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Abstract 

Vegetation monitoring has been performed using remotely sensed images to 

secure food production, prevent fires and protect natural ecosystems. Recent 

satellite sensors, such as MODIS, provide frequent wide scale coverage in 

multiple areas of the spectrum, allowing the estimation of a wide range of 

specialized vegetation indices (VIs), each offering several advantages. It is not, 

however, clear which VI performs better during operational monitoring of wide 

scale vegetation patches, such as CORINE Land Cover (CLC) classes. The aim 
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of this work was to investigate the performance of several VIs in operational 

monitoring of vegetation condition of CLC vegetation types, using Terra 

MODIS data. Comparison among the VIs within each CLC class was 

conducted using the sensitivity ratio, a statistical measure that has not been 

used to compare VIs and does not require calibration curves between each VI 

and a biophysical parameter. In addition, the VI's sensitivity to factors such as 

the aspect, viewing angle, signal saturation, and partial cloud cover was 

estimated with correlation analysis in order to identify their operational 

monitoring ability. Results indicate the Enhanced Vegetation Index as superior 

for monitoring vegetation condition within the CLC types, but not always 

optimum in the performance tests for operational monitoring. 

 

Keywords: vegetation indices; performance evaluation; operational 

monitoring; sensitivity ratio; MODIS 

 

 

1. Introduction 

Vegetation is monitored from Earth observation satellites at large scales in order to provide 
knowledge about the condition of natural ecosystems, the productivity of crops and the 
assessment of risks, such as fire and drought. Monitoring plant phenology has helped identify 
deforestation in Brazil and improved management for yield potential in maize production 
(Ferreira et al. 2003, Vina et al. 2004). Vegetation monitoring has been used to aid risk 
prevention and management of drought in agricultural crops and fire prevention in the 
Mediterranean forest and maquis (Maselli et al. 2003, Unganai and Kogan 1998). More 
recently, monitoring terrestrial ecosystems has aided climate change assessment regarding 
estimation of carbon fluxes and ecosystems capacity to act as carbon sinks (Gonzalez-Alonso 
et al. 2006, Potter et al. 2009). 

Often, monitoring of vegetation condition with remotely sensed data is performed by utilizing 
vegetation indices (VIs), which are spectral transformations of two or more bands. Their 
ability to detect vegetation quantity and quality is based on the high reflectance of green 
vegetation in the near-infrared spectrum and the low reflectance in the red spectrum. The 
usefulness of using VIs is immense, as they offer easy calculation and interpretation, and 
minimisation of radiometric, atmospheric and topographic effects (Silleos et al. 2006). A 
large number of VIs has been designed, providing certain advantages. Among the numerous 
vegetation indices available, the Simple Vegetation Index (SVI) was developed first and is 
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one of the simplest to calculate (Tucker 1979). The Normalized Difference Vegetation Index 
(NDVI) (Townshend et al. 1987) offers several advantages such as the confined range of 
values which facilitates interpretation, and is probably the most widely used for monitoring 
vegetation condition (Baret and Guyot 1991, Huete et al. 1985). More recently, the Enhanced 
Vegetation Index (EVI) has been proposed by the MODIS Land Discipline Group for use 
with MODIS data to overcome issues related to soil background and atmospheric influence 
(Huete et al. 1999). Large scale programmes related to monitoring vegetation condition with 
VIs include the Fire Prevention System of the Greek Civil Protection Agency at the national 
scale and FAO's Global Information and Early Warning System (GIEWS) at the continental 
scale (FAO 2000, Gitas et al. 2004). 

Following the development of more than thirty VIs, comparisons among different VI have 
been performed using the probability theory (Vaiopoulos et al. 2004), regression analysis 
(Lawrence and Ripple 1998), multivariate analysis of variance (Price et al. 2002) and 
sensitivity analysis (Ji and Peters 2007). Also, simulation data have been used (Bouman 
1992), as well as comparison with reference datasets of biophysical parameters such as 
capability to estimate leaf area index (LAI) (Elvidge and Chen 1995), forest biophysical 
parameters (Peddle et al. 2001), and crop height (Payero et al. 2004). Specifically for 
MODIS, the performance of various indices has been performed from radiometric and 
biophysical perspectives, both pre-launch with simulated images from Landsat TM (Huete et 
al. 1997) and post-launch (Huete et al. 2002) using MODIS, airborne radiometric 
measurements, Landsat ETM+ and in situ field biophysical data collected over validation test 
sites. 

Each VI offered several advantages over the existing ones, justifying its development. 
However, unless tested under specific conditions (scale and geographic region) their actual 
performance is unknown. Thus, it is not clear which VI performs better during operational 
monitoring of wide scale vegetation patches, such as CORINE Land Cover (CLC) classes, 
since no comparative analyses have been performed. The aim of this work was to investigate 
the performance of several VIs in operational monitoring of vegetation condition of CLC 
vegetation types, using MODIS/Terra data. The specific objectives were: (i) to investigate the 
performance of various VIs for monitoring homogeneous CLC vegetation types using the 
sensitivity ratio, and (ii) to investigate the VIs' sensitivity to factors that influence operational 
monitoring. 

