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ABSTRACT 
 

Monitoring soil erosion risk is an important part of soil conservation practices. It is 
usually estimated with the Universal Soil Loss Equation, and the C-factor (vegetation 
cover) is derived from optical satellite images. However, due to lack of data and 
resources, or in rapid assessments, C-factor is estimated using one or a few satellite 
observations, despite being temporally variable according to plants' phenology. The 
aim of this work was to study the effect of seasonality in estimating C-factor. This 
was achieved by demonstrating first that there is a difference when estimating soil 
erosion with USLE at variable time steps in a year, namely once, seasonally and 
monthly. Using MODIS NDVI images and statistical analysis at subcatchment scale, 
it was shown that there is a significant difference when estimating mean annual soil 
loss with the above mentioned temporal options. The highest differences were 
observed between monthly and annual time steps. The second objective was to 
identify which is the optimum time to estimate C-factor in a year. The results show 
that November, October or March are the optimum months for single image 
estimation of annual soil erosion. Statistical analysis with a random point dataset 
suggested that the spatial variability of the results was influenced by the land cover 
type, especially in areas with variable leaf cover where a single date estimation of C-
factor was not representative of the whole year, such as annual crops and deciduous 
trees. 
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INTRODUCTION 
 

Soil erosion is probably the most dangerous form of soil degradation worldwide, 
which is caused by both natural and human factors. More specifically, for the 
Mediterranean ring, scenarios of climate change indicate high and increasing erosion 
risk, due to sparse vegetation, low soil structural stability, non-negligible slopes, and 
intense rainstorms (Cheviron et al., 2011). Land cover changes, often due to forest 
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fires, intensive grazing, and changes of agricultural patterns, have also been 
contributing to Mediterranean land degradation (Cerdà et al., 2010). Knowledge of 
rates of soil erosion by water is important for three principal reasons. First, it is 
essential to our understanding of landform development. Secondly, on agricultural 
land, these rates determine the long-term sustainability of agricultural practices and 
have profound economic consequences (Doran, 2002, Pimentel et al., 1995). Finally, 
the eroded material provides the source of organic and inorganic materials which are 
transported to downstream water bodies thus accelerating sedimentation and impacts 
on water quality (Nezlin et al., 2005).  
 
Monitoring soil erosion in-situ is very costly and usually limited to small 
experimental sites. Thus, several approaches to soil erosion modeling have been 
developed: physical models (e.g. PESERA), conceptual models (e.g. SWIM) and 
empirical models (e.g. USLE) (Kirkby et al., 2008, Krysanova et al., 1998, 
Wischmeier & Smith, 1978). All models, be they simple black box or complex, 
process-based structures, require parameters that are often troublesome to estimate 
accurately. Input parameters are difficult to estimate with any degree of precision 
because of the limitations of available measurement techniques and spatial and 
temporal variability (Brazier et al., 2000). The most widely applied empirical erosion 
model is the Universal Soil Loss Equation (USLE) which was developed especially to 
calculate soil erosion rates in agricultural areas as a function of soil erodibility, 
topography, rainfall, management and cover factors (Wischmeier & Smith, 1978). 
After USLE, several other improvements have been proposed (RUSLE, MUSLE, and 
others) which are based on the basic empirical approach (Renard et al., 1991, 
Williams, 1975). Nevertheless, USLE remains the most widely used model for soil 
erosion (Kinnell, 2010). 
 
Finding data at the appropriate spatial and temporal scales to feed into soil erosion 
models has been a major problem in their application. Geographic Information 
Systems (GIS) and remote sensing are powerful tools for investigating the status of 
natural resources (Morain, 1998). Capitalizing on the advantages of remote sensing as 
a source of data and the spatial analysis capabilities of GIS, several adaptations of soil 
erosion models have been presented. These have been applied from the farm level to 
regional extents, from 0.6m to 1100m spatial resolution, and from monthly to annual 
time steps (Symeonakis & Drake, 2004, Thiam, 2003, Vrieling, 2006).  
 
