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Abstract. We elaborate on and refine certain aspects of the approach to NF
consistency developed in [8], through coherent pairs and their extendibility prop-
erties. Some further results notions and problems are presented. First a quick
proof of NF'3 consistency is provided. Next an alternative equivalent formaliza-
tion of coherent pair, in terms of “coherent triples” of partitions is given. Ex-
tendibility is closely inspected and it is shown that instead of general partitions,
only “simple partitions”, i.e., partitions consisting of infinite and one-element
sets, can be used throughout. Also a property weaker than n-extendibility, called
“n-augmentability”, is presented. Some particular n-augmentability questions
are proved in the affirmative, while others, especially the appealing (0,0,n)-
augmentability, remain open. A partial case of this question is settled, while the
source of its hardness is discussed. Finally it is briefly sketched how all these
questions can be phrased as combinatorial problems of ZFC alone, without any
reference to models of TST.
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1. Introduction

In this paper we elaborate on the approach to NF consistency developed
in [8] and try to refine, sharpen and improve some of the notions and
results presented there. The paper is organized as follows: In section 2
we survey the basic definitions and results of [8], giving in addition a
slightly different formalization of pieces of type-shifting automorphisms,
in terms of coherent triples of partitions. In section 3 we give a short proof
of the consistency of the fragment NF3 using coherent pairs adjusted to
models of TST3. In section 4 a closer examination of the key property
of n-extendibility is attempted which leads to a reduction of partitions
and coherent pairs to simple partitions and simple coherent pairs. In
section 5 the weaker property of n-augmentability is considered, which
follows naturally from the “unfolding” of the extendibility formulation. In
subsection 5.1, the special cases of (n,0,0)- and (0, n,0)-augmentability
are considered and proved for the trivial pair of a rich model of TSTy. In
contrast (0,0, n)-augmentability of the trivial pair, for n > 2, is still open
and in subsection 5.2 we discuss certain aspects of this question and prove a
partial result. This is a particularly appealing and natural question whose
affirmative answer would be a nice strengthening of Theorem 3.6 of [§],
since the hard case of that result is equivalent to (0,0, 2)-augmentability.
All extendibility and augmentability questions are purely combinatorial in
essence, asking how elements of finite Boolean algebras distribute over the
atoms of corresponding similar Boolean algebras lying at next higher levels
of a TST model. So in section 6 we describe briefly how all the preceding
notions and questions can be phrased as combinatorial problems without
any mention of TST models, just referring only to full models which are
quite familiar objects of ZFC.

2. Survey of coherent pairs

Recall that as a consequence of the fundamental contributions [7] and [3]
the following are equivalent:

(a) NF is consistent
(b) NF, is consistent

(c) There is a model A = (Ag, A1, As, A3) of TST4 with a type-shifting
automorphism

Ao Lo 4y 4y P g
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or just €- and C-preserving bijections
Ay 5 4, 24,

(Grishin observed that fy can be recovered from f; by setting fo(a) =

zif f1({a}) = {z}).

The idea then is to try to construct the automorphism A; LN Aq ELN As
by forcing for a suitable model A = (Ag, A1, Az, A3) of TSTy. Coherent
pairs over a model A = TST,4 were introduced in [8] as finite approxi-

mations of a type-shifting automorphism A; LN A, f2, As. They were
intended to be used as forcing conditions, a generic subset of which would
yield the required automorphism. However, in order for that to work,
coherent pairs should be extendible in the ordinary sense, That is, given
a pair p and an element t € A; U Ay U As, there should be a ¢ < p
that captures t. But extendibility is proved to be an exceptionally hard
combinatorial problem.

Throughout we use only standard transitive (henceforth s.t.) models of
TST. As shown in [8, Lemma 1.2], one can confine oneself to such models
without any serious loss of generality. E.g. for every A # @, the sequence
(A, P(A),P?(A),...,€) is as.t. model of TST. Such a model is called full
and is denoted by ((A)). If A is infinite ((A)) is uncountable. To find a
countable model we can take a countable elementary submodel of ((A)).
Such a model is standard but not transitive.

Though the intuitive meaning of coherent pairs is clear, the formal defi-
nition as given in [8] contains some inaccuracies which do not affect the
proofs but might confuse the reader. Below we give a corrected and sim-
plified version based on finite partitions and finite Boolean algebras.

Definition 1. Let A;, A5 be infinite sets such that |A;| = |As|, and wy, ws
be finite partitions of A;, Ao respectively. We say that w; and wo are
similar and write wy ~ ws, if there is a bijection p : w; — ws such
that |p(x)| = |x| for every x € w;. In that case we write p : wy ~ws.

Every finite partition ' w on a set A generates a finite Boolean algebra
denoted B(w) whose set of atoms is w. Conversely every (nontrivial) finite
Boolean algebra B on A has a set of atoms, denoted by Atom(B), that
constitutes a finite partition of A.

1. All finite partitions w on a set A considered throughout will be assumed to contain
only nontrivial sets, i.e., for every x € w, x # A, &.
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Definition 2. Two finite Boolean algebras Bi, By on the sets Aj, As re-
spectively are said to be similar, notation By ~ By, if the partitions
produced by their atoms are similar.

It follows from the above definitions that for any partitions wy,ws of
Alv A23
w1 ~ W <~ B(wl) NB(’LUQ)

Also if p : wy ~ws is a similarity, p extends to B(wy) by setting for every
X e B(w1)7

p*(X) :U{p(x) cxew; A x C X}

p* is a Boolean-algebra isomorphism between B(w,) and B(ws), for which
moreover |p*(X)| = |X|. For simplicity we drop the star from p and write
p: B(wy) ~ B(w2) instead of p* : B(w;y) ~ B(ws). Note that

p: B(wy) ~ B(ws) = p: B(w) = B(ws),
but not conversely.

Definition 3. Let A = (Ao, A1, A3, A3) be a model TSTy4. A coherent pair
(c.p. in brief) over A is a pair p = (p1, p2) of finite 1-1 mappings with
the following properties:

(a) dom(py) is a finite Boolean subalgebra of A;, rng(p;) = dom(p2)
is a finite Boolean subalgebra of Ay, and rng(p2) is a finite Boolean
subalgebra of A3. We set u; = dom(py), ug = rng(p1) = dom(pz)
and ug = rng(p2).

(b) p1 : ug ~uz and py : ug ~ us.
(¢) p1,p2 are €-isomorphisms, i.e., for every x € uy and y € uo,

x €y < pi(x) € pa(y).

Given c.p.’s p = (p1,p2) and ¢ = (¢1,¢2) we say that p extends ¢, and
denote it by p < ¢, if p1 2 ¢1 and p2 2 go.

Instead of p = (p1, p2) we often write more suggestively

o p1 D2
pP=uUr — Uy —> U3.

