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Introduction

One of the major applications of remote sensing in
environmental resources management and decision making is
the detection and quantitative assessment of green vegetation.
In this sense, vegetation analyses and detection of changes in
vegetation patterns and structure are keys to natural resources
assessment and monitoring.

Healthy canopies of green vegetation have a very distinct
interaction with certain portions of the electromagnetic
spectrum. In the visible regions, chlorophyll causes strong
absorption of energy, primarily for use in photosynthesis. This
absorption peaks in the red and blue areas of the visible
spectrum, while the green area is reflected by chlorophyll, thus
leading to the characteristic green appearance of most leaves.
At the same time, the near-infrared region of the spectrum is

strongly reflected through the internal structure of the leaves.
It is this strong contrast, particularly between the reflected
energy in the red and near-infrared regions of the
electromagnetic spectrum that has been the focus of a large
variety of attempts to develop quantitative indices of vegetation
condition using remotely sensed imagery.

The proposed vegetation indices (VI) are applicable to both
low and high spatial resolution multispectral satellite sensors,
such as NOAA AVHRR, Terra MODIS, Landsat TM and
MSS, SPOT HRV/XS, and all the others that acquire data in
the visible and near-infrared regions. They have been used in a
variety of contexts to assess green biomass and have also been
used as a proxy to overall environmental change, especially in
the context of drought and land degradation risk assessment
(Kogan, 1990; Tripathy et al., 1996; Liu and Kogan, 1996).
Consequently, special interest has been focused on the
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Abstract

During the last 30 years Vegetation Indices (VI) have been extensively used for tracing and monitoring vegetation
conditions, such as health, growth levels, production, water and nutrients stress, etc. In this paper the characteristics of
over 20 VIs based on the VNIR spectrum are described in order to provide the reader with adequate material to form a
picture of their nature and purpose. It is not, though, a review article due to the fact that a huge volume of work exists all
over the world and a simple lining up of the related papers would not contribute to an understanding of the usefulness of
VIs. A limited number of review work is included, together with research results from various operational and research
applications of VI for wheat damage assessment in Northern Greece.
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assessment of green biomass in arid environments where soil
background becomes a significant component of the signal
detected.

A wide review of VIs can be found in several textbooks
(Bastiaanssen, 1998; Jensen, 2000; Jensen, 2005). The aim of
this paper, however, is not to evaluate the extensive amount of
work carried out on VIs, but rather to provide the reader with a
clear understanding of their nature and usefulness. With this in
mind, a description is provided of the characteristics of over 20
VIs used on the VNIR spectrum. A limited amount of review
work, together with the research results of various operational
and research applications using VIs have been included in this
paper.

Classification of Vegetation Indices

Jackson and Huete (1991) classify VIs into two groups: (1)
slope-based and (2) distance-based VIs. To appreciate this
distinction, it is necessary to consider the position of vegetation
pixels in a two-dimensional graph (or bi-spectral plot) of red
versus infrared reflectance (Figure 1). The slope-based VIs are
simple arithmetic combinations that focus on the contrast
between the spectral response patterns of vegetation in the red
and near-infrared portions of the electromagnetic spectrum. In
contrast to the slope-based group, the distance-based group
measures the degree of vegetation present by gauging the
difference of any pixel’s reflectance from the reflectance of
bare soil. A key concept here is that a plot of the positions of
bare soil pixels of varying moisture levels in the bi-spectral plot
will tend to form a line (known as a soil line). As vegetation
canopy cover increases, this soil background will become
progressively obscured, with vegetated pixels showing a
tendency towards increasing perpendicular distance from this
soil line. All of the members of this group (such as the
Perpendicular Vegetation Index-PVI) thus require that the slope
and intercept of the soil line be defined for the image under
consideration.

To these two groups of vegetation indices, a third group can
be added, namely orthogonal transformation VIs. Orthogonal
indices undertake a transformation of the available spectral
bands to form a new set of uncorrelated bands within which a
green vegetation index band can be defined. The Tasseled Cap
transformation is perhaps the most well-known of this group.

