Fi−1 is total while Fi is not. Then for some u such that |u| = m−i+1,
(∀x ∈ u)(x /∈ Fi(u\{x})). Equivalently

(∀x ∈ u)(∀e ∈ Ei\u)(x /∈ Fi−1(u ∪ {e}\{x})).
By the totality of Fi−1, Ei\u ⊆ Fi−1(u). But Fi−1(u) ∈ Si−1 by claim 1,
while (Ei\u) ∈ Si\Si−1, which is a contradiction.

It follows that the relation xRy ⇐⇒ x ∈ Fm−1({y}) on X is total and
Rx ∈ Sm−1 for every x. If ¹ is the reflexive and transitive closure of R, then
as in corollary 5.11 and using the fact that Sm−1 is closed we see that the
segments of ¹ are also (m− 1)-symmetric, hence (X,¹) is an m-symmetric
preordering. 2
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6 Wellorderings and asymmetry

We have already seen in theorem 5.4 that the prototypes of m-symmetric
preorderings are initial wellorderings.

Given two classes X, Y we write |X| ≤ |Y | (resp. |X| = |Y |) if there is
an injection (resp. bijection) of X into (resp. onto) Y . Schröder-Bernstein
theorem (that holds also for classes) gives |X| ≤ |Y | & |Y | ≤ |X| ⇒ |X| =
|Y |. We write |X| < |Y | if |X| ≤ |Y | and |Y | 6≤ |X|.

A total ordering T on a class X is a wellordering if every subclass of X
has a T -least element. The letters T, U, T1, T2 will range over wellorderings.
By some abuse of language we identify T with Field(T ) and write x ∈ T , |T |
instead of x ∈ Field(T ) and |Field(T )| respectively. If x ∈ T we write T x for
the initial segment {y : yTx}. Any two wellorderings T1, T2 are comparable
in GB−, i.e., there is a 1-1 order-preserving mapping such that either F :
T1
∼= T2, or F : T1

∼= T x
2 or F : T2

∼= T y
1 . We write T1 / T2, T2 / T1 in the last

two cases respectively.
Let W be the class of wellorderings. Define also the classes Wm induc-

tively as follows:
W0 = {T ∈ W : |T | ≤ |On|}.
Wm+1 = {T ∈ W : (∀x ∈ T )(T x ∈ Wm)}.

Clearly Wm ⊆ Wm+1.

Lemma 6.1 (i) T ∈ Wm & U / T ⇒ U ∈ Wm.
(ii) For every m, Wm = W ∩ Sm.
(iii) If Wm ⊂ Wm+1, then Sm ⊂ Sm+1.
(iv) Wm = W ⇐⇒ Wm = Wm+1.

Proof. (i) and (ii) are shown by easy induction on m. (iii) follows imme-
diately from (ii).

(iv) One direction is trivial. For the other, let T ∈ W\Wm. Suppose for
every x ∈ T , T x ∈ Wm. Then, by definition, T ∈ Wm+1 and the claim holds.
Suppose now that there is x ∈ T such that T x /∈ Wm. Let x0 be the least
such x. Then clearly T x0 ∈ Sm+1\Sm. 2

Let R be a preordering and T be a wellordering such that T ⊆ R, i.e.,
xTy ⇒ xRy. T is said to be maximal in R if there is no wellordering U ⊆ R
such that T / U . Recall that MP is the following principle
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(MP): For every preordering R there is a maximal wellordering T ⊆ R.

Note that MP follows from the principle “V has a wellordering”. The
latter in consistent with SSC+GB−. For instance in the model M = Hκ(A)∪
S(Hκ(A)) of theorem 5.4, pick a wellordering ≤ of Hκ(A) and let
RA(Hκ(A),≤) be the ramified analytical hierarchy constructed inside M .
Then the model M ′ whose sets are the elements of Hκ(A) and whose classes
are the elements of RA(Hκ(A),≤) is a model of GB−+SSC+“V has a wellorder-
ing” (see [6]).

Using SSC+MP we can prove that every Sm is closed.

Lemma 6.2 (GB−+MP+SSC) For every m ≥ 0
(i) X1, X2 ∈ Sm ⇒ X1 ×X2 ∈ Sm.
(ii) Sm is closed.