Before going on let us fix and make explicit some notational conventions
which have already been used above and will facilitate greatly the reader.
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Notational conventions. Given any model A = (Ag, A1, As, A3) of
TSTy, the letters

» X,z,x1, etc. denote exclusively elements of Ay,
» Y, y,y1, etc. denote exclusively elements of As,

» 7,z 21, etc. denote exclusively elements of As.
Also

> uy,us,uz (as well as vy, va, v3) are reserved for finite Boolean subal-
gebras of Ay, As, As, respectively, and

» w1, ws,ws are reserved for partitions included in A;, Ay, As, that is,
for partitions of the underlying sets Ay, A1, As, respectively.

An alternative formalization: Coherent triples. Since to each c.p.
p = u REN Uo REN us there are associated three finite Boolean alge-
bras ui, us,us3, the domains and ranges of p1,ps, we might alternatively
consider “coherent triples” of Boolean algebras (u1, us2,us) instead of pairs
of functions. Moreover, as we saw above, speaking about finite Boolean
algebras is tantamount to speaking about finite partitions. So instead
of triples of Boolean algebras, we may consider just triples of partitions
(w1, wa, ws) of Ag, A1, Ag, respectively. Most often partitions come up
as sequences rather than sets, e.g. w1 = (z1,...,2Zn), W2 = (Y1,---,Yn),
wy = (21,...,2,). In such a case the elements of the algebras B(w;) can
be indexed by means of the sets I C [n] as follows (throughout [n] denotes
the set {1,...,n}, for every n > 1): for every I C [n] let

Xr=|Jaiier}, (1)

and similarly for Y; € B(ws) and Z; € B(ws). Obviously for every
X € B(wy) (resp. Y € B(wsz), Z € B(ws)) there is a unique I C [n]
such that X = X7 (resp. Y = Y7, Z = Z;). 2 For a given I, we often refer
to Xy, Y7, Z1 as “corresponding” sets, with respect to the correspondences
p1(x;) = y; and pa(y;) = z;, since clearly p(X;) = Y7 and po(Y7) = Z;
for each I C [n]. The following definition can be used as an alternative
equivalent to Definition 3:

2. The letters w; denote, somewhat ambiguously, either a set or a sequence, depending

on the context. For example in the notation “B(wi)”, w; is just a set. But the indexing

of the sets X € B(w1) by I C [n] clearly depends on a particular ordering of wi. This

is why for more clarity we should write X}”l rather than X, where now w; refers to
!

a sequence. If w) is a permutation of wi, then in general X}Ul #* X}“. This notation
is employed in the discussion of section 5.2.



114 A. TZOUVARAS

Definition 4. Let (w1, w2, ws) be a triple of partitions of Ag, Ay, As, re-
spectively. (w1, ws,w3) is said to be a coherent triple, (c.t. for short),
notation Co(wy, we,ws), if

(a) There are py : wy ~ws, and Py : wo ~ ws.

(b) Let wy = (z1,...,2n), w2 = (Y1,---,Yn), Wz = (21,.-.,2n), be
enumerations of wy, way, w3 such that py(z;) = y;, and p2(y;) = 2;.
Then

Xrey <Y€z, (2)

for all ¢ € [n] and all I C [n].

Given triples of partitions w = (wq,ws,ws), w' = (w},wh, wh) we
say that w’ extends w and write w’ < w, if w; J wy, wh) I wy and
wh J ws, where w, J w; means that w; refines w;, i.e., each element
of w} is a subset of some element of w;.

Remarks

(a) Note that condition (c) of Definition 3, that € is preserved by
p1, P2, is equivalent to

XreY,; Y ez, (3)

for all I,J C [n]. However it is easy to check that condition (2)
suffices for (3) to hold, that is, (2) and (3) are equivalent.

(b) The relation w’ < w for c.t’s is the analog of p < ¢ for c.p.’s

(c) The relation between coherent pairs and coherent pairs is simply
the following:

Co(wy, we,w3) < there is a c.p.

p = B(w;) RN B(ws) ELN B(ws).

(d) Coherent pairs and triples over a model A of TST are not elements
of A, since they are “unstratified objects”. Their relationship to
A is that of proper classes to a model of ZFC. If one wants to
treat them formally one has to extend TST to a “second-order”
variant TST which is able to accommodate unstratified objects
like coherent pairs. Models of TSTY have the form (A, C'), where
A is a model of TST4 and C' is a certain subset of U?:o A;. For
details see [§], p. 294.
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Example 1. The simplest example of a c.p. is that in which uy,us, u3 are
the trivial Boolean subalgebras of Ay, Az, A3, respectively, and p1, ps
are the trivial isomorphisms between them. Namely let: u; = {&, Ao},
uy = {9, A1}, uz = {2, Ao}, pi(@) = @, for i = 1,2, p1(4g) = Ay,
and py(A;) = Ay. We denote this pair by o?. Le.,

O'A = {@,Ao} L {@,Al} & {@,AQ}.
We refer to o as the trivial c.p. of A.

Example 2. Let
u1 = (2, Ao, {a}, —{a}),
for some a € Ay,
uz = (9, Ay, {z}, —{z}),
for some x € A; such that « # {a}, —{a},

us = (@, A2a {y}a _{y})a
for some y € Ay such that y # {z}, —{«}.

If p1 : w1 — w9, pa : us — ug are the mappings preserving the above
. ip s P1 P2 .
orderings of u;, it is easy to check that p = u; — us — ug is a c.p.

As already said above, coherent pairs (or coherent triples) are intended to

be used as forcing conditions a generic subset of which would provide the

required type-shifting automorphism of the model A of TST,. So the key
property for (some of) them should be extendibility.

Definition 5. Let p = w1 =5 us -2 usz be a c.p. We say that p is ez-
tendible if for every t € A1 U Ay U Ag, there is a pair vy Ay 22, V3
such that ¢ < p and ¢ € v1 Uvg Uvs. When such a ¢ = (q1, ¢2) exists,
we say for simplicity that ¢ captures t, and denote this by ¢ < p —~ {t}.

Are there extendible c.p’s? We can prove that there are (Theorem 4
below), but it is far more easy to give examples of non-extendible c.p’s
rather than extendible ones.

Example 3. Consider the pair of Example 2 above:

Uy = (@, AOa {a’}a 7{&}),

Uz = (@, Ala {fﬂ}, 7{$})a
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such that « # {a}, —{a},

uz = (@, Az, {y}, —{y}),

such that y # {z}, —{«}, with
b1 (®7A07 {a}7 _{a}) - (®7A1’ {‘T}7 _{‘T})

b2 (Q’Alv{m}7_{x}) - (Q,A%{y}’_{y})

If || # |y|l, p = (p1,p2) is non-extendible. For if ¢ = (¢1,¢2) and
4 <p ~ {o}, then necessarily q1(z) = y, hence |1 ()] = o] = |yl, a
contradiction.