2. Study area 

The study area consists of the vegetated areas of Greece, which covers 131,000 km2 including 
the mainland and numerous islands which vary in size (Figure 1). Greece is located in the 
Mediterranean climatic zone, with monthly average temperatures ranging from 5oC in the 
winter to 28oC in the summer. The mean annual precipitation varies throughout the country, 
ranging from 400 to 1800 mm/year, corresponding to the strongly undulating terrain. The wet 
months are March, April and November, while July and August are very dry.  

 [Figure 1 about here] 

Vegetation cover of the area is typically Mediterranean and can be classified into two major 
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categories: natural (59%) and managed (41%), based on the CLC map of Greece (EEA 2004).  

The managed (agricultural) vegetation consists of irrigated annual crops (maize, cotton, 
alfalfa and others) concentrated around lowland irrigation systems, rainfed cereals located on 
the hillsides, and orchards scattered around villages (classes 2.1, 2.2, 2.3 and 2.4 in Table 1). 
The phenological cycle of managed agricultural vegetation is repeated on an annual basis. 
Development phases include seeding, growth, maturity and harvesting, which can largely be 
controlled by modern agricultural practices. Factors such as current meteorological 
conditions, irrigation status and availability of equipment influence the timing. Generally, 
there is one growing season from early spring to early autumn. The agricultural vegetation in 
the study area is monitored by the Hellenic Agricultural Insurance Agency for yield 
prediction and crop damage assessment using, among others, the NDVI vegetation index 
(Silleos et al. 2002). 

The natural vegetation consists of coniferous and deciduous forest, shrubs and pastures 
(classes 3.1, 3.2 and 3.3 in Table 1). The phenological cycle of the natural vegetation is 
relatively stable throughout the year, except in the case of extreme weather conditions. 
Generally, the various types of vegetation leaf-out, grow to maturity and senesce at 
approximately the same time each year. The most notable changes occur after the dormant 
phase of winter, when rapid growth takes place in the spring, followed by senescence in late 
summer or early autumn. The natural vegetation in the study area is monitored by the Civil 
Protection Agency, mainly for fire prevention (Gitas et al. 2004). 

3. Materials and methods  

3.1 Data acquisition and pre-processing 

The main dataset used in this study was acquired by the Moderate Resolution Imaging 
Spectroradiometer (MODIS) on board the Terra satellite. The CLC map was also used to 
identify areas of homogeneous land cover. In specific, the datasets used were: 

 The MODIS/TERRA daily surface reflectance product (MOD09GHK) at 500m pixel 
resolution. This product was selected in preference to the 250m MOD09GQK 
because it included the spectral bands necessary for the calculation of the examined 
VIs. A sample image is provided in Figure 2. 

 The MODIS/TERRA 8day LAI product (MOD15A2) at 1km pixel resolution. 

 The MODIS/TERRA daily geolocation angles product (MODMGGAD) at 1km pixel 
resolution. 

 The Digital Elevation Model (DEM) of Greece at 127m resolution (Figure 3), derived 
from interpolation of elevation contours at 100m intervals. 

 The CORINE Land Cover (CLC) map of 2000 is a vector file that characterizes the 
type of land cover in 44 categories. It was digitized on screen at a 1:100,000 scale 
with minimum mapping unit of 0.25 km2 using Landsat 7 images acquired throughout 
Europe in 2000. The CLC project was jointly managed by the Joint Research Centre 
and the European Environment Agency (EEA 2010). CLC has a hierarchical 
structure, of which the 2nd level was used, as it was in a similar scale to the above 
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mentioned raster datasets. The classes that were considered in this study are provided 
in Table 1. 

 [Table 1 about here] 

[Figure 2 about here] 

[Figure 3 about here] 

The MODIS images acquired on the following dates were used: 13/05/2003, 14/08/2003, 
25/10/2003, 16/02/2004, 13/05/2004, 14/08/2004, 24/10/2004, and 18/02/2005. All the 
MODIS data were downloaded from the Earth Observing System Data Gateway 
(http://edcimswww.cr.usgs.gov/pub/imswelcome/). They were reprojected from the 
Sinusoidal projection to the Greek coordinate system, and the tiles covering the study area 
were mosaiced and masked. The MODIS Reprojection Tool was used to identify the pixels 
flagged as low quality in the MODIS images and they were removed from further processing. 

Three VIs were examined in this study: the Simple Vegetation Index SVI  (Tucker 1979), the 
Normalized Difference Vegetation Index NDVI (Townshend et al. 1987), and the Enhanced 
Vegetation Index EVI (Huete et al. 1999). These three indices were included in this work for 
their diverse properties: SVI is simple in its calculation and requires low computational 
power, NDVI is widely used and long time series exists, and EVI overcomes several sources 
of noise and is promoted as the new standard index. All these VIs were created by using 
MODIS surface reflectance products, at 500m pixel size. Factors used in EVI calculation 
were adopted from Huete et al. (1999): L=1, C1=6, C2=7.5, and G= 2.5. 

The equations for estimating these indices are: 

R

NIR
SVI   (1) 

RNIR

RNIR
NDVI




  (2) 













15.76

5.2
BRNIR

RNIR
EVI  (3) 

Where: NIR is the reflectance in the near-infrared wavelength, R is the reflectance in the red, 
and B is the reflectance in the blue. 

