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Abstract

We show that there are universes of sets which contain descending
∈-sequences of length α for every ordinal α, though they do not contain
any ∈-cycle. It is also shown that there is no set universe containing a
descending ∈-sequence of length On.
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1 Introduction

As is well-known the foundation (or regularity) axiom (F ) is the asser-
tion that the relation ∈ is well-founded, which (in the presence of some
choice principle) amounts to the claim that there is no infinite descending
∈-sequence

· · · ∈ x2 ∈ x1 ∈ x0. (1)

If S is any set theory containing the above statement, we denote by S− the
corresponding theory resulting from S by dropping F . An anti-foundation
axiom (AF ) is any statement refuting F .

There is a fairly rich bibliography about systems of the form S− and
S− + AF . The interest in non-well-founded set universes has been recently
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renewed by the appearance of P. Aczel’s book [1]. There one can also find
a short history of the subject.

Concerning now descending ∈-sequences of the form (1), we should dis-
tinguish them into two kinds: the circular and the non-circular ones. The
sequence (1) is circular if xi = xj for some i 6= j, and non-circular oth-
erwise. Thus the set x = {x}, if supposed to exist, produces by iterated
self-reference the “infinite” progression · · · ∈ x ∈ x ∈ x, though the set x it-
self seems to be an ordinary finite object. On the other hand, a non-circular
sequence

· · · ∈ x2 ∈ x1 ∈ x0, xi 6= xj , (2)

expresses a totally different situation: Namely, a really infinite descend
through countably many distinct stairs.

In [1] the emphasis is on circularity; the author’s aim was to provide
a set theory suitable to model circular phenomena occurring in some areas
of computer science. Here, on the contrary, we shall be concerned only
with universes which contain infinite descending non-circular ∈-sequences
but no circular ones. We can think of possible interpretations of ∈ with
respect to which a sequence of the form (2) has good chances to be true.
For example, let x, y range over forms of matter and interpret ∈ as “consists
of”, or let x, y range of artificial objects and let ∈ be the relation “is a
proper part of”. Concerning the first interpretation we could find many
physicists sharing the view that matter is endlessly divisible (at least in
principle), thus structurally non-well-founded. Analogously, in the second
interpretation, we can imagine a highly complicated artifact, the dismantling
of which into atomic parts takes so much time that it practically never comes
to an end. Besides, in both these interpretations, there is no room for circular
phenomena, since ∈ now means proper reduction of something to something
else which is strictly prior or simpler or more primitive.

We assume familiarity of the reader with Fraenkel-Mostowki permutation
models. For details one may consult [2].

2 A non-circular permutation model

Let E be a relation intended to interpret ∈. An E-cycle is any finite se-
quence (x0, x1, . . . , xn) such that x0Ex1E · · ·ExnEx0. The relation E is
non-circular if it contains no cycles.

Similarly a universe (A,E) satisfying a set theory S− is said to be non-
circular if its membership relation E is non-circular.
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The stimulus for the present notice has been the question of how long
descending ∈-sequences there can be in non-circular universes. Obviously
the simplest such sequences are those of length ω. (Longer sequences, after
all, have to be defined and this will be done in the next section.)

Theorem 2.1 (ZFC) There is a non-circular permutation model contain-
ing infinite descending ∈-sequences.

Proof. Let V be the universe of ZFC. Choose a countable set of infinite
subsets of ω and enumerate them by means of the integers. Let (yn)n∈Z be
this enumeration. Put xn = {yn}, n ∈ Z, and define the mapping π : V → V
as follows:

π(xn+1) = yn, π(yn+1) = xn, π(x) = x if x 6= xn, yn for n ∈ Z.

Clearly π is a permutation of V . Let ∈π be the usual relation defined by

x ∈π y iff π(x) ∈ y.

Then we have π(xn+1) = yn ∈ xn for all n ∈ Z, hence

· · · ∈π x2 ∈π x1 ∈π x0 ∈π x−1 ∈π · · ·

Thus it remains to show that ∈π is non-circular. Let us denote by z1, z2, . . .
the elements of V − {xn, yn : n ∈ Z}, while w1, w2, . . . range over arbitrary
elements of V . Assume there is a cycle

w ∈π w1 ∈π · · · ∈π wn ∈π w. (3)

We shall reach a contradiction.

Claim 1. The sequence (3) does not contain both xi’s and yj ’s.