The Slope-Based VIs

Slope-based VIs are combinations of the visible red and the
near infrared bands and are widely used to generate vegetation
indices. Their values indicate both the state and abundance of
green vegetation cover and biomass. The slope-based VIs include
the RATIO, NDVI, SAVI, RVI, NRVI, TVI, CTVI, TTVI, and
EVI (Table 1).

The Ratio Vegetation Index (RATIO) was originally
described by Birth and McVey (1968). It is calculated by
simply dividing the reflectance values of the near infrared band
by those of the red band. The result clearly captures the contrast
between the red and infrared bands for vegetated pixels, with
high index values being produced by combinations of low red
(because of absorption by chlorophyll) and high infrared (as a
result of leaf structure) reflectance. In addition, because the

index is constructed as a ratio, problems of variable
illumination as a result of topography are minimized. However,
the index is susceptible to division by zero errors and the
resulting measurement scale is not linear. A study regarding
its efficiency has been published by Vaiopoulos et al. (2004).

The Normalized Difference Vegetation Index (NDVI)
was introduced by Rouse et al. (1974) in order to produce a
spectral VI that separates green vegetation from its background
soil brightness using Landsat MSS digital data. It is expressed
as the difference between the near infrared and red bands
normalized by the sum of those bands. It is the most commonly
used VI as it retains the ability to minimize topographic
effects while producing a linear measurement scale. In
addition, division by zero errors are significantly reduced.
Furthermore, the measurement scale has the desirable property
of ranging from -1 to 1, with 0 representing the approximate
value of no vegetation, and negative values non-vegetated
surfaces.

The Soil-Adjusted Vegetation Index (SAVI) was
proposed by Huete (1988). It is intended to minimize the
effects of soil background on the vegetation signal by
incorporating a constant soil adjustment factor L into the
denominator of the NDVI equation. L varies with the
reflectance characteristics of the soil (e.g., colour and
brightness). The author provides a graph from which the
values of L can be extracted. The L factor chosen depends on
the density of the vegetation one wishes to analyse. In cases
of very low vegetation, the use of an L factor of 1.0 is
suggested, for intermediate 0.5, and for high densities 0.25.
Eastman (2003) suggests that the best L value to select is
where the difference between SAVI values for dark and light

Figure 1 Bi-spectral plot in the near-infrared and red domain of all pixels
in a scene. All pixels are found in the grey shaded area. Bare
soil fields are located along the soil line. The greater the
biomass and/or canopy cover, the greater the near-infrared
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soil is minimal. For L = 0, SAVI equals NDVI. For L = 1,
SAVI approximates PVI.

The Transformed Vegetation Index (TVI) (Deering et
al., 1975) modifies NDVI by adding a constant of 0.5 to all its
values and taking the square root of the results. The constant 0.
5 is introduced in order to avoid operating with negative NDVI
values. The calculation of the square root is intended to correct
NDVI values that approximate the Poisson distribution and
introduce a normal distribution. Moreover, there is no technical
difference between NDVI and TVI in terms of image output or
active vegetation detection.

The Corrected Transformed Vegetation Index (CTVI)
was proposed by Perry and Lautenschlager (1984) to correct
the TVI. Clearly adding a constant of 0.5 to all NDVI values
does not always eliminate the negative values in the square
root, as NDVI can be as low as -1. Thus, the CTVI is intended
to resolve this situation by dividing the term [NDVI + 0.5] by
its absolute value [ABS(NDVI + 0.5)] and multiplying the
result by the square root of the absolute value [SQRT(ABS
(NDVI + 0.5))]. This suppresses the negative NDVI. Given
that the correction is applied in a uniform manner, the output
image using CTVI should have no difference with the initial
NDVI image or the TVI whenever TVI properly carries out the
square root operation. The correction is intended to eliminate
negative values and generate a VI image that is similar to, if
not better than, the NDVI.