Since the two main vegetation categories of the study area (natural and managed vegetation) 
are different in their phenological cycles, it was decided to study them separately and provide 
results for each main vegetation category. These two categories were defined using the CLC 
map. The map’s scale (1:100,000) was adequate for a nationwide study, and its production 
date (2000) was not expected to create any problems at this level of generalization, as no 
major changes had been recorded in fire and agricultural statistics (YPAAT 2013, YPEKA 
2013). 
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3.2 Evaluation of VIs for monitoring CLC vegetation types 

The basic assumption for the first objective was that monitoring vegetation condition at the 
CLC type level would be better performed with VIs that are responsive to the variability of 
vegetation reflectance. A VI that is more responsive, or sensitive, to vegetation variability 
than another VI would be preferred. Several different measures of the relative sensitivity of 
two VI have been proposed. Becker and Choudhury (1988) suggested using R=|dY/dX|, the 
first derivative of two rescaled VI, Y and X where Y is preferred if R>1. Gitelson (2004) used 

SR=  ( ˆ /dy dx )(Δx/Δy), where ŷ =f(x) was the regression function of VI  y on x, ˆ /dy dx , the 

derivative and Δx/Δy,  the ratio of the ranges of the two VI and where VI Y was preferred if SR 
>1.  Unfortunately, both measures R and SR are somewhat limited since neither accounted for 
random variability of the VI. Ji and Peters (2007) proposed the relative sensitivity sy|x =  
( ˆ /dy dx ) / ŷ , the derivative of a nonlinear regression function ( ˆ /dy dx ) divided by the 

standard error of the prediction ŷ where two VI were compared by plotting sy|x vs x and sx|y 

vs y.  Although sy|x incorporates random variation via ŷ and allows a comparison of two VIs, 

the method is somewhat cumbersome requiring two regressions and a rather ad hoc visual 
assessment of the relative sensitivities with unknown mathematical properties. 

The SR, proposed by Mandel (Mandel 1964, Mandel and Stiehler 1954) is a measure of 
relative variation useful for comparing different methods of measuring the same property and 
is especially useful when the methods have different scales and the relationship between the 
scales is either unknown or complex. The SR is similar in concept to the relative sensitivity of 
Ji and Peters (2007), but is easier to compute and has well-developed mathematical properties 
and statistical tests (Mandel 1964, Otto-Hanson et al. 2009). The SR for two VI, M and N, is 
developed by assuming both VI are functions of the same property Q. Specifically, M=f(Q) 
and N=g(Q) where the functions are both differentiable and the inverses f-1 and g-1 exist. Then 
for VI M, Q=f-1(M) and using the delta rule the variance of Q is σ2

Q(M) =[df -1/ dM]2 σ2
M where 

σ2
M is the variance of M. The sensitivity of VI M is the inverse of the standard deviation of Q 

as measured by M which is 1/σQ(M) = (df/dQ) / σM  since df -1/dM = 1/(df/dQ). Similarly it can 
be shown that the sensitivity of VI N is 1/σQ(N) = (dg/dQ) / σN. Specifically, this is a measure 
of sensitivity of the VI relative to its standard deviation. The ratio of the two sensitivities 
results in the sensitivity ratio 

























/
dN

dM

N

M
SR  (4) 

If SR(M / N) > 1 the sensitivity of M is superior to N, if SR(M / N) < 1 the sensitivity of N is 
superior and the methods have equal sensitivities if SR(M / N) = 1. The physical explanation 

of using SR to compare the performance of two VIs, say M and N, is that if 







N

M
SR > 1 then 

VI M is more responsive relative to its standard deviation in each CLC type than VI N, i.e. VI 
M is relatively more responsive within each group of CLC polygons. It is important to 
emphasize that the SR applies to any biophysical parameter Q, as long as both M and N are 
monotonic, invertible and differentiable functions of Q. This remarkable property means that 
the superiority or inferiority of a VI relative to another does not depend on a specific 
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biophysical parameter as required by previously used techniques, and as such allows global 
superiority statements relative to any possible biophysical parameter. For example, the 
comparison of the sensitivities of EVI and NDVI can be made without fitting calibration 
curves of EVI and NDVI in terms of a biophysical parameter, for example LAI. In addition, 
the SR is invariant to any scale transformation of N or M.  For example, any scale 
transformation EVI will have no effect on the SR between EVI and NDVI. To the authors' 
knowledge, no other method proposed used for evaluating VIs has these properties. For 
details on SR, see Mandel and Stiehler (1954), Mandel (1964), Otto-Hanson et al. (2009). 

The derivative in (4) was computed by regressing each VI against each other (NDVI vs SVI; 
NDVI vs EVI; EVI vs SVI) over the CLC classes for each vegetation class and date. The 
standard deviations for each VI were estimated as the average standard deviation within CLC 
class for each vegetation class and date. A random sample of 1000 points was selected per 
CLC class to estimate means and standard deviations. Scatter plots of each VI against each 
other for each vegetation type and date indicated that for nearly all cases, an approximate 
linear relationship existed between the VI over the CLC classes. The regression results are 
given in Table 2. Predicted vs. actual values of NDVI of the worst fitting model (NDVI vs. 
SVI) is displayed in Figure 4 to give a visual representation of the model fitting. The other 
models followed a similar pattern (data not shown). 

