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Abstract

We provide a new semantics and a slightly different formalization
for the propositional logic with superposition (PLS) introduced and
studied in [6]. PLS results from Propositional Logic (PL) by adding
a new binary connective | construed as the “superposition operation”
and a few axioms about it. The original semantics used in the above pa-
per was the so called sentence choice semantics (SCS), based on choice
functions for all pairs of classical formulas of PL. In contrast, the alge-
braic or Boolean-value choice semantics (BCS) developed in this paper
is based on choice functions for pairs of elements of a Boolean algebra
B in which the classical sentences take truth values. The Boolean-value
choice functions can be subject to similar constraints as those imposed
on sentence choice functions. The new axiomatization is based on the
same set of axioms as the previous one but uses a new inference rule,
called Rule of Analogy (RA), in place of the rule Salva Veritate (SV )
of the previous systems. The Deduction Theorem fails in the systems
containing the new rule. As a consequence the completeness theorems
for them hold conditionally again, namely the systems are complete
with respect to BCS if and only if every consistent set of sentences is
extended to a consistent and complete set. Finally connections are es-
tablished between tautologies of the semantics SCS and those of BCS.
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1 Introduction

This paper is a sequel to [6] and its aim is to offer a new semantics
for the systems of propositional superposition logics (PLS) introduced
in [6], together with new completeness theorems. For the reader’s
convenience we shall give in this introduction a brief account of the
systems PLS and the main facts established in [6].

Before coming to technical notions and facts let us first explain the
motivating idea behind the introduction and investigation of PLS. That
was the attempt to grasp the purely logical content of the phenomenon
of superposition as the latter presents itself in quantum systems. The
question was roughly this: if | is a new binary logical connective and
ϕ|ψ denotes the “superposition of two states” (or, more precisely, the
propositions expressing these states), what can we say about the truth
of ϕ|ψ without leaving the ground of classical logic? The basic intuition
is that ϕ|ψ expresses a “strange conjunction” of properties before the
measurement, but also a “strange disjunction” after the measurement,
i.e., after the “collapsing” of the superposed states. This collapsing
can be formalized by the help of a choice function that acts on pairs of
sentences {ϕ,ψ}, turning each formula ϕ|ψ into a classical one. Such
functions formed the basis of a semantics for the new logic that allows
ϕ|ψ to present simultaneously conjunctive and disjunctive characteris-
tics, which are nicely exemplified in the “interpolation property”, i.e.,
that ϕ|ψ is strictly logically interpolated between ϕ∧ψ and ϕ∨ψ (see
also Fact 2.3 below).

In general a Propositional Superposition Logic (PLS) will consist,
roughly, of a pair (X,K), where X is its semantical part and K is its
syntactic part. Actually K is a formal system in the usual sense of the
word, and X is a set of functions that provides meaning to sentences
in a way described below. The notation PLS(X,K) will denote the
propositional superposition logic with semantical part X and syntactic
part K.

1.1 Overview of PLS with sentence choice seman-
tics

In this subsection we give an overview of the main notions and facts
contained in [6]. Although the semantical part is the most intuitively
appealing we start with the description of the syntactic part K. The
language of K (or the language of PLS), Ls, is that of standard Propo-
sitional Logic (PL) L = {p0, p1, . . .}∪{∧,∨,→,↔,¬} augmented with
the new binary connective “|”. That is, Ls = L ∪ {|}. The set of
sentences of Ls, Sen(Ls), is defined by induction as usual, with the
additional inductive step that ϕ|ψ is a sentence whenever ϕ and ψ are
so.
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Throughout the letters α, β, γ range exclusively over the set of
sentences of L, Sen(L), while ϕ, ψ, σ range over elements of Sen(Ls)
in general.

A formal system K consists of a set of axioms Ax(K) and a set of
inference rules IR(K). The axioms of K always include the axioms of
PL, while IR(K) includes the inference rule of PL. So let us first fix the
axiomatization for PL consisting of the following axiom schemes (for
the language Ls).

(P1) ϕ → (ψ → ϕ)
(P2) (ϕ → (ψ → σ)) → ((ϕ → ψ) → (ϕ → σ))
(P3) (¬ϕ → ¬ψ) → ((¬ϕ → ψ) → ϕ),

together with the inference rule Modus Ponens (MP ). So for every K,
{P1,P2, P3} ⊂ Ax(K) and MP ∈ IR(K). In addition each K contains
axioms for the new connective |. These are some or all of the following
schemes.

(S1) ϕ ∧ ψ → ϕ|ψ
(S2) ϕ|ψ → ϕ ∨ ψ
(S3) ϕ|ψ → ψ|ϕ
(S4) (ϕ|ψ)|σ → ϕ|(ψ|σ)
(S5) ϕ ∧ ¬ψ → (ϕ|ψ ↔ ¬ϕ|¬ψ)

Provability (à la Hilbert) in K, denoted `K ϕ, is defined as usual. It
is clear that

Σ ` α ⇔ Σ `K α,

where ` denotes provability in PL. Σ is said to be K-consistent, if
Σ 6`K ⊥.

Let K0 denote the formal system described as follows.

Ax(K0) = {P1,P2, P3}+ {S1, S2, S3}, IR(K0) = {MP}.

Extensions of K0 defined below will contain also the rule SV (from
salva veritate) defined as follows.

(SV ) from ϕ ↔ ψ infer ϕ|σ ↔ ψ|σ,

if ϕ ↔ ψ is provable in K0.

The rule SV guarantees that if α, β are classical logically equivalent
sentences, then truth is preserved if α is substituted for β in expressions
containing | (just as in the case with the standard connectives). Let
the formal systems K1, K2 and K3 be defined as follows.

Ax(K1) = Ax(K0) = Ax(PL) + {S1, S2, S3}, IR(K1) = {MP, SV },

Ax(K2) = Ax(K1) + S4, IR(K2) = {MP, SV },
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Ax(K3) = Ax(K2) + S5, IR(K3) = {MP, SV }.
A consequence of SV is that if `K0 (ϕ ↔ ψ) then, for any σ, `Ki

(ϕ|σ ↔ ψ|σ), for i = 1, 2, 3.
So much for the syntax of PLS. We now turn to the semantics.

The axioms Si were motivated by the intended meaning of |, that
was briefly described in the introduction, and the corresponding se-
mantics for sentences of Ls based on choice functions. This semantics
consists of pairs 〈v, f〉, where v : Sen(L) → {0, 1} is a usual two-
valued assignment of the sentences of L, and f is a choice function for
pairs of elements of Sen(L), i.e., f : [Sen(L)]2 → Sen(L) such that
f({α, β}) ∈ {α, β}. f is defined also for singletons with f({α}) = α.
We simplify notation by writing f(α, β) instead of f({α, β}), thus by
convention f(α, β) = f(β, α) and f(α, α) = α. f gives rise to a func-
tion f : Sen(Ls) → Sen(L), defined inductively as follows.

(i) f(α) = α, for α ∈ Sen(L),
(ii) f(ϕ ∧ ψ) = f(ϕ) ∧ f(ψ),
(iii) f(¬ϕ) = ¬f(ϕ),
(iv) f(ϕ|ψ) = f(f(ϕ), f(ψ)).

We refer to f as the collapsing function induced by f . Then we define
the truth of ϕ in 〈v, f〉, denoted 〈v, f〉 |=s ϕ, as follows.

〈v, f〉 |=s ϕ :⇔ v(f(ϕ)) = 1. (1)

(In [6] we denote by M the two-valued assignments of sentences of
L and write 〈M, f〉 instead of 〈v, f〉. Also we write M |= α instead
M(α) = 1.)

We shall refer to the semantics defined by (1) as sentence choice se-
mantics, or SCS for short. A remarkably similar notion of choice func-
tion for pairs of sentences, and its interpretation as a “conservative”
binary connective, was given also independently in [3] (see Example
3.24.14, p. 479).

The reason that we used four formal systems K0-K3, in increasing
strength, is that they correspond to four different classes of choice
functions defined below.

Definition 1.1 Let F denote the set of all choice functions for Sen(L)
and let X ⊆ F .

(i) For a set Σ ⊆ Sen(Ls) and X ⊆ F , Σ is said to be X-satisfiable
if there are v and f ∈ X such that 〈v, f〉 |=s Σ.

(ii) For Σ ⊆ Sen(Ls) and ϕ ∈ Sen(Ls), ϕ is an X-logical con-
sequence of Σ, denoted Σ |=X ϕ, if for every v and every f ∈ X,
〈v, f〉 |=s Σ ⇒ 〈v, f〉 |=s ϕ.

(iii) ϕ is an X-tautology, denoted |=X ϕ, if ∅ |=X ϕ.
iv) ϕ and ψ are X-logically equivalent, denoted ϕ ∼X ψ, if |=X

(ϕ ↔ ψ). Also let

Taut(X) = {ϕ ∈ Sen(Ls) :|=X ϕ}.
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Now while the axioms of K0 are easily seen to be |=F -tautologies, this
is not the case with the axioms S4 and S5. They correspond to some
special subclasses of F described below.

Definition 1.2 1) A choice function is said to be associative if for all
α, β, γ ∈ Sen(L)

f(f(α, β), γ) = f(α, f(β, γ)).

2) An f ∈ F is said to be regular if for all α, α′, β ∈ Sen(L),

α ∼ α′ ⇒ f(α, β) ∼ f(α′, β)

where α ∼ β denotes logical equivalence in PL.

Let
Asso = {f ∈ F : f is asociative},

Reg = {f ∈ F : f is regular},
Both properties of associativity and regularity are strongly desir-

able and would be combined. This is because (a) f ∈ Asso iff for every
v, 〈v, f〉 satisfies associativity for |, i.e., 〈v, f〉s |= S4 (see [6, Th. 2.19]),
and (b) for every X, X ⊆ Reg iff the relation ∼X is logically closed,
i.e., ϕ ∼X ϕ[σ′/σ] if σ′ ∼X σ, when σ is a subformula of ϕ and ϕ[σ′/σ]
is the result of substitution of σ′ for σ in ϕ (see [6, Th. 2.28]).

We have the following simple and nice characterization of the func-
tions in Asso.

Lemma 1.3 ([6, Corollary 2.18]) A choice function f is associative,
i.e., f ∈ Asso, if and only if there is a total < ordering of Sen(L) such
that f = min<, i.e., f(α, β) = min(α, β) for all α, β ∈ Sen(L).

(Actually 1.3 holds for associative choice functions on an arbitrary set
A, see Theorem 2.14 of [6].) In view of the above characterization of
associative functions through total orderings, the following definition
is natural.

Definition 1.4 A total ordering < of Sen(L) is regular if the corre-
sponding choice function f = min< is regular or, equivalently, if for all
α, β in Sen(L)

α 6∼ β & α < β ⇒ [α] < [β],

where [α] is the ∼-equivalence class of α.

Let
Reg∗ = Reg ∩Asso.

Clearly f ∈ Reg∗ iff f = min< for a regular total ordering < of Sen(L).
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Definition 1.5 Let < be a total ordering of Sen(L). < is said to be
¬-decreasing if for all α, β ∈ Sen(L) such that α 6∼ β,

α < β ⇔ ¬β < ¬α.

If f ∈ Reg∗, f is said to be ¬-decreasing if f = min< for some ¬-
decreasing <.

Let
Dec = {f ∈ Reg∗ : f is ¬-decreasing}.

Since Dec ⊆ Reg∗ ⊆ Reg ⊆ F , it follows that

Taut(F) ⊆ Taut(Reg) ⊆ Taut(Reg∗) ⊆ Taut(Dec).