The preceding example gives an idea of the hardness of the extendibility
problem. Extendibility is a “chain-reaction” generating property: If p =
(p1,p2) is a given pair and, say, y € us, in order for p to be extendible we
must make sure that for any x; € y there exists a y1 € pa2(y), as well as a
z1 so that p extends to a g that captures x1, 91, z1; then for any x5 € y; we
must find g9, 2o captured by an extension of ¢ and so on. It follows that
extendibility alone, as defined above, is by no means adequate. Even if we
are able to extend p to ¢ to capture a new element ¢, ¢ need not be further
extendible, and the procedure will stop. What we need is a property of
iterated extendibility up to w iterations.

Definition 6. Let p = u; 25 uy 22 ug be a pair.

» p is said to be l-extendible if it is extendible.

» pissaid to be (n+1)-extendible if for every t € A1 U AU A3 there
is a pair ¢ = (q1, ¢2) such that, ¢ < p —~ {t} and ¢ is n-extendible.

» p is said to be w-extendible if it is n-extendible for all n > 1.
We shall see below that the trivial pair o# is l-extendible for any suffi-
ciently rich A. As to m-extendibility, for all n > 1, this is exactly the
required property.

Theorem 1 (Main Theorem [8]). Let M be a countable model of ZFC in
which for every n € N, there is a s.t. model A of TST that contains
an n-extendible c.p. Then there is a generic extension M[G] of M that
contains a model of NF. Conversely, if M contains a model of NF,
then in M there is a s.t. model A of TST that contains an n-extendible
c.p., for every n > 1.
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The most natural candidate pair to be extendible would be the trivial pair
o” of Example 1. The main theorem above can be equivalently formulated
as follows:

Theorem 2 (Main Theorem [8]). Let M be a countable model of ZFC in
which for every n € N, there is a s.t. model A of TST such that o
is m-extendible. Then there is a generic extension M[G] of M that
contains a model of NF. Conversely, if M contains a model of NF,
then there is a s.t. model A € M such that o is n-extendible, for
everyn = 1.

Roughly n-extendibility works as follows: If for every n there is model
A, € M of TST, such that o**» is n-extendible, then, by compactness,
there is A |= TST4 in M such that o? is w-extendible. If further B is a
saturated elementary extension of A in M and we set

P, = {p: p is w-extendible over B},

then (P, <) is a forcing notion, and setting f = |J G, for any generic G,
f is the required type-shifting automorphism of B. Thus (B, f) yields a
model of NF in M[G]. 3

Are there models A of TST having n-extendible pairs? More simply: Are
there A such that o is n-extendible? All we know is that there exist
A for which 0 is 1-extendible. In any case extendibility capabilities of
o” depend on properties of the underlying model A. The properties of
A mainly employed in [8] were “richness” and “regularity”. Here are the
definitions:

Definition 7. A model A of TST is called regular if for every x € A,
x is finite & A |= Fin(x). (4)

Definition 8. The Boolean algebra A;.; is said to be rich if for every
infinite (with respect to the ground model) = € A; 1, there is a 1 €
A;+1 such that 21 C x and both x; and x — z; are infinite.

The structure A is said to be rich if every level A;.1, for i > 0, is rich.

3. One may ask whether (P,, <) is a nontrivial forcing notion, that is, one producing
a strict extension M[G] D M (e.g. whether (P, <) is separative, see [5]). The answer
is that the question has no bearing on the issue of NF consistency. For if (P, <) is
trivial and M[G] = M, that simply means that the sought type-shifting automorphism
f=UQG is already in M!
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If A is regular, then the property of richness is definable in A. Moreover
the following holds:

Lemma 3. Let (D)) be a full model of TST and let A be a standard
transitive model isomorphic to an elementary submodel of {(D)). Then
A is regular and rich.

Theorem 4 ([8]). Let (D)) be a full model of TST (with infinite D) and
let A be a standard transitive model isomorphic to an elementary
submodel of (D). Then the trivial pair o* is extendible.

3. A quick proof of NF; consistency

There are several proofs of the consistency of NF3, due to V.N Grishin [3],
M. Boffa and P. Casalegno [1] and R. Kay (see [2, p. 59]). In this section,
as an application of coherent pairs adapted to the fragment NF3, we give
another short and simple proof of this result. The cost to be paid for the
simplicity is that the model of NF3 exists not in the ground model M of
ZFC but in a generic extension of it.

Recall that a model of NF3 exists iff there is a model (A, A1, A2) of TST3
together with a type-shifting automorphism Aq o, Ay iR As. Grishin
in [3] observed that in order for (Ag, A1, A2) = TST3 to be a model of
NF3, only a mapping f; : A1 — As is needed, which will be a Boolean
isomorphism. (This result was used also in the case [8] for the reduction
of NF4 counsistency.)

Lemma 5. NF; is consistent iff there is a model (A, A1, A3) of TST3 such
that there is Boolean-algebra isomorphism f : Ay = As.

PROOF. — The property is obviously necessary. Conversely, suppose
there is a model (Ag, A1, A2) of TST3 and a Boolean-algebra isomorphism
f: Al — As. Put fi = f and define f : Ag — A7 by setting

fola) =z < fi({a}) = {z}.

Then f is a bijection because f; sends atoms to atoms. Moreover (fo, f1)
is a type-shifting automorphism from (Ag, A;) onto (Aj, Az). Indeed, by
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the definition of f; we have that for every a, fi({a}) = {fo(a)}. So for
every a € Ag and = € A

fola) € fi(z) & {fo(a)} C f1(z) & fi{a}) C f1(=).

Since f1 preserves C, we have

fia}) C filz) & {a} Creac .

Combining the above equivalences we get

a €z fola) € fi(w)
This says that (fo, f1) is a type-shifting automorphism. O

Now we adjust the notion of coherent pair (defined initially over models
of TST4) to models of TST3. Necessarily it won’t be a pair of finite
mappings (p1,p2), but only a single mapping p, namely an isomorphism
between finite Boolean algebras such that, in addition, |p(x)| = |z| for
every x € dom(p). We shall keep, however, calling it “coherent pair”. The
following is the adaptation of Definition 3 to T'STs.

Definition 9. Let A = (4g, A1, A2) be a countable model of TST3. A
coherent pair over A is a 1-1 mapping u; 2, us, such that

(a) u1 = dom(p) C Ay, uz = rng(p) C As,

(b) u1,uy are finite subalgebras of the Boolean algebras A;, Ay re-
spectively, and

(¢) p: up ~uz, and in addition |p(x)| = |z| for all z € ;.

Obviously, given a model A = (Ag, A1, A3) of TST3, coherent pairs u; BN

ug over A are finite approximations of an isomorphism A; 4, Ay which
is required to turn A into a model of NF3. Using these pairs as forcing
conditions, we can force f to occur in a generic extension M|[G], provided
the forcing conditions are extendible. But this, in contrast to the hardness
of extendibility in the NF4 case, can be easily shown to hold.