For each CLC type and date, the mean values of NIR, R and B were used in formulas (1)-(3) 
to compute the VIs: SVI, NDVI and EVI. 

[Table 2 about here] 

[Figure 4 about here] 

3.3 Evaluation of indices for operational vegetation monitoring  

The basic assumption for the second objective was that VIs should be usable under normal 
conditions, thus performing well for operational vegetation monitoring. Therefore, a VI 
would be most useful in operational monitoring if it was not affected by the factors that 
usually hinder large scale Earth observation monitoring. The performance of the VIs as 
affected by various factors was examined using performance tests. 

 Aspect: Aspect is a factor reported to influence the sensor’s return signal, depending 
on the relief and sun azimuth and elevation (Goodin et al. 2004). Moreover, it is 
affecting the state of vegetation as it relates to the incoming solar energy and 
resistance to droughts (Bennie et al. 2006). The criterion used to investigate the 
influence of aspect was the level of correlation between the VIs and the aspect. The 
VI with the lowest correlation coefficient with aspect was the most appropriate for 
operational monitoring. In order to assess the relation of VIs in relation to aspect, a 
random sample of 1000 points was selected throughout Greece. Then an aspect raster 
was created at 500m pixel using the DEM and was represented by 8 classes (N, NW, 
W, WS, S, SE, E, NE). For each point of the random sample the values of each VI 
and the aspect class were recorded and correlated in pairs. The analysis was repeated 
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per CLC vegetation type to exclude the influence of the latter, as it may be related to 
aspect. 

 Viewing angle: Wide coverage satellite images are mostly influenced by sensor 
viewing angle, displaying variable reflection from nadir to off-nadir locations (Zhang 
et al. 2003). Specifically for vegetation canopies, NIR is affected more by multiple 
scattering than red reflectance, which causes an increase of the spectral contrast 
between the NIR and red band, resulting in higher VI values off-nadir (Kimes et al. 
1985, Verrelst et al. 2008). In this work, the criterion for the investigation of 
influence of viewing angle was again the level of correlation between the VIs and the 
sensor’s zenith azimuth. The VI with the lowest correlation coefficient with the 
sensor’s zenith azimuth was the most appropriate for operational monitoring. The 
dataset used to compute the correlations of the VIs against the viewing angles was the 
same as for the aspect. 

 Saturation: A major limitation of confined ratio vegetation indices, such as NDVI and 
EVI, is that they asymptotically approach a saturation level after a certain biomass 
density or LAI (Gao et al. 2000, Huete et al. 1997, Todd et al. 1998, Tucker 1977). In 
high density vegetation canopies, the amount of red light that can be absorbed by 
leaves reaches a peak, while NIR reflectance will increase because an addition of 
leaves results in multiple scattering, thus yielding a poor relationship between the VI 
and biomass (Kumar et al. 2001, Thenkabail et al. 2000, Tucker 1977). In this work, 
the criterion to investigate the saturation of the VIs was the variability of a VI at the 
areas of high biomass, where LAI was highest. The MODIS/TERRA 8day LAI 
product (MOD15A2) at 1km pixel resolution was used to identify the areas of high 
vegetation biomass density (LAI > 2), where VI saturation is mostly expected. In high 
biomass densities, the relationship between NDVI and LAI has been identified as 
nearly linear (Myneni et al., 1997; Thenkabail et al., 2000). The VI displaying the 
highest correlation with LAI at these areas of high vegetation density was considered 
the least saturated VI. The correlation was computed using the same dataset used for 
aspect and viewing angle, after resampling the VIs to 1km. Values of LAI lower than 
2 were excluded from this analysis leaving a sample size of 399 points. The reported 
accuracy of MODIS/TERRA 8day LAI is 0.66 m2/m2. 

 Partial cloud cover: Partial cloud cover is a factor influencing VIs in images of large 
pixel sizes (Liu et al. 2004, Zhang et al. 2003). The criterion used to investigate the 
influence of partial cloud cover was the correlation of VI values of partially cloud 
covered pixels of the examined day with the corresponding pixels of the previous or 
next cloud free day. The VI with the highest correlation between the two days was 
considered the most appropriate for operational monitoring, as this VI would be the 
least affected from partial cloud cover. The methodology followed for this purpose 
was to isolate some pixels at the perimeter of clouds, thus potentially partially cloud 
covered, which were cloud free at the previous or the next day of satellite acquisition. 
This criterion was based on the assumption that the changes in vegetation condition 
were not significant between two days, which has already been proven in the study 
area (Alexandridis et al. 2008). Gridding artifacts and variable viewing angles have 
been reported to influence daily MODIS observations (Tan et al. 2006, Wolfe et al. 
1998, Xin et al. 2012). To minimize their influence on the results of this test, only 
near-nadir observations were used (viewing angle < 10o) in the analyses for this test. 
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The test of significance of the correlations was selected for two-tailed probabilities because 
the direction of association of the two variables was not known in advance (Fisher et al. 
1970). 

