
Objects and their Lambda Calculus

Athanassios Tzouvaras
Dept. of Mathematics, University of Thessaloniki,

540 06 Thessaloniki, Greece
E-mail: tzouvara@ccf.auth.gr

Abstract

A kind of parallel typed lambda calculus is presented based on the
language and structure of objects. The term “object” is used here in
a sense different from that related to the expression “object-oriented
language (programming)”. By “objects” here we mean any class of
entities which (a) are resource dependent and (b) combine to each
other (via some fitness relation) to form more complex ones.

Two operators, λ and its dual λ̄, are used, and two operations,
a binary one, ¯, for juxtaposition, and an n-ary one, |, for every
n, for branching. The construct λv.x represents, roughly, a receiving
scheme producing copies of x when fed with proper objects y to fill the
empty place v of x, while the dual construct λ̄y.z represents a sending
scheme that throws y out z in proper surroundings. The interaction
of these two constructs takes place when they are matched together
by ¯ and yields an exchange of resources in a way that preserves
the total amount of them. The calculus captures such notions as
concurrency, interaction and branching in a way analogous to that
of [4] and [5], but with a quite different meaning of the operations.
What is described here is “situations” of coexisting entities rather
than computations, and resource- preserving transformations between
them. The terms are shown to have unique normal forms. Object
structures that model the simple theory of objects are extended here in
suitable graph structures that provide sound and complete semantics
of the calculus.

Key words. Structure of objects, λ-calculus, concurrency, branching.

1

1 Introduction.

By “objects” we shall mean throughout any class of entities which (a) are
resource dependent and (b) combine to each other (via some specific fitness
relation) to form more complex ones. One may think of them as “material”
entities existing in time and consuming resources, in contrast to abstract,
timeless entities of set theory. Therefore the theory of objects referred to
here has very little in common e.g. with L. Cardelli’s theory of primitive
objects, and surely is not designed for applications to programming. What
then is its use?

Originally a formal study of the structure of objects was taken up in [7]
and [8] with the purpose to treat philosophical questions concerning material
objects and their identity by logical means. Soon however it was made clear
to the author that the behavior of such objects obey rules which not long
ago had been isolated by J.-Y. Girard as mere syntax, namely linear rules.
That material objects have their own logic (of existence and change), and
this is a fragment of linear logic, was shown in [9] and [?], where objects were
formally represented by multisets. So one can think of objects as the natural
semantics of the multiplicative part of linear logic, exactly as abstract sets is
the natural boolean semantics of classical logic.

In the present paper we extend the preceding idea to λ-calculus. Namely,
if classical λ-calculus encodes the principles of formation and action of ab-
stract functions, how would a system of “material” transformations, respect-
ing resource consumption and fitness conditions, look like? In fact a system
of concurrent typed λ-calculus is presented based on the language and struc-
ture of objects that captures parallely, interaction and branching. Two basic
operators are used, a receiver λ and a sender λ̄, and two operations, a bi-
nary one “¯” for parallel existence (coexistence) and a binary one “|” for
branching existence. Since | is associative it can be generalized to an n-ary
operation t1| · · · |tn for every n. (λv.x) represents an object x in which the
empty place v is activated, i.e., it is ready to receive as input an object y of
the type of v. (λ̄y.z) on the other hand, represents an object z whose part y
is activated, i.e., is ready to leave z leaving behind an empty place v. These
two constructs interact when matched together by ¯, i.e., when the term

(λv.x¯ λ̄y.z)

2

makes sense, and are transformed (reduced) to the term

(x[y/v]¯ z[v/y]).

Thus the basic reduction rule of our calculus is the following analog of β-
conversion

(λv.x¯ λ̄y.z) = (x[y/v]¯ z[v/y]).

The calculus has some points in common with that of [4] and especially
[5], from which the notational machinery is borrowed. However, it differs
essentially in the semantics and the properties of the operations. To be
specific Boudol’s calculus is computational in character, while ours might be
called “situational”, as it describes branching situations of coexisting entities
and their transformations. Our axioms and reduction rules aim to capture
resource-preserving transformations of such situations.

The paper is organized as follows: In section 2 we outline the theory
of objects. Sections 3 and 4 contain the main Section 4 contains the for-
mal systems λo and λoθ, the notions of reductions and the normalization
results. Section 5 presents a graph-theoretic semantics of these calculi and
the soundness and completeness results.

2 The structure of objects

The language L of the formal theory of objects considered below will contain
the following symbols:

1) Object variables x, y, z,
2) Set variables X,Y, Z, . . . ranging over sets of objects.
3) A binary relation symbol F for the fitness relation.
4) A binary (partial) operation symbol “·” for the assembly or plugging

operation.
5) A binary relation symbol Type for the predicate “x, y are of the same

type”.
For simplicity we may write xy instead of x · y. (This is what in [7] and

[8] is denoted by x2y). The intended meaning of “·” is that whenever xy is
defined and xy = z, then z is the new object resulting by plugging together
x and y.

3

We make free use of the concepts and notation of intuitive set theory
including those of natural numbers. Throughout m,n, k, i, j, ... will range
over positive integers.

Our intuition about objects draws mainly from the class of artificial ob-
jects (i.e., objects made by humans) rather than that of natural ones. (The
reader can find in [7] an informal discussion about similarities and differ-
ences between natural and artificial objects). This is reflected of course on
the principles we adopt concerning their behavior.

Below we introduce the axioms of objects, step by step, together with the
relevant notions involved and the necessary discussion.

(O1) xFy ⇐⇒ (∃z)(xy = z).

The partiality of “·” stems of course from the fact that not any object fits
(or matches) with any other in order to produce a new entity. The assembly
operation is commutative,

(O2) xy = yx,

though not associative. Thus in general x(yz) 6= (xy)z.

Definition 2.1 x is said to be an immediate part of y, in symbols x <0 y, if
for some z, y = xz. x is a proper part of y, if x < y, where < is the transitive
closure of <0, i.e., if there are objects z1, z2, . . . , zn, for some n ∈ N , such
that x <0 z1 <0 . . . <0 zn <0 y. Finally x is a part of y, in symbols x ≤ y,
if x < y or x = y. An object x is said to be atomic or atom if it has no
proper parts, i.e., (∀y, z)(yz 6= x). Atom denotes the class of atomic objects.
We denote also by P (x) and Pa(x) the sets of parts and atomic parts of x,
respectively. The letters a, b, c,... range over atoms.

Parthood of artificial objects is well-founded. This is postulated by the
principle below:

(O3) There is no infinite sequence . . . < xn < . . . < x1 < x0.

Proposition 2.2 x < y → x 6= y.

4

It follows from (O3) that every descending <-chain is finite and ends up
with an atomic object. On the other hand, it does not yet imply that the
sets Pa(x) and P (x) are finite. We have not excluded e.g. the possibility
that for distinct pairs of objects {ai, bi}, i ∈ N , aiFbi and aibi = ajbj. In
such a case the atoms of x = a1 · b1 would comprise all ai, bi, i ∈ N .