However, Thiam (1997) indicates that the resulting image
of the CTVI can be very “noisy” due to an overestimation of
the greenness. He suggests ignoring the first term of the CTVI
equation in order to obtain better results. This is done by
simply taking the square root of the absolute values of the
NDVI in the original TVI expression to have a new VI called
Thiam’s Transformed Vegetation Index (TTVI).

The simple Ratio Vegetation Index (RVI) was suggested
by Richardson and Wiegand (1977) as graphically having the
same strengths and weaknesses as the TVI (see above), while

computationally being more simple. RVI is clearly the inverse
of the standard Ratio Vegetation Index (RATIO).

The Normalized Ratio Vegetation Index (NRVI) is a
modification of the RVI by Baret and Guyot (1991) whereby
the result of [RVI - 1] is normalized over [RVI + 1]. This
normalization is similar in effect to that of the NDVI, i.e., it
reduces topographic, illumination and atmospheric effects and
creates a statistically desirable normal distribution.

The Enhanced Vegetation Index (EVI) was developed
by the MODIS Land Discipline Group for use with MODIS
data. It is a modified NDVI with a soil adjustment factor L and
two coefficients C1 and C2, which describe the use of the blue
band in correction of the red band for atmospheric aerosol
scattering. This VI has improved sensitivity to high biomass
regions and reduced atmospheric influence (Huete et al., 1999).

The Distance-Based VIs

This group of vegetation indices is derived from the
Perpendicular Vegetation Index (PVI) discussed in detail below.
The main objective of these VIs is to cancel the effect of soil
brightness in cases where vegetation is sparse and pixels
contain a mixture of green vegetation and soil background.
This is particularly important in arid and semi-arid
environments.

The procedure is based on the soil line concept as outlined
earlier. The soil line represents a description of the typical
signatures of soils in a red/near-infrared bi-spectral plot (Figure
1). It is obtained through linear regression of the near-infrared
band against the red band for a sample of bare soil pixels.
Pixels falling near the soil line are assumed to be soil, while
those far away are assumed to be vegetation. Distance-based
VIs (Table 2) using the soil line require the slope (b) and
intercept (a) of the line as inputs to the calculation.

Unfortunately, there has been a remarkable inconsistency
in the logic with which this soil line has been developed for

Table 1 Slope-based Vegetation Indices

SLOPE BASED VEGETATION INDICES

NIRRATIO =—
R

NIR-RNDVI = ––––
NIR + R

NIR-RSAVI = ––––– (1+L)
(NIR + R)

(NIR-R)TVI =  –––– + 0.5
NIR + R

NDVI + 0.5CTVI = ––––––––– × ABS (NDVI + 0.5)
ABS (NDVI + 0.5)

TTVI =  ABS (NDVI + 0.5)

RRVI =—
NIR

RVI -1NRVI = –––
RVI +1

NIR - REVI = G –––––––––   (1+L)
NIR + C1R - C2B+L

Explanation of symbols

NIR = near infrared,
R = red,
B = blue,
L = Soil
adjustment factor, C1 and C2 are
constants, G is a gain factor

Author

Birth and McVey (1968)

Rouse et al. (1974)

Huete (1988)

Deering et al. (1975)

Perry and Lautenschlager (1984)

Thiam (1997)

Richardson and Wiegand (1977)

Baret and Guyot (1991)

Huete et al. (1999)
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specific VIs. One group requires the red band be the independent
variable and the other requires the near-infrared band be the
independent variable for the regression.

The Perpendicular Vegetation Index (PVI) suggested by
Richardson and Wiegand (1977) is the parent index from
which this entire group is derived. The PVI uses the
perpendicular distance from each pixel coordinate to the soil
line (Figure 1). Attempts to improve the performance of the
PVI have yielded three other indices suggested by Perry and
Lautenschlager (1984), Bannari et al., (1996), and Qi et al.
(1994).

