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A novel self-organizing neuro-fuzzy multilayered classifier (SONeFMUC) is 

suggested in this paper, with feature selection capabilities, for the classification of 

an IKONOS image. The structure of the proposed network is developed in a 

sequential fashion using the group method of data handling (GMDH) algorithm. 

The node models, regarded as generic classifiers, are represented by fuzzy rule- 

based systems, combined with a fusion scheme. A data splitting mechanism is 

incorporated to discriminate between correctly classified and ambiguous pixels. 

The classifier was tested on the wetland of international importance of Lake 

Koronia, Greece, and the surrounding agricultural area. To achieve higher 

classification accuracy, the image was decomposed into two zones, namely, the 

wetland and the agricultural zone. Apart from the initial bands, additional input 

features are considered: textural features, IHS and tasseled cap transformation. To 

assess the quality of the suggested model, SONeFMUC is compared with a 

maximum likelihood classifier (MLC). The experimental results show that the 

SONeFMUC exhibited superior performance than MLC, providing lower confusion 

of the dominant classes in both zones. Especially in the wetland zone, an overall 

accuracy of 89.5% was attained. 

Keywords: Fuzzy classifier; Neural networks; Classifiers fusion; Land cover classification; IKONOS 
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1. Introduction 

Land cover classification of remotely sensed images has attracted considerable research interest 

over the past decades. Along the numerous applications in the field, several problems have been 

reported which reduce the accuracy and reliability of the resulting thematic maps. The presence of 

mixed pixels, the resolution of the acquired images, the reliability of training data, the number of 

classes and the high degree of spectral overlapping between the classes are key reasons for 

achieving low classification accuracies.  

 In order to tackle the problems encountered in land cover image classification, the research 

community has turned primarily to two major areas of interest. The former issue involves the 

enhancement of features used by the classification algorithm, as applied to the satellite image. 

Although original bands of satellite sensors remain the basic source of information in multispectral 

image classification, advanced features such as topographic information (Richards et al. 1982), 

tasseled cap features (Oetter et al. 2001), textural analysis (Haralick et al. 1973, Haralick and 

Shapiro 1992) and wavelet decomposition (Dekker 2003) have been developed in order to reduce 

the overlapping of the classes in the original feature space. However, the use of new features 

results in complex models due to the large dimension of the feature space. In order to arrive to the 

appropriate feature set, several techniques make use of pre-processing methods such as PCA (Li 

and Yeh 1998) and the time consuming method of trial-and-error (Shackelford and Davis 2003).  

 Secondly, more sophisticated classifiers are proven to be a major factor of improving the 

classification results. The first type of classifiers used mainly statistical parameters (Thomas et al. 

1987), considered as ‘hard’ classifiers, such as the maximum likelihood. However, the assumption 

of the normal distribution of the data is a major drawback of such classifiers.  

 The remarkable achievements in the development of fuzzy classifiers, regarded as ‘soft’ 

classifiers, provide a fruitful approach (Wang 1990, Bárdossy and Samaniego 2002). These 

classification techniques were found to be more appropriate in tackling the mixed pixels problem 

(Bastin 1997, Tso and Mather 2001), since they take into consideration the ambiguities concerning 

the correct class to which a pixel belongs. However, Foody (1999) proposed that in order to 

resolve the mixed pixel problem, a continuum of classification fuzziness should be defined, i.e. not 

only the classifier but also the training and testing stages should be fuzzy.  

 Another promising type of classifiers is derived from the theory of neural networks 

(Benediktsson et al. 1993, Foody 1995, Kavzoglu and Mather 2003). Neural networks are capable 
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of dealing with complex problems, with high degree of overlapping between the classes by 

conducting a non-linear transformation of the original feature space through the layers of the 

network. Along this direction, a great variety of neural network architectures and training 

algorithms have been reported in the literature, with productive results (Atkinson and Tatnall 

1997, Keramitsoglou et al. 2005). Nevertheless, most of the classifiers of this type require the 

definition of a large number of parameters, such as the number of hidden layers, the number of 

nodes, the range of the initial weights and the number of training data, which is difficult to be 

decided. To cope with this problem, Kavzoglu and Mather (2003) proposed a set of guidelines by 

conducting an extensive research of suggestions reported in the literature. Furthermore, during the 

past years considerable research is focused on the development of classifiers combining fuzzy 

logic and neural networks, thus resulting in superior classification methods (Carpenter et al. 1997, 

Lin et al. 2000) on remote sensing problems. An alternative approach is to combine different 

classifier types (Kuncheva et al. 2001), by exploiting the best attributes of every classifier. 

Particularly, in land cover classification, Giacinto and Roli (1997) proposed a method of 

combining the classification results of statistical and neural network classifiers using a modified 

K-nearest-neighbour rule as a metaclassifier.  Furthermore, Briem et al. 2002 studied the 

application of boosting, bagging and consensus theory to derive multiple classifiers which 

outperformed the single classifiers on multisource remote sensing data.  

 The potential, though, of using a cascaded architecture or a sequential combination of 

individual classifiers has not been exploited enough, since most of these architectures are based on 

a hierarchical combination of classifiers (Giacinto and Roli 1997, Kumar et al. 1997, Briem et al. 

2002). Wilkinson et al. (1995) proposed a voting/rejection approach, where a maximum likelihood 

classifier was used in parallel with a neural network in the first stage. In the second stage, an 

independent neural network was trained to classify the ambiguous pixels of the first stage. 

Benediktsson and Kanellopoulos (1999) modified the voting/rejection of Wilkinson et al. 1995 by 

using a multisource classifier based on consensus theory instead of a maximum likelihood 

classifier, and used the decision boundary feature extraction method (DBFE) as a tool of reducing 

the large dimensionality of the input space for hyperspectral data. Although the results showed that 

the logarithmic opinion pool (LOGP) classifier achieved the best performance, the authors stressed 

out the promising attributes and results of the voting/rejection approach. However, the neural 

network in the second stage of the algorithm should be supplied with a large number of training 

data in order to achieve satisfying classification performance. Hence, the efficiency of the method 
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is highly dependent on the degree of agreement of the classifiers in the first stage of the 

classification algorithm (Petrakos et al. 2001). Moreover, the use of a feature extraction algorithm 

as a pre-processing tool increased the computational cost. 

 The aim of this paper is to develop a novel self-organizing neuro-fuzzy multilayered classifier 

(SONeFMUC) with feature selection attributes, gradually evolved in a self-organizing manner, 

using the group method of data handling (GMDH) algorithm (Ivakhnenko 1968). Specific 

objectives include (i) the application of the SONeFMUC to a very high resolution IKONOS image 

using the initial bands and advanced features for land cover classification of a protected wetland 

and its surrounding agricultural area, and (ii) the validation of the SONeFMUC through its 

comparison with a maximum likelihood classifier. 

2. Materials and methods 

2.1 Study area 

Lake Koronia is located in a tectonic depression in northern Greece (40' 41" N, 23' 09" E). Its 

watershed covers an area of 780 km2, and formerly it drained eastward into Lake Volvi, then the 

sea. Climate of the region is transitional between Mediterranean and temperate. Mean annual 

precipitation is 455 mm, with a seasonal peak in December and a minimum in August (Mitraki et 

al. 2004). 

 The lake-wetland ecosystem is surrounded by an intensively cultivated agricultural area (figure 

1). The dominant agricultural crops are maize, alfalfa, and cereals. There is no exploitation of 

surface water, and the only source of fresh water for irrigation, industrial and urban use is through 

groundwater resources. Irrigated agriculture is an important economic activity in the area, but 

recent development of numerous pump wells has resulted in the depletion of the aquifer, and a 

subsequent decrease in the lake's water level. The industrial sector has also increased in the last 

decade, discharging untreated effluents in the lake from fabric dying, food and dairy processing 

activities (Zalidis et al. 2004). 

 Due to the above mentioned pressures, Lake Koronia became progressively more eutrophic, 

especially after the early 1990’s, and currently is hypertrophic (Mitraki et al. 2004). Along with 

the drastic alteration in the water level that reached a decrease of 80%, the natural ecosystem has 

suffered a severe degradation. There has been a significant loss of volume and habitat 
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heterogeneity in the lake and wetland. Emergent macrophyte community (dominated by 

Phragmites australis) has shifted lakewards and expanded on recently exposed lake bed 

(Alexandridis et al. 2006). 