In [8] and [7] we defined equality of artifacts in a rather restrictive way,
namely xy = x′y′ iff {x, y} = {x′, y′}. Here we shall be more liberal, allowing
the same object to be constructed in more than one ways, but always using
the same atoms.

Definition 2.3 We say that the objects x, y overlap, if they have parts in
common, i.e., P (x) ∩ P (y) 6= ∅. If P (x) ∩ P (y) = ∅ we say that x, y are
parallel and write x ‖ y.

Overlapping objects share a number of parts. That means they are not
independent entities, hence they cannot coexist, since ontological indepen-
dence is a prerequisite of coexistence. A fortiori overlapping objects cannot
fit together in order to produce a new object, since fitting presupposes coex-
istence. Thus we postulate

(O4) xFy ⇒ x ‖ y.

Let x < y. By the definition of <, there is a finite sequence z1,...,zn of objects
(not necessarily unique) such that

y = (. . . ((xz1)z2) . . .)zn.

The sequence z1,...,zn is called an analysis of y over x. We might also have
for the same x, y, another analysis

y = (. . . ((xu1)u2) . . .)um.

Due to axiom (O4), the objects z1,...,zn are not only distinct, but pairwise
non-overlapping, therefore every such analysis of y can be represented by a
binary tree.

If we analyze further the parts x, z1,...,zn above we obtain a full analysis of
y and a full binary tree corresponding to that. This tree is finitely branching
(namely at most doubly branching at each node) and each branch is finite

5

according to axiom (O3). Therefore it is finite with all terminal nodes labelled
by atoms. We shall call such a tree, a full analysis tree of y.

Let T (x) be the set of full analysis trees of x, and for every t ∈ T (x) let
term(t) be the set of atoms appearing at the terminal nodes of t.

(O5) x = y ⇐⇒ (∀t1 ∈ T (x))(∀t2 ∈ T (y))(term(t1) = term(t2)).

As an immediate consequence of (O4) we get:

Proposition 2.4 (i) For every t ∈ T (x), term(t) = Pa(x).
(ii) Pa(x) = Pa(y) ⇒ x = y.
(iii) The sets Pa(x) and P (x) are finite.

2.1 Copies: Object isomorphism vs replaceability.

There are two basic criteria for deciding whether two objects x, y are copies of
one another: Either (a) by looking inwards, i.e., the internal structure of x, y,
or (b) by looking outwards, i.e., their ability to be mutually interchangeable
as parts of larger objects. In the first case the criterion is structural, that
is, the isomorphism of objects as algebraic structures. In the second case
the criterion is operational, that is their replaceability with respect to the
fitness relation. Both of them are incomplete and in a sense supplementary.
For instance it is easy to see that the second criterion does not imply the
former. Indeed, we can imagine two objects (xy) and z, of which the first is
made of the parts x, y, while the second is disposable (hence atomic), and
yet interchangeable in all assemblies. Furthermore, the operational criterion
is relative; it depends on the particular world in which x, y are contained and
the availability of other objects of which x, y may be parts.

On the other hand the first criterion cannot apply to atomic objects since
they lack structure. Thus we need a mixture of the two criteria. The decisive
step is to determine which atoms would be copies of one another. And this
can be defined only in principle, i.e., by a primitive notion of similarity,
partitioning the class of atoms into types. This is the intended meaning of
the symbol Type(x, y).

(O6) Type(x, y) is an equivalence relation on atoms.

6

The equivalence class of a under Type is written Type(a), so Type(a, b)
holds iff Type(a) = Type(b).

Definition 2.5 The relation x ∼= y, (x,y are copies of each other), is defined
as follows: (a) If x, y are atoms then x ∼= y iff Type(x, y). (b) x, y are non-
atoms, x ∼= y if there is a bijection f : P (x) → P (y) such that f(a) ∼= a for
every atom a ∈ P (x) and f(x1x2) = f(x1)f(x2) for x1, x2 ∈ P (x).

Clearly ∼= is an equivalence relation that extends Type, i.e., Type ⊆∼=, so
we can put also

Type(x) = {y : y ∼= x}
for the equivalence class of x under ∼=. Thus every universe M of objects
satisfying the axioms is a typed set and we can write TYPE1, TYPE2,...,
TYPEn for the basic types of its atoms, i.e., the equivalence classes of Type
on the atoms of M . We turn now to replaceability. The precise formulation
of this notion is a bit more intriguing.

We have seen that if z1,...,zn is an analysis of y over x, then no two of the
objects x, z1,...,zn overlap. In order now for another object x′ to be able to
replace x inside y, it is clearly necessary to coexist or, at least, not to overlap
with z1,...,zn. We denote this by x′ ‖ (y − x), i.e.,

x′ ‖ (y − x) := [P (x′) ∩ (P (y)− P (x)) = ∅] .

Definition 2.6 Let x < y and x′ be given. We say that y[x′/x] exists if for
every analysis of z1,...,zn of y over x, the object (. . . ((x′z1)z2)...)zn is defined.
So we let

y[x′/x] = (. . . ((x′z1)z2)...)zn.

We say that x is replaceable by x′ in y, in symbols Rep(x, x′, y), if either
x 6< y or x′ 6‖ (y − x) or y[x′/x] exists. That is:

Rep(x, x′, y) := [x < y & x′ ‖ (y − x) =⇒ (∃z)(z = y[x′/x])] .

Finally let
re(x, y) := (∀z)(Rep(x, y, z) & Rep(y, x, z)).

The primitive notion of type should obey some rules with respect to fitness
and assembly and a natural such rule is the following:

7

(O7) (∀a, b ∈ Atom)(Type(a, b) ⇒ re(a, b)).

The two notions of copy, the internal one based on isomorphism and the
external one based on replaceability, are comparable but not identical.

Proposition 2.7 (i) For all x, y, z, if x ∼= y, x < z and y ‖ (z − x), then
z[y/x] exists.

(ii) For all x, y, x ∼= y ⇒ re(x, y).
(iii) If xFy, x′ ∼= x and x′ ‖ y, then x′Fy and xy ∼= x′y.
(iv) If x ∼= y, x < z and y ‖ (z − x), then z[y/x] ∼= z.

The converse of proposition 2.7 (ii) need not be true. Two objects may be
mutually replaceable without being copies of one another. In many practical
situations the supply of copies for each particular atomic part is unlimited.
If we add this as a principle, we can show that re(x, y) is transitive, hence
an equivalence relation.

(O8) (∀a ∈ Atom)(Type(a) is infinite).

Proposition 2.8 ((O8)) (i) x ∼= y & re(y, z) ⇒ re(x, z).
(ii) re(x, y) is an equivalence relation.

2.2 Generalizing the assembly operation.

In the preceding treatment of objects the restriction imposed was that ev-
ery non-atomic object has exactly two immediate parts, that is, every ob-
ject is produced by combining only two pre-constructed objects at a time.
One might consider this limitation as unnecessary and propose instead that
an object could be produced by simultaneous fitting together finitely many
parts. This has an impact only on the notion of immediate part and not
on that of part in general. In this case we would have to replace the par-
tial binary assembly operation · by a partial operation [x1x2 . . . xn] with a
finite but unfixed number of arguments with the obvious intended meaning:
Whenever [x1 . . . xn] is defined, the object y = [x1 . . . xn] is the outcome of
plugging together (at one step) x1, . . . , xn. Fitness is also extended to a rela-
tion F ⊆ ⋃∞

n=1 On, where O is the class of objects. Intuitively F (x1, . . . , xn)

8

holds if {x1, . . . , xn} is a subset of a set {x1, . . . , xn, xn+1, . . . , xn+m} such
that the object [x1 . . . xn+m] exists.

