
lable at ScienceDirect

Ocean & Coastal Management 51 (2008) 638–644
Contents lists avai
Ocean & Coastal Management

journal homepage: www.elsevier .com/locate/ocecoaman
The performance of satellite images in mapping aquacultures

Thomas K. Alexandridis a,b,*, Charalampos A. Topaloglou b, Efthalia Lazaridou c, George C. Zalidis b

a Laboratory of Remote Sensing and GIS, School of Agriculture, Aristotle University of Thessaloniki, Greece
b Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, Greece
c OMIKRON Ltd, Environmental Department, Thessaloniki, Greece
a r t i c l e i n f o

Article history:
Available online 12 June 2008
* Corresponding author. Laboratory of Remote S
Agriculture, Aristotle University of Thessaloniki, Unive
259, Thessaloniki 54124, Greece.

E-mail address: thalex@agro.auth.gr (T.K. Alexand

0964-5691/$ – see front matter � 2008 Elsevier Ltd.
doi:10.1016/j.ocecoaman.2008.06.002
a b s t r a c t

Monitoring human pressures is the first step in the management of natural ecosystems, as well as
a method to evaluate the effectiveness of the applied conservation measures. In this context, five
commercial satellite images (QuickBird bundle, SPOT-5 multispectral, Landsat 7 ETMþ, RADARSAT SAR,
and ENVISAT ASAR) with various spatial and spectral characteristics have been assessed for their ability
to map mussel farms off a coast of northern Greece, where the intensity and uncontrolled expansion of
aquacultures is a pressure to a nearby wetland of international importance. The ability to identify the
mussel farms on the images from background open water and accurately map these features was tested
separately for the two types of mussel farms (pole and long line) present in the study area. The influence
of waves on the mussel farms’ identification was also investigated. Results indicate that the optimum
satellite sensor varied according to mussel farm type, and is not necessarily the one with the highest
spatial resolution. Pole farms were identified in all images bearing a spatial resolution superior to 10 m,
but were better located and delineated with a high-resolution QuickBird image. Long line farms, on the
other hand, were indistinguishable by passive optical sensors, and could only be identified on active
microwave images. In addition to this, the findings show that surface waves drastically deteriorate the
identification of mussel farms on an ENVISAT image, thus influencing its usefulness for monitoring.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Marine aquaculture of filter feeder species (bivalves) provides
an important source of high quality food and could be considered to
be an important management tool to limit pressure on wild fish
stocks, which are heavily stressed due to overfishing and pollution
in coastal areas [1]. Mussel (Mytilus galloprovincialis Lamarck)
farming can also influence the amount of phytoplankton in an area,
and consequently plays an important role in the state of the
ecosystem [2,3].

In the eutrophic Thermaikos Bay (Greece), mussel farming has
become an important local economic activity, currently accounting
for 88% of the national mussel production [4,5]. A massive expan-
sion that took place in the 1990s was followed by the establishment
of a number of illegal farms, as a result of inadequate control. Thus,
it has become a major competitor for natural resources in the
coastal area. This overexploitation of natural resources constitutes
a pressure on the nearby protected estuarine and marine ecosys-
tems [6], by producing large amounts of discarded cells and
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decaying biomass, reducing the aesthetic value of the coastal zone,
acting as water current blockades that may cause toxic or poten-
tially toxic phytoplankton blooms, and disturbing local and
migrating wildlife [7,8].

European directives and national legislation have defined the
protection scheme for the nearby wetland complex formed by the
delta of the rivers Axios, Loudias, and Aliakmonas, where the ma-
jority of aquaculture is concentrated. It is characterized as a wetland
of international importance according to the Ramsar Convention
(site code 59, area 118.1 km2). In this area, a number of important
habitats for rare and endangered species exist, and it is therefore
part of a Special Protected Area designated by the implementation
of European Directive 79/409/EEC [9] (site code GR1220010, area
295.5 km2) and a Site of Community Importance following the
implementation of European Habitat Directive 92/43/EEC [10] (site
code GR1220002, area 336.7 km2).