Specifically for USLE, the soil erodibility (K) and topography (LS) factors are 
constant over long periods, and their spatial scale has only troubled the researchers 
(Angulo-Martínez et al., 2009, Panagos et al., 2012). The rainfall factor (R) is 
seasonally variable and meteorological stations routinely collect data which are 
available at low cost. Models and satellite images have been used to increase the 
spatial distribution of R (Meusburger et al., 2012, Zhu et al., 2011). The vegetation 
cover factor (C) is also seasonally variable, however its estimation requires 
acquisition of satellite images and digital image processing work. This is the main 
reason why C-factor is usually estimated using a single satellite image (de Asis & 
Omasa, 2007, Ismail & Ravichandran, 2008) or only a few (Folly et al., 1996). In 
these studies the selection of the time of image acquisition is arbitrary and unjustified, 
although it may considerably influence the resulting soil erosion estimate (Hessel, 
2005, Vrieling, 2006).  
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The aim of this work is to study the effect of seasonality in estimating the C-factor of 
USLE. The specific objectives include: (i) to demonstrate that there is a difference 
when estimating soil erosion with USLE at variable time steps in a year, and (ii) to 
identify which is the optimum time to estimate C-factor in a year. The results were 
examined together with the land cover and other factors that influence the seasonality 
of soil erosion.   
 

MATERIALS AND METHODS 

Study area 

The study area consists of the 10 main river basins of north Greece, including their 
extension to adjacent countries in cases of transboundary rivers (Figure 1). The total 
area is 119,000 km2 and is subdivided in 65 subcatchments (Strahler level 5) to 
facilitate analysis. Small coastal basins (less than 1,500 km2) were excluded from 
analysis. A large sub-basin of Evros/Maritsa falling in European Turkey was also 
excluded due to lack of soil and land cover data. 
 
The southern part of the study area is characterized by the Mediterranean climate, 
while the northern inland part is continental. Annual rainfall ranges from about 
400mm in the lowland coastal areas to more than 1500mm in the mountain regions 
(Tockner et al., 2008). Elevation ranges from 0 to 2925 m.a.s.l. and mountains cover 
the largest part of the study area, forming alluvial valleys. The land use is mainly 
arable land in the lowland valleys and natural vegetation in higher elevations (43% 
and 53% respectively, according to CLC2000). Soil textural class (according to the 
European Soil Database) is characterized as medium in the central and south part, 
medium fine to fine in the northeast part, and coarse in the northwest part. 
 
According to UNCCD (United Nations Convention to Combat Desertification), the 
area is prone to desertification due to the particular conditions, which include poor 
and highly erodible soils, and uneven distribution of rainfall. 
 

Datasets and processing 

The soil erosion risk was estimated by the USLE. As seen in the description of each 
factor, data from remote sensing were utilized as much as possible.  
 
A = C R K LS P 
 
where: 

- A is the estimated annual soil loss in Mg ha-1 y-1. 

- C is the cover factor (unitless). It is defined as the ratio of soil loss under the 
given vegetation cover to that which would occur under continuously bare 
soil. This was estimated from the equation: C = exp (-a (NDVI / (b - NDVI))), 
where NDVI is the Normalized Difference Vegetation Index, and a and b are 
constants derived from a similar work in Italy (Van der Knijff et al., 1999). 
The NDVI images were acquired by the MODIS sensor (Moderate Resolution 
Imaging Spectroradiometer) on board the Terra satellite. To avoid data gaps 
because of frequent cloud cover during the rainy season, the product 



Alexandridis, T.K., Sotiropoulou, A.M., Bilas, G., Karapetsas, N., and Silleos, N.G., 2014. The effects of seasonality 
in estimating the C-factor of soil erosion studies. Land Degradation and Development, DOI: 10.1002/ldr.2223. 

   

 4

MOD13Q1 "Vegetation Indices" was used, which is a 16-day composite at 
250 m spatial resolution that is available globally 
(https://lpdaac.usgs.gov/products/modis_products_table/mod13q1). The data 
were downloaded from NASA (https://wist.echo.nasa.gov/) at a monthly time 
step. 