For a set X of objects put Pa(X) =
⋃{Pa(x) : x ∈ X}. Write also ‖ (X)

if (∀x, y ∈ X)(x ‖ y). I.e., ‖ (X) iff the objects of X are pairwise disjoint.
If x = [x1 . . . xn], the xi’s are said to be immediate parts of x, notation

xi <0 x, and the transitive closure of <0 is the parthood relation <. In most
cases the object-notation mentioning the objects {x1, . . . , xn} can be replaced
by set-notation employing the symbol X denoting the preceding set. So if
X = {x1, . . . , xn} we can write [X] instead of [x1 . . . xn]. Also the notation
[xX] has the obvious meaning. Given x < y, the analysis of y over x has
now the form

y = [[. . . [[xz11 . . . z1k1]z21 . . . z2k2] . . .]zn1 . . . znkn]

or, putting Zi = {zi1, . . . , ziki
}, i ≤ n, and using the set-notation, the pre-

ceding equation is written

y = [[. . . [[xZ1]Z2] . . .]Zn].

Also we write F(X) for the fitness relation, etc.
The analysis trees of x are defined again in the obvious way. The only

difference is that these trees are not binary, but general finite. The axioms
(O1)-(O8) cited above now take the following form.

(GO1) F (X) ⇔ (∃y)(y = [X]).

(GO2) [x1 . . . xn] = [xf(1) . . . xf(n)],

for every permutation f of {1, . . . , n}.
(GO3) < is wellfounded.

(GO4) F (X) ⇒‖ (X)

(GO5) x = y ⇐⇒ (∀t1 ∈ T (x))(∀t2 ∈ T (y))(term(t1) = term(t2)).

T (x) is again the set of full analysis trees of x. The relations x ∼= y,
Rep(x, y, z) and re(x, y) are also defined as before with the obvious adjust-
ments. For example x ∼= y if there is a bijection f : P (x) → P (y) such that
f(a) ∼= a for every atom a ∈ P (x), and f([x1 . . . xn]) = [f(x1) . . . f(xn)].

(GO6) Type(x, y) is an equivalence relation on atoms.

(GO7) (∀a, b ∈ Atom)(Type(a, b) ⇒ re(a, b)).

(GO8) (∀a ∈ Atom)(Type(a) is infinite).

9

3 Calculus of objects. The formal systems λo

and λoθ.

In this section we assume familiarity of the reader with the fundamentals of
classical λ-calculus, of type theory and typed λ-calculus. Excellent references
for these subjects are [2], [?] and [3] respectively. The main advantage of
dealing with objects instead of arbitrary computations or events lies in the
use of copies. For each object x the class of copies of x behaves like a type. As
we have seen in section 2.1, this is the equivalence class of x with respect to
∼=, i.e., Type(x) = {y : y ∼= x}. We shall assume that each type contains also
empty places denoted by variables v, u, ... and we write v ∈ Type(x) or x ∼= v
or Type(x) = Type(v) for the fact that v is of Type(x). Empty places fit
to each other and to objects and take part in composite constructs just like
objects. Objects, empty places as well as entities resulted by the combination
of the latter under [...] will be referred to as concrete terms or just “objects”
and are denoted also by the letters x, y, z. We have also non-concrete terms.
These will be first

λv.x and λ̄x.y,

for any concrete terms x, y and any variable v. Next for any terms t, s such
that t ‖ s, i.e. Pa(t) ∩ Pa(s) = ∅, t¯ s is a term. And for any terms t, s, t|s
is a term.

For concrete terms x, y, the parthood relation x < y is defined in the
obvious way. Now the intended meaning of the preceding terms is as follows:

• λv.x: In x the empty place v (if contained) is activated and is ready to
receive an object of the same type.

• λ̄x.y: In y the part x (if contained) is activated and is ready to be
thrown away leaving an empty place of the same type.

• t¯ s: Juxtaposition of the coexistent entities t and s (conjunction).
• t|s: A branching situation: Exactly one of the t, s can be present (ex-

clusive disjunction).
λ and λ̄ notation are adopted from Milner’s calculus ([6]), used also by

Boudol in his concurrent λ-calculus [5]. We shall refer to them as binders or
activators and their role is to activate reception and leaving respectively.

The operations ¯, | are also taken from [5] but their meanings here and
there cannot be compared since Boudol deals with dynamic processes whereas
we deal with static situations of existent objects. Worse, a comparison of the

10

two approaches might confuse the reader because the meaning assigned to
certain notions in the two contexts are rather contradictory. For example, in
[5], p.151, Boudol says: “. . . p|q consists in juxtaposing of p, q without any
communication wire between them. This operator represents concurrency.
The second construct, denoted p¯ q and called cooperation, consists in plug-
ging together p and q - up to termination of one of them”. In contrast, as
explained above, we denote juxtaposition by ¯ rather than | and we use the
word “concurrency” as synonymous to “parallely”, a notion attributed to
objects connected by ¯. t|s here indeed implies non-communication but this
is a result of their incompatibility, i.e., their non-coexistence.

Having fixed the above meanings to ¯ and |, (as “and” and “exclusive
or” respectively) let us come to the precise formalization.

Though the binary case is more intuitive and its notation is much closer
to the familiar lambda formalism, we shall prefer for reasons of economy to
treat the generalized (finitary) case from which the binary calculus follows
as a subcase.

I. Language. The language Lo of the intended calculus practically extends
the language L of objects (see section 2), although Lo is not a logical language
but an operational one. It consists of:

a) A set of types To = {τ, σ, . . .}, usually finite. A subset To
a of To

containing atomic types denoted by the letters α, β, γ,
b) A relation symbol F for type fitness and a function symbol [· · ·] for

type composition. The same symbols F and [· · ·] will be used also for fitness
and composition of terms.

c) A countable collection V τ = {vτ
0 , v

τ
1 , . . .} of variables for each type

τ . vτ
i range over concrete terms of type τ . As a rule, however, neither

the subscripts i nor the superscripts τ appear in practice. Instead we use
the simplified notation v, u, w, ... assuming that each such variable has a
prescribed type.

d) A countable collection of constants aα
i , i ≥ 1 for each type α, denoting

atoms of type α.
e) The operators λ, λ̄.
f) The binary operations ¯ and |.

II. Types and their axioms. The set of types To is given together with a
structure on it, namely [· · ·] is a mapping from certain subsets of To into To

11

and we write [τ1 · · · τn] for the composite type if [· · ·] is defined at {τ1, . . . , τn}.
The atomic types of α, β, . . . of To

a are just the non-composite ones. The fact
that [τ1 · · · τn] exists is expressed also via F by writing F (τ1, . . . , τn). That
is, F is the domain of [· · ·].