Definition 1.6 Given a set X ⊆ F , and a set Ax(K) ⊆ Taut(X),
PLS(X, K) is the logic w.r.t. to X and K, where K is the syntactic
part, while |=X is the consequence relation determined by the struc-
tures 〈v, f〉, with f ∈ X.

Given a logic PLS(X, K), the soundness and completeness theorems
for it refer as usual to the connections between the relations |=X and
`K , or between X-satisfiability and K-consistency.

At this point a word of caution is needed. As is well-known the
soundness theorem (ST) and completeness theorem (CT) of a logic
have two distinct formulations which are equivalent for classical logic,
but need not be so in general. For the logic PLS(X, K) these two forms,
ST1 and ST2 for Soundness and CT1 and CT2 for Completeness, are
the following.

(ST1) Σ `K ϕ ⇒ Σ |=X ϕ,

(ST2) Σ is X-satisfiable ⇒ Σ is K-consistent

(CT1) Σ |=X ϕ ⇒ Σ `K ϕ,

(CT2) Σ is K-consistent ⇒ Σ is X-satisfiable.

ST1 and ST2 are easily shown to be equivalent for every system PLS(X, K).
Moreover the Soundness Theorem for each one of the logics PLS(F ,K0),
PLS(Reg, K1), PLS(Reg∗,K2) and PLS(Dec, K3) is easily established.
But the equivalence of CT1 and CT2 is based on the Deduction The-
orem (DT) which is not known to be true for every PLS(X, K), when
K contains the inference rule SV . Recall that DT is the following
implication. For all Σ, ϕ, ψ,

Σ ∪ {ϕ} `K ψ ⇒ Σ `K ϕ → ψ. (2)

Concerning the relationship between CT1 and CT2 for PLS(X,K) the
following holds.
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Fact 1.7 CT1 ⇒ CT2 holds for every PLS(X,K). If `K satisfies
DT, then the converse holds too, i.e., CT1 ⇔ CT2.

The system PLS(F ,K0), whose only inference rule is MP , satisfies
CT1 ⇔ CT2 as a consequence of DT. So we can just say it is “com-
plete” instead of “CT1-complete” and “CT2-complete”. The following
is shown in [6, §3.1].

Theorem 1.8 PLS(F ,K0) is complete.

However in the systems over Ki, for i > 0, that contain the extra
rule SV , the status of DT is open, so the distinction between CT1 and
CT2 remains. So concerning the logics PLS(Reg,K1), PLS(Reg∗,K2)
and PLS(Dec,K3) it is reasonable to try to prove the weaker of the
two forms of completeness, namely CT2-completeness. But even this
will be proved only conditionally. Because there is still another serious
impact of the lack of DT. This is that we don’t know if every consistent
set of sentences can be extended to a consistent and complete set (i.e.,
one that contains one of the ϕ and ¬ϕ, for every ϕ). Of course every
consistent set Σ can be extended (e.g. by Zorn’s Lemma) to a maximal
consistent set Σ′ ⊇ Σ. But maximality of Σ′ does not guarantee com-
pleteness without DT. Because Σ′ may be maximal consistent and yet
there is a ϕ such that ϕ /∈ Σ′ and ¬ϕ /∈ Σ′, so Σ ∪ {ϕ} and Σ ∪ {¬ϕ}
are both inconsistent. This property of extendibility of a consistent set
to a consistent and complete one, for a formal system K, is crucial for
the proof of completeness of K (with respect to a given semantics), so
we isolate it as a property of K denoted cext(K). It reads as follows.

(cext(K)) Every K-consistent set of sentences can be extended to

a K-consistent and complete set.

Then the following conditional CT2-completeness results are shown
in [6, §3.2]).

Theorem 1.9 (i) PLS(Reg, K1) is CT2-complete if and only if cext(K1)
is true.

(ii) PLS(Reg∗,K2) is CT2-complete if and only if cext(K2) is true.
(iii) PLS(Dec, K3) is CT2-complete if and only if cext(K3) is true.

1.2 Summary of contents

In section 2 we introduce the Boolean-value choice semantics (BCS)
with respect to a Boolean algebra B and the class F(B) of choice
functions on [B]2. The basic truth relation is 〈B, v, π〉 |=a ϕ, where
v : Sen(L) → B is a homomorphism and π ∈ F(B). Further, given
X ⊆ F(B), the logical consequence relation Σ |=X ϕ, and the induced
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notion of X-tautology, denoted |=X ϕ, are defined when π are restricted
to X. The main classes X of choice functions considered, besides F(B),
are the classes of associative functions Asso(B) and of complement-
decreasing functions Dec(B). In section 2.1 we show the existence of
complement-decreasing functions on every algebra B. In section 2.2
we show some peculiarities of BCS that distinguish it from SCS. In
section 2.3 we examine in particular BCS with respect to the two-
element algebra 2 and some special properties of this semantics.

In section 3 we axiomatize the relations |=F(B), |=Asso(B) and |=Dec(B)

by the formal systems Ka
0 , Ka

1 and Ka
2 , respectively, consisted of cer-

tain axioms and inference rules. The axioms are roughly the same as
those of the formal systems K0-K3 of [6]. However a different infer-
ence rule, RA, is used in place of the rule SV of [6]. The presence of
the extra rule makes the Deduction Theorem (provably) fail, and this
again necessitates referring to two forms of the completeness theorem,
as well as the use of the extendibility condition cext(K) for a formal
system K mentioned in section 1.1., already used in [6]. Section 3.1
contains the main technical result of this section, and perhaps of the
paper, Theorem 3.8, concerning the conditional CT2-completeness of
all three systems with respect to the algebra 2.

In section 4 we establish connections between tautologies with re-
spect to the semantics BCS and SCS. Specifically the connections con-
cern tautologies based on classes of choice functions in the sense of
SCS on the one hand, and tautologies based on the corresponding
classes of choice functions in the sense of BCS, especially those over
the Lindenbaum-Tarski Boolean algebra L for the set of sentences of
L.

2 Superposition as a binary “modality” and
its algebraic semantics

Given a Boolean algebra B = 〈B, +, ·,−, 0, 1〉, a B-valuation of (or B-
assignment to) the sentences of the language L of PL is a mapping
v : Sen(L) → B such that:

v(α ∧ β) = v(α) · v(β),
v(α ∨ β) = v(α) + v(β),
v(¬α) = −v(α).

It is well-known that α is a tautology of PL if and only if for every B
and every B-valuation v : Sen(L) → B, v(α) = 1.

Replacing 2 with a general Boolean algebra B as the set of truth
values for the sentences of L, the semantics for PLS defined in (1) of the
previous section generalizes in the obvious way, namely we interpret
sentences of Ls in triples 〈B, f, v〉, where f is again a choice function
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for pairs of Sen(L), v is a B-valuation and

〈B, v, f〉 |=s ϕ :⇔ v(f(ϕ)) = 1. (3)

Although (3) itself does not make a big difference compared to (1), the
shift from 2 to B prompts us to see and treat | as a binary “modality”
and interpret it algebraically by a Boolean algebra expansion (BAE),
namely an expansion 〈B, π〉 of B, where π is a choice function for pairs
of elements of B, i.e.,

π : [B]2 → B

such that π({a, b}) ∈ {a, b}. However we must be careful with the
terms “modality” and “Boolean expansion”, since these terms possess
a specific meaning related to their historic origin.

On the one hand, Boolean expansions originated with the work of
Jónsson and Tarski [4]. By definition such expansions are pairs 〈B,m〉,
where m : Bn → B is an n-ary “additive operator”, i.e., preserves +
and 0 in each of its arguments. For a binary m in particular, m(x, y +
z) = m(x, y) + m(x, z), and similarly with the other argument, as
well as m(0, y) = m(x, 0) = 0. For example in the algebra P(X2)
of all binary relations on a set X, the composition operator R ◦ S
and the inverse operator R−1 are additive. Such functions are called
today Boolean algebra operators (or BAO for short, see [1] for a survey
of this topic). However a choice function π on [B]2 need not satisfy
additivity. One easily give examples of choice functions on B such
that π(x, y + z) 6= π(x, y) + π(x, z), and also π(x, 0) 6= 0. Thus choice
functions are not BAO’s.

On the other hand, the connective | cannot be viewed as a modality
in the standard sense of the word either. The reason is not that | is
binary, whereas the standard modalities 3 and 2 are unary. In fact
there are exist also polyadic, i.e., n-ary, modalities. What makes an
n-connective ∇ to be a polyadic modality is adequately explained in
[2, p. 420] as follows:

“What are polyadic modal operators? Syntactically, an n-
ary modal operator is just an n-ary connective; what makes
it modal is its intended interpretation, which uses accessi-
bility relations of arity n + 1. Generalizing the definition
of ordinary modal logic, the truth condition for an n-ary
operator ∇ reads as follows:

M, w ° ∇(ϕ1, . . . ϕn) iff there are v1, . . . , vn such that

R∇(w, v1, . . . , vn) and M, vj ° ϕj for each j,

where R∇ is the n + 1-ary relation associated with ∇.”
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Does the superposition connective |meet the above criterion in order to
be characterized as a modality? If the answer were Yes, there should
exist a ternary accessibility relation R on a set of nodes such that
M, w ° ϕ|ψ iff there are v1, v2 such that R(w, v1, v2) and M, v1 ° ϕ
and M, v2 ° ψ. But one cannot see how such a condition (or its dual)
might be related to the intuitive meaning of |.

After these explanations, we can still consider pairs 〈B, π〉 as BAE’s,
but of a very special, rather sui generis, nature. Let us stress the fact
that the letter π will denote throughout choice functions for pairs of
elements of a Boolean algebra, since f has already been used to denote
choice functions for pairs of sentences. The notational distinction will
be necessary in the last section where the two semantics are compared.
As usual we write π(a, b) instead of π({a, b}), with the proviso that
π(a, b) = π(b, a) and π(a, a) = a. Given B and π as above, and a
B-valuation v of the sentences of L of PL, we shall define the truth of
sentences of the language of PLS, Ls, in the triple 〈B, π, v〉 in the more
or less standard algebraic way. Specifically, first we extend v by the
help of π to a B-valuation of the sentences of Ls

vπ : Sen(Ls) → B
defined by the following recursion:

(a) vπ(α) = v(α), for α ∈ Sen(L).
(b) vπ(ϕ ∧ ψ) = vπ(ϕ) · vπ(ψ).
(c) vπ(ϕ ∨ ψ) = vπ(ϕ) + vπ(ψ).
(d) vπ(¬ϕ) = −vπ(ϕ).
(e) vπ(ϕ|ψ) = π(vπ(ϕ), vπ(ψ)).

Then the algebraic truth relation 〈B, π, v〉 |=a ϕ, for a B, f and a v as
above, is defined as follows.

〈B, π, v〉 |=a ϕ :⇔ vπ(ϕ) = 1. (4)

More generally, for every Σ ⊂ Sen(Ls), we define

〈B, π, v〉 |=a Σ :⇔ vπ(ϕ) = 1, for every ϕ ∈ Σ. (5)

Sometimes we shall write simply v instead of vπ if π is understood and
there is no danger of confusion.

Sometimes we refer to the semantics defined by (4) as Boolean-value
choice semantics, or BCS for short, in contradistinction to sentence-
choice semantics (SCS) described in section 1.1.

For any Boolean algebra B = 〈B, . . .〉 let us set

F(B) = {π : π is a choice function for [B]2}.
In analogy to definitions 1.1 of the previous section we have the fol-
lowing ones.
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Definition 2.1 Let B be a Boolean algebra and let X ⊆ F(B). Then
the following hold.