4. Results and discussion 

4.1 Performance of VIs for monitoring vegetation condition within CLC types 

Results for all vegetation types (Table 3 a) show that EVI displayed a higher performance for 
monitoring the condition of CLC vegetation types on most of the examined dates. The high 
performance of EVI may be due to the design of this VI to overcome known problems of 
older VIs related to interference of soil background and atmosphere. Indeed, this VI has a soil 
adjustment factor, uses the blue to correct for atmospheric aerosol scattering, and has 
improved sensitivity to high biomass regions (Huete et al. 2002). An exception to these 
results was noted during a single date in mid-summer (14/8/2003), when EVI had almost 
equally low performance as NDVI, both inferior to SVI. This could be due to the higher 
errors in vegetation parameters estimation noted in high values of LAI, thus at high levels of 
vegetation cover (Liu et al. 2007). In these cases, various leaf layer conditions at the same 
percent vegetation cover is misinterpreted as changes in the estimate of vegetation cover 
amount and yield variable VI values (Purevdorj et al. 1998). 

In general, SVI had the lowest performance as compared with EVI and NDVI. This VI 
appeared to be relatively less homogeneous within an area with uniform vegetation type. The 
large potential range of values of SVI [0, +∞) could not be the reason for this lower 
performance, as SR is designed to overcome differences in the scale of the examined 
methods. However, there is a very high correlation of SVI with NDVI and EVI, according to 
the scatter plots and the R2 values from the regressions across the CLC types (Table 2). 

Repetition of the analyses for managed and natural vegetation separately (Table 3 b and c) 
showed results similar to the previously mentioned ranking for the combined all vegetation 
types. An exception was the mid-summer dates of both years (14/8/2003 and 14/8/2004) 
when SVI was superior to EVI for natural vegetation only. A possible reason is the full 
development and high levels of biomass of natural vegetation, which in combination with the 
lack of atmospheric disturbances in the arid Mediterranean summer amplified the advantage 
of SVI to remain unsaturated in full vegetation cover conditions. During these days, SVI was 
marginally better than EVI, thus lowering the confidence of the results.  

[Table 3 about here] 

4.2 Performance of indices for operational vegetation monitoring  

There was a very weak relation between the examined VIs and aspect, as most correlation 
coefficients were smaller than 0.1 (Table 4a). Moreover, detailed analysis per CLC vegetation 
type did not reveal any increase in the relations (results not shown). Therefore, aspect plays a 
negligible role as an influencing factor for any of the examined indices. This is a positive 
characteristic of all slope-based VIs, for which the problem of variable surface illumination as 
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a result of topography is minimized because of division of satellite spectral bands (Silleos et 
al. 2006). These results agree with previous similar observations for wheat crops in Italy 
(Pinter Jr et al. 1987). Nevertheless, aspect has been reported as an important factor 
influencing vegetation monitoring with remote sensing, especially in mountainous 
environments (Deng et al. 2007), for which correction algorithms have been proposed (Gitas 
and Devereux 2006). 

All three VIs displayed relatively low correlation coefficients with sensor's viewing angle 
(<0.5). However, SVI had the lowest correlation coefficients in most of the examined dates, 
followed by NDVI. EVI was for all dates the most highly correlated (Table 4b). Therefore, 
SVI is the VI least influenced by the sensor's viewing angle. According to previous studies, 
the effect of variable viewing angle of wide viewing satellites is exacerbated by most VIs, 
which may show strong isotropic behaviour (Pinter Jr et al. 1987). Small differences were 
also noted between SVI, NDVI and ARVI (Atmospherically Resistant Vegetation Index) in 
other studies (Verrelst et al. 2008). Nevertheless, the effect of viewing angle on VIs is 
dependent on vegetation type and percent of coverage (Kaufmann et al. 2000; Pocewicz et al. 
2007). 

Regarding the influence of saturation, the results showed that SVI had the highest correlation 
with high values of LAI, where saturation was expected (Table 4c). This was probably 
because SVI is designed to have a large potential range of values [0, +∞). However, an 
equally high performance was expected for EVI, since it has been reported to display good 
sensitivity in monitoring high biomass conditions (Huete et al. 2002). However, SVI had 
higher correlations in 6 of the 8 dates considered. A similarly higher performance of SVI had 
been noted in a previous comparison with NDVI and TVI (Transformed Vegetation Index); 
nevertheless it has been suggested that the red edge reflectance bands minimise the issue of 
saturation (Mutanga and Skidmore 2004).  

Finally, partial cloud cover had generally the lowest influence on EVI over all the examined 
days as demonstrated by the generally large correlation of VI pixels between cloudless and 
partly cloudy days (Table 4d). EVI has been previously reported to perform better than NDVI 
under the influence of atmospheric aerosols both at local and continental scales (Huete et al. 
1997, Xiao et al. 2003). This insensitivity was probably because EVI was designed to be 
resistant to atmospheric influences (Huete et al. 2002). EVI's design was based on the 
difference of blue and red band reflectance due to aerosol scattering, which was used to 
stabilize the index value against variations in aerosol concentration levels (Huete et al. 1999). 
This was first used in the design of the Atmospherically Resistant Vegetation Index (ARVI), 
which utilizes the difference in radiance between the blue and the red channel to correct the 
radiance in the red channel and stabilize the index to temporal and spatial variations in 
atmospheric aerosol content (Kaufman and Tanre 1992). 