The following axioms concerning type composition and fitness are ac-
cepted:

F (τ1, · · · , τn) ⇔ (∃σ)(σ = [τ1 · · · τn]). (T1)

[τf(1) · · · τf(n)] = [τ1 · · · τn] (T2)

for every permutation f of {1, . . . , n}.

τ = σ ⇔ MAtom(τ) = MAtom(σ). (T3)

(T1) and (T2) are obvious. (T3) warrants that two objects assembled
by the same atoms in different ways, and hence being identical according to
axiom (GO5), have also identical types.

III. Terms. Next we come to terms. The concrete terms defined below
are the syntactic analogs of objects.

Definition 3.1 The set Λo
c of concrete terms and their types are defined

inductively as follows:
(a) Every variable vτ and every constant aα are in Λo

c. Moreover Type(vτ) =
τ and Type(aα) = α.

(b) Suppose x1, . . . , xn ∈ Λo
c and Type(xi) = τi. Then [x1 · · · xn] ∈ Λo

c iff
F (τ1, . . . , τn) and xi ‖ xj for all i 6= j. Moreover

Type([x1 · · · xn]) = [Type(x1) · · ·Type(xn)].

We say that the concrete terms x1, . . . , xn fit and write F (x1, . . . , xn), if
[x1 · · · xn] is a term.

The letters x, y, z . . . will range over concrete terms. Clearly, concrete
terms intend to represent objects as well as entities resulting from them if
we replace any number of their parts by empty places (variables). So fitness
makes sense only for this kind of terms and not for the entire Λo defined
next. The letters t, s, r etc. range over arbitrary terms.

12

Definition 3.2 The set Λo of terms and the set Subtrm(t) of subterms of t
for each t, are defined inductively by the following clauses:

a) Λo
c ⊆ Λo. For each x ∈ Λo

c, if x = [x1 · · · xn], then

Subtrm(x) = Subtrm(x1) ∪ · · · ∪ Subtrm(xn) ∪ {x}.
b) For any t, s ∈ Λo such that Subtrm(t) ∩ Subtrm(s) = ∅, t ¯ s ∈ Λo,

and Subtrm(t¯ s) = Subtrm(t) ∪ Subtrm(s) ∪ {t¯ s}.
c) For any t, s ∈ Λo, t|s is a term and

Subtrm(t|s) = Subtrm(t) ∪ Subtrm(s) ∪ {t|s}.
d) For every concrete x and any variable v, λv.x is a term, and

Subtrm(λv.x) = Subtrm(x) ∪ {λv.x}.
e) For any concrete terms x, y λ̄x.y is a term, and

Subtrm(λ̄x.y) = Subtrm(y) ∪ {λ̄x.y}.
Definition 3.3 A variable v occurs free in a term t if v is not in the scope
of an operator λv. Otherwise occurs bound. We denote FV (t) the set of free
variables of t.

Non-concrete terms will be called also ideal. Note that since, by definition
3.1, every variable v occurs at most once in a concrete term, the graphs of
its parts are trees again, called analysis trees. A minor difference between
concrete terms and objects is that every variable occurring in x, no matter
what its type is, is an atomic part. We keep denoting y < x, y ≤ x and
y <0 x for the facts that y is a proper part, a part and an atomic part of x,
respectively.

Two terms are said to be parallel and we denote t ‖ s if Subtrm(t) ∩
Subtrm(s) = ∅. Otherwise they are overlapping. The set X of terms is
parallel, notation ‖ (X), if the terms of X are pairwise parallel. As follows
from definition 3.2, t ¯ s makes sense only if t ‖ s. Sometimes we express
this fact by saying that t¯ s is “legal”.

IV. Substitution. Substituting a concrete term x for the free variable v in
t will be denoted

t[x/v].

13

This has the meaning of filling the empty place v in t by the entity x. The
reverse operation of evacuating a place in t occupied by x is also meaningful
and will be denoted

t[v/x],

where v is a new variable not occurring in t. These operations are subject to
the conditions imposed by the construction of concrete terms (see definition
3.1) that concern fitness.

Definition 3.4 (Substitution) 1. For a concrete term y and a variable v,
y[x/v] is defined as follows: Let Type(v) ∈ To, v ≤ y and

y = [[· · · [[vX1]X2] · · ·]Xn]

be the analysis of y over v, where Xi are sets of concrete terms. If Type(x) =
Type(v) and [[· · · [[xX1]X2] · · ·]Xn] is a concrete term, then

y[x/v] = [[· · · [[xX1]X2] · · ·]Xn].

Otherwise
y[x/v] = y.

2. For non-concrete t we have the following clauses:
a) (t1 ¯ t2)[x/v] = t1[x/v] ¯ t2[x/v], if t1[x/v] ‖ t2[x/v]. Otherwise (t1 ¯

t2)[x/v] = t1 ¯ t2.
b) (t1| · · · |tn)[x/v] = t1[x/v]| · · · |tn[x/v].
c) (λu.y)[x/v] = λu.y[x/v], provided u /∈ FV (x). (We express this by

saying that x is free for v in λu.y.)
d) (λ̄y.z)[x/v] = λ̄y.z[x/v].
The evacuation t[v/x] of x in t is defined similarly, taking care only that

v does not occur in t and Type(v) = Type(x).

In the sequel it is going without saying that in every substitution t[x/v],
x is free for v in t.

Equality of terms follows either from syntactic conventions called syntac-
tic equivalences or from axioms expressing semantic equivalence. We denote
the former relation by “≡” and the latter by “=”.

14

V. Syntactic equivalence. First we adopt the ordinary syntactic conven-
tions aiming to simplify notation. For example the operators λ and λ̄ are
associated to the left, that is

λv1 · · · vn.x ≡ λ~v.x ≡ λv1.(λv2.(· · · (λvn.x) · · ·)). (1)

and
λ̄x1 · · ·xn.y ≡ λ̄~x.y ≡ λ̄x1.(λ̄x2.(· · · (λ̄xn.y) · · ·)). (2)

Another convention is
λ̄x.x ≡ λ̄x. (3)

Further, as an extension of axiom (GO5) we have the following convention:
Two concrete terms containing the same subterms are identical. In symbols

x ≡ y ⇔ P0(x) = P0(y), (identity)

for any concrete x, y.

VI. Axioms for term equality. A basic axiom is βo-conversion. To state
it with sufficient precision let us give the following definition:

Definition 3.5 A term of the form λv.x ¯ λ̄y.z is said to be a machine.
The machine λv.x¯ λ̄y.z is said to be active if (i) v ≤ x, (ii) y ≤ z and (iii)
Type(v) = Type(y). Otherwise it is called inactive.

Equality Axioms:

λv.x¯ λ̄y.z = x[y/v]¯z[v/y], (βo-conversion)

(provided the machine λv.x¯ λ̄y.z is active).

t¯ s = s¯ t, (¯-commut.)

t|s = s|t, (|-commut.)

λv.x = x (if v /∈ FV (x)), (void receiver)

λ̄x.y = y, (if x 6≤ y). (void sender)

t1|(t2|t3) = (t1|t2)|t3. (|-assoc.)