 In recognition of its ecological importance, and to prevent further degradation, the lake-wetland 

system of Lakes Koronia - Volvi is protected by a number of legal and binding actions: it is a 

Wetland of International Importance according to Ramsar Convention (site code 57, area 163.88 

km2), a Special Protected Area designated by the implementation of European Directive 

79/409/EEC (site code GR1220009, area 156.71 km2), and a Site of Community Importance 

following the implementation of European Habitat Directive 92/43/EEC (site code GR1220001, 

area 269.47 km2). The national and local relevant authorities have responded with the 

identification and mapping of habitats (Hellenic Ministry of Environment 2001), the compilation 

of the Master Plan for the restoration of Lake Koronia, and the Revised Restoration Plan for Lake 

Koronia (Zalidis et al. 2004). However, continuous monitoring of natural and agricultural 

environment is required according to the proposed management actions, and to fulfil the 

obligations to the international and European legislation. 

Figure 1. 

2.2 Dataset used 

An IKONOS bundle image with 1 m spatial resolution in panchromatic and 4 m in multispectral 

(three visible and one near-infrared), covered 134 km2 of the study area was used. The image was 

acquired on 7 August 2005, was clear from clouds and was acquired at nadir view angle in order to 

minimize noise reflectance from topographic effects. 

 The digital elevation model (DEM) of the area was used for the orthocorrection of the satellite 

image. It was produced at 5 m pixel size by contours with height interval 4 m which were digitized 

from topographic maps of scale 1:5000 using the ANUDEM interpolation method (Hutchinson 

1991). 

 An extensive field survey was conducted at the first days of September 2005 to identify land 

cover classes which referred mainly to the agricultural and wetland area, and collect training and 

testing samples for the image classification and its accuracy respectively. Using a GPS receiver 

embedded in a palm top, 3920 locations were selected at regular intervals along the agricultural 

road network. The land cover on these locations was identified by visual inspection and was 
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afterwards labelled in 13 classes. The classification scheme included six crop types, five wetland 

habitats (following Annex I of Habitats Directive 92/43/EEC) and two ancillary land cover types 

(following the CORINE Land Cover nomenclature). The sampled points were separated into two 

different sets using the random stratified method; the training set (70%) and the test set (30%). 

2.3 Manipulation of the dataset 

IKONOS image was orthorectified in the Greek Geodetic Reference System (GGRS ’87) with the 

use of DEM and ground control points which were collected from black and white photomaps of 1 

m pixel size. The RMS error was 0.92 m and 2.41 m for panchromatic and multispectral image, 

respectively. Afterwards, the pan-sharpen image was produced using the forward-reverse principal 

components transforms (Chavez et al. 1991) with the panchromatic image, replacing the first 

principal component. This new image was useful in order to evaluate and minimize the bias in the 

samples which was selected with the field work. Atmospheric correction wasn’t applied since it 

has little effect on classification accuracy when single date of remotely sensed data are going to be 

classified, as long as the training data from the image to be classified have the same relative scale 

(corrected, uncorrected) (Kawata et al.1990, Song et al. 2001). 

 Moreover, advanced features from the multispectral image were calculated using the initial four 

bands of the image. These features can be categorized in two groups, namely, textural and spectral 

features. 

 Textural analysis using the grey level co-occurrence matrices (GLCM) (Haralick and Shapiro 

1992) comprise a common practice in land cover image classification (Lin et al. 2000), in order to 

decrease the degree of overlapping between the various types of classes. The image is raster 

scanned with sliding windows of M M×  dimensions. A grey level co-occurrence matrix for each 

window is calculated indicating how often different grey levels, ,i j , occur with a specific 

direction, 0 0 0 00 , 45 ,90 ,135θ = , and distance d  between the pixel centres. Assuming that G grey 

levels occur within the image, a G G×  matrix is computed, with the ( ),i j th−  element of the 

matrix given as 

( )
,

,
,

d
ij

N N
d

ij
i j

f
p i j

f

θ

θ
=

∑∑
  (1) 
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where i  and j  refer to matrix’s rows and columns, ,d
ijf θ  is the frequency of occurrence of grey 

levels ( i , j ) separated by a distance d  and a direction θ , and N  stands for the total number of 

pixels in the window, for a particular value of d . 

 Originally, Haralick et al. (1973) proposed 16 measures which derived from each co-

occurrence matrix. Among them, four are considered to be the most important: Contrast, Angular 

Second Moment, Correlation and Homogeneity (Haralick and Shapiro 1992). They are calculated 

as follows: 

( )2

1 1
,

G G

i j
Contrast i j p i j

= =

= −∑∑   (2) 

which is a measure of the local variations between a pixel and its neighbours, 

( )2

1 1
,

G G

i j
Angular Second Moment p i j

= =

= ∑∑   (3) 

which is a measure of uniformity, 

( ) ( ) ( )
2

1 1

,G G

i j

i j p i j
Correlation

µ µ
σ= =

− −
=∑∑   (4) 

which is a measure of how correlated is a pixel to its neighbour, and 

( )
1 1

,
1

G G

i j

p i j
Homogeneity

i j= =

=
+ −∑∑   (5) 

which measures the closeness of the distribution of elements in the GLCM to its diagonal. The 

above textural analysis was applied to the four bands of IKONOS image providing us with a total 

of 16 features.  

 Two different colour spaces were produced from the initial bands, and served as input data in 

the image classification. The first uses intensity (I), hue (H), and saturation (S) as the three 

positioned parameters (in lieu of R, G, and B). This is an advantageous system, since it presents 

colours more closely to the human's perception. The intensity represents the total amount of the 

light in a colour, the hue is the property of the colour determined by its wavelength, and the 

saturation is the purity of the colour (Zhang and Hong 2005). For the calculation of IHS 

transformation only three bands are needed, so a pseudo-colour RGB composite of IKONOS using 

channels four, three and two respectively was used.  
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 In addition, a second colour space was applied, which is a linear transformation of the four 

multispectral bands of IKONOS image, that offers a means to optimize information extraction for 

vegetation studies, related with the classes of interest. This transformation is called tasseled cap 

(Kauth and Thomas, 1976) and has produced three data structure axes which define the vegetation 

information: brightness, greenness and wetness. These new features are sensor-dependent, and 

until recently they were only available for Landsat 5 and 7 images. Horne (2003), using 

approximately 200 different scenes of IKONOS images globally, managed to derive tasseled cap 

coefficients for IKONOS images. 

2.4 Statistical classifier 

Using four initial bands, 16 co-occurrence features and six spectral features, the image was 

classified using the training data with the maximum likelihood (ML), a spectral probabilistic 

‘hard’ classifier. This is a common classifier used in many studies, and was used to compare the 

performance of the proposed SONeFMUC network, which is developed and analysed in the 

following section. 

3. Development of SONeFMUC 

3.1 The SONeFMUC architecture 

The suggested neuro-fuzzy classifier is a multilayered structure, as depicted in figure 2. The 

network consists of a number of 0,..., M=  layers, with the th−  layer including N  neurons. 

The neurons are defined as fuzzy neuron classifiers, denoted as ( )
jFNC , where 0,...,j N=  and 

0,..., M=  . The input layer 0=  includes the m  networks inputs, 1 2, , , mx x x… , representing the 

feature components, while the output layer M=  comprises the output node ( )
1

MFNC , providing 

the overall network’s decision. 

Figure 2. 

 The neuron models in each layer are regarded here as generic local classifiers, working in a 

sub-region of the feature space and represented by fuzzy rule-based systems. Parent 'FNC s  at 

each layer are combined to generate a descendant FNC  at the next layer, with better classification 

capabilities. The generic node classifiers perform successive feature transformations and decision 

Page 8 of 43

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

makings, using the distributed fuzzy rule bases and the fuzzy reasoning approach. Hence, the 

classification task is sequentially achieved by the 'FNC s  arranged along the layered structure of 

the SONeFMUC.  

 In a supervised learning scheme, the design of the classifier is based on a set of classified 

examples, used to establish the association between the pattern attributes and the class labels. 

Consider that the patterns are distributed over a set of M  disjoint classes. Let us assume a training 

data set comprising N  input-output observation pairs: [ ] [ ]( ){ }, , 1, ,ND q C q q N= = …x where 

[ ] [ ] [ ]1 , ,
T

nq x q x q⎡ ⎤= ⎣ ⎦…x  denote the feature components, [ ]C q  is the class label for the q-th 

observation, and { }1, ..., MC C C=  is the set of classes. For convenience, the features are 

normalized in the range[0,1] , forming the feature space [0,1]nF = .  

 Unlike the conventional classifiers which assume a given pattern to a single class, the suggested 

SONeFMUC model is a fuzzy classifier performing a map [0,1]MF → . Accordingly, they produce 

a decision output vector [ ]1( ) ( ),...., ( ) T
MD d d=x x x   embracing all classes, where ( ) [0,1]jd ∈x , 

1,...,j M= , represents the grade of certainty in the assertion that pattern x  belongs to class jC . 