[Table 4 about here] 

4.3 Discussion and implications for vegetation monitoring 

The examined VIs are based on the same principle: they show the contrast between the high 
reflectance of near-infrared wavelength because of internal leaf scattering and no absorption, 



Alexandridis, T.K., Oikonomakis, N., Gitas, I.Z., Eskridge, K.M., and Silleos, N.G., 2014. The performance of vegetation indices for 
operational monitoring of CORINE vegetation types. International Journal of Remote Sensing, 35(9): 3268-3285. 
 

11 
 

and the low reflectance of chlorophyll at red. Generally they are sensitive to the abundance 
and activity of the absorbers of radiation, which can be quantified with derivatives (Myneni et 
al. 1995) or more complex equations that connect the spectral reflectance with biophysical 
properties of leaves and canopy (Pinty et al. 1993). However, differences in the various VIs' 
response derive from the mathematical design of each VI and the inclusion of additional 
spectral bands in order to minimize the soil and atmospheric interference. It has been 
demonstrated that certain VIs can perform better than others in large scale vegetation 
monitoring, while their performance can change when tested under operational conditions. 
EVI seems to perform better, as discussed in recent literature (Huete et al. 2002, Ji and Peters 
2007, Xiao et al. 2003). However, it was only in the last decade that EVI was being used, so 
comparative results with NDVI and SVI cannot be quantified on equal terms. Although SVI 
performed worse in monitoring homogeneous CLC vegetation types, it was superior to the 
other VIs in two out of four tests for operational performance. This result demonstrates that 
although the more recent EVI is designed to overcome several known issues of VI 
performance, it cannot outperform the simple SVI under all conditions. Potential users could 
take into account the findings of this study to select the appropriate VI for monitoring 
vegetation under the specific conditions of their study area. 

Considering the major differences in the phenology of managed and natural vegetation, these 
two broad types of vegetation were studied separately. Results displayed a relative 
consistency across the two vegetation types, which were similar to the combined all 
vegetation types category. This consistency appeared to indicate that all three VIs can identify 
the differences across a wide range of vegetation states and quantities of biomass, regardless 
of the vegetation type (Mutanga and Skidmore 2004, Peters et al. 2002, Silleos et al. 2006) 
The implication is that a single vegetation index could be used to monitor all types of 
vegetation at a national or regional scale, which could be implemented by a central 
monitoring organization (e.g. FAO-GIEWS, ESA-GMES). 

Local users and agencies involved in vegetation monitoring can benefit from this work to 
optimise the efficiency of their monitoring programmes. National users who use the VIs for 
monitoring agricultural production, subsidies control, environmental assessment of protected 
areas, and for assessing the fire risk, as well as continental or global international programmes 
such as FAO's Global Information and Early Warning System (GIEWS) could evaluate their 
vegetation monitoring using similar tests on the selected VIs. GIEWS continuously monitors 
and reports the food supply and demand situation around the world, using NDVI to provide 
an indication of the amount and state of vegetative ground cover, and thus the effect of 
weather conditions on plant growth (FAO 2000). The issue of continuity of such long time 
series has played an important role in the use of NDVI in parallel with more advanced VIs, 
such as the case of MOD13 product (Huete et al. 1999).  

Comparison of different VIs using the SR has several advantages over previously proposed 
approaches. The SR does not require data on a particular biophysical parameter (e.g. LAI, 
biomass) or the need for calibration curves between the VIs and the parameter. This property 
means that SR results apply to any biophysical parameter as long as both VIs are functions of 
the parameter. Thus, the SR can operate successfully at various vegetation types and 
phenological stages. Such global assessment of VIs can result in considerable cost savings 
since biophysical data are usually costly to collect. Also, the SR is unit-less in the sense that it 
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is not influenced by scale transformation of the VI thus relieving the researcher from 
specifying the 'correct' function of the underlying property.  

There are certain limitations to the applied methods. First, we assumed that CLC vegetation 
types were mapped correctly as homogeneous patches. According to the CLC validation 
report (EEA 2006), an overall thematic accuracy of 87% was succeeded, thus meeting its 
aims. Moreover, the two largest CLC classes (arable land and forest) which were of interest to 
this work were estimated to have a higher level of reliability, reaching between 90 and 95%. 
Therefore, our assumption is true at a high level of certainty. Second, one of the methods used 
in performance evaluation, the SR, was based on the assumptions of a linear relationship 
between the two VIs (M and N) and that the independent variable in the regression was 
measured without error. Although the data in this study roughly adhered to both of these 
assumptions, if other datasets deviate considerably from these assumptions, substantial bias 
could result. Third, we derived our results using eight seasonal observations during two 
consecutive years, for which significant correlations were obtained. Although seasonal 
observations have demonstrated the advantages and disadvantages of the presented 
methodology, plant response varies substantially from year to year, and a much larger time 
series would be required to capture and model all this variance, which may be a source of 
uncertainty for this work. Finally, MODIS daily observations have been reported to be 
influence by geolocation errors, gridding artifacts, and viewing geometry (Tan et al. 2006, 
Wolfe et al. 1998, Xin et al. 2012). It is important to acknowledge that despite the careful 
experimental design, not all these factors can be easily excluded, and their influence may be 
inserted in the results for the VIs performance. Future communication may concentrate on the 
influence of CLC scale level and VI's spatial resolution on their monitoring performance, it 
may use simulation data to avoid interference among the tested parameters (Xin et al. 2012), 
and may expand to a wider range of VIs such as EVI2, which can be calculated at 250m using 
MODIS data (Jiang et al. 2008). 