Proof. Suppose it does. Then there will be xi and yj separated by zk’s
only. Thus we have the following two cases:

Case (a). xi ∈π z1 ∈π · · · ∈π zk ∈π yj . This is equivalent to π(xi) ∈ z1 ∈
· · · ∈ zk ∈ yj , or yi−1 ∈ z1 ∈ · · · ∈ zk ∈ yj . It follows that yi−1 ∈ TC(yj)
(the transitive closure of yj), which is impossible since TC(yj) contains just
natural numbers.

Case (b). yj ∈π z1 ∈π · · · ∈π zk ∈π xi. This is equivalent to xj−1 ∈ z1 ∈
· · · ∈ zk ∈ xi, which is impossible too.

Claim 2. The sequence (3) contains at most one yj .
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Proof. Suppose (3) contains yi and yj where i 6= j. Since by Claim
1, there are no xk’s in (3), yi and yj are separated by zk’s, i.e., we have
yi ∈π z1 ∈π · · · ∈π zk ∈π yj . This is equivalent to xi−1 ∈ z1 ∈ · · · ∈ zk ∈ yj ,
a contradiction.

From the above claims it follows that (3) contains either a single yj and
no xi or no yj . In the first case (3) is of the form

z ∈ z1 ∈ · · · ∈ yj ∈π · · · ∈π zk ∈π z.

This is equivalent to the conjunction z ∈ z1 ∈ · · · ∈ yj and xj−1 ∈ · · · ∈ zk ∈
z, which is false. Therefore (3) contains xi’s and zk’s only.

Claim 3. If xi, xj are contained in (3), then there can be no zk between
them. Moreover, if xi ∈π xj , then i = j + 1.

Proof. Suppose xi ∈π z ∈ xj . Then, equivalently, yi−1 ∈ z ∈ {yj}, a
contradiction. Further let xi ∈π xj . Then yi−1 ∈ {yj}, hence i− 1 = j.

We conclude that the only possible form of (3) were

w ∈π xi+k ∈π xi+k−1 ∈π · · · ∈π xi ∈π w,

for some k > 0. But in this case xi ∈π w ∈π xi+k. Then, by Claim 3,
w = xi−1 and i + k = i − 2, whence k = −2, again a contradiction. This
completes the proof that there is no cycle of the form (3). a

3 Paths and graphs

A relation is any class X whose elements are ordered pairs. As usual we
define dom(X), rng(X) and fld(X). The elements of fld(X) are called
nodes of X, while the elements of X are the edges of X. If (x, y) ∈ X, then
the nodes x, y are said to be adjacent. For any x, let X(x) = {y : (x, y) ∈ X}.
The relation X is called a graph if X(x) is a set for every x ∈ dom(X).

Given a relation X, by path in X one usually understands a tour along a
finite or countable set of adjacent nodes. That is, the sequence {x0, x1, . . .} ⊆
fld(X) is a path if (xn, xn+1) ∈ X for every n. Thus the length of a path
is usually either finite or countable. Can there be meaningful transfinite
paths? Yes, provided we shall specify what crossing a limit stage really
means. The conditions, for instance, (xn, xn+1) ∈ X and (yn, yn+1) ∈ X
do not suffice for the ω · 2-sequence Y = {x0, x1, . . . , y0, y1, . . .} ⊆ fld(X)
to be considered as a path in the relation X. Because in such a case the
concatenation of any two arbitrary paths would do the job. I think that the
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right extra condition we need to impose is that each limit node x should
be connected with every node of some final segment preceding x. These
connections make the passage to the limit nodes not by arbitrary jumps but
by smooth, continuous progression.

Definition 3.1 Let X be a relation. A path in X, or an X-path, is a class
Y ⊆ fld(X) well-ordered by an ordering ≺ such that:

(a) for any x ∈ Y , (x, x+) ∈ X, where x+ is the immediate successor of
x in (Y,≺).

(b) if x is a limit point of (Y,≺), then there is a y0 ∈ Y such that y0 ≺ x
and (y, x) ∈ X for all y ∈ Y such that y0 ≺ y ≺ x.

If Y is a path and ord(Y,≺) = α ∈ On, then Y is said to be an α-path
and we call α the length of Y .