15

t|t = t. (|-idempot.)

t¯(s1|s2) = (t¯s1)|(t¯s2). (¯-distrib)

t|v = t¯v = t (for every v /∈ FV (t)). (θ-conversion)

Remarks. 1) In order for λv.x¯ λ̄y.z to be active, it must, first, be legal,
that is, λv.x ‖ λ̄y.z, hence also x ‖ z. From this it follows immediately that
x[y/v] ‖ z[v/y], hence x[y/v]¯ z[v/y] is legal too. Therefore βo-conversion is
a transformation that preserves parallely.

2) ¯ is not associative. The reason is that parentheses is the only means
to denote interaction, so they cannot be dropped as associativity requires.
E.g. the terms (λv.x ¯ λu.y) ¯ λ̄z1.z and λv.x ¯ (λ̄z1.z ¯ λu.y) are clearly
distinct.

Let

λo = {βo -conver., void rec., void send., |-assoc., |-idempot., ¯-distr.},

and
λoθ = λo ∪ {θ−conversion}.

If t = s is provable in λo we write λo ` t = s. If t = s is provable in λoθ
we write λoθ ` t = s.

VII. Reduction. The definitions below follow the terminology of [2].

Definition 3.6 A notion of reduction on Λo is a binary relation R ⊆ Λo×Λo

such that for any concrete terms t, t′,

t ≡ t′ ⇒ (t, t′) ∈ R.

Every such R induces the binary relations −→R (one step R-reduction), ;R

(R-reduction) and =R (R-equality) as follows: −→R is the compatible closure
of R, i.e.:

1) (t, t′) ∈ R ⇒ t −→R t′.
2) t −→R t′ ⇒ (t¯ s) −→R (t′ ¯ s).
3) t −→R t′ ⇒ (t|s) −→R (t′|s).
The relation ;R is the transitive and reflexive closure of −→R, while =R

is the equivalence relation generated by ;R.

16

Definition 3.7 A relation R is substitutive if for any terms t, s, any concrete
x and any variable v,

(t, s) ∈ R ⇒ (t[x/v], s[x/v]) ∈ R.

Lemma 3.8 If R is substitutive so are −→R, ;R and =R.

Proof. By easy induction on the steps of definitions of the relations in
question. a

Given the notion of reduction R, R-redexes, R-contracta, R-normal terms
and R-normal forms are defined as usual (see [2]).

The notions of reduction we shall be mainly interested here are βo and
βoθ. The crucial rule in βo-reduction is the transformation of the machine

(λv.x¯ λ̄y.z),

whenever it is active, to
x[y/v]¯ z[v/y].

Definition 3.9 The relation βo ⊆ Λo × Λo consists of the following pairs
(for readability we write t −→β s instead of (t, s) ∈ βo):

1) If x is concrete, then for every t,

x −→β t ⇔ x ≡ t.

2) If λv.x¯ λ̄y.z is active, then (λv.x¯ λ̄y.z) −→β (x[y/v]¯ z[v/y]).
3) t1|(t2|t3) −→β t1|t2|t3.
4) t|t|s −→β t|s.
5) t¯ (s1|s2) −→β (t¯ s1)|(t¯ s2).
6) (λv.x) −→β x, if v 6≤ x.
7) (λ̄x.y) −→ y, if x 6≤ y.

The relation βoθ extends βo containing in addition the pairs
8) t¯ v −→βθ t and
9) t|v −→βθ t,

for any term t and any variable v (provided of course that t¯ v is legal).

17

Theorem 3.10 For any two terms t, s ∈ Λo,

t =β s ⇔ λo ` t = s

and
t =βθ s ⇔ λθo ` t = s.

Proof. The proof is easy but tedious. For the ⇒-directions we use in-
duction on the definitions of ;β and ;βθ, while for the ⇐-directions we use
induction on the length of the proof of t = s. a

Lemma 3.11 The relation βo, and hence −→β, ;β, =β, are substitutive.

Proof. We have to check the 7 kinds of pairs contained in βo. We just
check the βo-rule the other being trivial. Recall that according to definition
3.4(2.c), (λu.x)[y/v] = λu.[y/v] only if u 6≤ y. Assume

(λv.x¯ λ̄y.z) −→β (x[y/v]¯ z[v/y]), (4)

(the machine being active), and let us verify that for any variable w and any
concrete term p, free for w in the above terms:

(λv.x¯ λ̄y.z)[p/w] −→β (x[y/v]¯ z[v/y])[p/w]. (5)

Subcase i. w occurs neither to x nor to z. Then, clearly, the redexes and
the contracta in (4) and (5) are identical.

Subcase ii. w < x and w 6< z. Since p is free for w in x it follows

(λv.x¯ λ̄y.z)[p/w] = (λv.x[p/w]¯ λ̄y.z).

Then, clearly, the last machine is active, therefore

(λv.x[p/w]¯ λ̄y.z) −→β x[p/w, y/v]¯ z[v/y].

The other subcases are similar. a

We come now to define βo and βoθ- normal forms. For simplicity we say
just normal instead of βo- normal, and θ-normal instead of βoθ-normal.

18

Definition 3.12 A term t is said to be simple if it is |-free. A simple term
is normal if it does not contain:
(a) any active machine (λv.x¯ λ̄y.z),
(b) any subterm of form λv.x with v 6≤ x,
(c) any subterm λ̄x.y with x 6≤ y.

t is θ-normal if in addition it does not contain
(d) any subterm of the form (s¯ v).

A term t is disjunctive if t = (t1| · · · |tn) for n ≥ 2. The disjunctive
term (t1| · · · |tn) is expandable if at least one of the ti’s is also disjunctive.
(t1| · · · |tn) is contractible if for some i, j ≤ n, ti ≡ tj.

The term t is normal (resp. θ-normal) if either t is normal simple (resp.
θ-normal simple), or t = (t1| · · · |tn), where ti are normal simple (resp. θ-
normal simple) terms and (t1| · · · |tn) is neither expandable nor contractible.

We say that the term t′ is a normal form (nf) (resp. θ-normal form
(θ-nf)) of t if t′ is a normal term (resp. θ-normal term) and t ;β t′ (resp.
t ;βθ t′).

Theorem 3.13 (Existence of nfs) Every term t has a nf and a θ-nf.

Proof. It suffices to describe an algorithm for reducing a term t to a
normal one t′. The steps of such an algorithm are as follows:

(A) Expand t if t is disjunctive, as well as every disjunctive subterm of
t, to a non-expandable disjunctive term (i.e. a maximal disjunctive) using
step 3 of definition 3.9 as many times as necessary, and let t1 be the resulting
term.

(B) Contract t1, if it is disjunctive, as well as every disjunctive subterm
of t1, to a non-contractible term (i.e. a minimal disjunctive) using step 4 of
the same definition repeatedly, and let t2 be the resulting term.

(C) Replace in t2 every subterm of the form s ¯ (r1| · · · |rn) by (s ¯
r1)| · · · |(s ¯ rn), by the help of step 5 of the aforementioned definition, and
repeat until all such subterms are eliminated.