Theorem 6. Let M be a countable model of ZFC and let A = (Ag, A1, A3) €
M be a countable rich and regular model of TST3. Then there is a
generic extension M[G] of M containing an isomorphism f : A — As.
Hence M|G] contains a model of NF3.
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PROOF. — Let M, A € M be as in the hypothesis. Let (P, <) be the
forcing notion in M, where

P ={p:pis a coherent pair over A},
and p<q:=p2q.
Claim 1. Each p € P is extendible, i.e.,
(a) for every x € Ay, there is a ¢ < p such that = € dom(q), and

(b) for every y € As, there is a ¢ < p such that y € rng(q).

PROOF of Claim 1:

(a) Let u; = dom(p), us = rng(p). By assumption wuj,us are finite
Boolean subalgebras of A1, As and p : uy ~ us. p maps the atoms of uq,
onto the atoms us, and we can take enumerations of the sets of atoms
of wy = (x1,...,2y), w2 = (Y1,...,Yyn) of the algebras uy, us so that,
u; = B(wy), us = B(ws) and p(x;) = y;. w1, ws are partitions of the
sets Ag, A respectively and for each i = 1,...,n, |z;| = |p(x;)| = |yil-
Given x € A1, let wi P x be the smallest partition that refines wy and
accommodates x. That is,

wy @ ={2d,xli=1,...,n},

where 29 = z;Nz, 2! = ;N (Adg—2),i=1,...,n. Let v; = B(wi®x).
We have to find a set y € Ay and a mapping ¢ : v1 = B(w; Bx) ~vy =
B(ws @ y) such that ¢ < p and g(x) = y. What we need to do is just
split each set y; of wy into two subsets y? and y}, such that |y¥| = 27|
and |yi| = |z}|. This is always possible, because |y;| = |z;| and
our model A is rich and regular. By regularity we do not bother
about the internal and external meaning of finiteness. So if ¥ is finite
with, say m elements, we pick a y? C y; with m elements. If both
x¥, 2} are infinite, then using richness we can split y; into two infinite
subsets Y, y}. Then it suffices to define ¢ by setting ¢(z?) = y? and
q(x}) = y}. Clearly g is the required extension of p.

(b) This case is quite similar to the previous one. Given p and y € Ay we
find as before x € A; and ¢ : B(w; & ) ~ B(wz @ y) such that ¢ <p
and ¢(x) = y. This completes the proof of Claim 1.

In view of the Claim, (P, <) is an ordinary forcing notion on M. If G is
a P-generic set and f = |J G, then clearly dom(f) = Ay, rng(f) = As, so
f : A1 = AQ. O
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4. Extendibility revisited

4.1. Unfolding extendibility

We are going here to examine more thoroughly the property of n-extend-
ibility. Recall that given c.p.’s p = (p1,p2), ¢ = (¢1,¢2) and elements
t1,...,tk € A1 UA U A3 the notation

g<p~{t,....tx}

abbreviates the fact that ¢ extends p and captures tq,...,tx, that is, g < p
and {t1,...,tx} € dom(gq1) Udom(gz) Urng(gz). Let us set

Bo(p) := “p is a coherent pair”,

0, (p) := “p is n-extendible”.

The definition of n-extendibility given in Definition 6 (page 116) is induc-
tive. Namely:

Ont1(p) == (V) (B) (g <p ~ {t} A 0.(q)). (5)
and
0, (p) == /\ On(p).
If we “unfold” 0,, into a plain formula, we shall get inductively the formulas

0n(p) = (Vt1)(3q1)(Vt2)(3a2) - - - (Vtn)(3qn)
6
{mgp“{tl}/\/\%g(hq“{ti}a (6)
i=2
where ¢; range over coherent pairs and t; range over elements of A; U As U
Azt

We see that 0,,(p) is of high logical complexity, a sort of “IL,-formula”,
with n alternating quantifiers. On can easily verify by induction on n that
properties #,,, n > 1, become stronger and stronger as n grows:

(Yp)[On+1(p) = 0n(p)]- (7)

It is open whether this hierarchy of 6,, is proper or collapses at a certain
level. The following is only a partial answer to the question.

4. As we have noticed in remark (d) on page 114, coherent pairs are not elements of
models of TST, but of an extended theory TST¢. For the same reason 6, (as well as
the formulas x, defined later) are not formulas of Lrgt but of Lpgre. So it doesn’t
make sense to write A = 0,(p). To relax the reader from the technicalities of using
Lyste, we shall say instead that “6,(p) holds with respect to A”.
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Proposition 7. Let M be a countable model of ZFC and let A € M be a
model of TSTy elementarily embeddable to a full model. Then

(Vp)[01(p) = 02(p)] (8)

is false with respect to A.
PROOF. — Suppose A is as in the hypothesis and let (8) hold true.

Claim 2.
(Vp)[0n(p) = Ont1(p)]- 9)

PROOF of the Claim. — We prove (9) by induction on n. For n =1, (9)
is (8). Suppose (9) holds for n. Then, by (5),

Ont1(p) = (V8)(3q) (g < p —~ {t} A 0n(q)),

and
Oni2(p) = (Vt)(3q) (g < p ~ {t} A Ony1(q))-

Since by the induction hypothesis 6,,(q) = 0,+1(q) is true, it follows from
the preceding equations that so is 6,41(p) = On12(p).

Now by Theorem 4, 0 (o) holds true, so by (8) and (9), 6,,(0*) holds
true for all n > 1, therefore 6, (0!). This means (see the proof of [8,
2.8] for details) that if B is a saturated elementary extension of A, and
P, = {p: 0,(p) holds with respect to B}, then forcing with (P,, <)
yields a generic type-shifting automorphism f for B, f € M[G]. We have
B = A = (D)) for some full model (D)) and (D)) E AC, where AC is
the choice axiom adjusted to the language of TST. So B = AC. Now B
is an ambiguous model, and if B* is the induced model of NF, the clearly
B* = AC. But this contradicts Specker’s result [6] that NF - -AC. O

Before elaborating further on properties 6,, we shall first deal with a sim-
plification of all objects considered so far (c.p.’s, Boolean algebras, c.t.
partitions, etc). All these objects are defined in terms of finite parti-
tions. The simplification concerns the kind of partitions involved. The
simplest kind of finite partitions are those whose sets are either infinite or
singletons. We shall call such partitions “simple”. And we shall see that
all extendibility questions about general c.p.’s can be reduced, without
any loss of generality, to questions about “simple c.p.” only, that is, c.p.’s
whose domains are (essentially) simple partitions.
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4.2. Simple partitions and simple extendibility

Recall that all partitions w;, ¢ = 1,2, 3, considered in this paper are non-
trivial, in the sense that for every = € w;, * # A;_1,d. Each of the
underlying sets A; is (countably) infinite, so every w; contains at least
one infinite set and possibly several finite ones. To simplify things let us
consider partitions whose sets are only either infinite or singletons.