A path has always a first element, but need not have a last one. If it
does, and x, y are these elements, respectively, then we say that the path
joins x and y. Given an X-path (Y,≺) we call the set Tr(Y ) =≺ ∩X of
the pairs of ≺ contained on X the trace of Y . If Y is an X-path joining
the nodes x and y (i.e., Y starts with x and ends with y), and if it happens
that (y, x) ∈ X, then we call the class Tr(Y ) ∪ {(y, x)} a (minimal) cycle.
More general (i.e. non-minimal) cycles can be defined in the obvious way.
A relation X is said to be circular if it contains cycles.

Lemma 3.2 Let X be a relation. If the nodes x, y are joined by a path, then
they are joined by a finite path. In particular, if X contains cycles, then it
contains finite cycles.

Proof. Any infinite path joining x, y has an order type α+n where α is a
limit ordinal and n ∈ ω, n > 0. Thus we can use induction on α to prove the
claim. Suppose that for every limit β < α and any n ∈ ω, if the nodes x, y
are joined by a β + n-path, then they are joined by a finite path. It suffices
to show that it holds also for α. Let Y = {zν : ν < α + n} be an α + n-path
joining x, y. By Definition 3.1 there is a γ < α such that (zγ , zα) ∈ X.
Consider the path Y ′ = {zν : ν ≤ γ}. By the inductive hypothesis, there
is a finite path Z joining x and zγ . Then the path Z ∪ {zα, . . . , zα+n−1} is
finite and joins x and y. a

Thus for α ≥ ω the only nontrivial paths are those whose length α is a
limit ordinal. Concerning now the possible length of a path, we first show
the following.
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Lemma 3.3 The following are equivalent.
(a) There is a graph containing a path of length On.
(b) There is a function F : LOn → On, where LOn is the class of limit

ordinals, such that:
(i) (∀α ∈ LOn)(F (α) < α),
(ii) (∀γ ∈ On)({α ∈ LOn : F (α) ≤ γ < α} is bounded in On).

Proof. (a)⇒(b). Let Y be a path in the graph X of length On. We can
identify the nodes of Y with the elements of On and the path ordering with
that of the ordinals. Then for every α ∈ LOn there is a β < α such that
(γ, α) ∈ Y for all γ with β ≤ γ < α. Choose for every α ∈ On such a β and
put F (α) = β. Then the condition (i) for F is satisfied. Furthermore,

(∀α ∈ LOn)(∀γ ∈ On)(F (a) ≤ γ < α ⇒ (γ, α) ∈ Y ).

Since X is a graph, the class X(x) is a set for every x ∈ fld(X). Consequently
{α ∈ LOn : F (α) ≤ γ < α} ⊆ X(γ) is also a set, hence condition (ii) for F
is satisfied.

(b)⇒(a). Given F : LOn → On with properties (i) and (ii), then clearly

Y = {(γ, α) : F (α) ≤ γ < α} ∪ {(γ, γ + 1) : γ ∈ On}
is a graph and a graph-path of length On in itself. a

Lemma 3.4 There is no function F of the kind described in clause (b) of
the preceding lemma.

Proof. First it is easy to check that property (ii) for F is equivalent to
the following condition:

(iii) (∀γ ∈ On)(∃β ∈ On)(∀α ∈ LOn)(α ≥ β ⇒ F (α) > γ).

Let H : On → On be defined by

H(γ) = min{β ∈ On : (∀α ∈ LOn)(α ≥ β ⇒ F (α) > γ},
and define H : On → On as follows:

H(0) = 0, H(ν + 1) = max{H(ν) + 1,H(ν + 1)}, and

H(λ) = sup{H(ν) : ν < λ}, if λ is a limit ordinal.

Clearly H is strictly increasing, continuous and, since H(γ) ≥ H(γ), for
every γ ∈ On,

(∀α ∈ LOn)(α ≥ H(γ) ⇒ F (α) > γ). (4)
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Therefore, H contains fixed points. Let γ0 be such a fixed point. Then γ0

is a limit ordinal and since H(γ0) = γ0, it follows from (4) that F (γ0) > γ0.
This contradicts property (i) of F and completes the proof. a

As an immediate consequence of Lemmas 3.3 and 3.4 we obtain:

Theorem 3.5 Let S−+AF be any ordinary set theory with an anti-foundation
axiom. Then there is no universe of that set theory containing a non-circular
descending ∈-sequence of length On.

4 Non-circular models containing paths of every
ordinal length

Let GBC− be the usual Gödel-Bernays theory of classes with the global
axiom of choice

(GC) V ≈ On.