(i) ϕ is X-satisfiable if there are v : Sen(L) → B and π ∈ X such
that 〈B, π, v〉 |=a ϕ.

(ii) For Σ ⊆ Sen(Ls) and ϕ ∈ Sen(Ls), ϕ is an X-logical conse-
quence of Σ, denoted Σ |=X ϕ, if for every B-valuation v : Sen(L) → B
and every π ∈ X, 〈B, π, v〉 |=a Σ ⇒ 〈B, v, π〉 |=a ϕ.

(iii) ϕ is a X-tautology, denoted |=X ϕ, if ∅ |=X ϕ. Also let

Taut(X) = {ϕ ∈ Sen(Ls) :|=X ϕ}.

Clearly all schemes of tautologies of PL are also F(B)-tautologies
for the sentences of Ls, for every structure 〈B, π〉. More generally the
following holds.

Fact 2.2 Let α(p1, . . . , pn) be a sentence of L, made of the atomic
sentences p1, . . . , pn, let ψ1, . . . , ψn be any sentences of Ls and let
α(ψ1, . . . , ψn) be the sentence of Ls resulting from α if we replace each
pi by ψi. Then:

|= α(p1, . . . , pn) ⇒ |=F(B) α(ψ1, . . . , ψn).

Let us recall that one of the first simple, highly attractive and
motivating results of PLS with respect to semantics SCS, was the “in-
terpolation property” of ϕ|ψ relative to ϕ ∧ ψ and ϕ ∨ ψ. That is, for
all ϕ, ψ, ϕ∧ψ |=s ϕ|ψ |=s ϕ∨ψ, while the converse relations are false
(see Theorem 2.8 of [6]). This result is still true with respect to BCS.
Its proof is a straightforward consequence of the above definitions.

Fact 2.3 Let B be a Boolean algebra and X ⊆ F(B). Then for all
ϕ,ψ ∈ Sen(Ls),

ϕ ∧ ψ |=X ϕ|ψ |=X ϕ ∨ ψ,

while in general
ϕ ∨ ψ 6|=X ϕ|ψ 6|=X ϕ ∧ ψ.

Proof. Assume 〈B, π, v〉 |=a ϕ∧ψ, with π ∈ X. Then v(ϕ) = v(ψ) =
1. Thus v(ϕ|ψ) = π(v(ϕ), v(ψ)) = π(1, 1) = 1, so 〈B, π, v〉 |=a ϕ|ψ.
Now if the latter is true, then π(v(ϕ), v(ψ)) = 1, so either v(ϕ) = 1 or
v(ψ) = 1. It follows that v(ϕ)+v(ψ) = 1, and hence 〈B, π, v〉 |=a ϕ∨ψ.

On the other hand to see that ϕ ∨ ψ 6|=X ϕ|ψ in general, pick
classical sentences α, β and v such that v(α) = 1 and v(β) = 0, and
π such that π(0, 1) = 0. Then vπ(α ∨ β) = v(α) + v(β) = 1, while
vπ(α|β) = π(0, 1) = 0. Thus 〈B, π, v〉 |=a α ∨ β while 〈B, π, v〉 6|=a α|β.
Similarly, to see that ϕ|ψ 6|=X ϕ∧ψ, pick α, β and v such that v(α) = 1
and v(β) = 0, and π such that π(0, 1) = 1. a
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Choice functions for [B]2 can have properties quite similar or anal-
ogous to those of choice functions for [Sen(L)]2 considered in the pre-
vious section. Our aim is to identify classes X ⊆ F(B) suitable to
implement the axioms S1-S5 cited in the Introduction. Axioms S1, S2

and S3 do not require any further conditions for π to hold. Concerning
S4, the extra condition for π is associativity, where associative func-
tions π : [B]2 → B are defined exactly as the corresponding functions
f : [Sen(L)]2 → Sen(L) in Definition 1.2. So we set

Asso(B) = {π ∈ F(B) : π is associative}.
By the general Theorem 2.14 of [6], we have in particular the following.

Lemma 2.4 π ∈ Asso(B) if and only if there is total < ordering of B
such that π = min<, i.e., π(a, b) = min(a, b) for all a, b ∈ B.

Finally for S5 we need the analogue of ¬-decreasing orderings of Sen(L)
which are defined for B in the expected way, that is, using the com-
plement operation − of B in place of ¬.

Definition 2.5 Let < be a total ordering of B. < is said to be
complement-decreasing if for all a, b ∈ B

a < b ⇔ −b < −a.

If π ∈ Asso(B), π is said to be complement-decreasing if π = min< for
some complement-decreasing ordering.

2.1 Existence of complement-decreasing orderings
and functions

In this section we show how to construct complement-decreasing to-
tal orderings on every algebra B. For any algebra B, let 4B denote
throughout the natural ordering of B. Recall that 4B is defined as
follows:

a 4B b :⇔ a · b = a (⇔ a + b = b).

We often write 4 instead of 4B, if there is no danger of confusion.
4 is already complement-decreasing and, by Zorn’s Lemma, can be
extended to a total such function. But in general the complement-
decreasing orderings we deal with below need not extend 4.

There is a general method to construct such orderings. Given B,
let P = {{a,−a} : a ∈ B}, and let F be a choice function for P . Let
X = F [P ] and Y = B −X. Then clearly a ∈ X ⇔ −a ∈ Y . Pick any
total ordering <1 of X and define <2 of Y by setting for all a, b ∈ Y ,

a <2 b :⇔ −b <1 −a.
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Then define < on B by setting a < b iff:
a ∈ X and b ∈ Y , or
a ∈ X and b ∈ X and a <1 b, or
a ∈ Y and b ∈ Y and a <2 b.

Obviously < is complement-decreasing and moreover X,Y form a par-
tition of B such that X < Y . Let us call a set X ⊆ B selective if for
every pair of opposite elements {u,−u} of B, X contains exactly one.
(Note that in particular, every ultrafilter, as well as every prime ideal,
on B is a selective set, but the converse is not true.) The sets X,Y
defined above are selective and what we have shown is the following.

Proposition 2.6 Let B be a Boolean algebra. Then for every selective
set X ⊂ B, there is a complement-decreasing ordering < of B such that
if Y = B −X, then X < Y .

We can moreover see that every complement-decreasing ordering
on B is generated in the above way. Namely the following holds.

Proposition 2.7 Let < be a complement-decreasing ordering on B.
Then B is partitioned into two selective sets X,Y such that X < Y .

Proof. Let < be a complement-decreasing ordering of B. Call a
set Z ⊂ B weakly selective if for every a ∈ B, Z contains at most one
element of the pair {a,−a}. We claim that there are weakly selective
initial segments of B (and consequently, weakly selective final segments
of B). Indeed, for every a ∈ B at least one of the initial segments
{b : b ≤ a} and {b : b ≤ −a} is weakly selective. Otherwise, there
are a, b and c such that b,−b ≤ a and c,−c ≤ −a. From the first
relation and the fact that < is complement-decreasing, we have b ≤ a
and −b ≤ a, hence −a ≤ −b, therefore −a ≤ a. From the second
relation we have c ≤ −a and −c ≤ −a, so a ≤ c, therefore a ≤ −a.
Thus −a ≤ a and a ≤ −a, a contradiction.

Let X be the union of all weakly selective initial segments of B.
Then using the previous argument we easily see that X is a selective
initial segment and hence Y = B −X is a selective final segment such
that X < Y . a

Since the natural ordering 4 of B is complement-decreasing, it is
natural to ask whether there are complement-decreasing total orderings
of B that extend 4 of B. The answer is yes and follows by an easy
application of Zorn’s Lemma.

Proposition 2.8 For every Boolean algebra B, with natural ordering
4, there is a complement-decreasing total ordering < such that ≺⊂<.
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Proof. Let S = {R :≺⊆ R & R is a complement-decreasing ordering of B}.
By Zorn’s Lemma, S has a maximal element <. Clearly < is a complement-
decreasing ordering. So it suffices to see that < is total. Assume
not. Then there are a, b such that a 6< b and b 6< a. Since < is
complement-decreasing it follows that also −a 6< −b and −b 6< −a.
Then clearly we can extend < to an ordering <′ such that a <′ b or
b <′ a. Suppose a <′ b. But then it is not hard to see that if we
set <′′=<′ ∪{〈−y,−x〉 : x <′ y}, then <′′ is a complement-decreasing
ordering that properly extends <. But this contradicts the maximality
of <. a

Let us set

Dec(B) = {π ∈ Asso(B) : π is complement-decreasing}.
We have for any B,

Dec(B) ⊆ Asso(B) ⊆ F(B),

therefore

Taut(F(B)) ⊆ Taut(Asso(B)) ⊆ Taut(Dec(B)). (6)

Proposition 2.9 Let B ⊆ B1. Every total ordering < of B can be
extended to total ordering <1 of B1. Moreover if < is complement-
decreasing, then <1 can be complement-decreasing too.

Proof. The first claim is straightforward since every total ordering
on a set X can be extended to a total ordering on a set Y ⊇ X. Con-
cerning the second claim, let < be a complement-decreasing ordering
on B. By Proposition 2.7 B is partitioned into two selective sets X,
Y for B such that X < Y . Let A = B1 − B. Then for every a ∈ A,
{a,−a} ⊂ A. Using a choice function for the pairs {a,−a} ⊂ A, we
can extend X,Y to two selective subsets X1 ⊇ X and Y1 ⊇ Y for B1

that partition B1. Let us extend <¹X to a total ordering <′1 of X1.
Then define a total ordering <′′1 on Y1 by setting

a <′′1 b ⇔ −b <′1 −a.

It is clear that <′′1 extends <¹Y and if <1=<′1 ∪ <′′1 , then <1 is a
complement-decreasing total ordering of B1 that extends <. a

For each B and each X ⊆ F(B), we have a logical consequence
relation denoted |=X . Our next goal is to formalize the relations |=F(B),
|=Asso(B) and |=Dec(B). This will be done in section 3 below. Before
that however, in the following two subsections we point out certain
peculiarities of algebraic semantics as well as some special features of
it when the underlying Boolean algebra is the trivial one.
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2.2 Some peculiarities of the algebraic semantics

To facilitate writing interpretations of sentences of Ls in 〈B, π, v〉 we
fix some notation. For a, b ∈ B let us set

a ¢ b := −a + b, and a5 b := (a ¢ b) · (b ¢ a) = (−a + b) · (−b + a).

Note that a5 b is the complement of the symmetric difference a4 b
(see [5, p. 18]), i.e., a5 b = −(a4 b). The operations ¢ and 5 are
used for the interpretation of sentences ϕ → ψ and ϕ ↔ ψ.

Fact 2.10 For any B, v, π and a, b ∈ B, the following hold.
(i) a ¢ b = 1 ⇔ a 4 b.
(ii) a5 b = 1 ⇔ a = b.
(iii) 〈B, π, v〉 |=a ϕ → ψ iff vπ(ϕ)¢vπ(ψ) = 1 iff vπ(ϕ) 4 vπ(ψ)

.
(iv) 〈B, π, v〉 |=a ϕ ↔ ψ iff vπ(ϕ)5 vπ(ψ) = 1 iff vπ(ϕ) = vπ(ψ).