(D) Let t3 = (s1| · · · |sm) be the term resulting from step (C). It is easy
to see that all si are simple and t3 is neither expandable nor contractible.
Thus it suffices to normalize each si by reducing every active machine they
contain and replacing every λv.x such that v 6≤ x by x, and every λ̄y.z such
that y 6≤ z by z.

If t4 is the resulting term, clearly, t4 is normal. In order to get a θ-normal
term, it suffices to make one more step:

19

(E) If t4 = (r1| · · · |rm), first eliminate every ri such that ri = v for some
variable v, and second, inside the remaining rj’s replace every subterm (p¯v)
by p.

The resulted term t5 is θ-normal. a

Theorem 3.14 (Uniqueness) Every term has a unique normal and a unique
θ-normal form.

Proof. We have to show that all normalization algorithms lead to the same
normal form. But from the definition of normal forms it is clear that every
such algorithm must consist of the steps (A)-(D) or (A)-(E) above. These
steps are independent, so two algorithms can differ only in the order in which
they execute the above steps. Thus one has to verify that the algorithms e.g.
ABCD and BCDA when applied to a term t give the same normal output t′.
This verification is trivial and tedious and is left to the patient reader. a

In classical λ-calculus uniqueness of R-nfs is shown through the Church-
Rosser (CR or diamond) property for R: If t ;R t1 and t ;R t2, then there
exists a term t3 such that t1 ;R t3 and t2 ;R t3. The converse is trivially
true: Uniqueness of R-nfs implies that R has the CR-property. It implies
also the consistency of the calculus.

Corollary 3.15 (i) For any two terms t, s λo ` t = s (resp. λoθ ` t = s)
iff t, s have a common normal (resp. θ-normal) form.

(ii) The notions of reduction βo and βoθ are CR.
(iii) The theories λo and λoθ are consistent.

4 Graph-theoretic semantics.

In this section we provide an interpretation of the terms of Λo in terms
of graphs that renders true the axioms of λo. The graphs in question are
defined over object structures. An object structure (o.s.) is a quadruple
M = (|M |, [...]M , FM , T ypeM), where |M | is a set whose elements are called
“objects”, [...]M is a partial operation from the set |M |<ω of finite subsets of
|M | into |M |, FM is the domain of [· · ·] and TypeM is an equivalence relation
on |M |, such that M satisfies axioms (GO1)-(GO8). Overlined letters x̄, ȳ, z̄

20

range over elements of |M |. Parthood, P (x̄), Pa(x̄) (the sets of parts and
atomic parts of x̄ respectively), etc. are defined as usual. In particular
the letters ā, b̄, c̄, often with subscripts, denote atoms of M . The notations
Type(x̄, ȳ), Type(x̄) = Type(ȳ) and x̄ ∼= ȳ are equivalent. The letters τ̄ , σ̄
etc. range over equivalence classes of Type. In particular we denote by ᾱ, β̄, γ̄
equivalence classes of atoms. By (GO8), every class ᾱ is (countably) infinite,
so we can fix enumerations ᾱ = {ā1, ā2, . . .}, β̄ = {b̄1, b̄2, . . .} for all these
types.

Further we require |M | to contain, beside the usual objects, empty places.
These will be denoted by overlined variables v̄, ū, w̄ and will take part in the
formation of other objects. Hence we allow objects to contain empty places
among their parts. At syntactic level empty places can be introduced by a
new unary predicate V added to the language L of objects, and at semantic
level by a set V̄ ⊆ |M | added to the structure of M , containing the places
v̄, ū, Also two additional axioms (V1), (V2) will be added to (GO1)-
(GO8). From the point of view of parthood empty places behave like atoms,
but their types may be non-atomic. Not only this but we shall assume that
for every object x̄ there is an abundance of empty places of the type of x̄.
Thus we add to (GO1)-(GO8) the following principles in the language L(V):

(V1) (∀v ∈ V)(∀x)(x ≤ v ⇒ x = v),

and

(V2) (∀x)({v ∈ V : v ∼= x} is infinite).

Henceforth by an object structure (o.s.) we shall mean a quintuple

M = (|M |, [· · ·]M , FM , T ypeM , V̄)

satisfying axioms (GO1)-(GO8), (V1) and (V2).
The fact that v̄ ∈ τ̄ is denoted v̄τ̄ , and let V̄ τ̄ = V̄ ∩ τ̄ . By axiom (V2)

above, each V̄ τ̄ is infinite and we can fix enumerations V̄ τ̄ = {v̄τ̄
1 , v̄

τ̄
2 , . . .} for

every class τ̄ .
Moreover let

Pp(x̄) = P (x̄)\V̄ and Ppa(x̄) = Pa(x̄)\V̄

21

for the sets of proper parts and proper atomic parts of x̄ respectively. We
write x̄ ‖ ȳ if P (x̄) ∩ P (ȳ) = ∅.

Given an o.s. M it is easy to extend FM and [· · ·]M over the set of types
of M in a natural way:

Definition 4.1 We say that the types τ̄1, . . . , τ̄n of M fit and write
FM(τ̄1, . . . , τ̄n) if for some (hence for all) x̄1 ∈ τ̄1, ..., for some (hence for
all) x̄n ∈ τ̄n such that ‖ {x̄1, . . . , x̄n}, FM(x̄1, . . . , x̄n). In such a case we
write [τ̄1 · · · τ̄n]M = Type([x̄1 · · · x̄n]).

Recall that the language Lo contains types τ, σ, . . . structured with respect
to F and [· · ·], constants aα

i ,i ≥ 1, for each atomic type α, and variables vτ
i ,

i ≥ 1 for each type τ . Therefore in order for an object structure M to be an
Lo-structure it is necessary and sufficient that the following hold:

i) There is an injection

To
a 3 α 7→ ᾱ ⊂ |M |

from the atomic types of Lo to equivalence classes of AtomM with respect to
TypeM . This entails also an injection

To 3 τ 7→ τ̄ ⊂ |M |
from the set of all types of Lo into classes of TypeM .

(ii) For every τ1, . . . , τn, F (τ1, . . . , τn) holds inside the language iff FM(τ̄1, . . . , τ̄n)
holds in M .

(iii) For each particular α, there is an 1-1 correspondence

α 3 ai 7→ āi ∈ ᾱ.

(iv) For each type τ there is an 1-1 correspondence

V τ 3 vτ
i 7→ v̄τ̄

i ∈ V̄ τ̄

from the variables of type τ to places of type τ̄ . Henceforth M denotes an
Lo-structure.

Lemma 4.2 Every Lo-structure M provides a unique interpretation xM of
every concrete term x of Lo, such that:

(i) aM = ā, for every constant a, and vM = v̄ for every variable v.
(ii) ([x1 · · ·xn])M = [xM

1 · · ·xM
n]M .

(iii) Type(x) = τ iff Type(xM) = τ̄ .

22

In order to interpret also ideal terms we shall extend M to a directed graph
M∗ which contains M as a subset of its nodes. The graph M∗ interprets
the operations λ, λ̄, ¯ and |. For simplicity we denote the corresponding
operations in M∗ by the same symbols.