Based on the classification data, the structure of SONeFMUC is progressively expanded in layers 

using a structure learning algorithm. 

3.2 FNC models at the first layer 

The structure of the (1)
jFNC  at the layer 1 is shown in figure 3. The generic model consists of two 

fuzzy rule based-systems: the so called fuzzy partial description ( FPD ) and a decision making 

fuzzy unit ( DMFU ). Therefore, the 'FNC s  at the first layer are represented as a pair of modules: 

{ }(1) ( ) (1),k
j j jFPD FPD DMFU= , 11,...,j N= . In the following, we describe the function of each one 

of the constituent units. 

3.2.1 Fuzzy partial description (FPD). The 'FPD s  are represented by fuzzy rule-based Takagi 

Sugeno Kang (TSK) systems (Takagi and Sugeno 1985). Instead of receiving the entire attribute 

set { }1 2, ,...., mx x x , the input vector of ( )1
jFNC  denoted by (1)

jx , contains a small subset of p  
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features taken from the above set: 

1 2
(1) , ,....,

p

T p
j j j jx x x⎡ ⎤= ∈ℜ⎣ ⎦x . The feature subsets associated 

with each FPD  are derived through recombinations of the original features, a task achieved 

during the structure learning process. The number of the inputs ( p ) exciting the 'FPD s  at the 

first layer is a design parameter specified by the user. In the example case shown in figure 3, a 

generic neuron classifier is depicted with two FPD  inputs.  

 The TSK systems considered in this paper provide two outputs. The output vector is denoted as 

(1) (1) (1)
,1 , 2,

T
j j jy y⎡ ⎤= ⎣ ⎦y , where the output variables are normalized in the range (1)

, [0,1]j ky ∈ , 1, 2k = . 

The output space of ( )1
jFNC  formed by the components (1)

,1jy , (1)
, 2jy , coincides with the class space, 

that is, the space where the classes are defined. Definition of the classes relates to the class 

targeting issue. To this end, a target value for both output variables is assigned for each 

class: ( ) ( ) ( )
,1 ,2,j j j

TC C C
d d dy y⎡ ⎤= ⎣ ⎦y ,  jC , 1,...,j M= . The class ordering is accomplished by following a 

heuristic scheme determined by the designer.  

 The purpose of introducing a second output for the 'FPD s  is explained as follows. The two-

dimensional output space provides more flexibility for arranging the classes, based on their 

relative distance within the feature space. In addition, an increased number of classes can be 

considered, allowing SONeFMUC models to handle multi-class problems effectively. 

Furthermore, the inclusion of an additional output improves the representation capabilities of the 

models, thus facilitating the feature transformation task performed by the 'FPD s . 

Figure 3. 

 For simplicity sake, in the remainder of this section we assume that the input and output vector 

of the 'FPD s  are denoted by 1 2, ,....,
T

px x x⎡ ⎤= ⎣ ⎦x , and [ ]1 2, Ty y=y , respectively. Each premise 

variable ix , 1,...,i p=  is partitioned into iK  fuzzy sets, ( ) ( ){ }1 , ,
i

i i
KA A… , described by two-sided 

Gaussian fuzzy sets. The membership functions are described by  
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( ) ( )

( )

( )
( )

( )

( )
( )

2

,

2

,

1exp ,
2

1, , , 1, ,
1exp ,
2

i
i j i

i ji
j L

i
j i i

i
i j i

i ji
j R

x m
x m

x i p j K
x m

x m

σ
µ

σ

⎧ ⎛ ⎞⎛ ⎞−⎪ ⎜ ⎟⎜ ⎟− ≤⎪ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎪⎪ ⎝ ⎠= = =⎨
⎛ ⎞⎪ ⎛ ⎞−⎜ ⎟⎪ ⎜ ⎟− >⎜ ⎟⎜ ⎟⎪ ⎜ ⎟⎝ ⎠⎪ ⎝ ⎠⎩

… …   (6) 

where ( )i
jm  is the mean and ( )

,
i

j Lσ , ( )
,
i

j Rσ  are the widths of the left and right hand parts of ( ) ( )i
j ixµ . 

Initially, the fuzzy sets ( )i
jA  are evenly distributed along the ix  axis (see figure 4(a)):  

( ) ( )
( )

1
, 1, , , 1, ,

1
i
j i

i

j
m i p j K

K
−

= = =
−

… …   (7) 

 The number of fuzzy sets iK  is a user defined parameter, being the same for all input variables, 

in every FPD , throughout the SONeFMUC structure. In order to improve the feature 

transformation of the 'FPD s , a K-means clustering algorithm (Lee et al. 2001) is applied on the 

membership centres along each input. The goal is to locate the fuzzy sets in a way that the 

resulting fuzzy partitions are focused on regions with large data collections. Upon termination of 

data clustering, the fuzzy sets are tuned as indicated in figure 4(b). The values of ( )
,
i

j Lσ  and ( )
,
i

j Rσ  

are calculated such as the consecutive fuzzy sets exhibit a degree of overlapping of 0.5.  

Figure 4(a),(b). 

 Following a grid-type partition approach, we create a total number of 
1

r
ii

R K
=

=∏  rectangular 

fuzzy subspaces, iA , determined by the Cartesian product:
1 2
(1) (2) ( )

r
i r

i i iA A A= × ×⋅⋅⋅×A , 1,...,i R= .  

Figure 5 shows an indicative two-dimensional fuzzy partition after data clustering. Each subspace 

forms a fuzzy region within the premise space where a fuzzy rule is defined.  

 The 'FPD s  are described  by R  TSK-type fuzzy modeling rules of the form: 

1
( ) (1) (1) ( ) ( )

1 1 1 2 2: ( ) ( )
p

i i i
m pi iR IF x is A AND AND x is A THEN y g AND y g⋅ ⋅⋅ = =x x   (8) 

 The rule functions are given either as  
( ) ( ) ( )

0, , 1,2ii
r rg w r= =x    (9) 

implementing the crisp consequent, or as a polynomial of the FPD  inputs  
( ) ( ) ( ) ( ) ( )

0, 1, 1 , , 1,2i ii i
r r r p r pg w w x w x r= + + + =…x   (10) 
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implementing the traditional TSK consequent function. 

Figure 5. 

 For each pattern submitted to the FPD , the degree of firing of the rules are determined by 

integrating the antecedent fuzzy sets associated with the partition iA , through an AND operator:   

( ) ( ) ( )
1

j

R
i

i i
j

µ µ
=

=∏x x   (11) 

 The outputs of the FPD  are then derived by  

( ) ( ) ( )

( )1

1

, 1, 2
iR

i r
r R

i
s

s

g
y r

µ

µ=

=

= =∑
∑

x x

x
  (12) 

 Based on the set of rules obtained above, we proceed to a rule base simplification procedure 

with the scope to reduce the number of rules. Along this direction, each modelling rule ( )i
mR  is 

evaluated by computing the percentage concentrations of patterns, in , over the entire training 

set: 100 (%)i
i

nn
N

= × , 1,...,i R= . in  stands for the number of patterns that are included in the 

antecedent part ( )i
jA  with a degree of firing fulfilling ( ) 0.5i xµ ≥ . The values of in  are then 

arranged in descending order and compared to a prescribed threshold ξ  set up by the user (i.e.  

5%ξ = ). Fuzzy rules exhibiting in ξ≥  are retained while the rest of them are discarded. At the 

end of this process we obtain a simplified fuzzy model ( FPD ), including a reduced number of 

rules R R< . Patterns that are located at fuzzy cells corresponding to removed rules are covered by 

the neighbouring strong ones. This is made possible by noticing that the fuzzy regions are 

described by Gaussian rather than triangular memberships, of appropriate centres and widths. 

Accordingly, every pattern takes a stronger or weaker firing, assisting its manipulation by the 

reduced rule base. 

 Having determined the premise parameters (means and widths), the outputs of the 'FPD s  are 

linear with respect to the consequent weights. Therefore, optimal estimates of these parameters can 

be obtained using the recursive least square estimate (RLSE) method (Goodwin and Sin 1984). 

Given a specific class targeting, the RLSE method calculates the appropriate values of the 

consequent weights so that the distance between the FPD  outputs and the class targets is 
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minimized. As a result, a supervised learning task is achieved with the following objective: 

patterns ( )(1)
j qx  belonging to a particular class jC , should produce an output ( )(1)

k qy  located in a 

neighbourhood of the respective class target ( )jC
dy , 1,...,j M= . From this point of view, each 

FPD  realizes a non-linear mapping from the initial feature space to a transformed output space. 