Definition 10. A finite partition w (resp. a finite Boolean algebra u) of
an infinite set A is said to be simple if each x € w (resp. each atom
of the algebra) is either a singleton or an infinite set.

Acp. p=w 25 wy B ws, is said to be simple if each u; is a
simple Boolean algebra. Similarly a c.t. w = (w1, ws,ws) is simple if
all partitions w; are simple.

Recall that for partitions w,w’ of a set A, w C w’ denotes the fact that
w’ is a refinement of w’. Also we have already defined in the proof of
Theorem 6, for every finite partition w = {x1,...,2,} of a set A and
every x C A, the smallest refinement

wodr={zrNz;:z; ew} U {(A—2z)Na;:2; €w}
of w that accommodates w.

Definition 11. Let w be a partition of A. The simple refinement of w,
denoted sr(w), is the partition resulting from w if we replace each
finite € A with the sets {a}, a € x.

Clearly, if w is finite, then sr(w) is the C-least simple partition that re-
fines w.

Let p = Py 2 ug be a simple c.p. and let w; = Atom(u;), the
set of atoms of the algebra u;. Let ¢t be a new element of A; U A; U Ag,
say t = x € Ay. In order for p to be extendible on z, it is necessary and
sufficient that it be extendible on each of the elements of w®x, and further
on each of the elements of sr(w®z). So given a pair p = w, P we 225w,

let
Sp)={t: (31 €w))(t Ct1) A(|t] =1V [t| = c0)}.

In words, S(p) is the set of all singletons or infinite sets which are proper
subsets of elements of some w;.
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Definition 12. A simple c.p. p = (p1,p2) is said to be n-simply extendible

if 0 (p) holds, where
05(p) := “p is a simple c.p.”,

and
w1 (p) = (vt € S(p))(Fq)(q < p ~ {t} A 6;(q))- (10)
p is w-simply extendible if 67, (p) holds, where 6 (p) := \,, 05 (p)-

Proposition 8. Let (A, C) be a (recursively) saturated model of TST®.

(a) If 02, (p), then (vt)(3q)(q < p ~ {t} N 03(q))-
(b) (vp)[0.(p) < 02 (p)] with respect to A.

In particular 6,,(0*) < 62 (0™).

PROOF

()

(b)

Suppose that 02 (p) is the case and let ¢ € A; be a new element. w; is
a partition of A;_; so let sr(w; ®t) = {t1,...,tx} be the elements of
the simple refinement of w; augmented with t. We have to show that
there is ¢ such that ¢ < p —~ {t} and 62 (¢q). The proof is similar to
that of Claim 1 of theorem [8, 2.8], so we omit it.

Trivially (Vp)[0.(p) = 62 (p)], with respect to any A.

For the converse, suppose p is a simple pair such that 62 (p) holds. We
show by induction on n that 62 (p) = 6, (p).

Let n = 1, and let ¢ € A; be a new element. We have to show
that there is a ¢ < p —~ {t}. Let sr(w; ®t) = {t1,...,tx}, where
t; are either singletons or infinite sets contained in the atoms of w;.
By assumption p is k-simply augmented, so there are simple c.p.’s
q1,---,q, such that ¢ <p ~ {t1} and ¢; < q;—1 —~ {t;} for 2 < i < k.
Therefore ¢ < p —~ {t1,...,tr}, and hence ¢ < p —~ {t}. Therefore
02, (p) = 01(p).

Suppose now that the claim is true for n. Let ¢ a new element and
let again sr(w; ®t) = {t1,...,tx}. Then as in (a) above we can show
that there is a ¢ such that ¢ < p —~ {t} and 67 (g). By the induction
hypothesis, 6%(q) = 0,(q) is true. Therefore (Vt)(3g)(< p —~ {t} A
0.(q)). But that means that 6,,11(p) holds. So 62 (p) = 0,,41(p). This
completes the proof. O
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It follows from Proposition 8 (b) that with respect to saturated models of
TST¢, w-simple extendibility is no weaker than the full w-extendibility.

5. Augmentability
Let us return to the unfolded formulation (6) of 6,,:
0n(p) = (Vt1)(3q1)(Vt2)(3q2) - - - (Vtn)(Fqn)

n
{(h <p~{ti}bA /\qi < g1~ {ti}-
i=2

Since for every ¢, (3z)(Vy)op = (Vy)(3x)¢ is logically valid, the preceding
formula logically implies

(Vt1)(Vt2) - (Vo) (3q1) 3az2) - - (3gn)

n
@ <p~{ti} A /\ ¢ < gi-1 ™ {tz}]
i=2

(11)

Moreover, obviously
(Ga1)(Fg2) -+ Can)lar <p ~ {1} AN 66 < @i-1 ~ {ti}]
. (12)
Galg<p~{t,- . tn}]-
From (11) and (12) we get
(Vt1)(VEz) -+ (V) (F9)lg <p ~ {tr,... T }].

This formula is a natural weakening of 6,,(p). We denote it by x,(p), and
call the property it expresses n-augmentability. That is, we set for every
n =1,

Xn(p) i= (V0)(VE2) - (VEin) B)lg < p ~{t1, - ta}],  (13)
and
X (P) = \ X (p)-
It follows from (6), (11) and (12) that for all n > 2

0n(p) = xn(p), (14)

while
01(p) < x1(p)- (15)



126 A. TZOUVARAS

Definition 13. Let p = (p1,p2) be a c.p. over A. We call p n-augmentable
if x,(p) holds.

p is w-augmentable if it is n-augmentable for all n > 1.

Xn(p) expresses also an extendibility property of p but of a different kind:
It says that any n new elements can be adjoined to p to give an extension
q < p, but with no claim as to the extendibility capabilities of g. (Observe
how much lower is the logical complexity of x, compared to that of 6,.)

Lemma 9. If for each n there is A, = TST containing an n-augmentable
pair, then there is a B |= TST containing an w-augmentable pair.

PROOF. — The proof is again similar to that of 1 in [8], for showing
the existence of w-extendible pairs. Namely, we consider the theory T =
TST 4+ {xn(b) : n € N}, where ¢ is a new constant. Then the result follows
by compactness. See [8, Th. 2.8] for details. O

Since the elements ti,...,¢, of formula (13) above can be distributed
arbitrarily among A;, As, As, so that ny of them belong to Ay, no to As
and ng to As, where ny + no + n3 = n, instead of “n-augmentable” we
shall use the more suggestive term “(nq, ng, n3) -augmentable”. Moreover,
instead of arbitrary subsets w; C Aj, wo C Ag, wy C Az with |w;| = n;,
1 =1,2,3, we can take w; to be partitions of the corresponding underlying
sets. And, finally, we can take w; to be just simple partitions.