We fix a wellordering < of V of order type On. Then every proper subclass
of V is order-isomorphic to On, too. Moreover, we can partition V into a
proper class of disjoint proper classes Xα, α ∈ On.

We shall define a cumulative hierarchy Gα, α ∈ On, of graphs analogous
to the familiar hierarchy Vα, starting now not simply from ∅ but from 1 = {∅}
together with a proper class of sets xα, α ∈ On, where xα is of “depth” α.

Let V = {yα : α ∈ On} be an enumeration of V yielded by the ordering
< and let

X0 = {0, 1} ∪ {(yα, β) : α ∈ LOn & β < α}.
Let furthermore (Xα)α>0 be a partition of V −X0 into disjoint proper classes.
Put

G0 = {(1, 0)} ∪ {((yα, β), (yα, γ)) : β < γ < α}.
G0 is the union of the disjoint paths shown in the diagram below. (The
reason that we consider 1 = {∅} instead of just ∅ is that the node ∅ does
not have any children, hence it would not be able to be in fld(G0) had we
started with ∅. Now however ∅ ∈ fld(G0).)
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•

•↓

1

0
ω

• (yω, 0)

• (yω, 1)
↓

(yω, 2)• (yω, 2)
↓
·····

α

• (yα, 0)

• (yα, 1)↓

• (yα, 2)↓
·····• (yα, β)

↓
·····

For each limit α the path starting at the node (yα, 0) has length α.
Suppose the graph Gα has been defined. Then Gα+1 is Gα plus a class

of new nodes and edges representing those subsets of fld(Gα) which are not
already represented in Gα, where for any graph G, a subset u ⊆ fld(G) is
said to be represented in G by the node x if G(x) = u. (For example, in the
graph G0 above the empty set is represented by the node 0). Let

P (Gα) = {u ⊆ fld(Gα) : u is not represented in Gα}.
Of course, P (Gα) is a subclass of V well-ordered by <. Put

Gα+1 = Gα ∪ {(x, y) : x is the β-th element of Xα+1 with respect to <

and y belongs to the β-th element of P (Gα) with respect to that ordering},
and for a limit α, let Gα =

⋃{Gβ : β < α}. Finally let

G =
⋃
{Gα : α ∈ On}.

(The elements of Xα, for a limit α, are not in fact employed in the preceding
construction, but this is no harm.)

A graph X is said to be extensional if

(∀x, y ∈ fld(X))(X(x) = X(y) → x = y).

X is called full if

(∀x ⊆ fld(X))(∃y ∈ fld(X))(X(y) = x).

From the definition of G it follows:
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Lemma 4.1 G is a non-circular, extensional and full graph.

G interprets the language of ZF set theory in the obvious way, i.e., the
quantifiers range over the class fld(G) and

G |= x ∈ y iff (y, x) ∈ G.

To interpret further the class variables of GB we can modify slightly
the construction of G so that A = V − fld(G) is a proper class. Then we
extend G to G∗ as follows: Consider the family G of proper subclasses of G
which are definable over G by a predicative formula φ(x,<G) containing as
parameter the wellordering <G of G in the sense of G, i.e.,

x ∈<G⇔ (∃y, z ∈ fld(G))(y < z & G |= x = (y, z)).

Clearly G can be enumerated by On in the form G = {Zα : α ∈ On}.
Enumerate also the class A = V − fld(G) by A = {zα : α ∈ On} and add
to G the extra nodes zα having as children the elements of Zα, respectively,
in symbols:

G∗ = G ∪ {(zα, x) : α ∈ On & x ∈ Zα}.
Obviously, the zα’s are maximal nodes of G∗ interpreting the class variables
of GB.

Consider the following anti-foundation axiom:

(AF) (∀α ∈ LOn)(∃f)(dom(f) = α & (∀β, γ < α)(β < γ ⇒ f(γ) ∈ f(β))).

Then the following holds:

Theorem 4.2 (a) G |= ZFC− + AF . (b) G∗ |= GBC− + AF .

Proof. (a) By Rieger’s theorem (see [1], Appendix B), G |= ZFC−, since,
by Lemma 4.1, G is extensional and full. Also G |= AF as a consequence of
the construction of G0. (b) The class G is closed under relative definability
and contains <G. Therefore V ≈ On and existence of predicatively defined
classes holds in G∗. a
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