Lemma 2.11 (i) For every algebra B and any sentences ϕ, ψ, σ, τ
of Sen(Ls)

{ϕ,¬ψ, σ,¬τ} |=F(B) (ϕ|ψ) ↔ (σ|τ). (7)

(ii) On the other hand for every B 6= 2 and any distinct atoms p1, p2,
p3, p4 of L,

6|=Dec(B) (p1 ∧ ¬p2 ∧ p3 ∧ ¬p4) → (p1|p2 ↔ p3|p4). (8)

Proof. (i) To show (7) assume 〈B, π, v〉 |=F(B) {ϕ,¬ψ, σ,¬τ}. Then
vπ(ϕ) = vπ(σ) = 1 and vπ(ψ) = vπ(τ) = 0. Therefore vπ(ϕ|ψ) =
vπ(ϕ|ψ) = π(1, 0). Hence vπ(ϕ|ψ ↔ σ|τ) = 1, i.e., 〈B, π, v〉 |=F(B)

(ϕ|ψ ↔ σ|τ).
(ii) Fix an algebra B 6∼= 2. Without loss of generality we may

assume that B is the smallest nontrivial algebra with a four-element
set B = {a,−a, 0, 1}. Let p1, p2, p3, p4 be atoms of L. To show (8), we
have to find v : Sen(L) → B and π ∈ Dec(B) such that

vπ(p1 ∧ ¬p2 ∧ p3 ∧ ¬p4) 64 vπ(p1|p2 ↔ p3|p4). (9)

Take an assignment v : Sen(L) → B such that v(p1) = a, v(p2) = −a,
v(p3) = 1, and v(p4) = 0. Then vπ(p1 ∧ ¬p2 ∧ p3 ∧ ¬p4) = a · 1 = a
and vπ(p1|p2 ↔ p3|p4) = π(a,−a)5 π(1, 0). So (9) becomes

a 64 π(a,−a)5 π(1, 0). (10)

Now if < is one of the total orderings of B

0 < a < −a < 1, or a < 0 < 1 < −a,

then clearly < is complement-decreasing, so if π = min<, then π ∈
Dec(B) and π(a,−a) = a and π(1, 0) = 0. Therefore π(a,−a) 5
π(1, 0) = a5 0 = −a. So (10) becomes a 64 −a, which is true. a
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Remark 2.12 Notice that clause (i) of 2.11 fails in SCS. That is, for
any of the classes X ⊆ F considered in section 1.1, e.g. for X = Dec,
in general

{ϕ,¬ψ, σ,¬τ} 6|=X (ϕ|ψ ↔ σ|τ).

Indeed, pick atoms p, q, r, s and a valuation v such that v |= p∧¬q∧r∧
¬s. Pick also a ¬-decreasing total ordering < of Sen(L) such that p < q
and s < r. If f = min<, then f ∈ Dec and 〈v, f〉 |=s {p,¬q, r,¬s, },
while 〈v, f〉 6|=s (p|q ↔ r|s), since v |= f(p, q) and v 6|= f(r, s).

A consequence of Lemma 2.11 is the failure of the Semantic Deduc-
tion Theorem (SDT) for the relations |=X . The latter is the implication

Σ ∪ {ϕ} |=X ψ ⇒ Σ |=X ϕ → ψ. (11)

Proposition 2.13 For every algebra B 6∼= 2, the Semantic Deduction
Theorem fails for |=X , where X is any of the sets F(B), Asso(B) and
Dec(B).

Proof. Fix an algebra B 6∼= 2. Since Dec(B) ⊂ Asso(B) ⊂ F(B), in
order to show the failure of SDT for all these sets of choice functions,
it suffices to show that there are ϕ, ψ such that

ϕ |=F(B) ψ & 6|=Dec(B) (ϕ → ψ).

Pick distinct propositional atoms p1, p2, p3, p4. By clause (i) of Lemma
2.11

{p1,¬p2, p3,¬p4} |=F(B) (p1|p2,↔ p3|p4),

while by clause (ii) of this Lemma

6|=Dec(B) (p1 ∧ ¬p2 ∧ p3 ∧ ¬p4) → (p1|p2 ↔ p3|p4).

This proves the claim. a

Failure of monotonicity and distributivity properties Be-
sides the axioms S1-S5 that were shown to axiomatize completely the
basic properties of | with respect to SCS, some other principles ex-
pressing reasonable properties of | have been tested in [6] and proved
false. Such are the following principles expressing the distributivity of
∧ and ∨ with respect to | and conversely.

(Mon∧) ϕ ∧ (ψ|σ) ↔ (ϕ ∧ ψ)|(ϕ ∧ σ),

(Mon∨) ϕ ∨ (ψ|σ) ↔ (ϕ ∨ ψ)|(ϕ ∨ σ),

(Dis∧) ϕ|(ψ ∧ σ) ↔ (ϕ|ψ) ∧ (ϕ|σ),

(Dis∨) ϕ|(ψ ∨ σ) ↔ (ϕ|ψ) ∨ (ϕ|σ).
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Proposition 2.14 Let B be a Boolean algebra containing at least three
independent elements a, b, c, i.e., such that ±a · ±b · ±c 6= 0. Then
there is no X ⊆ Asso(B) for which some of the above schemes is a
X-tautology.

Proof. Fix a B with the aforementioned property. It suffices to show
that there is no total ordering < of B such that if π = min<, then for
every B-valuation v : Sen(L) → B, 〈B, π, v〉 satisfies all instances of
some of the above schemes. We shall show this for the schemes Mon∧
and Dis∧. For the other two schemes we work analogously.

(i) Falsity of Mon∧: Towards reaching a contradiction assume that
there is a total ordering < of B such that if π = min<, then for every
v and all ϕ,ψ, σ,

〈B, π, v〉 |=a ϕ ∧ (ψ|σ) ↔ (ϕ ∧ ψ)|(ϕ ∧ σ).

It follows from the definitions that this holds if and only if for all
a, b, c ∈ B,

(a · π(b, c))5 π(a · b, a · c) = 1,

or a ·π(b, c) = π(a · b, a · c). The latter again holds if for all a, b, c, such
that b 6= c and a · b 6= a · c,

b < c ⇔ a · b < a · c. (12)

By our assumption there are independent a, b, c. Suppose without loss
of generality that a < b < c and consider the element u = a · c · −b.
Then by independence a · (c · −b) 6= b · (c · −b) = 0, therefore by (12),
a < b implies a · (c · −b) < b · (c · −b), or u < 0. But also for the same
reasons b < c implies similarly b · (a · −b) < c · (a · −b), or 0 < u, a
contradiction.

(ii) Falsity of Dis∧: Now assume that there is a total ordering <
of B such that if π = min<, then for every v and all ϕ,ψ, σ,

〈B, π, v〉 |=a ϕ|(ψ ∧ σ) ↔ (ϕ|ψ) ∧ (ϕ|σ).

In particular, for σ = ¬ψ we have

〈B, π, v〉 |=a ϕ|> ↔ (ϕ|ψ) ∧ (ϕ|¬ψ).

Clearly the latter holds iff for all a, b,

π(a, 0)5 (π(a, b) · π(a,−b)) = 1,

or
π(a, 0) = π(a, b) · π(a,−b). (13)

Fix two of the independent elements a, b. Clearly a 6= 0, 1. We examine
below some consequences of a < 0 and a > 0.
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(a) Let a < 0. By independence of a, b, a · b 6= a and a · −b 6= a
(otherwise a · −b = 0 or a · b = 0). Then π(a, 0) = a, so (13) clearly
implies π(a, b) = π(a,−b) = a, i.e., a < b and a < −b. It means that

(∀a)(∀b)(a < 0 ∧ a, b indepenedent ⇒ a < b,−b). (14)

(b) Let 0 < a. Then π(0, a) = 0. Take again b such that a, b
are independent, so a · b 6= a and a · −b 6= a. Then (13) implies that
π(a, b) = b and π(a,−b) = −b, for otherwise we would have 0 = a ·b, or
0 = a, or a·−b = which contradict the previous assumptions. Therefore
b,−b < a. It means that

(∀a)(∀b)(0 < a ∧ a, b indepenedent ⇒ a < b,−b). (15)

By assumption there are three independent elements a, b, c. Since
a, b, c, 0 are linearly ordered, there are two of them on the left of 0
or on the right of 0. That is, there are independent elements a, b such
that a, b < 0 or 0 < a, b. If a, b < 0, (14) implies a < b, a < −b, b < a
and b < −a, a contradiction. If 0 < a, b, (15) implies b < a, −b < a,
a < b and −a < b, a contradiction again. a

2.3 The special case of the algebra 2

The Boolean-value choice semantics based on the trivial algebra 2 has
some special properties not shared by the other algebras. This is be-
cause there are only two choice functions π0, π1 : [2]2 → 2 such that:

1) π0(0) = 0, π0(1) = 1, π0(0, 1) = 0, i.e., π0 = min4, and
2) π1(0) = 0, π1(1) = 1, π1(0, 1) = 1, i.e., π1 = max4,

where 4 is the natural (total) ordering of 2. So both π0 and π1 are
associative. Moreover they are complement-decreasing, since 0 ≺ 1 ⇔
−1 ≺ −0. Therefore F(2) = Dec(2). Below we cite some points on
which truth with respect to 2 differs from the one with respect to an
arbitrary B.

1) SDT is true with respect to 2.
In contrast to Proposition 2.13, we have the following.

Proposition 2.15 The Semantical Deduction Theorem holds with re-
spect to |=F(2). That is, for all Σ, ϕ, ψ

Σ ∪ {ϕ} |=F(2) ψ ⇒ Σ |=F(2) ϕ → ψ.

Proof. Since for every v and π, and every ϕ, vπ(ϕ) ∈ {0, 1}, the
proof is trivial, and quite similar to that of the SDT for classical logic.
a

2) The monotonicity and distributivity schemes hold with
respect to 2.
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Further, in contrast to Proposition 2.14, the following holds.

Proposition 2.16 The schemes Mon∧, Mon∨, Dis∧, Dis∨, men-
tioned in the previous subsection, are F(2)-tautologies.

Proof. We verify that Mon∧ and Dis∧ are F(2)-tautologies, leav-
ing the other ones to the reader.

(i) Mon∧: As we saw in the disproof of Mon∧ in 2.14, Mon∧ is a
|=F(2)-tautology iff for all a, b, c ∈ {0, 1} and all π ∈ F(2),

a · π(b, c)5 π(a · b, a · c) = 1,

or
a · π(b, c) = π(a · b, a · c).

If a = 0, both sides of the equation equal 0. If a = 1, both sides equal
π(b, c), and we are done.

(ii) Dis∧: This is a |=F(2)-tautology iff for all a, b, c ∈ {0, 1}, and
all π ∈ F(2),

π(a, b · c)5 (π(a, b) · π(a, c)) = 1,

or
π(a, b · c) = π(a, b) · π(a, c).

If b = c = 0 both sides of the equation equal π(a, 0). If b = c = 1,
both sides equal π(a, 1). Assume b 6= c. Then the equation becomes
π(a, 0) = π(a, 0) · π(a, 1), which is true since clearly π(a, 0) 4 π(a, 1).
a
Proposition 2.17 The scheme

(†) (ϕ|¬ϕ) ↔ (ψ|¬ψ)
is a F(2)-tautology. However (†) is not a F(B)-tautology for any B 6=
2.