PVI1 was developed by Perry and Lautenschlager (1984)

who argued that the original PVI equation is computationally
intensive and does not discriminate between pixels that fall to
the right or left side of the soil line (i.e., water from vegetation).
Given the spectral response pattern of vegetation in which the
infrared reflectance is higher than the red reflectance, all
vegetation pixels will fall to the right of the soil line.

PVI2 Bannari et al., (1996) weights the red band with the
intercept of the soil line, similar to PVI3, presented by Qi et al.
(1994).

The Difference Vegetation Index (DVI) is also suggested
by Richardson and Wiegand (1977) as an easier vegetation
index calculation algorithm. The particularity of the DVI is

Table 2 Distance-based Vegetation Indices

SLOPE BASED VEGETATION INDICES

PVI =  (Rgg5 - Rp5)2 + (Rgg7 - Rp7)3

(bNIR-R) + aPVI1 =  –––––––
b2 + 1

(NIR-a) * (R + b)PVI2 =  –––––––––
1 + a2

PVI3 = apNIR - bpR

DVI = gMSS7 - MSS5

AVI = 2.0 MSS7 - MSS5

a(NIR - a) (R - b)TSAVI1 =  ––––––––––
R + a* NIR - a*b

a(NIR - aR - b)TSAVI2 =  –––––––––––––––
R + aNIR - ab + 0.08 (1+ a2)

NIR - RMSAVI1 =  ––––––– (1 + L)
NIR + R + L

2pNIR + 1- (2pNIR + 1)2 - 8(pNIR - pR)MSAVI2 =  ––––––––––––––––––––––––––––
2

WDVI = pNIR -γpR

Explanation of symbols and author

Where Rp is the reflectance at a vegetation spot for
Landsat bands MSS5 and MSS7, and Rgg is the
reflectance of soil background (Richardson and
Wiegand, 1977)

NIR = reflectance in the near infrared band
R = reflectance in the visible red band
a = intercept of the soil line
b = slope of the soil line (Perry and Lautenschlager,
1984)

Similar to PVI (Bannari et al., 1996)

pNIR  = reflectance in the near infrared band
pR = reflectance in the visible red band
a = intercept of the soil line
b = slope of the soil line (Qi et al., 1994)

g = the slope of the soil line
MSS7 = reflectance in the near infrared 2 band
MSS5 = reflectance in the visible red band
(Richardson and Wiegand, 1977)

Similar to DVI (Ashburn, 1978)

NIR = reflectance in the near infrared band
(expressed as reflectances)
R = reflectance in the visible red band (expressed
as reflectances)
a = slope of the soil line
b = intercept of the soil line (Baret et al., 1989)

Similar to TSAVI1 (Baret and Guyot, 1991)

NIR = reflectances in the near infrared band
R = reflectances in the visible red band
L = 1 -2 NDVI * WDVI (Qi et al., 1994)

pNIR = reflectance of the near infrared band
pR = reflectance of the red band
(Qi et al., 1994)

pNIR = reflectance of near infrared band
pR =  reflectance of visible red band
γ = slope of the soil line (Richardson and Wiegand,
1977; Clever, 1988)
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that it weights the near-infrared band by the slope of the soil
line. Similar to the PVI1, zero values of DVI indicate bare soil,
negative values indicate water, and positive values indicate
vegetation.

The Ashburn Vegetation Index (AVI) (Ashburn, 1978) is
presented as a measure of green growing vegetation. The
values in MSS7 are multiplied by 2 in order to scale the 6-bit
data values of this channel to match with the 8-bit values of
MSS5. This scaling factor would not apply if both bands were
either 7-bit or 8-bit; in this case, the equation is rewritten as a
simple subtraction.