5. Conclusions 

In this paper the evaluation of SVI, NDVI and EVI for operational monitoring of vegetation 
condition was performed using descriptive statistics estimated from MODIS satellite images 
at various CLC vegetation types using for the first time the sensitivity ratio (SR) as 
performance metric. EVI was better at monitoring vegetation condition since it was relatively 
more homogeneous within CLC vegetation types during most of the examined dates than the 
other two VIs. 

Regarding the VIs’ use in operational monitoring, EVI was less affected by partial cloud 
cover, however, SVI and NDVI were less sensitive to conditions of saturation and variable 
viewing angles. Based on these three VI, a single VI was not consistently overcoming all the 
potential problems met at monitoring vegetation conditions at these scales using MODIS data. 

Results have been mostly consistent between the two major vegetation types examined 
(managed and natural vegetation), indicating that a single VI could be used for monitoring all 
vegetation types at the national or regional level.  

Finally, the results of this work can help local and international agencies involved in 
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vegetation monitoring to optimise the efficiency of their monitoring schemes.  
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Tables 

Table 1. The 2nd level CORINE Land Cover classes that were used 

ID Class name 

2.1 Arable land 

2.2 Permanent crops 

2.3 Pastures 

2.4 Heterogeneous agricultural areas 

3.1 Forests 

3.2 Scrub and/or herbaceous vegetation associations 

3.3 Open spaces with little or no vegetation 
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Table 2.  Slope and R2 results from regression model y = a + bx for three major vegetation 

categories: all CLC vegetation types, managed vegetation types, and natural vegetation types.   

 Model y = a + bx All vegetation types Managed Natural  

Date y x R2 slope (b) R2 slope (b) R2 slope (b)

13/05/2003 EVI SVI 0.67 0.06 0.85 0.04 0.63 0.04 

13/05/2003 NDVI EVI 0.84 1.14 0.87 1.63 0.82 1.12 

13/05/2003 NDVI SVI 0.57 0.04 0.97 0.07 0.66 0.05 

14/08/2003 EVI SVI 0.92 0.07 0.98 0.08 0.85 0.05 

14/08/2003 NDVI EVI 0.90 1.25 0.89 1.18 0.94 1.35 

14/08/2003 NDVI SVI 0.79 0.05 0.92 0.10 0.95 0.07 

25/10/2003 EVI SVI 0.82 0.10 0.99 0.06 0.61 0.05 

25/10/2003 NDVI EVI 0.93 1.61 1.00 1.63 0.89 1.61 

25/10/2003 NDVI SVI 0.71 0.05 0.99 0.10 0.77 0.09 

16/02/2004 EVI SVI 0.75 0.14 0.99 0.10 0.52 0.10 

16/02/2004 NDVI EVI 0.70 0.99 0.51 1.12 0.74 1.04 

16/02/2004 NDVI SVI 0.66 0.11 0.47 0.10 0.84 0.15 

13/05/2004 EVI SVI 0.72 0.14 0.76 0.08 0.60 0.11 

13/05/2004 NDVI EVI 0.52 0.89 0.30 0.80 0.31 0.62 

13/05/2004 NDVI SVI 0.72 0.12 0.72 0.12 0.59 0.12 

14/08/2004 EVI SVI 0.93 0.08 0.99 0.09 0.90 0.05 

14/08/2004 NDVI EVI 0.94 1.25 0.94 1.16 0.96 1.33 

14/08/2004 NDVI SVI 0.83 0.06 0.93 0.11 0.96 0.08 

24/10/2004 EVI SVI 0.93 0.10 0.99 0.07 0.84 0.05 
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24/10/2004 NDVI EVI 0.93 1.63 1.00 1.75 0.93 1.68 

24/10/2004 NDVI SVI 0.80 0.05 1.00 0.12 0.95 0.09 

18/02/2005 EVI SVI 0.87 0.13 0.99 0.06 0.83 0.11 

18/02/2005 NDVI EVI 0.97 1.49 0.97 1.48 0.94 1.40 

18/02/2005 NDVI SVI 0.86 0.09 1.00 0.09 0.86 0.17 

 

Table 3: Sensitivity ratioa of vegetation indices used to monitor the condition of all CLC 

vegetation types (a), managed vegetation (b) and natural vegetation. Last column shows the 

ranking of VIs. 