Proof. The truth of (†) in 〈2, π, v〉 amounts to showing that

π(a,−a)5 π(b,−b) = 1,

for any a, b ∈ {0, 1}, which is obvious, since π(a,−a) = π(b,−b) =
π(0, 1). On the other hand, given B 6= 2, let a ∈ B such that a 6= 1, 0
and v(α) = a and v(β) = 1, for two sentences α, β of L ,and let
π(a,−a) = a and π(0, 1) = 0. Then πv∗(α|¬α ↔ β|¬β) = a 5 0 =
−a 6= 1. Therefore 〈B, π, v〉 6|=a (α|¬α ↔ β|¬β). a

Of course (†) by no means expresses some intuitively natural or
even reasonable property of the connective |. It is easy to see that (†)
fails also in SCS, namely (†) 6∈ Taut(Dec), hence also (†) 6∈ Taut(F).
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3 Axiomatization of algebraic semantics

In this section we shall formalize the sets of choice functions F(B),
Asso(B) and Dec(B) for an arbitrary B, by formal systems denoted
Ka

0 , Ka
1 and Ka

2 , respectively. These systems are quite analogous to
K0, K1/K2

1 and K3 that axiomatize the corresponding classes of SCS
(the superscript “a” stands for algebraic). As with Ki, Ka

i consist of
axioms and inference rules. The axioms are again among S1-S5, as
before. However a new inference rule will replace the rule SV of SCS.
This is necessitated by the peculiarities of BCS exposed in Lemma 2.11.
Namely, if the provability relation `K is to formalize |=F(B), then on
the one hand we should have {ϕ,¬ψ, σ,¬τ} `K ϕ|ψ ↔ σ|τ (because of
(7)), and on the other (for B 6= 2) 6`K (ϕ∧¬ψ∧σ∧¬τ) → (ϕ|ψ ↔ σ|τ)
(because of (8)). This situation can be captured not by an axiom but
only by a rule. The rule is called rule of analogy (abbreviated RA) and
reads as follows.

From ϕ,¬ψ, σ,¬τ, infer ϕ|ψ ↔ σ|τ,
or formally,

(RA)
ϕ,¬ψ, σ,¬τ

ϕ|ψ ↔ σ|τ .

The formal systems Ka
0 , Ka

1 and Ka
2 are defined as follows.

Ax(Ka
0 ) = Ax(K0), IR(Ka

0 ) = {MP,RA}

Ax(Ka
1 ) = Ax(K0) + S4, IR(Ka

1 ) = {MP,RA},
Ax(Ka

2 ) = Ax(Ka
1 ) + S5, IR(Ka

2 ) = {MP,RA}.
For an algebra B, a set X ⊆ F(B) and a formal system K, PLS(B, X, K),
or more simply,

PLS(X, K),

denotes the superposition logic with syntax K and semantics X. As
usual `Ka

i
denotes the provability relation of Ka

i .
A natural question concerning the rule RA, might be why we need

to postulate that ϕ|ψ ↔ σ|τ follows from {ϕ,¬ψ, σ,¬τ} and not, e.g.,
from {ϕ,ψ, σ, τ}. The answer is that indeed ϕ|ψ ↔ σ|τ follows from
{ϕ,ψ, σ, τ}, but this inference does not need an extra rule. It follows
from the axioms. Namely, ϕ|ψ follows from {ϕ,ψ} by S1, and similarly
σ|τ follows from {σ, τ}. Therefore {ϕ,ψ, σ, τ} proves (ϕ|ψ)∧(σ|τ), and
hence (ϕ|ψ ↔ σ|τ).

1The distinction between “regular” and “non-regular” choice functions for [Sen(L)]2

used in SCS does not make sense for choice functions for [B]2. That is why the four formal
systems of SCS reduce to three in BCS.
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As we saw in section 1.1 concerning the systems Ki, the existence
of the rule SV undermines the truth of the Deduction Theorem (DT).
Here we shall see that the introduction of the rule RA provably fal-
sifies DT, so we must distinguish again between the two forms ST1,
ST2 of the Soundness Theorem, and the two forms CT1, CT2 of the
Completeness Theorem, that were defined in section 1.1.

Lemma 3.1 (i) ST1 ⇒ ST2.
(ii) CT1 ⇒ CT2.

Proof. (i) Assume ST1 and let Σ be K-inconsistent. Then Σ `K ⊥.
By ST1 Σ |=X ⊥, thus Σ cannot be X-satisfiable.

(ii) Assume CT1 and let Σ be not X-satisfiable. Then Σ |=X ⊥.
By CT1 Σ `K ⊥, thus Σ is K-inconsistent. a

Two remarks concerning the converse implications of the preceding
proposition.

1) For B 6= 2 the proof of the converse of (i) above does not seem to
go through. Indeed assume ST2 and Σ 6|=X ϕ. If B 6= 2, the latter does
not imply that Σ ∪ {¬ϕ} is X-satisfiable. It only implies that there
are v and π ∈ X such that vπ(Σ) = 1 and vπ(ϕ) 6= 1, or equivalently
vπ(¬ϕ) 6= 0. It may well be vπ(ϕ) = a 6= 0. Thus we cannot infer that
Σ ∪ {¬ϕ} is satisfiable.

2) As remarked in Fact 1.7, direction CT2 ⇒ CT1 holds if DT is
true, but is open otherwise.

Lemma 3.2 For every Boolean algebra B the following hold.
(i) Ax(Ka

0 ) ⊆ Taut(F(B)).
(ii) Ax(Ka

1 ) ⊆ Taut(Asso(B)).
(iii) Ax(Ka

2 ) ⊆ Taut(Dec(B)).

Proof. Fix an algebra B, a B-valuation v : Sen(L) → B and a
choice function π ∈ F(B) and let ϕ,ψ ∈ Sen(Ls).

(i) 〈B, π, v〉 |=a S1: Let σ := (ϕ∧ψ → ϕ|ψ). We have to show that
vπ(σ) = 1. By the definitions we have that

vπ(σ) = (vπ(ϕ) · vπ(ψ)) ¢ π(vπ(ϕ), vπ(ψ))

or, setting vπ(ϕ) = a and vπ(ψ) = b,

vπ(σ) = a · b ¢ π(a, b).

Obviously a ·b 4 π(a, b), so, by Fact 2.10 (i), a ·b¢π(a, b) = vπ(σ) = 1.

〈B, π, v〉 |=a S2: Quite similar to the previous one and using the
fact that for any a, b, π, π(a, b) 4 a + b.
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〈B, π, v〉 |=a S3: With the same conventions as before, 〈B, π, v〉 |=a

ϕ|ψ → ψ|ϕ amounts to π(a, b)¢π(b, a) = 1, which follows immediately
from the fact that by definition π(a, b) = π(b, a).

(ii) Since Taut(F(B)) ⊆ Taut(Asso(B)), it suffices to show that
S4 ∈ Taut(Asso(B)), i.e., for every v and π ∈ Asso(B), 〈B, π, v〉 |=a

(ϕ|ψ)|σ → ϕ(ψ|σ). With the previous conventions it amounts to show-
ing that for all a, b, c ∈ B π(π(a, b), c) ¢ π(a, π(b, c)) = 1, which holds
since actually by the associativity of π, π(π(a, b), c) = π(a, π(b, c)).

(iii) Since Taut(Asso(B)) ⊆ Taut(Dec(B)), it suffices to show that
S5 ∈ Taut(Dec(B)), i.e., for every v and π ∈ Dec(B) 〈B, π, v〉 |=a S5,
i.e., vπ(σ) = 1 for any

σ := ϕ ∧ ¬ψ → (ϕ|ψ ↔ ¬ϕ|¬ψ).

With the preceding conventions we have to show that for π ∈ Dec(B)
and all a, b ∈ B

(a · −b) ¢ (π(a, b)5 π(−a,−b)) = 1 (16)

Since π ∈ Dec(B), π = min< for a complement-decreasing total order-
ing < of Sen(L), i.e., a < b ⇔ −b < −a. If a = b, then a · −b = 0, so
(16) is true. So assume a 6= b. We consider the following two cases.

• π(a, b) = a. Then a < b, hence −b < −a, so π(−a,−b) = −b.
Therefore

π(a, b)5 π(−a,−b) = a5−b = (−a +−b) · (a + b).

Since obviously a · −b 4 (−a +−b) · (a + b), by Fact 2.10 (16) is true.
• π(a, b) = b. Then b < a and hence −a < −b, so π(−a,−b) = −a.

Therefore π(a, b)5 π(−a,−b) = b 5−a. But

b 5−a = −b5 a = a5−b = (−a +−b) · (a + b),

so we are reduced to the previous case. This completes the proof. a

In addition to the axioms of Ka
2 , the relation |=Dec(B) satisfies also

the distributivity of the dual connective of | with respect to | (and
vice versa), a result completely analogous to what holds for the ¬-
decreasing functions of SCS (see Proposition 2.46 of [6]). The dual
connective of | is

ϕ ◦ ψ := ¬(¬ϕ|¬ψ).

Proposition 3.3 For any Boolean algebra B, the equivalences

ϕ ◦ (ψ|σ) ↔ (ϕ ◦ ψ)|(ϕ ◦ σ),
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and
ϕ|(ψ ◦ σ) ↔ (ϕ|ψ) ◦ (ϕ|σ)

are schemes of Dec(B)-tautologies.

Proof. We prove the claim for the first scheme, the other being
proved similarly. Fix sentences ϕ, ψ, σ. Let v be any B-valuation of
Sen(L) and let π ∈ Dec(B), i.e., π = min< where < is a complement-
decreasing total ordering of B. It suffices to show that

vπ(ϕ ◦ (ψ|σ) ↔ (ϕ ◦ ψ)|(ϕ ◦ σ)) = 1,

or
vπ(ϕ ◦ (ψ|σ)) = vπ((ϕ ◦ ψ)|(ϕ ◦ σ))). (17)

Putting vπ(ϕ) = a, vπ(ψ) = b and vπ(σ) = c, and taking into ac-
count the definition of ◦ and the fact that for any x, y ∈ B, π(x, y) =
min(x, y), (17) is equivalent to

−min(−a,−min(b, c)) = min(−min(−a,−b),−min(−a,−c)). (18)

By complement-decreasingness, clearly −min(−a,−b) = max(a, b), so
(18) becomes

max(a,min(b, c)) = min(max(a, b), max(a, c)). (19)

We verify (19) by cases, although we guess that there is some more
elegant direct proof.

Case 1. Assume a ≤ min(b, c). Then max(a,min(b, c)) = min(b, c).
Besides a ≤ min(b, c) implies max(a, b) = b and max(a, c) = c. There-
fore both sides of (19) are equal to min(b, c).

Case 2. Assume min(b, c) < a. Then max(a,min(b, c)) = a. To de-
cide the right-hand side of (19), suppose b ≤ c so we have the following
subcases.

(2i) b < a ≤ c: Then max(a, b) = a, max(a, c) = c, therefore,
min(max(a, b), max(a, c)) = a, thus (19) holds.

(2ii) b ≤ c < a: Then max(a, b) = max(a, c) = a. So

min(max(a, b), max(a, c)) = a,

thus (19) holds again.
Case 3. Assume again min(b, c) < a, so max(a,min(b, c)) = a, but

suppose now c < b. Then we have the subcases:
(3i) c < a ≤ b: Then max(a, b) = b and max(a, c) = a. Thus

min(max(a, b), max(a, c)) = a, that is, (19) holds.
(3ii) c < b ≤ a: Then max(a, b) = a and max(a, c) = a. So

min(max(a, b), max(a, c)) = a.
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This completes the proof. a.

Let B be a subalgebra of B1 (notation B ⊆ B1). If v : Sen(L) → B
is a B-valuation, then v can be considered also a B1-valuation v :
Sen(L) → B1, since the operations +, · and − are preserved between
B and B1. The following simple general fact is easy but useful.

Lemma 3.4 Let B ⊆ B1, Σ be a set of sentences of Ls, and v be a
B-valuation. Then the following hold.

(i) For every π ∈ F(B) such that 〈B, π, v〉 |=a Σ, there is a π1 ∈
F(B1) such that 〈B1, π1, v〉 |=a Σ. Thus every F(B)-satisfiable Σ is
F(B1)-satisfiable.