The Transformed Soil-Adjusted Vegetation Index
(TSAVI-1) was defined by Baret et al. (1989) who argued that
the SAVI concept is exact only if the constants of the soil line
are a=1 and b=0. Because this is not generally the case, the
authors transformed SAVI. By taking into consideration the
PVI concept, a first modification of TSAVI, designated as
TSAVI-1, was proposed. With some resistance to high soil
moisture, TSAVI-1 was specifically designed for semi-arid
regions and does not perform well in areas with full vegetation
cover.

TSAVI was readjusted a second time by Baret and Guyot
(1991) with an additional correction factor of 0.08 to minimize
the effects of the background soil brightness. The new version
was named TSAVI-2.

The Modified Soil-Adjusted Vegetation Indices (MSAVI-
1 and MSAVI-2) suggested by Qi et al. (1994) are based on a
modification of the L factor of the SAVI. Both are intended to
better correct the soil background brightness in different
vegetation cover conditions. With MSAVI-1, L is selected as
an empirical function due to the fact that L decreases with a
decrease of vegetation cover, as is the case in semi-arid lands
(Qi, et al., 1994). In order to cancel or minimize the effect of
the soil brightness, L is set to be the product of NDVI and
WDVI (described below). Therefore, it displays the opposite
trends of NDVI and WDVI.

The second modified SAVI, MSAVI-2, uses an inductive L
factor to: (i) remove the soil “noise” that was not cancelled out
by the product of NDVI by WDVI, and (ii) correct values
greater than 1 that MSAVI-1 may have due to the low negative
value of [NDVI*WDVI]. Thus, its use is limited for high
vegetation density areas.

The Weighted Difference Vegetation Index (WDVI) has
been attributed to Richardson and Wiegand (1977) and Clevers
(1988). Although simple, WDVI is as efficient as most of the
slope-based VIs. The effect of weighting the red band with the
slope of the soil line is maximization of the vegetation signal
in the near-infrared band and minimization of the effect of soil
brightness.

The Orthogonal Transformations

The derivation of vegetation indices has also been
approached through orthogonal transformation techniques such
as the PCA, the GVI of the Kauth-Thomas Tasseled Cap
Transformation and the MGVI of the Wheeler-Misra orthogonal
transformation. The link between these three techniques is that
they all express green vegetation through the development of
their second component.

Principal Components Analysis (PCA) is an orthogonal

transformation of n-dimensional image data that produces a
new set of images (components) that are uncorrelated with one
another and ordered with respect to the amount of variation
(information) they represent from the original image set.

PCA is typically used to uncover the underlying
dimensionality of multivariate data by removing redundancy
(evident in inter-correlation of image pixel values), with specific
applications in GIS and image processing ranging from data
compression to time series analysis. In the context of remotely
sensed images, the first component typically represents albedo
(in which the soil background is represented), while the second
component most often represents variation in vegetative cover.
For example, the second component generally has positive
loadings on the near-infrared bands and negative loadings on
the visible bands. As a result, the green vegetation pattern is
highlighted in this component (Singh and Harrison, 1985;
Fung and LeDrew, 1988; Thiam, 1997).

The Green Vegetation Index (GVI) of the Tasseled Cap
is the second of the four new bands that Kauth and Thomas
(1976) extracted from raw MSS images. The GVI provides
global coefficients that are used to weight the original MSS
digital counts to generate the new transformed bands. The
expression of the green vegetation index band, GVI, is written
as follows for MSS or TM data:

GVI = [(-0.386 MSS4) + (-0.562 MSS5) + (0.600 MSS6) + (0.
491 MSS7)]

GVI = [(-0.2848 TM1) + (-0.2435 TM2) + (-0.5436 TM3) +
(0.7243 TM4) + (0.0840 TM5) + (-0.1800 TM7)]

The negative weights of the GVI on the visible bands tend
to minimize the effects of the background soil, while its
positive weights on the near infrared bands emphasize the
green vegetation signal.