- R is the rainfall erodibility factor (MJ mm ha-1 hr-1 yr-1) which represents the 
driving force for rain erosion. It takes into consideration the total rainfall and, 
more important, the intensity and seasonal distribution of the rain. It was 
approximated using the Modified Fournier Index (Arnoldus, 1978): MFI=Σ(pi

2 
/ p), where pi is the mean monthly rainfall (mm) and p is the mean annual 
rainfall (mm). The cumulative precipitation volume was estimated from 
TRMM (Tropical Rainfall Mapping Mission) data 
(http://trmm.gsfc.nasa.gov/), using the product "3Β43" (mean monthly 
rainfall) at 0.25o spatial resolution. TRMM uses a precipitation radar, a passive 
microwave imager and a visible and infrared scanner to estimate precipitation 
volumes at high spatial and temporal resolutions. 

- K is the soil erodibility factor (Mg ha hr ha-1 MJ-1 mm-1). This was estimated 
from the European Soil Database (Panagos, 2006) at a scale 1:1,000,000 (Van 
der Knijff et al., 2000).  

- L, S: the topographic factors (unitless) account for the effects of slope 
steepness and slope length on erosion. These were calculated from the 
equation described in Moore and Burch (1986): LS = (Af C / 22.13)0.4  (sinβ / 
0.0896)1.3, where  Af is the flow accumulation (pixels), C is the pixel size (m), 
and β is the slope angle. A digital elevation model from SRTM (Shuttle Radar 
Topography Mission) data at 90 m spatial resolution (http://srtm.usgs.gov/) 
was used to estimate the flow accumulation and slope. 

- P: supporting practices. In absence of data, this was set to 1. 

Additional datasets used were: 

- CLC2000: The CORINE Land Cover of year 2000 (EEA, 2004), with 
minimum mapping unit of 25 ha, which was the most recent available for the 
entire study area. 

- Subcatchments from the "European Catchment Characterisation and 
Modelling" project (Vogt et al., 2007).  

The temporal frame of analysis included two hydrological years from July 2009 to 
June 2011. 
 

Formulation of objective functions and statistical analysis 

The first objective of this work was to demonstrate that there is a difference when 
estimating the C-factor with variable time steps. Thus, the annual soil loss was 
estimated with the C-factor derived from three options: (i) once "A1", i.e. using 1 
satellite image per year, (ii) seasonally "A4", i.e. using 4 satellite images per year, and 
(iii) monthly "A12", i.e. using 12 satellite images. Considerable variations among the 
three options would suggest an effect of seasonality in C-factor estimation. 
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In support of previous work that had used a single date C-factor estimation, the 
second objective is to identify the optimum single date NDVI image that can be used 
to provide a good estimate of the annual soil loss. Thus, the estimated soil loss of each 
month was compared with the mean monthly, and the month with the lowest 
difference was selected as the optimum single time to estimate C-factor. This is based 
on the assumption that the best estimate of C is when using many satellite images 
which are each representative of a short period. 
 
Analysis was carried out at the subcatchment level, i.e. the mean soil loss and other 
factors were calculated for each of the 65 subcatchments. Furthermore, a sample of 
10000 randomly selected points was used for statistical analysis. This was done to 
reveal patterns and interactions (e.g. with land cover type) which was not possible at 
the subcatchment level. However, the subcatchment level was used to facilitate the 
presentation and interpretation of the results.  
 
Repeated analysis of variance (ANOVA), logistic regression and contingency analysis 
were used to test for the effects of land cover type, year, rainfall, slope, and annual 
soil loss, and their interactions on the resulting differences and optimum month. F-
tests and Chi-tests from these analyses were used to test the main effects and 
interactions. These analyses allowed a more detailed observation of interactions as 
compared to the subcatchment means. 
 

RESULTS AND DISCUSSION 

Differences in soil erosion estimate because of seasonality 

The average estimated annual soil loss was calculated per subcatchment and results 
were compared among the three options ("Α1", "A4" and "A12") using paired T-test. 
Table 1 presents the resulting annual soil loss (aggregated per river basin) and the 
differences across the three options. 
 
Results suggest that there is a consistent significant overestimation of annual soil loss 
with option A1 as compared with A12, with a mean difference of 9.37 Mg ha-1 y-1. 
This was expected because of the selection of the single image in November, a time 
when most annual crops have been harvested and most of the deciduous trees have 
dropped their leaves, thus leaving very sparse or no vegetation cover. 
 