Proof. (i) By induction on m. For m = 0 this is clear. Suppose
it holds for m − 1 and let X1, X2 ∈ Sm. Let ¹1,¹2 be m-symmetric
preorderings for X1, X2 respectively. By MP there are maximal (hence
cofinal) wellorderings T1 ⊆¹1 and T2 ⊆¹2. For x ∈ Xi, i = 1, 2, let
ri(x) = biggest initial segment of Ti not exceeding x. Define ¹ on X1 ×X2

as follows:

(x1, x2) ¹ (y1, y2) ⇐⇒ max(r1(x1), r2(x2)) ≤ max(r1(y1), r2(y2)),

where at the right-hand side we compare wellorderings. Now for every (x1, x2)
such that max(r1(x1), r2(x2)) = U , we have ¹(x1,x2)=¹a1

1 × ¹a2
2 , where ai ∈

Ti such that T ai ∼= U . But ¹ai
i ∈ Sm−1, and by the induction hypothesis

¹a1
1 × ¹a2

2 ∈ Sm−1. Hence ¹ is m-symmetric
(ii) (Sketch) Suppose again that the claim holds for m − 1. Let (Xi)i∈I

be a family of Sm-classes coded by the Sm-class I. Using SSC we can find
a coded class ¹i of m-symmetric preorderings for them and let ¹ be an m-
symmetric preordering for I. By MP every Xi contains a maximal (hence
cofinal) wellordering T ⊆¹i and obviously T ∈ Sm. Using SSC we can choose
a coded family Ti, i ∈ I, of such wellorderings. Let also T be cofinal in ¹.
For every i ∈ I and every x ∈ Xi, let

r(x, i) = biggest initial segment of Ti not exceeding x.
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For every x ∈ ⋃
i Xi, W (x) = {r(x, i) : x ∈ Xi} is a coded class of wellorder-

ings and we can again choose by SSC for every x an element Ux ∈ W (x) of
least length. Let also

Sx = biggest initial segment of T not exceeding a j such that x ∈ Xj.

That is Sx is the biggest segment of T below every index j such that x ∈ Xj.
Clearly, for every x, Ux and Sx belong to Sm−1.

Define the preordering ¹′ on
⋃

i Xi as follows:

x ¹′ y := max{Ux, Sx} ≤ max{Uy, Sy}.
Using (i) and the induction hypothesis it is easy to see that this is an

m-symmetric preordering. 2

The following lemma is crucial for the proof of the main theorem.

Lemma 6.3 (GBC−+MP) Suppose that Sm contains a coded cofinal subclass
with respect to ⊆, i.e., there is K such that

(†) (∀x ∈ dom(K))(K(x) ∈ Sm) & (∀X ∈ Sm)(∃x ∈ dom(K))(X ⊆ K(x)).

Then either V ∈ Sm or Sm+1\Sm 6= ∅.

Proof. Suppose (†) holds and let L = dom(K). Let R be the relation on
L defined by

xRy ⇐⇒ K(x) ⊆ K(y).

By MP there is a maximal wellordering T ⊆ R. Let Z =
⋃{K(x) : x ∈ T}.

Assume T ∈ Wm. Then T ∈ Sm and since Sm is closed, Z ∈ Sm. Then
Z is a ⊆-maximal m-symmetric class, but this obviously happens only if
Z = V . therefore V ∈ Sm.

Assume T /∈ Wm. Then by 6.1 (iv), Wm+1\Wm 6= ∅, hence by 6.1 (iii),
Sm+1\Sm 6= ∅. 2

In fact the preceding lemma also holds if relativized to any class X and
the proof is quite the same. We showed it for V for reasons of transparency.
Thus more generally we have:
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Lemma 6.4 (GBC−+MP) Let X be a class and suppose that SX
m contains a

coded cofinal subclass with respect to ⊆. Then either X ∈ Sm or SX
m+1\SX

m 6=
∅.

Theorem 6.5 (GB−+MP+SSC) For every class X and every m ≥ 0,
¬Am+2(X) ⇒ X ∈ Sm. In particular ¬Am+2 ⇒ V ∈ Sm.

Proof. The proof of the first implication is based on lemma 6.4 precisely
in the same way that the proof of the second one is based on lemma 6.3.
So for simplicity we give the proof of the second implication the other being
similar.