Applications

Selected publications, which are evidence of the extensive
use of VIs in the last decades in various applications employing
a wide range of sensors and VIs, are explored in this section.

Payero et al. (2004) compared 11 vegetation indices in
order to estimate plant height and develop its quantitative
relationship with VIs. Among the VIs used were NDVI, IPVI
(Infrared Percentage Vegetation Index), TVI and RATIO.

Steven et al. (2003) used NDVI and SAVI from a range of
earth observation satellites currently in operation, such as
AVHRR, ATSR-2, Landsat MSS, TM and ETM+, SPOT-2
and SPOT-4 HRV, IRS, IKONOS, SeaWiFS, MISR, MODIS,
POLDER, QuickBird, and MERIS. Spectroradiometric
measurements were made over a range of crop canopy densities,
soil backgrounds and foliage colour. The reflected spectral
radiances were convoluted with the spectral response functions
of the satellite instruments to simulate their responses. The
results indicated that vegetation indices could be interconverted
to a precision of 1-2%.

Ferreira and Huete (2004) used MQUALS (light aircraft-
based Modland Quick Airborne Looks package, consisting of
a spectroradiometer and digital camera), MODIS, AVHRR
and Landsat ETM+ in order to investigate VI’s ability to
differentiate the physiognomies in the Brazilian Cerrado and
monitor their seasonal dynamics.
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Fensholt (2004) identified and validated net primary
production (NPP) model variables from the MODIS sensor,
focusing on the semi-arid ecosystem. Two MODIS VIs were
evaluated against the NOAA AVHRR NDVI to exploit the
improvement of the MODIS sensor quality and also to examine
the possibility of establishing an empirical relation in order to
reap the full benefit of 20 years’ availability of NOAA AVHRR
data.

Price et al. (2002) evaluated the use of raw Thematic
Mapper (TM) band combinations and several derived VIs to
determine optimal vegetation indices and band combinations
for discriminating among six grassland management practices
in eastern Kansas. Tasselled Cap Brightness Index, GVI,
Wetness Index, the first three components from Principle
Component Analysis (PCA1, 2, 3), NDVI, GR (Green Ratio)
and MR (MIR Ratio) were used as VIs.

Huete et al. (2002) performed an initial analysis of the
MODIS NDVI and EVI performances from both radiometric
and biophysical perspectives, using MODIS, airborne
radiometric measurements, Landsat ETM+ and in situ field
biophysical data collected over four validation test sites. The
results showed good correspondence between airborne-
measured, top-of-canopy reflectances and VI values with those
from the MODIS sensor at four intensively measured test sites.

Gilabert et al. (2002) introduced a generalized soil-adjusted
vegetation index (GESAVI), theoretically based on a simple
vegetation canopy model.

Peddle et al. (2001) compared ten vegetation indices for
estimating boreal forest biophysical information from airborne
data. The authors used Landsat-TM images to test the hypothesis
that Spectral Mixture Analysis (SMA) is able to derive the
percentage of sunlit crowns, background, and shadows within
a remote sensing image pixel. This sub pixel scale information
has been shown to consistently provide significantly improved
estimates of forest biophysical information such as biomass,
leaf area index (LAI) and NPP compared to that provided by
NDVI using airborne and satellite imagery. To accomplish the
work, ten different VIs were used to predict forest biophysical
parameters, the results of which were compared with those
obtained from SMA using airborne multispectral data from the
NASA COVER Project (Superior National Forest, Minnesota,
USA). In all cases, SMA shadow fraction provided significantly
better results than those of any VI, with improvements in the
order of 20% compared to the best VI result. In most cases, one
or more of the new vegetation indices provided a small to
moderate improvement compared to NDVI, with NDVI and
SAVI-1 performing best among the VIs, possibly due to the
inclusion of background reflectance.