(ii) For every π ∈ Asso(B) such that 〈B, π, v〉 |=a Σ, there is a π1 ∈
Asso(B1) such that 〈B1, π1, v〉 |=a Σ. Thus every Asso(B)-satisfiable
Σ is Asso(B1)-satisfiable.

(iii) For every π ∈ Dec(B) such that 〈B, π, v〉 |=a Σ, there is a π1 ∈
Asso(B1) such that 〈B1, π1, v〉 |=a Σ. Thus every Dec(B)-satisfiable Σ
is Dec(B1)-satisfiable.

Proof. (i) Since B ⊆ B1, clearly v : Sen(Ls) → B ⊆ B1. Further,
using π for [B]2 we have vπ(ϕ) ∈ B ⊆ B1, for every ϕ ∈ Σ. Therefore,
since 〈B, v, π〉 |=a Σ, it follows that 〈B1, v, π〉 |=a Σ. It remains only to
extend π to the set [B1]2. But this can be done arbitrarily, because the
elements of B1 −B are not involved in the range of v or v, by setting
π1(a, b) = whatever if (a, b) ∈ [B1]2 − [B]2. Thus 〈B1, π1, v〉 |=a Σ.

(ii) and (iii) are shown similarly by the help of Proposition 2.9, since
for every if π = min<, for a total ordering < of B, we can take <1

extending < and π1 = min<1 . Moreover if < is complement-decreasing,
<1 can be taken to be complement-decreasing too. a
Lemma 3.5 Let B ⊆ B1. The following hold.

(i) Taut(F(B1)) ⊆ Taut(F(B)).
(ii) Taut(Asso(B1)) ⊆ Taut(Asso(B)).
(i) Taut(Dec(B1)) ⊆ Taut(Dec(B)).

Proof. (i) Let ϕ ∈ Taut(F(B1)) and let 〈B, π, v〉 be a B-structure.
It suffices to see that 〈B, π, v〉 |=a ϕ. v is a B-valuation of the sen-
tences of L, hence it is also a B1-valuation. Also π ∈ F(B) and, by
Proposition 2.9, π is extended to a function π1 ∈ F(B1). Since ϕ ∈
Taut(F(B1)), 〈B1, v, π1〉 |=a ϕ. But obviously vπ1(ϕ) = vπ(ϕ) = 1,
therefore 〈B, π, v〉 |=a ϕ. (ii) and (iii) are shown similarly because by
2.9, every π ∈ Asso(B) can be extended to a π1 ∈ Asso(B1) and every
π ∈ Dec(B) can be extended to a π1 ∈ Dec(B1). a
Theorem 3.6 (Soundness) For every algebra B, the logics

PLS(F(B), Ka
0 ), PLS(Asso(B), Ka

1 ), PLS(Dec(B),Ka
2 )
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satisfy ST1 (hence also ST2, by 3.1). Namely, for every Σ ∪ {ϕ} ⊆
Sen(Ls) the following hold.

(i) Σ `Ka
0

ϕ ⇒ Σ |=F(B) ϕ.
(ii) Σ `Ka

1
ϕ ⇒ Σ |=Asso(B) ϕ.

(iii) Σ `Ka
2

ϕ ⇒ Σ |=Dec(B) ϕ.

Proof. Pick some algebra B. Clearly we can verify ST1 for all
the above systems in one move by showing that Σ `Ka

2
ϕ implies

Σ |=F(B) ϕ. Let Σ `Ka
2

ϕ and let σ1, . . . , σn = ϕ be a Ka
2 -proof of

ϕ from Σ. We show by induction that Σ |=F(B) σi, for i ≤ n. In
view of Lemma 3.2, the only nontrivial step of the induction is the one
involving the rule RA. That is, given i > 1, assume the claim holds for
all j < i and let σi follows from previous sentences by the help of RA.
It means that σi = (ψ1|ψ2) ↔ (τ1|τ2) and there are i1, i2, i3, i4 < i
such that σi1 = ψ1, σi2 = ¬ψ2, σi3 = τ1 and σi4 = ¬τ2. The formulas
{ψ1,¬ψ2, τ1,¬τ2} all occur before σi, so by the induction assumption,

Σ |=F(B) ψ1 ∧ ¬ψ2 ∧ τ1 ∧ ¬τ2.

By Lemma 2.11 (i), we have

ψ1 ∧ ¬ψ2 ∧ τ1 ∧ ¬τ2 |=F(B) (ψ1|ψ2 ↔ τ1|τ2).

Thus Σ |=F(B) (ψ1|ψ2 ↔ τ1|τ2), or Σ |=F(B) σi. This completes the
proof. a

Note that since ST1 ⇒ ST2 and the systems above satisfy ST1, we
may say that they are “sound” instead of “ST1-sound”.

Proposition 3.7 The Deduction Theorem (DT) fails in the formal
systems Ka

i , for i ∈ {0, 1, 2}.
Proof. Each Ka

i contains the rule RA, and in view of this we have
that for all ϕ, ψ, σ, τ ,

{ϕ,¬ψ, σ,¬τ} `Ka
i

(ϕ|ψ) ↔ (σ|τ).

Suppose
`Ka

i
(ϕ ∧ ¬ ∧ ψ ∧ σ ∧ ¬τ) → (ϕ|ψ ↔ σ|τ).

Then by Theorem 3.6 we should have

|=X (ϕ ∧ ¬ ∧ ψ ∧ σ ∧ ¬τ) → (ϕ|ψ ↔ σ|τ),

for every B and X = F(B) (if i = 0), or X = Asso(B) (if i = 1), or
X = Dec(B) (if i = 2). But for B 6= 2 and X = Dec(B), this is false
by Lemma 2.11 (ii). Moreover the failure of the above sentence to be a
tautology with respect to |=Dec(B) implies the failure also with respect
to |=Asso(B) and |=F(B). Therefore

6`Ka
i

(ϕ ∧ ¬ ∧ ψ ∧ σ ∧ ¬τ) → (ϕ|ψ ↔ σ|τ),

and thus DT fails in Ka
i . a
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3.1 Completeness

We come to the completeness of the logics based on the systems Ka
0 -Ka

2 .
In view of the failure of DT shown above, the situation is analogous to
that of the logics based on the systems K1-K3 outlined in section 1.
The failure of DT on the one hand does not allow identifying the two
forms of completeness CT1 and CT2, because of Fact 1.7 (ii). After
all, we shall prove below (Theorem 3.11) that CT1 is false. So we can
only hope to prove CT2. On the other hand, by the failure of DT, we
cannot infer that every consistent set of sentences can be extended to a
consistent and complete set, hence we must invoke again the property
cext(K) of “complete extendibility”, for a formal system K. Recall
that this is the property

(cext(K)) Every K-consistent set of sentences can be extended to a

K-consistent and complete set.

The justification given immediately after Theorem 1.8 for the in-
troduction of cext(K) is valid also here. So we shall prove again con-
ditional versions of CT2-completeness for these systems. Satisfiability
of a consistent system will be shown with respect to the algebra 2.

Theorem 3.8 (Conditional CT2-completeness with respect to 2) The
logics PLS(F(2),Ka

0 ), PLS(Asso(2),Ka
1 ) and PLS(Dec(2),Ka

2 ) are
CT2-complete if and only if cext(Ka

i ) are true for i = 0, 1, 2, respec-
tively.

Proof. Recall first that F(2) = Asso(2) = Dec(2), so we shall
refer to all of them as F(2). One direction is easy. Assume that
cext(Ka

i ) is false for some i ∈ {0, 1, 2}. Then there is a maximal Ka
i -

consistent set Σ of sentences non-extendible to and a Ka
i -consistent

and complete set, so there is ϕ such that Σ ∪ {ϕ} and Σ ∪ {¬ϕ} are
both Ka

i -inconsistent. But then Σ cannot be F(2)-satisfiable. For
if there is a binary valuation v and a choice function π ∈ [2]2 such
that 〈2, π, v〉 |=a Σ, then 〈2, π, v〉 |=a ϕ or 〈2, π, v〉 |=a ¬ϕ. So either
Σ ∪ {ϕ} or Σ ∪ {¬ϕ} would be F(2)-satisfiable. But this is false since
Σ∪{ϕ} and Σ∪{¬ϕ} are inconsistent and the above logics are sound,
by Theorem 3.6. Thus Σ is Ka

i -consistent and not F(2)-satisfiable,
i.e., PLS(F(2),Ka

i ) is not CT2-complete.
For the main direction assume cext(Ka

i ) is true for all i. Since
F(2) = Asso(2) = Dec(2), we can prove CT2-completeness of all
three systems in one move by showing that if Σ is Ka

0 -consistent, then
it is F(2)-satisfiable. So fix a Σ ⊂ Sen(Ls) which is Ka

0 -consistent.
By cext(Ka

0 ) we can take Σ to be complete, i.e., ϕ ∈ Σ or ¬ϕ ∈ Σ,
for every ϕ ∈ Sen(Ls). Let Σ1 = Σ ∩ Sen(L), be the set of classical
sentences of Σ. Clearly Σ1 is a complete consistent subset of Sen(L), so
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by the completeness and soundness of PL there is a binary assignment
v : Sen(L) → 2 such that for all α ∈ Sen(L),

α ∈ Σ1 ⇐⇒ v(α) = 1. (20)

It suffices to determine a π ∈ F(2) such that 〈2, π, v〉 |=a Σ, or equiv-
alently, for all ϕ ∈ Sen(Ls),

ϕ ∈ Σ ⇐⇒ vπ(ϕ) = 1. (21)

Since there are only two nontrivial choice functions, we simply need
to determine whether π(0, 1) = 0 or π(0, 1) = 1. Let us call a pair of
sentences {ϕ, ψ} of Ls homonymous for Σ if {ϕ, ψ} ⊂ Σ or {¬ϕ,¬ψ} ⊂
Σ, and heteronymous for Σ if either {ϕ,¬ψ} ⊂ Σ or {¬ϕ,ψ} ⊂ Σ.
Due to the completeness of Σ, every pair is either homonymous or
heteronymous. The reason for giving this definition is the following
two facts.

Fact 1. If {ϕ,ψ} and {σ, τ} are heteronymous pairs for Σ, then
(ϕ|ψ) ∈ Σ ⇔ (σ|τ) ∈ Σ.

Proof. This is a consequence of the Ka
0 -consistency and complete-

ness of Σ, together with the action of rule RA in Ka
0 -proofs. For

if {ϕ,ψ} and {σ, τ} are heteronymous, then we can assume without
loss of generality (due to axiom S3, i.e., the commutativity of |) that
{ϕ,¬ψ, σ,¬τ} ⊂ Σ. By RA, {ϕ,¬ψ, σ,¬τ} `Ka

0
(ϕ|ψ) ↔ (σ|τ). So by

completeness and consistency Σ `Ka
0

(ϕ|ψ) ↔ (σ|τ), and for the same
reason the latter implies (ϕ|ψ) ∈ Σ ⇔ (σ|τ) ∈ Σ.

Fact 2. Let {α, β} be a heteronymous pair for Σ, where α, β ∈
Sen(L), say with {α,¬β} ⊂ Σ. If v is the assignment for which v |=
Σ1, then 〈2, π, v〉 |=a {α,¬β, α|β} if and only if π(0, 1) = 1. And
〈2, π, v〉 |=a {α,¬β,¬(α|β)} if and only if π(0, 1) = 0.