The FPD  outputs can be regarded as transformed versions, ( )(1) (1) (1)
j j jFPD=y x  , of the input 

features, which are more separated compared to the original features. Feature transformation 

facilitates discrimination of the patterns along the classes, thus leading to more accurate 

classification results obtained by the following DMFU  units.  

 In order to show the function undertaken by the feature transformation, an illustrative case is 

indicated in figure 6 for a four-class problem ( 4M = ) with two input features. As can be seen, the 

class examples in the original feature space ( 1 2,x x ) are mixed with each other, making the 

discrimination among them a difficult task. On the other hand, the transformed patterns defined by 

the FPD  outputs are more separated due to the fuzzy inference mechanism and the effectiveness 

of the parameter learning algorithm (RLSE).  

Figure 6. 

3.2.2 Decision making fuzzy unit (DMFU). As shown in figure 3, a decision making fuzzy unit 

( DMFU ) is introduced in each FNC , following the associated FPD  module, with the goal to 

determine the degree of support given by the local classifier in each class. The continuous outputs 

of the FPD , [ ]1 2, Ty y=y , serve as inputs of the DMFU  while its output is a M-dimensional 

vector, denoted as DN , that provides the soft decision profile of the neuron classifier.  

Figure 7. 

 Each [0,1]ry ∈ , 1,2r = , is divided into , 1, 2rL r =  fuzzy sets, namely ( ) ( ){ }1 , ,
r

r r
LB B… . The 

values of rL  are decided based on the number of classes at hand, so that: 1 2L L M× ≥ . The fuzzy 

sets of DMFU  are now represented by trapezoidal membership functions, centred at the target 

values of each class. The fuzzy partition of a DMFU  input is given graphically in figure 7. The 

parameters of the intermediate membership functions are defined as 

( ) ( )
( )

( ) ( )
( )

( )
( )

( )
( )

1 1
, , ,

1 1 1 1
r r r r

i i i i
r r r r

i i i ia
L L L L

ρ β ρ γ ρ δ ρ
− −

= − = + = − = +
− − − −

 (13) 
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for 2, , 1, 1, 2ri L r= − =… ,  where ρ  is a small percentage of 1 rL (i.e. 20%ρ = ) that controls the 

degree of overlapping between adjacent fuzzy sets. For the left-most and the right-most 

membership functions the relevant parameters are given by 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 1 20, , , , , 1

r r r r r r

r r r r r r r r r r r r
L L L L L La a aβ γ δ β γ β δ γ δ= = = = = = = =  (14) 

Figure 8. 

 Using the grid partition, we obtain 1 2L L M× ≥  fuzzy subspaces. An indicative partition of the 

DMFU  for a four-class case ( 4M = ) is shown in figure 8. In order to represent 4M =  classes, 

we define 1 2L =  and 2 2L =  membership functions. For each rectangular subspace we define a 

classification rule of the form: 
( ) ( ) [ ] [ ]( )1 2

1 2( )
1 2 1 2: ,i

c ji iR IF y is B AND y is B THEN y q y q is C  (15) 

where jC C∈  is the label for class j. 

 The fuzzy inference mechanism of the 'DMFU s is realized in two steps: 

Step 1. Calculate the degree of firing of the classes, 
iCβ , 1,...,i M=  

( ) ( )
1 2
(1) (2)

1 2( ) ( )
iC i iy q y qβ µ µ= ∧  (16) 

Step 2. Calculate the normalized firings: 

1

i
i

r

C
C M

C
r

β
β

β
=

=

∑
  (17) 

The output of the DMFU  is a vector, DN , derived as follows: 

[ ] 11, , , ,
M

TT
M C CDN dn dn β β⎡ ⎤= = ⎣ ⎦… …   (18) 

 The components [0,1], 1, ,idn i M∈ = … , represent the degree of support given by the local 

classifier ( )1
jFNC , under the hypothesis that a particular pattern [ ]y q , belongs to class- i . The soft 

outputs of DMFU  can be hardened in order to make a crisp decision upon the class each pattern 

belongs, such that 

[ ]( ) { }max , 1, ,
xx c vDN y q C dn dn v M= ⇒ = = …  (19) 
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 With regard to the example considered in figure 6, the class labels can be easily assigned as 

shown in figure 9. The dotted lines split the class decision regions whereas the solid lines represent 

confident regions, where patterns are classified with a high grade of certainty.  

Figure 9. 

 Each ( )1
jFNC  provides two output sources: a vector of continuous outputs ,1 ,2,

T
j j jy y y⎡ ⎤= ⎣ ⎦ , 

and a M-dimensional vector (1)
jDN , the output of the (1)

jDMFU , that includes the soft decision 

supports for all classes  (see figure 3). The outputs of the 'FNC s  at layer 1 serve as inputs to the 

'FNC s  to be generated in the second layer. 

3.3 FNC models at layer 2 

The structure of the neuron classifiers, ( )
kFNC , at layer 2 ( 2= ) is demonstrated in figure 10. 

Two parent 'FNC s  from the preceding layer are combined to generate a descendant FNC  at that 

layer. The neuron classifiers are now represented by the triple: 

{ }( ) ( ) ( ) ( ), ,k k k kFNC FPD DMFU= F . To exploit the information acquired by these parent 

classifiers we make use of a fusion scheme, being a common practice in combining classifiers 

(Kuncheva et al. 2001). To this end, a fusion operator ( ( )
kF ) is introduced within each  ( )

kFNC , 

to aggregate the outputs of the parent classifiers. The decision output of the fuser is attached to the 

descendant FNC. Additionally, the fusion algorithm serves as a means to discriminate between 

those patterns that are currently well classified by the parent classifiers, and the ones which need 

further investigation by the FPD  unit of the offspring classifier. This procedure gives rise to a 

data splitting mechanism that offers efficient handling of the data flow and reduction of the 

computational cost.  

Figure 10. 

 The derivation of the decision supports of the 'FNC s  at layer 2 are calculated through the 

following steps: 

A.1. Decision fusion: For a given pattern [ ]qx , the decision outputs of the antecedent classifiers 
( )1
iDN −  and ( )1

jDN −  are fused as follows 
( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( ){ }1 1( ) ,k i jkDF q DN q DN q− −= Fx x x  (20) 
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where F  denotes a fusion operator. The resulting decision output, ( )
kDF , includes the certainty 

grades given by the fuser for all decision supports for all classes 

( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( ),1 ,, ,k k k MDF q df q df q⎡ ⎤= ⎣ ⎦…x x x   (21) 

 There are several types of fusion operators reported in the literature. In general, they are 

distinguished into two major categories: the class–conscious and the class–indifferent fusion 

methods, depending on the way they handle the decision information carried out by the combined 

classifiers. In this paper, four different types of fusion operators are used, namely min, weighted 

average, fuzzy integral, and decision templates (Kuncheva et al. 2001). For instance, the min 

operator is a simple and a rather conservative aggregation operator, belonging to the class–

conscious methods: 

( ) ( ) ( ){ }, ,, min , , 1, ,i v j vk vdf dn dn v M= = …   (22) 

A.2. Data splitting (DS): The decision profile obtained by the fuser, ( )
kDF , provides the degree of 

support that a pattern belongs in each class by combining the outputs of the parent classifiers 
( )1
iFNC −  and ( )1

jFNC − . To ascertain the classification level of the patterns, the values ( )2
,k rdf  are 

compared to a user’s defined threshold: 
( ) [ ]2
, , 0.5,1k rdf ϑ ϑ≥ ∈   (23) 

where ϑ  represents the degree of confidence (i.e. 0.8ϑ = ) that a pattern belongs to a certain 

class, [ ] rq C∈x . The above condition is called here the maximum classification level criterion 

(MCLC). 

 Based on the MCLC criterion, the entire data set ND  is divided into two disjunctive subsets 

( )
kJ  and ( )

kV , so that ( ) ( )
N k kD J V= ∪ .  The subset ( )

kJ  includes those patterns that fulfil the 

MCLC criterion, that is, they are currently well classified with high grade of certainty. 

Furthermore, the subset ( )
kV  contains the rest of data patterns which are either misclassified by the 

fuser or correctly classified with a low degree of support.    

A.3. Handling of patterns in ( )
kJ : In this case, the fuser produces high grade of certainties for a 

class, implying that both parent classifiers agree strongly on the same class. Therefore, well 

classified patterns contained in ( )
kJ  are handled by the fuser, i.e. their decision outputs are derived 
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by ( )( ) [ ]kDF qx , ( )[ ] kq J∀ ∈x .  