With option A4, soil loss is again overestimated as compared to A12. Although 
significantly different, the mean difference of 4.55 Mg ha-1 y-1 is lower than the one 
observed between options A1 and A12. This is due to the better approximation of the 
seasonal phenologic changes of natural and agricultural vegetation.  
 
Further point analysis was employed to investigate the effects of various parameters 
on the results (Table 2). The overestimation of annual soil loss is consistently higher 
in areas covered by natural vegetation (mean = 11.71 Mg ha-1 y-1), as compared to the 
agricultural areas (mean = 3.92 Mg ha-1 y-1). More specific, analysis of variance of the 
differences by CLC2000 land cover type, shows "sparsely vegetated areas", "broad-
leaved forest" and "natural grassland" having the highest differences across the three 
options, as compared to "coniferous forest" and "schlerophylous vegetation". 
"Agricultural land covered by complex cultivation patterns", "olive groves", 
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"vineyards" and "non-irrigated arable land" show the highest differences across the 
three options, as compared to "permanently irrigated land" and "rice fields". This 
could be mainly due to the variation of canopy cover across the year, which provides 
a high level of inaccuracy when soil loss is estimated infrequently (annually or 
seasonally). Finally, the results are consistent across the two years, with the mean 
difference 0.83 Mg ha-1 y-1 (F=3.623, DF=388, P=0.058). 
 
The spatial distribution of the differences in estimating annual soil loss between the 
three options is displayed in Figures 2 and 3. All subcatchments show a positive 
difference across the three options, in the same way as the river basin level. There are 
several subcatchments that display a very high difference across the three options. 
These are located at the upstream and mountainous areas of Aliakmon, 
Strimon/Struma and Nestos/Mesta river basins. According to the ANOVA, it seems 
that land cover is influencing this behaviour, as the main land cover type is 
herbaceous or deciduous natural vegetation. In contrast, the lowest differences are 
displayed in the cultivated plains of Axios/Vardar and Evros/Maritsa river basins. 
 

Optimum time to estimate C-factor 

The frequency distribution of the optimum month to estimate C-factor for both years 
is displayed in Figure 4 and their spatial distribution in Figure 5. 
 
November is most frequently the optimum month for estimating annual soil loss, 
followed closely by March and October. This could be due to the low vegetation 
coverage during these wet months, which renders them high in the rank of erosion 
risk. It is worth noting that the dry, fully covered by vegetation months of May to 
August were not optimum for the estimation of annual soil loss for any of the 
subcatchments.  
 
In Figure 5 there is a tendency for March and October as the optimum month at the 
cultivated plains of the river basins, while November, December and January are 
more frequently the optimum months at the upstream and mountainous areas. This 
could be the effect of the variability of rain and land cover distribution within each 
heterogeneous subcatchment. 
 
Further analysis was employed to investigate the effects of various parameters on the 
results. Contingency analysis of the distribution of the optimum month per land cover 
type has shown a pattern related to major land cover type (Table 3). More specifically, 
there is a tendency for the autumn months to be the optimum ones in the agricultural 
land, while March is optimum more frequently in the natural vegetation. This could 
be due to the soil preparatory cultivation processes which usually occur in October, 
leaving the soil exposed to rain erosion. On the contrary, the areas with natural 
vegetation are covered by canopy to a variable degree throughout the year (e.g. grass 
or bush covers the soil even when the leaves in a deciduous forest have dropped), thus 
the preference for March may be influenced by the high rainfalls of spring.  
 
Logistic regression has revealed that other parameters which might have an influence 
on the selection of the optimum month (mean annual rainfall, slope, and annual soil 
erosion), in fact have no effect (Table 4). Furthermore, contingency analysis with Chi-
square statistic was used to confirm that the distribution of the optimum month is the 
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same across the examined years (N = 130, Pearson's Chi-square = 11.703, P = 
0.3054).  
 

Discussion and implications for land management 

This research contributes to the more accurate and easy estimation of soil erosion. A 
GIS model has been selected where all input data (except soil erodibility) have been 
estimated from remote sensing. The results have identified cases where a single 
satellite image or a few images per year can provide an acceptable estimate of C-
factor and thus of soil erosion. This is important in locations with limited data 
availability or for rapid assessment of large areas, similar to programs of the FAO in 
Africa (FAO, 1983). 
 