M∗ will be defined as M∗ =
⋃

n≥0 Mn, where Mn will be inductively
defined below. To each node t̄ of Mn will be assigned a pointed finite subgraph
G(t̄), with point the node labelled by t̄. (A directed graph G is pointed if
there is a unique node a such that for any other node b of G there is a path
leading from a to b.)

Let M0 = |M |. For every x̄ ∈ M the pointed graph G(x̄) of x̄ is just the
node · with label x̄. We have already seen what x̄ ‖ ȳ means for x̄, ȳ ∈ M0.
M1 is defined as follows:

For any objects x̄, ȳ, z̄ of M = M0 and for each place v̄, we introduce
new nodes labelled by λv̄.x̄ and λ̄ȳ.z̄ and add to M0 the following new edges:

λv̄.x̄ λ̄ȳ.z̄y
y

G(x̄) G(z̄)

That is, we set

M1 = M0 ∪
(⋃{G(λv̄.x̄) : x̄ ∈ M, v̄ ∈ V̄ }

)
∪

(⋃{G(λ̄ȳ.z̄) : ȳ, z̄ ∈ M}
)
.

Concerning parallely in M1, let

Pa(λv̄.x̄) = Pa(λ̄ȳ.x̄) = Pa(x̄),

for all x̄, ȳ, v̄ and let t̄ ‖ s̄ iff Pa(t̄) ∩ Pa(s̄) = ∅.
Suppose Mn has been defined for n ≥ 1, suppose also we have defined

for each node t̄ of Mn its graph G(t̄); and suppose we have defined for each
t̄ ∈ Mn the set Pa(t̄) of atoms of t̄. Then t̄ ‖ s̄ means that Pa(t̄)∩ Pa(s̄) = ∅.
Given two graphs G(t̄), G(s̄) of Mn let the picture

G(t̄)y
G(s̄)

denote the graph produced by driving an arrow from every terminal node of
G(t̄) to the point s̄ of G(s̄).

23

Then for every two nodes t̄ and s̄ of Mn such that t̄ ‖ s̄, we introduce a
new node labelled by t̄¯ s̄ and edges forming the directed pointed graph

t̄¯ s̄y
G(t̄)y
G(s̄)

with point t̄¯ s̄. This graph is just G(t̄¯ s̄), i.e. the graph assigned to the
new node t̄¯ s̄. Similarly for any m ≥ 2 and any nodes t̄1, · · · , t̄m ∈ Mn, we
introduce a new node labelled by t̄1|t̄2| · · · |t̄m and edges forming the pointed
graph

¡
¡

¡¡

£
£

££

@
@

@@

t̄1|t̄2| · · · |t̄m

G(t̄1) G(t̄2) G(t̄m)
· · ·

with point t̄1| · · · |t̄m. This graph is G(t̄1| · · · |t̄m). Note that nodes t̄1| · · · |t̄m
are branching while t̄¯ s̄ are co-linear with t̄, s̄. Let

Mn+1 = Mn∪
(⋃{G(t̄¯ s̄) : t̄, s̄ ∈ Mn, t̄ ‖ s̄}

)
∪

(⋃{G(t̄1| · · · |t̄m) : t̄i,∈ Mn}
)
.

Also given the new nodes (t̄¯ s̄), t̄1| · · · |t̄m of Mn+1, we set

Pa(t̄¯ s̄) = Pa(t̄) ∪ Pa(s̄), Pa(t̄1| · · · |t̄m) = Pa(t̄1) ∪ · · · ∪ Pa(t̄m).

Two nodes t̄, s̄ ∈ Mn+1 are said to be parallel, notation t̄ ‖ s̄, if Pa(t̄) ∩
Pa(s̄) = ∅. This finishes the definition of the sequence of Mn. Then set

M∗ =
⋃

n≥0

Mn.

By some abuse of language we identify each node t̄ of M∗ with its graph
G(t̄), so we can refer to the graphs as elements of M∗. Then M∗ interprets
the terms of Lo in the following way.

24

Definition 4.3 For any term t, the M∗-interpretation tM
∗

of t is defined
inductively as follows:

(a) tM
∗

= G(tM) if t is concrete.
(b) (λv.x)M∗

= G(λv̄.xM).
(c) (λ̄x.y)M∗

= G(λ̄xM .yM).
(d) (t¯ s)M∗

= G(tM
∗ ¯ sM∗

).
(e) (t|s)M∗

= G(tM
∗ |sM∗

).

Given a pointed graph G by a path of G we shall mean a maximal path,
i.e., one starting from the point and going down to a terminal node. We let
the letters ξ, ζ range over paths. Paths are going to represent simple terms.
A normal path is defined like a normal simple term.

Definition 4.4 Let ξ be a path. ξ is said to be normal if it does not contain
(a) nodes λv̄.x̄ with v̄ 6≤ x̄, (b) nodes λ̄ȳ.z̄ with ȳ 6≤ z̄, and (c) notes labelled
by active machines (λv̄.x̄¯λ̄ȳ.z̄). ξ is θ-normal if in addition does not contain
nodes (t̄¯ v̄).

The path ζ is a normal form of ξ if it is normal and results from ξ by the
obvious normalization procedure, i.e., by (a) identifying nodes λv̄.x̄ and x̄ if
v̄ 6≤ x̄, (b) identifying nodes λ̄ȳ.z̄ and z̄ if ȳ 6≤ z̄, and (c) replacing the graph
having point an active machine (λv̄.x̄¯ λ̄ȳ.z̄) by the graph having point the
term (x̄[ȳ 7→ v̄]¯ z̄[v̄ 7→ ȳ]). Similarly is defined the θ-normal form of ξ.

As with terms we easily see that normal forms of paths are unique. So
we can define the following equivalences between paths:

ξ ∼ ζ, if ξ and ζ have common normal forms,
ξ ≈ ζ, if ξ and ζ have common θ-normal forms.
Obviously,

ξ ∼ ζ ⇒ ξ ≈ ζ

but not conversely. Given a graph G, let us write for simplicity ξ ∈ G
for the fact that ξ is a path of G. The equivalences ∼ and ≈ on paths
induce equivalences ∼∗ and ≈∗ on the graphs of M∗, having the form of
“bisimulations”, as follows:

Definition 4.5 For t̄, s̄ ∈ M∗ let t̄ ∼∗ s̄ iff:

[(∀ξ ∈ G(t̄))(∃ζ ∈ G(s̄))(ξ ∼ ζ)] & [(∀ξ ∈ G(s̄))(∃ζ ∈ G(t̄))(ξ ∼ ζ)] .

25

Let also t̄ ≈∗ s̄ iff:

[(∀ξ ∈ G(t̄))(∃ζ ∈ G(s̄))(ξ ≈ ζ)] & [(∀ξ ∈ G(s̄))(∃ζ ∈ G(t̄))(ξ ≈ ζ)] .

Clearly
t̄ ∼∗ s̄ ⇒ t̄ ≈∗ s̄

but not conversely. The structures (M∗,∼∗) and (M∗,≈∗) are models of λo

and λoθ, respectively. To see this let us first establish the following.