A.4. Handling of patterns in ( )
kV : For these patterns, the fuser produces low certainty grades for 

all classes (below confidence threshold ϑ ), which means that either a conflict occurs between the 

parent 'FNC s , or patterns are correctly classified by the parent classifiers with weak degree of 

supports. Hence, ambiguous patterns included in ( )
kV  are fed to ( )

kFPD  for further processing. 

They are subject to an additional feature transformation to improve their discrimination. 

 Since two parent classifiers are combined at a time, the input vector of the ( )
kFPD  is a four-

dimensional vector defined as ( ) ( )( ) ( 1) ( 1),
TT T

k i jx x x− −⎡ ⎤= ⎢ ⎥⎣ ⎦
. In the output space formed by FPD  

outputs ( )
,k jy , 1,2j = , the classes are ordered following exactly the same class targeting scheme as 

the one defined for the 'FNC s  at the first layer. The construction of the ( )
kFPD  proceeds along 

the steps described in section 3.2. The model building process includes: the data clustering through 

K-means algorithm, the formulation of the fuzzy rule base, the rule base simplification, and 

determination of the consequent weights. Having determined the locations of the new transformed 

features ( )
ky  ( ( )

kFPD outputs) of the patterns contained in ( )
kV , decision making is then applied 

by means of the corresponding ( )
kDMFU  module, to obtain the soft decision output vector: 

 ( ) { }( ) ( ) ( ) ( ) ( ) ( )
,1 , 2 ,[ ] [ ] ( ), ( ),...., ( )

T
k k k k k k MDN q DMFU y q dn dn dn⎡ ⎤= = ⎣ ⎦x x x x  (24) 

where ( )
, [0,1]k jdn ∈  denotes the degree of support for a pattern belonging in class jC . 

A.5. Overall decision output: The overall decision profile of ( )
kFNC  is formulated as a 

composition of two parts: 

( ) ( ) ( ) ( ) ( ) ( )
,1 ,2 ,, ,...,

T
k k k k k k MD DF DN d d d⎡ ⎤= ⊕ = ⎣ ⎦   (25) 

where the ( )
kDF  and ( )

kDN  come from the fuser and the modules pair { }( ) ( ),k kFPD DMFU , 

respectively, functioning on the ( )
kJ  and ( )

kV  data subsets: ( ) ( )( ) ( )[ ] [ ]k kD q DF q=x x , 

( )[ ] kq J∀ ∈x  and ( ) ( )( ) ( )[ ] [ ]k kD q DN q=x x , ( )[ ] kq V∀ ∈x .  
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 When a hard decision is to be made, the patterns are assigned to a class rC  fulfilling the 

maximum argument principle: 

 ( ) { }( ) ( ) ( )
,, 1,...,

[ ] max
rk r k jk C j M

D q C d d
=

= ⇒ =x        (26) 

 The above fuzzy-to-crisp transformation operates either on ( )
,k jdf  or ( )

,k jdn , depending on 

whether the pattern of interest belongs to  ( )
kJ  or ( )

kV . 

3.4 FNC models at higher layers 

The general structure of the 'FNC s  at higher layers ( 3≥ ) is shown in figure 11. The derivation 

of the decision supports for this type of 'FNC s  is accomplished using a modified version of the 

procedure for the 'FNC s  at layer 2 described in section 3.2. The modifications take place at steps 

A.1 and A.4 and are described as follows:  

.1A′ The outputs of the parent 'FNC s , namely, the ( 1)
iFNC −  and the ( 1)

jFNC −  are now given by 

equation (25). They are composed of two parts: the ( 1)
,i jDF −  coming from the fusers ( 1)

,i j
−F  and 

the ( 1)
,i jDN −  produced by the ( 1)

,i jDMFU −  modules. Accordingly, the decision vector determined 

by the fuser ( )
kF , associated with the ( )

kFNC , to be generated at layer  is given by  

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )1 1
,1 ,, , ,i jk k k MDF D D df df− − ⎡ ⎤= = ⎣ ⎦…x x x xF   (27) 

.4A′  Handling of patterns in ( )
kV : Assume that the antecedent classifiers ( 1)

iFNC −  and ( 1)
jFNC −  

assign a pattern ( 1) ( 1)
k kV− −∈x  to the classes *

iC  and *
jC , respectively. We check whether patterns 

( 1)
i
−x   and ( 1)

j
−x  which are associated with ( )

kx  are included in the sets ( 1)
iJ − , ( 1)

jJ −  or to the 

sets ( 1)
iV − , ( 1)

jV − , respectively. The input to the ( )
kFPD  is then formed as a four-dimensional 

vector ( ) ( )( ) ( ) ( ) 4
,1 , 2,

TT T
k k k

⎡ ⎤= ∈ℜ⎢ ⎥⎣ ⎦
x x x , where the parts ( ) ( ) 2

,1 , 2,k k ∈ℜx x  are defined by 

Formulate FPD  inputs 

   {    

        If  ( 1) ( 1)
i iV− −∈x  Then  ( ) ( 1)

,1k i
−=x y  
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               Else If  ( 1) ( 1)
i iJ− −∈x  Then  

*( )( )
,1

iC
k d=x y  

        If  ( 1) ( 1)
j jV− −∈x  Then  ( ) ( 1)

,2k j
−=x y  

               Else If  ( 1) ( 1)
j jJ− −∈x  Then  

*( )( )
, 2

jC
k d=x y  

   }  

Figure 11. 

 The mechanism described above exhibits some remarkable merits discussed in the following: i) 

First, the fuser exploits the decision supports given by the antecedent classifiers. Patterns which 

are well classified from their parents have a large support in the fuser’s output, resulting in a 

confident decision for the class they belong. Provided that a certain confidence level is exceeded, 

they are excluded from the fuzzy model construction. ii) Data splitting leads to significant 

computational savings, a convenient merit, especially when difficult problems are examined with 

large data sets and large number of classes. iii) Exclusion of well classified data allows the FPD’s 

to focus on those patterns where adequate classification accuracy is not yet achieved. iv) The 

antecedent classifiers in each layer are developed following different paths, starting from the 

original feature space and proceeding through the layered structure of the SONeFMUC. Hence, 

among the family of feature subspaces investigated, an optimal path is decided, leading to 

enhanced classification rates. 

3.5 Structure learning 

The proposed model is generated in a self-organizing manner, by means of the GMDH algorithm 

(Ivakhnenko 1968), described below. Particularly, the structure of the SONeFMUC is not 

predetermined in advance. Starting from the original system inputs (features), new layers are 

sequentially developed, until a final topology is obtained, satisfying the performance requirements. 

 The structure learning of SONeFMUC proceeds along the following steps: 

Step 1 Determine the system’s inputs. The decided set of input variables (features), 1, ,ix m= … , 

must exhibit a reasonable degree of separability between the classes. 

Step 2.  Formulate data sets: The data set ND  is divided into a training data set trnD , a validation 

data set valD , and a testing data set chkD , comprising trnn , valn  and chkn , respectively, with 
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trn val chkn n n N+ + = .  The training and validation data sets are used for determining the structure 

of the individual 'FNC s , at each layer, while the checking data are employed for evaluating the 

SONeFMUC model obtained at the end of structure learning.    

Step 3. Select the model parameters: In this step, we choose the values of the structural parameters 

involved in the 'FPD s , the 'DMFU s  and the fusion mechanism:  

• Select the number of inputs, p , of the 'FPD s . For the (1)
kFNC  at layer 1, p  takes values in the 

range [2,4]p∈ , with the inputs chosen among the set of original features { }1 2, ,...., mx x x . We 

consider that all ( )
kFNC  appearing at higher layers, 2≥ , are developed by combining two 

parent 'FNC s  of the previous layer. Accordingly, the ( )
kFPD  receives a four-dimensional 

input vector ( 4p = ), formed by concatenating the outputs ( 1)
i
−y  and ( 1)

i
−y  of the parent 

( 1)
iFPD −  and ( 1)

jFPD − , respectively.   

• Select the number of membership functions iK , 1,...,i r= , used to partition the premise space of 

( )
kFPD , 1,..., M= . In our simulations, we keep the same values of iK  for all 'FNC s  

throughout the SONeFMUC model.       

• Select the number of membership functions iL , 1, 2i = , used to partition the space of  the 

( )
kDMFU . The choice of these values depends upon the number of classes of the problem at 

hand. Once the appropriate targeting scheme is decided, it is applied uniformly for all 

'DMFU s  at all layers. 