Regarding the first objective, LULC seems to explain the results, i.e. the type of land 
cover influences the possibility that annual soil loss can be estimated equally by one, 
four or twelve satellite observations of C-factor in a year. As expected, the differences 
between the three options were higher in areas with vegetation of variable leaf cover 
such as annual crops and deciduous trees. The latter category showed, in fact, the 
highest differences because of the combined effect of rain-slope-cover, as deciduous 
trees are located on the highest slopes that also receive the highest rainfall when they 
have lost their leaves and before the spring leaf-out. Other studies in the 
Mediterranean have found similar patterns of soil loss according to rain distribution 
and land cover type (De Jong et al., 1999, Diodato & Bellocchi, 2007, Kosmas et al., 
1997, Panagos et al., 2011). In addition to the direct erosive capacity of rainfall, soil 
hydrology is an important factor influencing the seasonal variations of soil erosion 
through the change of infiltration rate (Cerdà, 1996, Cerdà, 1997). 
 
Regarding the second objective, the temporal distribution of soil loss in the annual 
cycle and the high seasonal differences are the major factors that control the selection 
of the optimum month. It seems that November and March, the months most 
frequently appearing as the optimum ones for single observation of soil loss 
estimation, have a combination of high rainfall erosivity (R-factor) and low vegetation 
cover (high C-factor). The other months have considerably lower erosion risk, thus 
their selection as optimum would have led to the severe underestimation of annual 
soil loss. Equivalent results have been reported in another study that involved the 
identification of erosion features in grasslands (Vrieling et al., 2008), where it was 
concluded that the assessment of soil erosion with a single satellite image can be 
successful if it represents the vegetation cover during the time of the major erosion 
events. 
 
Soil erosion shows a high level of spatial variability, as the parameters that influence 
it show an equally high spatial heterogeneity (Nearing et al., 1999). In this work, 
aggregated statistics per sub-catchment have been used to draw some of the results, 
whose representativity can be questionable in highly variable environments 
(Alexandridis et al., 2010). For this reason, randomly sampled point analysis was 
preferred, and aggregated statistics were used mainly for presentation purposes. 
 
It should be clarified that at these scales, USLE estimates the soil erosion risk rather 
than actual soil loss, which is very costly and can only be measured at plot scale. The 
reported accuracy of USLE is variable but acceptable in similar studies around the 
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study area (Kosmas et al., 1997, Panagos et al., 2011). Another source of uncertainty 
in this work is the selected spatial and temporal scale. The pixel size of 250m for 
describing C (the main focus of this study) may seem large, however it has been 
proven adequate for regional studies of vegetation monitoring (Alexandridis et al., 
2008, Ferreira & Huete, 2004). Also, detailed weather data are needed in erosion 
studies in order to capture even a single rain event that could be very grave (Edwards 
& Owens, 1991). The selected monthly time step is similar to the one used in previous 
work performed around the study area (Panagos et al., 2011) and in other 
Mediterranean sites (Diodato, 2005). 
 
The outcomes of this work could be useful for projects related to the Soil Protection 
Strategy of the EU. For instance, the low cost flow of information would be 
invaluable to help coordinate soil conservation actions aimed at combating soil 
degradation (Grimm et al., 2002). Policy makers could be provided with lower cost or 
more frequently available information to support their strategies. They could focus on 
distributing land management practices per month and per region in order to minimize 
the soil erosion risk. Furthermore, the results could easily feed into a soil observatory 
in order to be disseminated more easily and help create awareness. At the local level, 
this work could provide fast and low cost information that would help inform farmers 
and agronomists regarding the soil erosion risk through a web information system. 
 