Proof. Suppose 〈2, π, v〉 |=a {α,¬β, α|β}. This simply means that
v(α) = 1, v(β) = 0 and π(v(α), v(β)) = 1, thus necessarily, π(1, 0) = 1.
While 〈2, π, v〉 |=a {α,¬β,¬(α|β)} means that v(α) = 1, v(β) = 0 and
−π(v(α), v(β)) = 1, i.e., π(1, 0) = 0.

Fact 3. If the pair {ϕ,ψ} is homonymous for Σ, then either {ϕ,ψ, ϕ|ψ}
⊂ Σ, or {¬ϕ,¬ψ,¬(ϕ|ψ)} ⊂ Σ. In particular, if {α, β} is homonymous
then 〈2, π, v〉 |=a {α, β, α|β}, for every π or 〈2, π, v〉 |=a {¬α,¬β,¬(α|β)}
for every π.

Proof. Just note that the remaining cases {ϕ,ψ,¬(ϕ|ψ)} ⊂ Σ and
{¬ϕ,¬ψ, ϕ|ψ} ⊂ Σ contradict the consistency of Σ. The first one
because then Σ `Ka

0
ϕ ∧ ψ ∧ ¬(ϕ|ψ), while by S1, ϕ ∧ ψ `Ka

0
ϕ|ψ,

and the second one because then Σ `Ka
0
¬ϕ ∧ ¬ψ ∧ ϕ|ψ, while by

S2, ¬ϕ ∧ ¬ψ `Ka
0
¬(ϕ|ψ). The other claim follows from the fact that

π(1, 1) = 1 and π(0, 0) for every π.

27



In view of Fact 2, to decide whether we shall use the π for which
π(0, 1) = 0 or the π for which π(0, 1) = 1, fix some heteronymous pair
{α, β} of sentences of L, say such that {α,¬β} ⊂ Σ. (Clearly we can
always find such a pair.) For this pair, either (α|β) ∈ Σ or ¬(α|β) ∈ Σ.
If (α|β) ∈ Σ we choose the π for which π(0, 1) = 1. If ¬(α|β) ∈ Σ we
choose the π for which π(0, 1) = 0. We claim that for the π chosen
this way, (21) holds for every ϕ ∈ Sen(Ls). Let us prove this for the
two cases just mentioned.

Case 1. Suppose (α|β) ∈ Σ, i.e., {α,¬β, α|β} ⊂ Σ, and let π(0, 1) =
1. We prove (21) by induction on the length of ϕ. For ϕ ∈ Sen(L),
vπ(ϕ) = v(ϕ), so (21) holds because of (20). The only nontrivial clause
of the induction is the one concerning the connective |. So assume
ϕ = ϕ1|ϕ2 and that the claim holds for ϕ1 and ϕ2, i.e.,

ϕ1 ∈ Σ ⇐⇒ vπ(ϕ1) = 1 (22)

and
ϕ2 ∈ Σ ⇐⇒ vπ(ϕ2) = 1. (23)

It suffices to prove

(ϕ1|ϕ2) ∈ Σ ⇐⇒ vπ(ϕ1|ϕ2) = 1. (24)

We examine a few subcases.
(a) Suppose first that {ϕ1, ϕ2} is heteronymous. Then by Fact 1

and the initial assumption of this case, it follows that (ϕ1|ϕ2) ∈ Σ, i.e.,
the left-hand side of (24) is true. We consider two subcases.

(a1) Let {ϕ1,¬ϕ2} ⊂ Σ. By the induction assumptions (22) and
(23) we have vπ(ϕ1) = 1 and vπ(ϕ2) = 0. Therefore

vπ(ϕ1|ϕ2) = π(vπ(ϕ1), vπ(ϕ2)) = π(1, 0) = 1.

So the right-hand side of (24) is true, and hence (24) itself is true.
(a2) If {¬ϕ1, ϕ2} ⊂ Σ, we conclude similarly that vπ(ϕ1|ϕ2) = 1,

so (24) holds again.
(b) Suppose next that {ϕ1, ϕ2} is homonymous. By Fact 3, ei-

ther {ϕ1, ϕ2, ϕ1|ϕ2} ⊂ Σ, or {¬ϕ1,¬ϕ2,¬(ϕ1|ϕ2)} ⊂ Σ. We have the
following subcases.

(b1) {ϕ1, ϕ2, ϕ1|ϕ2} ⊂ Σ. Then the left-hand side of (24) is true.
Also by the induction assumptions (22) and (23) we have vπ(ϕ1) =
vπ(ϕ2) = 1. Then vπ(ϕ1|ϕ2) = π(vπ(ϕ1), vπ(ϕ2)) = π(1, 1) = 1. Thus
the right-hand side of (24) is also true, so (24) is true.

(b2) {¬ϕ1,¬ϕ2,¬(ϕ1|ϕ2)} ⊂ Σ. Then (ϕ1|ϕ2) /∈ Σ, i.e., the left-
hand side of (24) is false. Since also ϕ1 /∈ Σ and ϕ2 /∈ Σ, by the
induction assumptions (22) and (23) we have vπ(ϕ1) = vπ(ϕ2) = 0.
Thus vπ(ϕ1|ϕ2) = π(vπ(ϕ1), vπ(ϕ2)) = π(0, 0) = 0, i.e., the right-hand
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side of (24) is also false, hence (24) is true. This completes the proof
of (24) in Case 1.

Case 2. Suppose ¬(α|β) ∈ Σ, i.e., {α,¬β,¬(α|β)} ⊂ Σ. In this
case we choose π so that π(0, 1) = 0. It suffices as before to assume
(22) and (23) and prove (24).

(a) Suppose {ϕ1, ϕ2} is heteronymous. Then by Fact 1 and the
initial assumption of this case, it follows that ¬(ϕ1|ϕ2) ∈ Σ. So the
left-hand side of (24) is false. We consider two subcases.

(a1) Let {ϕ1,¬ϕ2} ⊂ Σ. By the induction assumptions we have
vπ(ϕ1) = 1 and vπ(ϕ2) = 0. Therefore

vπ(ϕ1|ϕ2) = π(vπ(ϕ1), vπ(ϕ2)) = π(1, 0) = 0.

So the right-hand side of (24) is false, and hence (24) is true.
(a2) If {¬ϕ1, ϕ2} ⊂ Σ, we conclude similarly that vπ(ϕ1|ϕ2) = 0,

so (24) holds again.
(b) Suppose that {ϕ1, ϕ2} is homonymous. This subcase is identical

to subcase (b) of Case 1 above. (24) holds in view of the induction
assumptions and the fact that π(1, 1) = 1 and π(0, 0) = 0 for all π.
This completes the proof of the theorem. a

A natural question is whether Theorem 3.8 is still true with an
arbitrary algebra B in place of 2. We can only establish one direction
of the equivalences.

Corollary 3.9 For any Boolean algebra B the following hold.
(i) If cext(Ka

0 ) is true, then PLS(F(B),Ka
0 ) is CT2-complete.

(ii) If cext(Ka
1 ) is true, then PLS(Asso(B),Ka

1 ) is CT2-complete.
(iii) If cext(Ka

2 ) is true, then PLS(Dec(B),Ka
2 ) is CT2-complete.

Proof. (i) Let cext(Ka
0 ) hold true and assume Σ is Ka

0 -consistent.
By 3.8 PLS(F(2),Ka

0 ) is CT2-complete, so Σ is F(2)-satisfiable. But
then by Lemma 3.4 (i) Σ is also F(B)-satisfiable. Thus PLS(F(B), Ka

0 )
is CT2-complete. Clauses (ii) and (iii) follow similarly using clauses
(ii) and (iii) of Lemma 3.4. a

The reason that the converse implications of 3.9 are open is the
following. Assume cext(Ka

i ) is false. Then as before there is a maximal
Ka

i -consistent set Σ not extendible to a Ka
i -consistent and complete

set. Thus there is a ϕ such that Σ ∪ {ϕ} and Σ ∪ {¬ϕ} are both
Ka

i -inconsistent, hence not F(B)-satisfiable. But from this we cannot
infer that Σ is not F(B)-satisfiable. For it may be that 〈B, π, v〉 |=a Σ
and yet ϕ is neither true nor false in 〈B, π, v〉, that is, 0 ≺ vπ(ϕ) ≺ 1,
where 4 is the natural ordering of B. So Σ ∪ {ϕ} and Σ ∪ {¬ϕ} are
not satisfied in 〈B, π, v〉 and no contradiction arises as before.

Here is also a conditional converse to Lemma 3.4.
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Corollary 3.10 Let B1, B2 be any Boolean algebras.
(i) Suppose cext(Ka

0 ) is true. Then for every Σ ⊂ Sen(Ls), Σ is
F(B1)-satisfiable iff it is F(B2)-satisfiable.

(ii) Suppose cext(Ka
1 ) is true. Then for every Σ ⊂ Sen(Ls), Σ is

Asso(B1)-satisfiable iff it is Asso(B2)-satisfiable.
(iii) Suppose cext(Ka

2 ) is true. Then for every Σ ⊂ Sen(Ls), Σ is
Dec(B1)-satisfiable iff it is Dec(B2)-satisfiable.

Proof. Clearly it suffices to show these conditional equivalences
taking one of the algebras to be 2. That is, for (i) it suffices to show,
assuming cext(Ka

0 ), that Σ is F(B)-satisfiable iff it is F(2)-satisfiable.
By Lemma 3.4, if Σ is F(2)-satisfiable then it is F(B)-satisfiable. For
the converse assume Σ is not F(2)-satisfiable. By condition cext(Ka

0 )
and Theorem 3.8, Σ is Ka

0 -inconsistent, i.e., Σ `Ka
0
⊥. But then

by Theorem 3.6 (i) we have Σ |=F(B) ⊥. So Σ is cannot be F(B)-
satisfiable. Clauses (ii) and (iii) are shown similarly. a

In contrast to Theorem 3.8 we have the following.

Theorem 3.11 CT1 is false for the logics PLS(F(2),Ka
i ).

Proof. Assume on the contrary that CT1 holds for PLS(F(2),Ka
i ).

It suffices to see that this implies the truth of the Deduction Theo-
rem (DT), which contradicts Proposition 3.7. Let Σ ∪ {ϕ} `Ka

i
ψ.

By Soundness Theorem 3.6 Σ ∪ {ϕ} |=F(2) ψ. By Proposition 2.15
the Semantical Deduction Theorem (SDT) holds in PLS(F(2),Ka

i ).
Therefore Σ |=F(2) (ϕ → ψ). Then CT1 for PLS(F(2), Ka

i ) implies
Σ `Ka

i
(ϕ → ψ). Thus DT is true in Ka

i , a contradiction.
For another proof by contradiction, recall that by Proposition 2.17

the scheme (†) (ϕ|¬ϕ) ↔ (ψ|¬ψ) is a F(2)-tautology, i.e. |=F(2)

(ϕ|¬ϕ) ↔ (ψ|¬ψ). CT1 would imply `Ka
0

(ϕ|¬ϕ) ↔ (ψ|¬ψ). By The-
orem 3.6, it follows that |=F(B) (ϕ|¬ϕ) ↔ (ψ|¬ψ), for every Boolean
algebra B. But this is false as we show in Proposition 2.17. In the
same argument instead of (†) we could use some of the monotonicity
or distributivity schemes that hold with respect to 2, but fail with
respect to other algebras as we saw in Propositions 2.14 and 2.16. a

4 Connections between sentence choice and
Boolean-value choice semantics

Let L be the Lindenbaum-Tarski algebra of classical propositional
logic. That is, L = 〈Sen(L)/∼, +, ·,−, 1, 0〉, where Sen(L)/∼= {[α] :
α ∈ Sen(L)} is the set of equivalence classes of sentences of L and
+, ·,− are the transfers of ∨, ∧, ¬ to the classes, so 1 = > and 0 = ⊥.
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For the connection between SCS and BCS the following two simple
facts play a key-role:

1) The natural embedding e : Sen(L) → L for which e(α) = [α], is
obviously a Boolean valuation for Sen(L), specifically an L-valuation.