•  Select the type of the consequent functions of the rules (8) describing the ( )
kFPD . We consider 

here two traditional forms of the TSK rules:  

0

0 1 1

:

: p p

Crisp w

Linear w w x w x+ + +…
       (28) 

• Select the fusion operator used to implement the fuser ( )
kF , among the three class-conscious 

aggregation rules (min, weighted average, and fuzzy integral), and the class-indifferent 

alternative, the DT method. Once a specific fuser type is chosen, it is applied uniformly for all 

'FNC s  during the structure learning of a particular SONeFMUC model.  

• Select the threshold value [0.5,0.8]ϑ∈  which defines the confidence level that controls the data 

splitting within each ( )
kFNC , 2,..., M= . The greater the value ofϑ , the smaller the amount of 
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patterns whose decision is derived by the fuser ( )
kF  ( ( )

kDF ), and the greater the data portion 

being handled by the pair of modules { }( ) ( ),k kFPD DMFU  ( ( )
kDN ). 

Step 4. Consider the so called best set, { }( 1) ( 1) , 1,...,iBS FNC i W− −= = , formed at layer ( 1− ). 

The ( 1)BS −  comprises a number of W  individuals that represent the most qualifying 

'FNC s retained at that layer. The outputs of these individuals form the candidate input set used for 

the construction of the individuals ( )
kFNC  at layer . Especially, the best set (0)BS  includes the 

m  original feature components: { }(0)
1 2, ,...., mBS x x x= . As for the ( )BS  at the succeeding layers, 

it is determined as described in step 8.  

Step 5. Create the population ( )P  of candidate 'FNC s  at layer : The population ( )P  is 

formulated by recombining the individuals in ( 1)BS −  obtained at layer ( 1− ). The new 

individuals to be generated are obtained by combining parent 'FNC s  from ( 1)BS − . Considering 

all possible combinations 2
WC , we conclude with a total number of  ( ) ! ( 2)!2!

2

W
Q W W

⎛ ⎞
= = −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

new 'FNC s  that form the population at the current layer: { }( ) ( ) ( ), 1,....,kP FNC Q= = .  

Step 6.  Construct the ( )
kFNC  models of ( )P : In this step we determine the structure of 

the ( )
kFNC , ( )1,...,Q= , by combining its parent modules ( 1)

iFNC −   and ( 1)
jFNC − . Combining 

the parents 'FNC s  means that we make use of both types of outputs being offered, that is, the 

continuous outputs ( 1)
i
−y  and ( 1)

j
−y (transformed feature values) and the soft decision vectors, 

( 1)
iD − and ( 1)

jD − . The building of ( )
kFNC  is carried out by following the procedures described in 

sections 3.2-3.4.  

Step 7.  Evaluate the 'FNC s  of ( )P : Each ( )
kFNC  is evaluated to assess its approximation and 

predictive capabilities. For the training data set, calculate the following error measure:  

 { } { }
2 2( )

, , ,
1 1 1

1 [ ] [ ] [ ]
trn trnn n

C
trn k d j k j d j

j q qtrn
E y q y C q C q

n = = =

= − + ≠∑∑ ∑ , ( )1,...,k Q=   (29) 

The first term in equation (29) is the mean squared error function, computing the proximity of the 

transformed outputs ( )
,k jy  to the respective class targets. The second term determines the total 

number of misclassifications occurring over the training data set. Assuming that two individuals 
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produce the same number of misclassifications, the one will be selected exhibiting the lower mean 

squared error, that is, providing better placement of the transformed features. The ,val kE  associated 

with the validation data set, valD , is calculated in a similar way. The 'FNC s  are evaluated using a 

weighted average metric: 

  , ,(1 )k trn k val kE a E a E= − ⋅ +   (30) 

where [0,1]a∈  is a weight parameter specified by the user that controls the balance between ,trn kE  

and ,val kE . 

Step 8.  Formulate the best set ( )BS  at layer : The values of kE  are ordered in ascending order. 

The first individual corresponds to the most qualifying FNC , denoted as ( )FNC∗ , having the 

lowest classification error. A collection of W  'FNC s  are retained that exhibit the lower 

classification errors. These 'FNC s  form the best set ( )BS  at the current layer, including the 

highly qualified individuals of the population, ( )P . The outputs of the 'FNC s  contained in ( )BS  

serve as candidate inputs for the next layer while the remaining ones are discarded.  

Step 9. Check for the termination criterion: In this step we check whether the expansion of the 

SONeFMUC model is going to be terminated at the current layer or will keep growing by 

introducing an additional layer. Assume that the best FNC  in ( )BS , ( )FNC∗ , exhibits a 

classification score denoted by ( )E∗ . The best node ( )FNC∗  is temporarily regarded as the output 

of the SONeFMUC model. The model expansion stops when either of the following conditions is 

fulfilled:  

• After the layer  reaches a maximum number of layers, maxM , determined by the user. 

• The best performance attained at the current layer exceeds the one obtained at the previous 

layer: ( ) ( 1)E E −
∗ ∗≥ .  

Upon termination of the evolution, proceed to step 11.   

Step 10. Determine the inputs to the next layer: Assuming that ( ) ( 1)E E −
∗ ∗<  and the maximum 

number of layers is not yet reached, the SONeFMUC models is allowed to expand by including a 

new layer. The retained individuals ( )
kFNC  in ( )BS  are recombined again to generate the 'FNC s  

at layer ( 1+ ). Accordingly, their outputs ( )
ky  and ( )

kD  are submitted as inputs to the descendant 

'FNC s  at the next layer. To this end, go to step 5 for the generation of the new population.  
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Step 11. Recover the network’s architecture: Once the stopping criteria are satisfied for 

some maxM M≤ , the node classifier with the best performance, ( )MFNC∗ , is considered as the 

ending node of SONeFMUC, providing the decision outputs of the model. The remaining 'FNC s  

at the output layer are discarded. In the following, we perform a reverse flow tracing through the 

network’s structure, moving from the output to the input layer. All nodes at the intermediate layers 

(the input layer included), having no contribution to the FNC  selected at the final layer are 

removed from the network. As regards the model’s inputs, among the original features{ }1,...., mx x , 

a subset of significant features is retained whereas the rest of them are discarded.  

Figure 12. 

 Figure 12 demonstrates the network expansion via the GMDH method. The dotted lines 

indicate the recovered structure of the SONeFMUC. The resulting model is a three-layered 

network, with a total number of six 'FNC s . Four features are selected by GMDH, 1 2 3, ,x x x  and 

5x ,  from a total of m  original features. 

The SONeFMUC classifier exhibits some remarkable attributes, distinguishing it from other 

classification model of the literature: 

• The SONeFMUC are self-organizing multilayered networks whose structure is developed 

sequentially in a layer-by-layer basis, following a systematic expansion procedure, the GMDH 

method. Depending on the complexity of the particular classification problem, the network 

depth is properly controlled, so that the performance of the obtained model fulfils the design 

requirements. 

• The GMDH methodology implements inherently the so called feature selection task. In the final 

model recovered at the end of structure learning, only the most important features are retained 

having a significant contribution to the classification mapping, while the unnecessary ones are 

discarded. In that respect, the GMDH performs two tasks simultaneously, namely, model 

building and feature selection. 

• The FPD  modules of the 'FNC s  perform successive feature transformations through the 

layers. Starting from the input layer, the original features are repeatedly transformed between 

the intermediate layer spaces. For higher layers, each new FPD  improves the class 

discrimination, allowing the corresponding 'DMFU s  to draw more accurate classification 

assignments.  
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4. Experimental results 

4.1 Application of the SONeFMUC to the study area 

The SONeFMUC network was applied to a multispectral IKONOS image using the set of training 

samples recognized in the field. Owing to the large number of classes and the spectral overlapping 

of the feature signatures, we were confronted with misclassification problems, especially in classes 

that represent vegetation cover. Therefore, based on the pan-sharpen image and after careful 

photo-interpretation, the image was segmented into two zones: the wetland zone which includes 

the lake and its surrounding wetland vegetation, and the agricultural zone. In the wetland zone five 

classes were recognized (water bodies, phragmites, tamarix, wet meadows, and trees). 

Furthermore, we consider eight classes in the agricultural zone, six of them referring to different 

crop types (maize, alfalfa, cereals, orchards, vegetables, and fallow) while the remaining two in 

other land cover types (urban areas and shrubs). The SONeFMUC classifier was applied to both of 

these zones. 