Lemma 4.6 (i) If t ≡ s, then G(tM
∗
) ∼∗ G(sM∗

).
(ii) For every step X of the algorithm ABCD described in theorem 2 (or

a clause X of definition 3.9), if the term s results from t by applying X
to t, then G(tM

∗
) ∼∗ G(sM∗

). Similarly if X is a step of ABCDE, then
G(tM

∗
) ≈∗ G(sM∗

).
(iii) Therefore if t ;β s, then G(tM

∗
) ∼∗ G(sM∗

) and if t ;βθ s, then
G(tM

∗
) ≈∗ G(sM∗

).
(iv) Conversely, if G(tM

∗
) ∼∗ G(sM∗

), then t, s have same normal forms.

Proof. (i) It suffices to consider the syntactic equivalences t ≡ s of section
3 and check that for all such t ≡ s, the graphs of tM

∗
and sM∗

are ∼∗-
equivalent. For example it is trivial to check that the graphs interpreting the
terms t ¯ s and s ¯ t have essentially the same paths (essentially means up
to ∼-equivalence).

(ii) Let us consider the steps A,B,C,D,E. The claim is proved by simply
comparing the graphs before and after each reduction step, from the point of
view of ∼∗-equivalence. Step A (expansion) produces the transform of figure
1.

Figure 1

It is clear that the two graphs have essentially the same paths, therefore they
are ∼∗-equivalent.

Step B (contraction) produces the transform of figure 2.

Figure 2

The two graphs are again obviously ∼∗-equivalent.
Figure 3 shows step C (distribution of ¯ over |).

26

Figure 3

Again the paths are essentially the same.
Step D (normalization of simple terms) cannot be depicted by a figure,

since the transforms now take place inside the paths. But it obviously pre-
serves ∼∗-equivalence by the very definitions: A simple term t is reduced
to the normal simple term s iff the path tM

∗
is reduced to the ∼-equivalent

normal path sM∗
.

(iii) follows from (ii).
(iv) If t, s have distinct normal forms t1| · · · |tn and s1| · · · |sm respectively,

then, clearly, as follows from the normalization procedure, at least one of the
ti is distinct from all sj or vice versa. Since tM

∗
i , sM∗

j are just ∼-equivalent
paths of tM

∗
and sM∗

respectively, this means that at least one path of the
former is similar to no path of the latter. a

Theorem 4.7 (Soundness and Completeness) Let M be an Lo-o.s. Then
for any terms t, s of Lo the following hold:

(i) λo ` t = s iff (M∗,∼∗) |= t = s (i.e., tM
∗ ∼∗ sM∗

).
(ii) λoθ ` t = s iff (M∗,≈∗) |= t = s (i.e., tM

∗ ≈∗ sM∗
).

Proof. (i) Just note that as follows from corollary 1 of the last subsection,
λo ` t = s iff t, s have the same normal form r. Thus if t = s is provable and
r is their common normal form, then, by the previous lemma we have

G(tM
∗
) ∼∗ G(sM∗

) ∼∗ G(rM∗
).

The converse follows from (iv) of the previous lemma.
(ii) is similar. a

Another pair of equivalences over M∗, broader and, perhaps, more natural
than ∼∗ and ≈∗, are ∼∗1 and ≈∗1 defined as follows:

Definition 4.8 The resources of a path ξ is the set Pa(ξ) of all atoms
contained in objects occurring in ξ. The proper resources of ξ is the set
Ppa(ξ) of all proper atoms contained in objects occurring in ξ. (Recall that
Ppa(x̄) = Pa(x̄)\V̄ .) For two paths ξ, ζ let

ξ ∼1 ζ iff Pa(ξ) = Pa(ζ),

27

and
ξ ≈1 ζ iff Ppa(ξ) = Ppa(ζ).

For t̄, s̄ ∈ M∗ let t̄ ∼∗1 s̄ iff:

[(∀ξ ∈ G(t̄))(∃ζ ∈ G(s̄))(ξ ∼1 ζ)] & [(∀ξ ∈ G(s̄))(∃ζ ∈ G(t̄))(ξ ∼1 ζ)] ,

and let t̄ ≈∗1 s̄ iff:

[(∀ξ ∈ G(t̄))(∃ζ ∈ G(s̄))(ξ ≈1 ζ)] & [(∀ξ ∈ G(s̄))(∃ζ ∈ G(t̄))(ξ ≈1 ζ)] .

Then, obviously

∼⊆∼1, ≈⊆≈1, ∼∗⊆∼∗1, ≈∗⊆≈∗1 . (6)

These relations are reasonable if we see each path of a graph as a “situa-
tion” of coexistent entities. Two such situations are “equivalent” if they are
formed of the same primitive resources (i.e., atoms, proper or non-proper).
The equivalence ∼1 ignores the order in which the operation ¯ acts on simple
objects, and the operators λ and λ̄. For example

(λv̄.x̄¯ ȳ)¯ (λ̄p̄.z̄) ∼1 (x̄¯ ȳ)¯ z̄ ∼1 x̄¯ (ȳ ¯ z̄).

Thus t̄ ∼∗1 s̄ means that the graphs G(t̄) and G(s̄) contain the same al-
ternative situations. It follows from the relations (6) and theorem 4.7 that
(M∗,∼∗1) still interprets the axioms of λo, however completeness now fails.
That is we have the following:

Theorem 4.9 Let M be an Lo-o.s. Then for any terms t, s of Lo the fol-
lowing hold:

(i) If λo ` t = s then (M∗,∼∗1) |= t = s (i.e., tM
∗ ∼∗1 sM∗

).
(ii) If λoθ ` t = s then (M∗,≈∗1) |= t = s (i.e., tM

∗ ≈∗1 sM∗
).

References

[1] M. Abadi and L. Cardelli, A theory of primitive objects: Untyped and
first-order systems, Infor. and Comp., vol 125 (1996), 78-102.

[2] H.P. Barendregt, The Lambda Calculus. Its Syntax and Semantics
(North Holland PC., Amsterdam 1984).

28

[3] H.P. Barendregt, Lambda Calculi with Types in: S.Abramsky, D. Gab-
bay, T. Maibaum eds., Handbook of Logic in Computer Science, Vol 2
(Clarendon Press, Oxford 1992) 117-309.

[4] G. Berry and G. Boudol, The chemical abstract machine, Theoret.
Comp. Sci. 96 (1992) 217-248.

[5] G. Boudol, Towards a Lambda-Calculus for concurrent and Communi-
cating Systems, in TAPSOFT 1989, Lecture Notes in Computer Science,
Vol. 351 (Springer, Berlin 1989) 149-161.

[6] R. Milner, A Calculus of Communicating Systems, Lecture Notes in
Computer Science, Vol. 92 (Springer, Berlin 1980).

[7] A. Tzouvaras, Worlds of homogeneous artifacts, Notre Dame J. Formal
Logic, 36(3) (1995) 454-474.

[8] A. Tzouvaras, Significant parts and identity of artifacts, Notre Dame J.
Formal Logic, 34(3) (1993) 445-452.

[9] A. Tzouvaras, The Linear Logic of multisets, Logic. J. of the IGPL, vol.
6 (1998), pp. 901-916.

29