Definition 14. Let A be a model of TSTy, p be a simple pair over A and
ni,n2,n3 € N. p is said to be (ny,ng, ng)-simply augmentable if for
any simple partitions w; C Ay, wy C Az, wy C Az with |w;| = ny,
there is a simple pair ¢ over A such that ¢ < p —~ w; U wy U ws.

p is said to be w-simply augmentable if it is (nq, ng, ng)-simply aug-
mentable for all ny,ny,ng > 1.

Let

anhm’ns)(p) := “pis (n1,n2,n3)-simply augmentable”,

and

@ = N Xy @)

ni,n2,n3=1

Let us write (nq,ne,n3) < (I1,12,13) if n; < I; for each i = 1,2, 3.
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Lemma 10. For any p, (n1,n2,n3), (I1,12,13),

(n1,m2,n3) < (I, 012,13) A X(y 12,05 (P) = X(nyonaing)(P). (16)

PROOF. — Indeed, given p and (ny,n9,n3) < (I1,12,13) s.t. X?lhlz,l:s)(p)’
let w; C A; be simple partitions such that |w;| = n;. Since each w; contains
at least an infinite set, and n; < I;, we can refine w; to a simple partition
wj such that |w}| = l;. This is done either by adding new singletons
that we subtract from an infinite set, or by splitting an infinite set into
two infinite subsets (here we need the property of richness for A). Now
each w}, i = 1,2,3, forms a simple partition with |wi| = I; > n;, so
by X{1, 1,15 (P); there is a c.p. ¢ < p ~ B(w}) U B(ws) U B(ws). Since
B(w}) 2 B(w;), we have ¢ < p ~ B(w;) U B(wz) U B(ws), and we are
done. O

Lemma 11. If for every (ny,no,ng) there is A and p over A such that
X{(ny 2 ns)(p), then there is B and q over B such that x¢(q).

PROOF (Sketch, details in [8, 2.8]). — By compactness again. Consider
the theory
T =TST* + {X?711,n2,n3)(b) tny, N2, N3 > 1}7

where b is a new constant. To show that T is finitely satisfiable, take a
finite subset ¥ = {x{}, ;, m(¢) :i=1,...,n} of T Let k = max{k; : i =
1,...,nh l=max{l; : i =1,...,n}, m = max{m; : ¢ = 1,...,n}. By
assumption there are A and p such that X (. m) (p) holds with respect to A.
Also (k;, l;,m;) < (k,l,m) foralli =1,...,n. So by (16), all kai 1, mi)(p),
1 = 1,...,n, hold with respect to A. Equivalently, T = TST® + X is
satisfied in an expansion (A, C) of A. O

Lemma 12. For every simple c.p. p, x.(p) < x5 (p) with respect to any
model A of TST. In particular x,, (o) < x2 (0*).

Proor. — Trivially, x.(p) = x5 (p). For the converse, suppose p is a
simple pair and x5 (p) holds with respect to A. Let w; C A;, i = 1,2,3,
be any finite partitions. It suffices to show that there is a ¢ < p ~ J,; w;.
Note that ¢ <p —~ |, w; iff ¢ <p —~ U, B(w;). Let w] = sr(w;). By x&,(p)
there is a ¢ such that ¢ < p —~ J; B(w}), and hence ¢ < p —~ |, B(w;).
This shows that X (n, n,.ng)(p) for all (n1,n2,n3). Therefore x.,(p). O
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It follows from Lemma 12 that in order to prove the existence of w-
augmentable pairs, it suffices to restrict the search to n-simply augmentable
pairs for each n.

Despite the above reductions, the general problem of (nj,ng,ng)-simple
augmentability for o is still very hard to tackle. Tractable cases of this
seem to be the special subcases of (n,0,0)-, (0,n,0)- and (0,0, n)-simple
augmentability.

5.1. (n,0,0)-and (0,n,0)- simple augmentability

We always refer to an underlying model A = (Ag, A1, Ag, A3) of TST over
which coherent pairs and triples are considered. A triple of partitions
(w1, wa,w3), w; C A;, is said to be similar if wy ~wy ~ws. The size of a
triple (w1, we, ws) is n, if |wi| = |ws| = |ws| = n.

Given a simple partition w, let inf(w) and sin(w) denote the sets of infinite
sets and of singletons of w, respectively. A partition w such that | inf(w)| =
m and |sin(w)| =1 is called an (m,1)-partition. (m,1) is called the index
of w and we write Ind(w) = (m,!). In that case m + [ = n is the size of
w. Clearly, if wy ~ wq ~ws, then all w; are of the same index and size.

Lemma 13. Let A be a rich model and let w1, ws be simple partitions of
Ay, Ay respectively such that py : wy ~ws. Then there is partition ws
of As such that Co(wy, wa, ws).

PROOF. — Since wy ~ws, Ind(w1) = Ind(we) = (m,l). Let inf(w;) =
(T1,.. ., Tm), sin(wy) = (a1, .- Tn), inf(we) = (Y1,- -, Ym), sin(ws) =
(Ym+t1y---5Yn) such that py(z;) = y; for all ¢ = 1,...,n. p; extends to
the sets X € B(w;) as we have seen in section 2. We have to find a
partition wg = (21,...,2,) of Aa, such that z,...,z, are infinite while
Zm+1s- -+, 2n are singletons, and for all X € B(w;), and all 1 <i < n,

X e Y; <:>p1(X) € z;.

We first define z; for m+1 < i < k. Take such an 4. If thereisa X € B(wy)
such that X € y;, then clearly y; = {X}, so let us put z; = {p1(X)}. If on
the contrary y; N B(wy) = &, then we choose an arbitrary singleton z; such
that z; N B(wy) = @. This way we have defined z;, for all m +1 <i < n.

Next we define the infinite sets z;, for 1 < i < m. Let

K:AQ—U{zi:m—i—lgign}.



COMBINATORICS 129

For each i = 1,...,m, let E; = y; N B(w;), and let D; = {p1(X) : X €
y; N B(wy)}. Each D; is a finite subset of the infinite set K. Using the
richness of A we can find a partition of K into m infinite subsets 21, ...z,
such that D; C z;. This completes the definition of z;. Their choice clearly
guarantees the truth of the equivalences X € y; < p1(X) € z;. Thus ws
is as required. O

Corollary 14. Let A be a rich model.

(a) For every simple partition wy, there are ws, ws such that
Co(wy, wa, ws).

(b) For every simple partition ws, there are wy, ws such that
Co(wq, wa, ws).

PRroOF

(a) Given wy, pick an arbitrary ws such that wy ~ws. Then use Lemma 13
to find ws such that Co(wy,ws, ws).

(b) Given ws, pick an arbitrary w; such that w; ~ws. Then use again
Lemma 13 to find ws such that Co(wy,ws,ws). O

The above immediately implies the following.