CONCLUSIONS 
There is a significant difference in the estimation of soil loss by erosion when using 
variable time steps (expressed as 1, 4 or 12 images) for the C factor. The optimum 
months for single date estimation of annual soil loss are November, October, or 
March. The main factor that controls the spatial distribution of the results is the type 
of vegetation cover, specifically the variability of winter foliage loss.  
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Tables  
 
Table 1: Estimated annual soil loss (Α, in Mg ha-1 y-1) aggregated per river basin 
using (a) A1 - one satellite image, (b) A4 - four satellite images, and (c) A12 - twelve 
satellite images 
River basin A1 A4 A12 
Evros/Maritsa 15.68 13.14 10.65 
Axios/Vardar 27.65 23.87 19.94 
Strimon/Struma 27.85 23.08 18.24 
Nestos/Mesta 33.70 28.03 20.56 
Loudias 22.34 20.71 15.00 
Aliakmon 41.06 33.06 28.82 
Lissos 22.94 17.31 11.90 
Vistonida 35.19 25.31 16.50 
Gallikos 8.20 6.64 4.39 
Mygdonia 7.66 7.59 4.37 

Differences at the 
subcatchment level 

A1 - A12 = 9.37** (N=130, t=6.138, P < 0.0001) 
A4 - A12 = 4.55** (N=130, t=8.134, P < 0.0001) 
A1 - A4 = 4.81** (N=130, t=4.431, P < 0.0001) 

** Denotes statistical significance at the 99% level 
 
 
 
Table 2: Analysis of variance and effect of various parameters on the differences 
across the options of estimating annual soil loss (point analysis, N = 16608) 
Effect Class 

means (Mg 
ha-1 y-1) 

P 

Main LC on Differences  
"natural" 

"agricultural"

 
11.71 
3.92

<0.001** 

CLC type on Differences 
"sparsely vegetated areas" 

"broad-leaved forest" 
"natural grassland" 
"coniferous forest" 

"schlerophylous vegetation" 
 "complex cultivation patterns" 

"olive groves" 
"vineyards" 

"non-irrigated arable land" 
"permanently irrigated land" 

"rice fields"

 
35.92 
18.24 
13.77 
7.00 

11.56 
5.94 
5.22 
5.16 
4.26 
0.61 
0.92

<0.001** 

Year on Differences 
2009 
2010

 
2.83 
3.66

0.058 

** Denotes statistical significance at the 99% level 



Alexandridis, T.K., Sotiropoulou, A.M., Bilas, G., Karapetsas, N., and Silleos, N.G., 2014. The effects of seasonality 
in estimating the C-factor of soil erosion studies. Land Degradation and Development, DOI: 10.1002/ldr.2223. 

   

 13

 
Table 3: Contingency analysis for the effect of CLC type on the selection of a single 
optimum month for estimating annual soil loss (point analysis, N = 16608) 
CLC land cover type Optimum 

month 
Frequency of 
appearance (%) 

Non-irrigated arable land September 16.79 
Permanently irrigated land October 15.35 
Rice fields December 22.58 
Vineyards October 18.52 
Fruit trees and berry plantations November 21.38 
Olive groves December 33.33 
Pastures March 16.14 
Complex cultivation patterns November 17.26 
Principally agricultural, with significant 
areas of natural vegetation March 21.66 
Broad-leaved forest March 33.5 
Coniferous forest March 23.06 
Mixed forest March 28 
Natural grasslands March 25.63 
Moors and heathland January 37.66 
Sclerophyllous vegetation March 29.42 
Transitional woodland-shrub March 32.29 
Pearson's Chi-square = 4212.8, P<0.001** 

** Denotes statistical significance at the 99% level 
 
 
 
 
 
Table 4: Logistic regression analysis for the effect of various parameters on the 
selection of a single optimum month for estimating annual soil loss (at subcatchment 
level, N=130) 
Effect Chi-square P 
Mean annual rainfall 10.14 0.1810 
Slope 8.52 0.2887 
Annual soil erosion 9.72 0.2052 
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Figure 1: River basins and topography in the study area. 
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Figure 2: Spatial distribution of the differences between estimating annual soil loss 
monthly and seasonally. 
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Figure 3: Spatial distribution of the differences between estimating annual soil loss 
monthly and once in a year. 
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Figure 4: Frequency distribution of optimum single month for estimating annual soil 
loss, at the subcatchment level. 
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Figure 5: Spatial distribution of the optimum single month for estimating annual soil 
loss. The label in each subcatchment indicates the optimum month. 
 