Eklundhe et al. (2001) investigated the relationship between
Landsat ETM+ sensor data and leaf area index in a boreal
conifer forest. The authors used Landsat ETM+ and detailed
field data from a coniferous forest area, dominated by Norway
spruce and Scots pine. A forest canopy reflectance model was
used to simulate stand reflectances in the Landsat ETM+
wavelengths bands in order to investigate the theoretical
response to LAI changes. The analysis showed that the response
to changes in LAI was the strongest in the visible wavelength
bands, particularly in band 3, whereas only a weak response
was noted in the near-infrared band and for some vegetation
indices (RATIO and NDVI). Statistical relationships between

LAI and observed ETM+ reflectances were strongest in band
7.

Based on these examples, it is clear that remote sensing has
presented a significant opportunity to study and monitor
vegetation and vegetation dynamics. The application of various
VIs in a test site located in Northern Greece is shown in Figure
2. Visual interpretation of the VI images can reveal differences
in their performances.

Silleos et al. (2002) carried out the first operational work to
assessing crop damage using space remote sensing techniques
(Figure 3). A linear regression model was used to compare
remote sensing estimations with field observations. The results
of the model application for all the studied fields showed an
agreement in 60% of cases, with a deviation of about 10%.

In Figure 4, the orthogonal VIs, namely the Tasseled Cap,
Principal Components Analysis, and the decorrelation stretch
of the original bands, were produced in order to extract new
bands. In all these orthogonal transformations, a green band
that was free of soil background effects was produced. This
was due to the fact that almost all soil characteristics were
ascribed to a brightness band. The results are displayed in a
perspective view in order to facilitate visual interpretation.

An important issue to be considered when using VIs is the
pre-processing of the images. Radiometric calibration is usually
a standard procedure performed by the image distribution
companies. Atmospheric correction is essential when
biophysical parameters (e.g. biomass, LAI, percent vegetation
cover) are extracted from the VIs as final products. Erroneous
VI estimations could result in misleading information, often
with severe consequences (Jensen, 2005). Also, atmospheric
correction is needed when VIs are to be compared with
measurements obtained at different times, such as for multi-
temporal change detection (Lu et al., 2004). On the other hand,
the demanding and complex algorithms used for atmospheric
correction can be avoided in case of single date dataset (Song
et al., 2001).

Figure 2 The following indices were estimated in a group of large fields in
a test site in Northern Greece: NDVI (A), RVI (band 4/band3)
(B), SQRT(IR/R) (C), VI (band4 - band 3) (D), TNDVI (Sqrt
NDVI + 0.5) (E), and Iron Oxide (band3/band 1) (F). Bare land,
corn and cotton were the main land cover types.



D
ow

nl
oa

de
d 

B
y:

 [H
E

A
L-

Li
nk

 C
on

so
rti

um
] A

t: 
16

:0
0 

18
 J

un
e 

20
08

 

27

Discussion

The use of any of these transformations depends on
the objective of the investigation and the general
geographic characteristics of the studied area. In theory,
any of these can be applied to any geographic area,
regardless of their sensitivity to various environmental
components that might limit their effectiveness. In this
respect, one might consider applying the slope-based
indices, as they are simple to use and yield numerical
results that are easy to interpret. However, it is important
to note that all slope-based indices, excluding SAVI,
have the major weakness of not being able to minimize
soil background effects. This means that a certain
proportion of their values, negative or positive, represent
the background soil brightness. The effect of the
background soil is a major limiting factor in certain
statistical analyses geared towards the quantitative
assessment of above-ground green biomass.

Although there exist indices whose extremes may
be much lower and higher than those of the more
familiar NDVI, the distance-based VIs have the
advantage of being able to minimize the effects of
background soil brightness by combining the input
bands with the slope and intercept of the soil line. This
represents an important quantitative and qualitative
improvement in the significance of the indices for all
types of applications, particularly for those dealing
with arid and semi-arid environments. Despite the large
number of vegetation indices currently in use, it is clear
that much more needs to be carried out into how these
procedures can be applied in different environments.
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