Corollary 15. Let A be rich. Then for all n, X{n,0,0) (o) and X?o.n,o)(oA)
hold true with respect to A. '

Note that Corollary 14 is a strengthening of A;- and As-extendibility of
Theorem 4 (Theorem 3.6. of [§]).

It is of some interest to observe that, in contrast to Lemma 13, we have
the following impossibility result:

Lemma 16. Let A be a rich model. Then:

(a) There are partitions we, ws and ps : wa ~ w3 such that Co(wy, wa, w3)
for no partition wy .

(b) There are partitions wy, w3 such that Co(w;,ws,ws) for no par-
tition wo.
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PRrooOF

(a) We shall use the simplest kind of partitions, namely binary ones. Pick
an infinite and coinfinite set yo € A which is “consistent”, that is,
(Vz)(z € yo = —x ¢ yo), and consider the partition wa = (yo, —Yo)-
Next take an infinite and coinfinite zg such that {yo, —yo} C z0, and
let p2(yo) = 20 and po(—yo) = —2z¢. Clearly ps : wy ~ws. We claim
that there is no wj such that Co(w;,ws,ws). Suppose not and let
Co(wy, we,w3) for some w; = (x, —x) and p1(z) = yo, p1(—x) = —Yo.
Then we must have © € yg & yo € 20 and —x € yg & —Yo € 20-
Since {yo, —yo} C z0, we must have {x, —x} C yo, which contradicts
the consistency of yy.

(b) We again use binary partitions. Pick an infinite and coinfinite xg
and set wy = (wg, —xp). Next set zo = {y € Az : 29 ¢ y}. Since
zop is definable, it belongs to As and is infinite and coinfinite. Put
w3 = (20, —20). We claim that there is no ws = (y,—y) such that
Co(w1, ws,ws3) under the obvious correspondences. Suppose not and
let we = (y,—y) be one such. Then it should be g € y < y € 2.
But y € 20 & x0 ¢ v, and hence g € y & x¢ ¢ y, a contradiction. O

Since in Lemma 16 we use binary partitions, we think of this as an in-
dication that the proof of As-extendibility of o in Lemma 3.5 of [8],
specifically case 3 of the proof, cannot be simplified significantly. Yet we
guess that As-extendibility can be strengthened to hold for an arbitrary
number of elements instead of a single one. Equivalently, we guess that
(0,0, 2)-augmentability can be strengthened to (0,0, n)-one, for all n > 2.
For the time being this is still open. In the next section we offer a partial
result and some discussion concerning this problem.

5.2. Remarks on (0, 0, n)-augmentability

Recall that in order to prove l-extendibility of o, one has to consider
an arbitrary © € A; (resp. y € As, and z € A3z) and try to find corre-
sponding elements y, z (resp. x,z, and z,y) so that the triple of binary
partitions (x, —x), (y,—vy), (2, —z) is coherent. But this obviously coin-
cides with proving (2,0, 0)-augmentability (resp. (0,2,0)- and (0,0,2)-
augmentability. Therefore (2,0,0)-, (0,2,0)- and (0,0, 2)-augmentability
have already been settled by Lemma 3.6 of [8], where the above properties
are called Ai-, As- and Asz-extendibility, respectively. Thus, in view of
Corollary 15 above, the only open and seemingly tractable problem of this
type is (0,0, n)-simple augmentability for n > 3. As was the case with
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As-extendibility compared with A;- and As-extendibility, this problem is
expected to be much harder than (n,0,0)- and (0,n,0)-augmentability,
settled in the previous section. °

Obviously the question of (0,0, n)-simple-augmentability of o, for n > 3,
amounts to the following:

Question 1. Let A be a sufficiently rich A (e.g. A is isomorphic to an
elementary submodel of a full model). Let ws be any simple partition
of Ay with |ws| > 3. Do there exist similar simple partitions wy, and
wg of Ay, Ay respectively such that Co(wy,ws,ws3)?

Below we offer some remarks with respect to this question. We work over
a fixed sufficiently rich model A of TSTy. Let us fix a simple enumerated
partition w3 = (z1, ..., 2,) of Ay with |wz| =n > 3 and Ind(ws) = (m,n—
m). In this enumeration we assume that the first m sets 21, ..., 2z, are the
infinite ones while the next n—m elements z,,, 11, ..., z, are the singletons.
We want to show that there exist enumerated partitions wy = (21, ..., 2Zy),
wy = (Y1,--.,Yn), With corresponding elements x; — y; — z;, such that
Co(wy, wa, w3). ©

Recall from section 2, that given an enumerated partition wy = (21, ..., zy),
we denote by X the set | J{x; : ¢ € I}, and similarly for Y, Z;. Now if w;
varies, to avoid ambiguity, we should write ;' and X' rather than z;
and X7, respectively. (z;"* of course means “the i-set of the sequence w;”.)
In view of the relation (2) of Definition 4 (page 114), the fact that there
exists wy, wg such that Co(wy, we,ws3) has the following formulation:

(Fw1) (Bws) (wy ~wa ~ws

AV C [n)(Vi € )X € g o v e ). )

We have fixed only the following partial result.

5. In general, the construction “from left to right” is the easy one, while the construction
“from right to left” is the hard one. The reason of this asymmetry is simply the strong
asymmetry of the relation « € y: In every reasonably rich structure (like a rich model
of TST, given z, one can find y such that £ € y possessing almost any prescribed
properties, e.g. with y being finite, or cofinite, or infinite and coinfinite. In contrast,
given y, the prescribed choices for « such that x € y are drastically restricted by the
very extension of y. If e.g. y is a set of singletons or a set of cofinite sets, obviously no
other choice is possible.

6. Note that it suffices to prove the statement not for each particular n, but for every
sufficiently large n, i.e., for ws with |ws| > ng, where ng is any given number. For if
that was the case for such ws, that would hold also for wg with all smaller cardinalities.
Indeed, given w4 such that |w}| < ng, just extend arbitrarily w} to a finer partition w3
such that |w3| > no, |wj|. Then any coherent pair that captures ws, captures also wj.
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Lemma 17. Suppose Ind(ws) = (1,n — 1), i.e., the partition w3 contains
a unique infinite set, the rest being singletons. Then (17) is true, and
hence Question 1 above is answered in the affirmative.

PROOF. — We argue by contradiction. Let the negation of (17)

(le)(VwQ)(wl ~ W9 ~ W3
= (AT C )@ € X} €y & V™ ¢ 27)).

7

(18)

be true. Let zg be the unique infinite set of ws. Then zg is cofinite. Fix a
partition wy of Ag such that w; ~ w3 whose unique infinite set is zg and
let

YV =Aws : wy~ws A Vy(inf(ws) = {y} = B(w1) Cy)}.