a. All vegetation types 

Date SR(NDVI/SVI) SR(NDVI/EVI) SR(EVI/SVI) Ranking 

13/05/2003 0.86 0.72 1.00 EVI=SVI>NDVI 

14/08/2003 0.90 0.95 0.83 SVI>EVI~NDVI 

25/10/2003 1.65 0.65 2.27 EVI>NDVI>SVI 

16/02/2004 1.41 0.46 2.44 EVI>NDVI>SVI 

13/05/2004 2.06 0.62 2.41 EVI>NDVI>SVI 

14/08/2004 1.63 0.92 1.63 EVI>NDVI>SVI 

24/10/2004 2.61 0.88 2.65 EVI>NDVI>SVI 

18/02/2005 2.93 0.72 3.99 EVI>NDVI>SVI 

b. Managed vegetation  

Date SR(NDVI/SVI) SR(NDVI/EVI) SR(EVI/SVI) Ranking 

13/05/2003 0.99 1.02 0.84 SVI~NDVI~EVI 

14/08/2003 1.14 0.95 1.18 EVI~NDVI>SVI 
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25/10/2003 1.79 0.68 2.64 EVI>NDVI>SVI 

16/02/2004 1.05 0.51 2.16 EVI>NDVI~SVI 

13/05/2004 1.67 0.55 1.71 EVI>NDVI>SVI 

14/08/2004 3.99 0.90 4.42 EVI>NDVI>SVI 

24/10/2004 2.49 0.99 2.50 EVI~NDVI>SVI 

18/02/2005 2.35 0.70 3.30 EVI>NDVI>SVI 

c. Natural vegetation 

Date SR(NDVI/SVI) SR(NDVI/EVI) SR(EVI/SVI) Ranking 

13/05/2003 0.78 0.71 0.97 SVI~EVI>NDVI 

14/08/2003 0.87 1.00 0.81 SVI>EVI~NDVI 

25/10/2003 1.51 0.64 1.96 EVI>NDVI>SVI 

16/02/2004 1.59 0.48 2.23 EVI>NDVI>SVI 

13/05/2004 1.73 0.44 2.24 EVI>NDVI>SVI 

14/08/2004 0.99 0.94 1.00 SVI~EVI>NDVI 

24/10/2004 2.73 0.88 2.82 EVI>NDVI>SVI 

18/02/2005 3.34 0.68 4.69 EVI>NDVI>SVI 

a SR(M/N) > 1 (<1) implies VI M is preferred (less preferred) to VI N 
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Table 4: Correlation coefficients of VIs with: (a) aspect, (b) viewing angle, (c) LAI in values 

of LAI greater than 2.0 (saturation), and (d) correlation of partially cloud covered pixels with 

the cloud free pixels of the previous or the next day (partial cloud cover). Bold text shows VI 

with highest performance at each examined date. 

(a) Influence of aspect 

Date SVI NDVI EVI 

13/05/2003 -0.054 -0.020 -0.068* 

14/08/2003 -0.095** -0.096** -0.083** 

25/10/2003 0.044 -0.018 -0.043 

16/02/2004 0.009 -0.032 -0.011 

13/05/2004 -0.033 -0.060* -0.014 

14/08/2004 -0.111** -0.135** -0.117** 

24/10/2004 -0.062* -0.078* -0.084** 

18/02/2005 0.014 0.086** 0.042 

 

(b) Influence of viewing angle 

Date SVI NDVI EVI 

13/05/2003 0.038 0.013 0.019 

14/08/2003 0.338** 0.420** 0.386** 

25/10/2003 -0.214** -0.430** -0.393** 

16/02/2004 0.086** 0.065** 0.144** 

13/05/2004 -0.200** -0.260** -0.402** 

14/08/2004 0.269** 0.281** 0.381** 

24/10/2004 0.202** 0.209** 0.361** 

18/02/2005 -0.025 -0.143** -0.132** 

(c) Influence of saturation 

Date SVI NDVI EVI 

13/05/2003 0.211** 0.111 0.198** 

14/08/2003 0.403** 0.361** 0.163** 

25/10/2003 0.123 0.027 0.011 

16/02/2004 0.110 -0.023 -0.084 

13/05/2004 0.127* 0.127* -0.025 

14/08/2004 0.338** 0.236** 0.228** 

24/10/2004 -0.050 -0.072 0.287* 

18/02/2005 0.029 0.046 0.139 

 

(d) Influence of partial cloud cover 

Date SVI NDVI EVI 

13/05/2003 -0.051 -0.026 0.213* 

14/08/2003 0.210* 0.198 0.511** 

25/10/2003 0.123 0.061 0.538** 

16/02/2004 0.128** 0.400** 0.611** 

13/05/2004 0.458** 0.651** 0.810** 

14/08/2004 0.562** 0.394* 0.784** 

24/10/2004 0.248** 0.319** 0.683** 

18/02/2005 0.369** 0.478** 0.721** 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 
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Figures 

 

Figure 1: Vegetated areas of Greece according to CORINE Land Cover 2000 (Level 2). 
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Figure 2: MODIS satellite image acquired on 13/05/03 (R,G,B = 2,1,4). 

 

 

Figure 3: The DEM of the study area. 
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Figure 4: Predicted vs. actual NDVI values, where predictions are based on models from 

Table 2 for NDVI vs. SVI for all dates and CLC vegetation types. 
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