 Since the structure learning process uses a validation data set to obtain appropriate networks 

with higher generalization capabilities, the training set was split further in training and validation 

using 60% and 40% of the original training set, respectively. The MLC classifier used the original 

training set for the training stage. The testing set was the same for both methods. To initiate the 

structure learning of the SONeFMUC classifier for each zone, a number of structural parameters 

should be decided: the number of fuzzy sets in each input, the form of the rules and the type of the 

fuser. This task is accomplished through the following thee-step procedure:  

Step 1. At this stage we consider the min fusion operator, and develop via GMDH different 

network combinations using three or five fuzzy sets along each FPD  input and crisp or linear 

rules.  

Step 2. The best network based on the checking data performance was selected as the most 

appropriate. 

Step 3. The remaining three types of fusion, namely the weighted average, the fuzzy integral, and 

the decision templates were used to the network decided in step 2. The network architecture 

exhibiting the higher classification accuracy on the checking data was selected as the final model. 

 In all simulations, the grey level co-occurrence matrices were calculated using a window size of 
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7 x 7, direction 00θ = , and distance 1d =  for the wetland zone, and a window size of 23 x 23, 

direction 045θ = , and distance 1d =  for the agricultural zone. The performance of the obtained 

model was evaluated in terms of four parameters: the confusion error matrix, the overall accuracy, 

the Khat statistic, and the Z-score with 95% confidence level (Congalton and Green 1999). 

4.1.1 Application of the SONeFMUC to the wetland zone. Following the above three-step 

procedure, a network was selected using three fuzzy sets for the FPD inputs, TSK type rules, and 

the fuzzy integral as the fusion scheme. The resulting network is a five-layered structure with an 

overall classification accuracy of 89.5% on the testing data. Table 1 shows the confusion matrix 

along with the producer’s and user’s accuracy in percentage (PA%, UA% respectively). 

Additionally, the statistical parameters Khat and Z–score were calculated, and used to assess the 

quality of classifiers.  

 The SONeFMUC model exhibits a strong agreement between the remotely sensed classification 

and the reference data due to the high value of the Khat parameter, which is greater than 0.8 

(Congalton and Green 1999). In addition, the Z-test was performed, leading to a value of 33.14. 

Since the Z-score is higher than the value Zc = 1.96, the classification provided by SONeFMUC 

was significantly better than random, at a confidence level of 95%. 

 As depicted in table 1, the SONeFMUC classified better the classes of phragmites, wet 

meadows, and water bodies. The high accuracy in these classes is attributed to the small spectral 

overlapping and within class variance. On the other hand, poor classification results were achieved 

for the tamarix and trees classes. Specifically, tamarix was strongly confused with phragmites 

since their spectral signatures are very similar. Moreover, a similar situation was confronted in 

class trees, which was confused with tamarix and phragmites; these classes represent vegetation 

cover with similar spectral characteristics. 

Table 1. 

4.1.2 Application of the SONeFMUC to the agricultural zone. The SONeFMUC model 

selected for that case is a six-layer network, using five fuzzy sets for each FPD  input, crisp type 

rules, and the min fuser. The model provided an overall accuracy of 74.21% on the testing data set. 

Table 2 hosts the confusion matrix for the agricultural zone, including the corresponding statistical 

parameters.  

 The SONeFMUC classifier exhibits a moderate agreement between the remotely sensed 
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classification and the reference data since the Khat value falls in the range [0.4,0.8]. As expected, 

the value of Z-score is large enough to support that the method is significantly better than random 

selection with confidence level 95%. The overall classification accuracy was found smaller than 

the one attained in wetland zone. A possible reason may be the larger number of classes, as 

compared to the wetland zone. Nevertheless, SONeFMUC exhibits an average producer’s 

accuracy of 82.6% on three major classes (maize, alfalfa and cereals) implying that they are 

classified more accurately than others, although the dominant classes are overestimated, as shown 

from the user’s accuracy percentages. On the contrary, orchards, vegetables, and shrubs are 

underestimated with poor producer’s accuracy. The reason is that these classes contain different 

subclasses. For instance, vegetables may be tomatoes, watermelon or eggplants, a situation 

recognized with field work, thus leading to a large number of misclassifications. A mosaic of land 

cover map of both zones is illustrated in figure 13(a) which depicts the result of the SONeFMUC. 

Table 2. 

 

4.2 Comparison with MLC 

 In order to validate the classification results of the SONeFMUC algorithm, the IKONOS image 

was classified using MLC, a traditional spectral probabilistic ‘hard’ classifier.  

4.2.1 MLC classification of the wetland zone. Table 3 includes the confusion matrix provided by 

MLC on the testing data. A high overall performance of 84.51% is obtained, being though 5% 

lower than the one of SONeFMUC. The Khat statistic was found 0.74, suggesting a moderate 

agreement between the remotely sensed classification and the reference data, as opposed to the 

SONeFMUC where the agreement was found very strong. Additionally, the Z-test was calculated 

as 25.48 which is significantly greater than Zc showing that classification is better than random.  

 MLC exhibits a good performance on classifying wet meadows and water. However, compared 

to the SONeFMUC, phragmites classification gave poor results; most omission errors could be 

found with tamarix, although phragmites cover a large area of the wetland. A low level of 

accuracy is also achieved in trees and tamarix as in the SONeFMUC algorithm, which shows the 

inefficiency of any of these two algorithms in classifying these classes. 

Table 3. 
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4.2.2 MLC classification of the agricultural zone. The MLC was also applied in the agricultural 

zone, with the error confusion matrix shown in table 4. A moderate overall accuracy of 71% is 

obtained, slightly lower than the one of SONeFMUC (approximately 74%). Khat is 0.65 and Z-

score 33.84, indicating a fair agreement but suggesting that the classification result is not random.  

 Based on the statistical parameters, the MLC algorithm performed similarly to the SONeFMUC 

model in the agricultural zone. However, useful information about the performance of the two 

classification methods could be derived by analysing further the error confusion matrix. For 

example, in the first three classes (maize, cereals, and alfalfa), the dominant classes in the zone, 

the mean producer’s accuracy of the MLC is lower (72.6%) than SONeFMUC’s (82.6%), 

indicating an underestimation of MLC in these classes. On the other hand, fallow is classified 

better in MLC than SONeFMUC, although this class is confused in both classifiers with cereals. 

The reason is that they are spectrally similar due to the fact that the satellite image was acquired on 

August when cereals are harvested and fallows represent low vegetation cover. A mosaic of land 

cover map of both zones is illustrated in figure 13(b), showing the results obtained by MLC. 

Figure 13(a),(b). 

 
Table 4. 

 

4.3 Discussion of the results 

The classification algorithms (SONeFMUC and MLC) were applied to the wetland and 

agricultural zones of the satellite image, providing differing results. In the wetland zone, the 

SONeFMUC was found most suitable because the overall accuracy was higher and Khat showed a 

higher reliability of the results. Furthermore, the Z-test between the two methods demonstrates that 

their performance was significantly different in the wetland zone (see table 5). 

 The results followed a similar trend in the agricultural zone, where SONeFMUC offered a 

higher overall accuracy and Khat. However, there was no sufficient statistical evidence that 

SONeFMUC performed significantly different. This may be due to the larger number of classes in 

the agricultural zone compared to the wetland zone (eight and five, respectively), and the similar 

spectral characteristics of the crops. However, as regards the dominant classes, the SONeFMUC 

was found more suitable than MLC which had overestimated them. 

 Useful information was derived using a visual assessment of land cover maps produced by both 
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classifiers. Figure 14 illustrates a region of thematic map in the agricultural zone, showing the 

superior performance of the suggested approach. SONeFMUC yields less pixel misclassifications, 

thus producing more homogeneous fields. Moreover, MLC exhibits a large confusion between 

alfalfa and maize (blue and red colour respectively) in many fields, a situation not confronted in 

SONeFMUC.  

 A similar visual assessment can be carried out in the wetland zone, as illustrated in figure 15. 

The overestimation of tamarix against phragmites by MLC can be observed, a result appearing 

also in the confusion matrix hosted in table 3. SONeFMUC classified uniformly the stretch 

phragmites which is the correct land cover type. Additionally, in the lake’s shore where the depth 

of the water is low, a large amount of pixels was classified errroneously by MLC as phragmites 

and wet meadows; these pixels though belong to water, as correctly labelled by SONeFMUC. 

 Owing to the structure learning (GMDH), the proposed method accomplished the feature 

selection task. The network generated for the wetland zone used as inputs only eight out of 26 

original features. The subset of significant features selected by GMDH includes: bands 1-3, the 

ASM co-occurrence feature from the third band, greenness and brightness from the tasseled cap 

features, and intensity and hue from the IHS features. In the agricultural zone, the resulting 

network used only 12 out of the 26 initial features. These features consist of the four bands, 

correlation from the first band, homogeneity from the third band, ASM from the fourth band, the 

three tasseled cap features, and intensity and hue from the IHS features. On the contrary, the 

maximum likelihood classifier doesn’t even provide this capability; therefore feature selection is 

based on the designer’s experience or on a time consuming trial-and-error process.  