2) If f : [Sen(L)]2 → Sen(L) is a regular sentence choice function,
then it induces a Boolean-value choice function πf : [Sen(L)/∼]2 →
Sen(L)/∼, defined by πf ([α], [β]) = [f(α, β)]. (Recall Definitions 1.2
and 1.4 of regular choice function and ordering for Sen(L).)

Lemma 4.1 (i) Let f be a regular choice function for Sen(L), i.e.,
f ∈ Reg. Then setting

πf ([α], [β]) = [f(α, β)],

or equivalently, πf ([α], [β]) = [α] ⇔ f(α, β) ∼ α, πf is a well-defined
choice function for pairs of elements of L, i.e., πf ∈ F(L).

(ii) If in addition f is associative, i.e., f ∈ Reg∗, then πf ∈
Asso(L).

(iii) If further f is ¬-decreasing, i.e., f ∈ Dec, then πf ∈ Dec(L).

Proof. (i) If f ∈ Reg, then the definition of πf above is good,
i.e., independent of the class representatives. Indeed, by regularity,
α ∼ α′ implies f(α, β) ∼ f(α′, β), therefore, if α ∼ α′ and β ∼ β′,
then f(α, β) ∼ f(α′, β′), hence πf ([α], [β]) = πf ([α′], [β′]).

(ii) Let f ∈ Reg∗ and f = min< for a regular total ordering < of
Sen(L). Regularity induces a total ordering <1 of Sen(L)/ ∼. Then
clearly πf = min<1 , so πf ∈ Asso(L).

(iii) Let f ∈ Dec with f = min<, i.e., α 6∼ β implies α < β ⇔
¬β < ¬α. Then , if <1 is the induced ordering on Sen(L)/∼, by (ii)
πf = min<1 and we have for all α 6∼ β,

[α] <1 [β] ⇔ α < β ⇔ ¬β < ¬α ⇔ [¬β] <1 [¬α] ⇔ −[β] <1 −[α],

which means that πf ∈ Dec(L). a

The connection between f , πf and e is as follows.

Lemma 4.2 For every f ∈ Reg and every ϕ ∈ Sen(Ls),

eπf
(ϕ)) = [f(ϕ)]. (25)

Proof. Pick some f ∈ Reg. We show (25) by induction on the
length of ϕ.

(a) For ϕ = α ∈ Sen(L), we have

eπf
(α) = e(α) = [α] = [f(α)].
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(b) Suppose the claim holds for ϕ, ψ, i.e., eπf
(ϕ)) = [f(ϕ)] and

eπf
(ψ)) = [f(ψ)]. It suffices to show that it holds for ϕ|ψ (the other

cases being trivial), i.e. eπf
(ϕ|ψ)) = [f(ϕ|ψ)]. Now in view of the

inductive assumptions and the definitions we have

eπf
(ϕ|ψ)) = πf (eπf

(ϕ), eπf
(ψ)) = πf ([f(ϕ)], [f(ψ)]) =

[f(f(ϕ), f(ψ))] = [f(ϕ|ψ)].

Proposition 4.3 (i) Taut(F(L)) ⊆ Taut(Reg).
(ii) Taut(Asso(L)) ⊆ Taut(Reg∗).
(iii) Taut(Dec(L)) ⊆ Taut(Dec).

Proof. (i) Let ϕ ∈ Taut(F(L)). Then 〈L, π, v〉 |=a ϕ for all π and v.
Pick some f ∈ Reg. Then in particular, 〈L, πf , v〉 |=a ϕ, i.e., eπf

(ϕ) =
1. By (25) above it means that [f(ϕ)] = 1 = >, therefore, for every
two-valued assignment v for Sen(L), v(f(ϕ)) = 1 or, equivalently,
〈v, f〉 |=s ϕ for all v and f ∈ Reg, which means that ϕ ∈ Taut(Reg).

(ii) Suppose ϕ ∈ Taut(Asso(L)). It means that 〈L, π, v〉 |=a ϕ
for all π ∈ Asso(L) and v. Pick f ∈ Reg∗. By Lemma 4.1 (ii),
πf ∈ Asso(L), so in particular 〈L, πf , e〉 |=a ϕ. Then as in (i) above
we obtain 〈v, f〉 |=s ϕ for all v and f ∈ Reg∗, so ϕ ∈ Taut(Reg∗).

(iii) Suppose ϕ ∈ Taut(Dec(L)), i.e., 〈L, π, v〉 |=a ϕ for all π ∈
Dec(L) and v. Picking an f ∈ Dec, we have by 4.1 (iii) that πf ∈
Dec(L), so 〈L, πf , e〉 |=a ϕ. Thus we deduce as before that 〈v, f〉 |=s ϕ
for all v and f ∈ Dec, so ϕ ∈ Taut(Dec). a

There is a kind of converse to Proposition 4.3.

Lemma 4.4 Let B be an algebra and v : Sen(L) → B be a B-valuation.
Then:

(i) For every π ∈ F(B) there is a choice function fπ,v ∈ Reg on
Sen(L) such that for all ϕ ∈ Sen(Ls),

vfπ,v(ϕ) = vπ(ϕ). (26)

Therefore for these B, v, and π, and for every ϕ,

〈B, π, v〉 |=a ϕ ⇔ 〈B, v, fπ,v〉 |=s ϕ.

(ii) If π ∈ Asso(B), then fπ,v ∈ Reg∗.
(iii) If π ∈ Dec(B), then fπ,v ∈ Dec.

Proof. (i) Fix B and v and let π ∈ F(B). Consider the fibers
v−1(a) of v. Obviously every fiber is closed under logical equivalence,
i.e., α ∈ v−1(a) implies [α] ⊆ v−1(a). Using AC, pick a representative
ξα from each equivalence class [α] and let D = {ξα : α ∈ Sen(L)}.
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Every α ∈ Sen(L) is logically equivalent to ξα ∈ D. Take a choice
function gπ,v : [D]2 → D subject to the following conditions:

• If v(α) 6= v(β), then gπ,v(ξα, ξβ) = ξα ⇐⇒ π(v(α), v(β)) = v(α).
• If v(α) = v(β), gπ,v(ξα, ξβ) is defined arbitrarily.

By the help of gπ,v we define a choice function fπ,v ∈ [Sen(L)]2 →
Sen(L) as follows.

• If α 6∼ β, then fπ,v(α, β) = α ⇐⇒ gπ,v(ξα, ξβ) = ξα.
• If α ∼ β, fπ,v(α, β) is defined arbitrarily.

It is easy to see that fπ,v is regular. Indeed let α ∼ α′ and β ∈ Sen(L).
We have to show fπ,v(α, β) ∼ fπ,v(α′, β). Now if β ∼ α, then β ∼ α′

and the claim holds trivially. If β 6∼ α, then also β 6∼ α′, so fπ,v(α, β)
and fπ,v(α′, β) are defined via gπ,v(ξα, ξβ) and gπ,v(ξα′ , ξβ), respec-
tively. But ξα = ξα′ since α ∼ α′, i.e., gπ,v(ξα, ξβ) = gπ,v(ξα′ , ξβ).
Therefore fπ,v(α, β) ∼ fπ,v(α′, β).

It follows from the above definition of fπ,v that for all α, β ∈ Sen(L)
such that v(α) 6= v(β) (hence also α 6∼ β),

fπ,v(α, β) = α ⇐⇒ π(v(α), v(β)) = v(α). (27)

Next we show (26) by induction on the length of ϕ. Clearly it
suffices to assume that

vfπ,v(ϕ) = vπ(ϕ), vfπ,v(ψ) = vπ(ψ), (28)

and prove
vfπ,v(ϕ|ψ) = vπ(ϕ|ψ). (29)

For simplicity we write f instead of fπ,v. If vf(ϕ) = vf(ψ), then by
the inductive assumptions (28) also vπ(ϕ) = vπ(ψ), so (29) follows
immediately. So assume that vf(ϕ) 6= vf(ψ) and let f(f(ϕ), f(ψ)) =
f(ϕ). Then on the one hand

vf(ϕ|ψ) = vf(f(ϕ), f(ψ)) = vf(ϕ), (30)

and on the other it follows by (27) that

π(vf(ϕ), vf(ψ)) = vf(ϕ).

In view of the last equality and the induction assumptions (28) we have

vπ(ϕ|ψ) = π(vπ(ϕ), vπ(ψ)) = π(vf(ϕ), vf(ψ)) = vf(ϕ). (31)

Thus (30) and (31) entail (29). a
(ii) Let π ∈ Asso(B) and let < be the total ordering of B for which

π = min<. Then < naturally induces a total ordering <1 of the fibers
v−1(a) of v, for a ∈ B, which partition Sen(L). For a 6= b ∈ B,

v−1(a) <1 v−1(b) ⇐⇒ a < b.
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Since α ∈ v−1(a) implies [α] ⊆ v−1(a), clearly <1 can be refined (not
uniquely) to a regular total ordering <v,π of Sen(L) such that for all
α, β ∈ Sen(L) such that v(α) 6= v(β),

α <v,π β ⇐⇒ v(α) < v(β). (32)

If we set fπ,v = min <π,v, then fπ,v is associative and regular, i.e.,
fπ,v ∈ Reg∗. Also (32) becomes equivalent to (27), and so it follows
by the previous argument that fπ,v satisfies (26).

(iii) Finally let π = min< and < be complement-decreasing. Let
again <1 be the total ordering of fibers, defined in (ii). Every total
ordering <′ of Sen(L) that refines <1 satisfies ¬-decreasingness for
α, β such that v(α) 6= v(β). Because for such pairs we have by (32),

α <′ β ⇔ v(α) < v(β) ⇔ −v(β) < −v(α) ⇔

v(¬β) < v(¬α) ⇔ ¬β <′ ¬α.

Now by the same method as in the proof of Theorem 2.43 of [6], we
can easily construct an ordering <π,v which is ¬-decreasing and also
satisfies condition (32). Setting fπ,v = min <π,v, then fπ,v ∈ Dec and
satisfies 27, which guarantees that (26) holds. a
Proposition 4.5 For every algebra B we have:

(i) Taut(Reg) ⊆ Taut(F(B)).
(ii) Taut(Reg∗) ⊆ Taut(Asso(B)).
(iii) Taut(Dec) ⊆ Taut(Dec(B)).

Proof. (i) Let ϕ ∈ Taut(Reg), and let v : Sen(L) → B and π ∈
F(B). It suffices to show that 〈B, π, v〉 |=a ϕ. Given v and π there is,
by Lemma 4.4 (i), an fπ,v ∈ Reg such that

〈B, π, v〉 |=a ϕ ⇔ 〈B, fπ,v, v〉 |=s ϕ.

Since ϕ ∈ Taut(Reg), the right-hand side of this equivalence is true,
hence so is the left-hand side. Thus 〈B, π, v〉 |=a ϕ for all v and π, so
ϕ ∈ Taut(F(B). Clauses (ii) and (iii) follow similarly from clauses (ii)
and (iii) of 4.4. a
Theorem 4.6 If L is the Lindenbaum-Tarski algebra, then:

(i) Taut(Reg) = Taut(F(L)).
(ii) Taut(Reg∗) = Taut(Asso(L)).
(iii) Taut(Dec) = Taut(Dec(L)).

Proof. Immediate consequence of Propositions 4.3 and 4.5. a
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