The implication has been proved for m ≤ 1 (lemma 5.2 and theorem
5.12). It has also been shown in theorem 5.14 under the conditions (a) that
Si are closed and (b) that Sm−2 ⊂ Sm−1. By lemma 6.2 (a) holds in the
presence of SSC and MP. So it remains to prove it when Sm−2 = Sm−1.

Assume ¬Am+2, m ≥ 2,s and Sm−2 = Sm−1. Let i be the least integer
such that Si = Si+1. Then i ≤ m− 2 and

S0 ⊂ S1 ⊂ · · · ⊂ Si = Si+1 = S.

Fix a total (m + 1)-ary total function F : [V ]m+1 → V .
Case 1. i = 0. Then S0 = S1. Pick a proper E0 ∈ S0 and put as in the

proof of 5.14 F0(u) =
⋃{F (u ∪ {e}) : e ∈ E0\u} for u ∈ [V ]m. Then F0 is

an m-ary total function, and for all u ∈ [V ]m, F0(u) ∈ S0. Hence the family
{F0(u) : u ∈ [V ]m} is a coded subclass of S0.

Subcase 1a. Suppose S0 satisfies (†) of lemma 6.3. Then either V ∈ S0 or
S0 ⊂ S1. Since the latter is false by assumption we get V ∈ S0, hence also
V ∈ Sm. Thus the claim holds.

Subcase 1b. Let S0 not satisfy (†). Then the family {F0(u) : u ∈ [V ]m} is
not cofinal in (S0,⊆), i.e., there is E1 ∈ S0 such that

(∀u ∈ [V ]m)(E1 6⊆ F0(u)). (1)

Define F1 : [V ]m−1 → C(V ), by putting F1(u) =
⋃{F0(u ∪ {e}) : e ∈ E1\u}.

Using the totality of F0 and (1) we easily see that F1 is also total. (In fact
(1) implies that (∀u ∈ [V ]m)((E1\u) 6⊆ F0(u)) since we may assume that
u ⊆ F (u).) Moreover F1(u) ∈ S0 by the closure of S0 under unions. The
family {F1(u) : u ∈ [V ]m−1} is again a coded subclass of S0, so by the

26



negation of (†) it is not cofinal in S0. Pick as before a class E2 ∈ S0 omitting
all F1(u) and define similarly F2 which will be total. Finally after m − 1
steps we find a total Fm−1 : [V ]1 → C(V ) such that Fm−1({x}) ∈ S0. The
relation xRy ⇐⇒ x ∈ Fm−1({y}) is total and can be extended to a total
preordering ¹ with ¹x∈ S0. Thus V ∈ S1. Hence V ∈ Sm since m ≥ 2, and
the implication is true.

Case 2. i > 0. This case is treated as in the proof of theorem 5.14 until
we reach i and then we work as in case 1. That is we pick Ek ∈ Sk\Sk−1 for
k ≤ i and define the total functions F0, . . . , Fi, with Fi : [V ]m−i → C(V ) and
Fi(u) ∈ Si. Then we have again:

Subcase 2a. Si satisfies (†). By lemma 6.3, either V ∈ Si or Si ⊂ Si+1.
By our assumption the latter is false, hence V ∈ Si, consequently V ∈ Sm.

Subcase 2b. (†) fails for Si. Then the family {Fi(u) : u ∈ dom(Fi)},
which is a coded subclass of Si, cannot be cofinal in Si, hence there is Ei+1 ∈
Si such that (∀u ∈ dom(Fi))(Ei+1 6⊆ Fi(u)). Using Ei+1 we find a total
Fi+1 : [V ]m−i−1 → C(V ) with Fi+1(u) ∈ Si by the closure property of Si,
and proceeding along m− i− 1 steps we find again a total mapping Fm−1 :
[V ]1 → C(V ) with Fm−1({x}) ∈ Si. This produces a total preordering ¹ on
V with ¹x∈ Si. That means that V ∈ Si+1 ⊆ Sm (recall that i ≤ m− 2) so
we are done. This completes the proof. 2

Proof of the Main Theorem. Immediate consequence of theorems 5.7 and
6.5. 2
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