Since B(wy) is finite, clearly Y is infinite. By (18),
(Vwp € V)3T C ) FO[XT" € 4 & Y™ & 7]

But for every wo € ), if yq is the element corresponding to zy and z,
B(wy) C yo. Therefore (18) implies

(Vwz € Y)Y & 20)-

Equivalently,
(Vwe € Y)(FY € B(w2))(Y ¢ z0),

or

(ng S y)(B(U}g) N —zp 7'5 @)

The latter easily implies that —zp must be infinite, which is a contradiction
since —zg is finite. O

Towards proving in the affirmative the general statement of Question 1,
we have tried to generalize the method used in the proof of (0,0,2)-
augmentability of o#, in Lemma 3.5 of [8]. The nontrivial case of the
proof was the one where Ind(w3) = (2,0), i.e., w3 was a binary partition
(z,—2), consisting of two infinite sets. The proof was by contradiction
again. Namely we assumed that (18) is true for all wy = (z, —z) and all
wg = (y, —y). But then (18) should hold also for the permutations of the
partitions wy, we, that is, the partitions (—x, ) (—y,y). The exploitation
of this fact led eventually to a contradiction (actually considering only the
permutations of w; suffices).

Does this idea work in the case of an arbitrary simple partition ws, with
|ws| > 37 For simplicity one may consider the case where Ind(ws) = (n,0)
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(n infinite sets, no singletons). © Even so, the situation is extremely com-
plicated. The main obstacle in transferring the above roughly sketched
proof of (0,0, 2)-augmentability to the case of (0,0, n)-augmentability for
n > 3, is the tremendous increase of complexity produced by the re-
lation (18) even for the case n = 3. Namely, given a (n,0)-partition
ws = (21,...,2,), we fix temporarily (n,0)-partitions w; = (z1,...,2,)
and we = (y1,...,yn) that are supposed to satisfy (18). Let m, o de-
note permutations of wi, ws, or equivalently 7,0 € S,,, since we just set
7(2;) = Tr(;) and similarly for y;. Let also

m(wy) = (m(x1), ..., 7(2n)) = (Tr@)s - Trn)),

and similarly for m(ws2). Then (18) yields: For all wq,ws such that
Wy ~ Wy ~ W3

(97,0 € S,)AI C [n))(Fi € ) [X]™ € 47 e v7 ) ¢ 2. (19)
(19) is a combinatorial statement involving three types of entities:

» eclements of the set [n], having cardinality n,

» elements of the set P([n]) (or, actually, of P*([n]) = P([n]) —{2, [n]}),
having cardinality 2", and

» elements of the set S,,, having cardinality n!.

For n = 2, we have |[2]| = |P*(]2])] = |S2| = 2. In that case (especially if
we take o = id) (19) reduces to a Boolean combination of no more than
8 concrete equivalences of the form X}T(wl) € yf(w) & YIJ(W) ¢ 2. As
a consequence these formulas can be controlled and manipulated so that
eventually a contradiction can emerge. But if we make a step ahead and
take n = 3, we have [[3]] = 3, |P*([3])] = 6 and |S3| = 6. In such a
case (19) reduces to a conjunction of |S3 x S3| = 36 clauses each of which
consists of a disjunction of |P*([3]) x [3]] = 18 concrete equivalences of
the form X}T(wl) € yf(W) & Ylg(wz) ¢ z"*. If we attempt to turn this
formula into a disjunction of conjunctions in order to exploit all chances
for reaching a contradiction, we shall face the monstrous number of 1836
disjuncts! (All the previous discussion concerns a fixed particular pair of
partitions wi,wy.) That makes any attempt to reduce (19) to a set of
specific consequences, unattainable and infeasible. Perhaps an approach
through the structural consequences of (19) could prove successful.

7. We may reasonably assume that if this case is settled, then the general case of index
(m, 1) can also be settled by easy adjustments.
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6. Extendibility with no reference to TST

The discussion of the extendibility and augmentability properties of c.p.’s
always takes place in ZFC but relatively to models of TST. In order to
focus on the combinatorial character of these issues alone one can relax
the role of particular models of TST by restricting oneself to the most
natural and common of these, namely the full models

(Ao, P(Ao), P*(Ag), P*(Ap))

of TST,, which are just sequences of consecutive powersets. Given an
infinite set A (preferably countable for simplicity) let A; = P(Ap), Az =
P(A;) and A3 = P(Az). We call such a sequence (Ag, A1, Az, A3), a

4-staircase.

In order to be able to talk about similarity of partitions in the sets
Ay, As, A3, we consider all infinite cardinalities as identical, denoted oo.
We denote this reduced cardinality of a set X by || X|| and write | X|| =
|X| =n if X is finite with n elements, and || X || = oo if X is infinite.

Replacing the ordinary notion of equipollence of sets | X| = |Y'| by reduced
equipollence || X|| = ||Y]|, coherent pairs can be formulated for any stair-
case A = (Ao, A1, A, A3). A pair of functions p = (p1,p2) is a coherent
pair if the definition given above for coherence holds for p with the relation
[|IX]| = ||Y]] in place of | X| = |Y|. Namely

Definition 15. Let A;, A, be infinite sets and w1, w9 be finite partitions
of Ay, A respectively. We say that wy and wq are similar and write
wy ~wa, if there is a bijection p : w3 — wq such that ||p(x)| = ||=||
for every x € wi. In that case we write p : wi ~wsy. If By, By are
finite Boolean algebras, then B ~ By if Atom(Bj) ~ Atom(Bs).

Definition 16. Let A = (Ao, A1, Az, A3) be a 4-staircase. A coherent pair
over A is a pair p = (p1,p2) of finite 1-1 mappings with the following
properties:

(a) dom(py) is a finite Boolean subalgebra of A;, rng(p;) = dom(ps)
is a finite Boolean subalgebra of As, and rng(ps2) is a finite Boolean
subalgebra of A3. We set u; = dom(py), us = rng(p1) = dom(pz)
and uz = rng(pa).

(b) p1 : u1 ~ug and ps : ug ~ug.
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(¢) p1,p2 are €-isomorphisms: For every z € u; and y € ug,

x €y < pi(x) € pa(y).

We believe that the study of extendibility properties of coherent pairs
might constitute a serious research project towards the solution of NF
consistency. But independently of that, extendibility questions are genuine
combinatorial problems interesting in themselves. Of course dealing with
staircases instead of general models of TST is a restriction rather than a
generalization concerning the results one may obtain (in the sense that if
some ¢ holds with respect to all staircases, it doesn’t follow that it holds
for all models of TST). However, people working or just being interested
in ordinary set theoretic combinatorics (e.g. partition calculus) can get
interested in problems concerning coherent pairs more easily through the
framework of staircases rather than through TST models. The purpose
of using the term “4-staircase” instead of “full model of TST,” is simply
to disconnect the issue from the milieu of TST, its language, models etc,
that might bother a combinatoricist.
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