Table 5. 
 

Figure 14. 
 

Figure 15. 
 

5. Conclusions 

In this paper, the SONeFMUC is proposed and applied to land cover classification of a Very High 

Resolution image in a protected area of high ecological interest. To improve classification 

accuracy, the image was divided into two zones: the wetland zone, where land cover corresponded 

to five habitat classes, and the agriculture zone with eight crop classes. The performance of 
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SONeFMUC is contrasted to the one the MLC classifier.  

 The structure of SONeFMUC is expanded in a self-organizing manner via the GMDH 

algorithm. At the end of structure learning, the appropriate network is recovered including the 

most informative feature as inputs (feature selection). The node models of the network are 

regarded as generic fuzzy rule-based classifiers, performing successive feature transformations and 

decision making. The decision outputs of the fuzzy neuron classifiers are combined using a fusion 

scheme. The fuser serves also as a means to discriminate those patterns that are well classified by 

the parent FNC’s and the ones which require further investigation by the neurons in the following 

layer. 

 A high classification accuracy of 89.5% is obtained by SONeFMUC in the wetland zone (Khat 

= 0.83). The suggested classifier was able to discriminate the dominant habitat classes: 

phragmites, wet meadows, and water bodies. In the agricultural zone, the performance of 

SONeFMUC was lower, showing an overall accuracy of 74.21% (Khat = 0.67). The basic reason 

for this was the large spectral overlapping between the crop classes together with larger number of 

classes as compared to the wetland zone. The dominant classes of the agricultural zone (alfalfa, 

maize and cereals) were discriminated in a satisfying degree, since the average producer’s 

accuracy was 82.6%. Finally, it should be noticed that the proposed method was able to select the 

appropriate input features for each zone, leading to higher classification accuracy.  

 Performance comparisons with MLC verified the efficiency of the proposed SONeFMUC. In 

both zones, SONeFMUC achieved higher overall accuracy and Khat than MLC. Particularly, in 

the wetland zone the overall accuracy of MLC was 5% lower and the Khat revealed poorer 

classification quality. In addition, the Z–test between the two methods proved that their 

performance was significantly different. In the agricultural zone, the quality statistics of MLC was 

lower but comparable to the SONeFMUC. Nevertheless, MLC underestimated the dominant crops, 

contrary to SONeFMUC, making the use of the suggested method more appropriate. 

 Apart from the initial bands, more informative features are extracted from the multispectral 

image, namely, textural and spectral features. Future work will explore the capabilities of our 

network using wavelet transformation as additional input. 
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Figure 1. Location map and main land cover of the study area. 
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Figure 2. A general SONeFMUC architecture. 
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Figure 3. An example of the structure of a node in the first layer of the network. The node incorporates 

two inputs, two continuous outputs, a FPD unit and a DMFU unit. 
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Figure 4. (a) Initial arrangement of membership functions with 3iK = , 

(b) membership functions with tuned centres using K-means clustering. 
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Figure 5. Premise partition after tuning the membership functions using the K-means clustering 

algorithm. 
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Figure 6. An illustrative graphical representation of the non-linear mapping implemented by the FPD 

unit for an artificial problem of 4M =  classes. Class one patterns are represented by a cross, class 

two by a square, class three by a circle and class four by a triangle. 
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Figure 7. Shape of the membership functions in the premise part of the DMFU. 
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Figure 8. Partition of the DMFU input space for 4M =  classes. 
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Figure 9. Graphical representation of the class decision regions designed by  

the DMFU unit, for the artificial problem of 4 classes. 
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Figure 10. Neuron structure of nodes in the 2=  layer of the network. 
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Figure 11. Neuron structure of nodes in layers 3≥ .  
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Figure 12. Example of the Structure Learning process by means of the GMDH algorithm. 
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(a) 

(b) 

 
 
 
 
 
 
 

 
(c) 

Figure 13. Mosaic of IKONOS land cover classification of wetland and agricultural zone using 

SONeFMUC (a) and MLC (b). The legend is presented in (c) 

 
 
 
 
 
 
 
 
 
 

Page 39 of 43

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

(a) (b) (c) 
Figure 14.  A subset of the land cover map produced with SONeFMUC (a), and MLC (b) in the 

agricultural zone east of the wetland. Legend is given in (c). 

 

(a) (b) (c) 
Figure 15.  A subset of the land cover map produced with SONeFMUC (a), and MLC (b) in the 

wetland zone south of the lake. Legend is given in (c). 
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Table 1. Confusion matrix obtained by the application of the SONeFMUC to the testing data set of the 

wetland zone. 

 Wetland map classification   

SONeFMUC Phragmites Tamarix Wet meadows Trees Water Bodies PA (%) UA (%) 

Phragmites 102 12 7 3 0 90.27 82.26 

Tamarix 7 17 2 3 0 54.84 58.62 

Wet meadows 4 1 198 0 0 95.65 97.54 

Trees 0 1 0 3 0 33.33 75.00 

Water Bodies 0 0 0 0 21 100.0 100.0 

Reference 113 31 207 9 21   

Overall Acccuracy=89.5%: Khat=0.83: Z-score=33.14 

 
 
Table 2. Confusion matrix obtained by the application of the SONeFMUC to the testing data set of the 

agricultural zone. 

 Agriculture map classification   

SONeFMUC Alfalfa Cereals Maize Orchards Vegetables Fallow Shrubs Urban 
PA 

(%) 

UA 

(%) 

Alfalfa 149 8 23 3 12 3 2 0 74.13 74.50 

Cereals 18 190 2 5 4 23 14 2 90.48 73.64 

Maize 21 1 147 8 11 0 1 0 83.05 77.78 

Orchards 6 1 2 21 2 1 1 0 50.00 61.76 

Vegetables 5 1 3 2 15 0 0 0 32.61 57.69 

Fallow 2 8 0 1 2 33 2 2 55.00 66.00 

Shrubs 0 1 0 2 0 0 7 0 25.93 70.00 

Urban 0 0 0 0 0 0 0 28 87.50 100.0 

Reference 201 210 177 42 46 60 27 32   

Overall Acccuracy=74.21%: Khat=0.67: Z-score=34.83 
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Table 3. Confusion matrix obtained by the application of the MLC to the testing data set of the wetland 

zone. 

 Wetland map classification   

MLC Phragmites Tamarix Wet meadows Trees Water Bodies PA (%) UA (%) 

Phragmites 87 10 9 7 0 76.99 76.99 

Tamarix 19 15 1 0 0 48.39 42.86 

Wet meadows 7 6 197 0 0 95.17 93.81 

Trees 0 0 0 2 0 22.22 100.00 

Water Bodies 0 0 0 0 21 100.00 100.00 

Reference 113 31 207 9 21   

Overall Acccuracy=84.51%: Khat=0.74: Z-score=25.48 

 
 
 

Table 4. Confusion matrix obtained by the application of the MLC to the testing data set of the 

agricultural zone. 

 Agriculture map classification   

MLC Alfalfa Cereals Maize Orchards Vegetables Fallow Shrubs Urban 
PA 

(%) 

UA 

(%) 

Alfalfa 119 7 5 0 4 0 0 0 59.20 88.15 

Cereals 25 162 3 6 4 19 4 0 77.14 72.65 

Maize 27 0 144 2 5 0 0 0 81.36 80.90 

Orchards 12 7 15 34 6 3 1 0 80.95 43.59 

Vegetables 18 3 10 0 22 0 0 0 47.83 41.51 

Fallow 0 23 0 0 5 38 3 0 63.33 55.07 

Shrubs 0 3 0 0 0 0 19 0 70.37 86.36 

Urban 0 5 0 0 0 0 0 32 100.0 86.49 

Reference 201 210 177 42 46 60 27 32   

Overall Acccuracy=71.7%: Khat=0.65: Z-score=33.69 
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Table 5. Comparison of the classification performance of the SONeFMUC with the MLC in wetland 

and agricultural zone, using statistical parameters and Z-test performance. 

Wetland Agricultural  

SONeFMUC MLC SONeFMUC MLC 

Overall Accuracy 89.5% 85.04% 74.21% 71.7% 

Khat 0.83 0.75 0.67 0.65 

Z-score 33.14 26.21 34.84 3.69 

Z-test 2.18* 0.72* 

*95% confidence level 
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