Concerns about the potential impacts of mussel farming on the
marine environment are continuing to increase along with issues of
carrying capacity and sustainability. Monitoring activities are cur-
rently being developed on the site, and include baseline monitoring
[11] and an operational monitoring project [12], aiming to define the
appropriate management interventions. The monitoring activities
recommend that number of units, location, area, and density of the
aquacultures are measured. Furthermore, marking the accurate
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location of aquacultures is important information to local port
authorities, being a potential danger to navigation. Finally, the en-
vironmental impact assessment study, which is included in the
Spatial Planning of Aquacultures in Thessaloniki Bay [13], has dic-
tated the carrying capacity of aquacultures in Thermaikos Bay. These
acts pose the need for operational mapping and monitoring of
mussel farming.

Traditional methods of surveying have been used to map the
coastal zone, using land surveying equipment or Global Positioning
Systems (GPS) [14,15]. However, land surveying equipment could
only cover a short range from the shoreline. Also, the irregular
pattern of mussel farms, the physical restrictions (weather condi-
tions, navigation dangers such as loose lines and unmapped shoals)
and the increased cost of field survey prevent the implementation
of ship-borne GPS measurements in operational monitoring.
Satellite remote sensing can provide cost-effective spatially dis-
tributed data for coastal zone monitoring [16,17]. The most notable
advantages of using satellite imagery are the detailed coverage of
large areas at low cost, the uniform coverage of accessible and
inaccessible areas, the ability to collect data repeatedly and non-
intrusively, and the multispectral nature of the observations.

Remote sensing has been used in coastal zone planning and
management as the means of assessment of the level of human
pressures, the conservation status of the natural environment, and
the effectiveness of the applied conservation measures, by pro-
viding reliable information to support decision makers, facilitate
reporting, and generally increase stakeholders’ understanding.
More specifically, remotely sensed data have been used for mapping
inter-tidal mussel beds [18], aquatic and coastal habitats [19–22],
and coastal zone land cover [23]. It has also been utilized in the
assessment of human environmental impacts on aquatic environ-
ments [24], coastal zone management [15,25] and design of marine
protection areas [26]. In these studies, a variety of space-borne
sensors have been used, including passive optical (SPOT, Landsat
MSS and TM, SeaWiFS) and active microwave (ERS-1/2, JERS-1, and
RADARSAT SAR), each providing several advantages. Problems
while using remotely sensed data for mapping features near the
coastal zone include difficulty to locate ground control points [27],
and appearance of surface waves [28,29].
Fig. 1. Location of study area
The aim of this paper is to assess five satellite sensor images
with different spatial and spectral characteristics for mapping
mussel farms. Specific objectives include (i) assessment of mussel
farms’ identification ability on the images, (ii) assessment of mussel
farms’ mapping accuracy, and (iii) investigation of waves’ influence
on the identification ability.

2. Description of study area

Thermaikos Bay is located in northern Greece, at N 40�530 E
22�730. The majority of the mussel growing activity is concentrated
around the delta of rivers Axios, Loudias and Aliakmonas, which
defines the study area, and covers a total area of almost 30 km2

(Fig. 1).
The three rivers’ basins cover a total area of 32,000 km2, and

drain an intensively cultivated area of 1900 km2. As a result, a large
amount of nutrients is discharged into Thermaikos Bay, which had
resulted in a series of algae blooms in 1980s, which had a severe
impact on the environment and local fisheries [8,30]. Mussel farms
were introduced in the 1960s in the bay as a small-scale activity.
Permission for organized extensive mussel farming was granted in
1992, to alleviate the nutrient load and to support local commu-
nities. It was soon recognized as an important economic activity in
the area, and expanded massively in the late1990s. Relevant
authorities report a total annual production of 10,000 tons [31], but
other studies put this figure at more than 30,000 tons [5].

Two types of mussel farms have been introduced in the area:
pole and long line (Fig. 2). Pole farms are rectangular grids of
wooden poles or metallic pipes wedged on muddy seabeds. The
construction can be easily identified, as it reaches 1–2 m above sea
level. Mussels bunches are hung directly on the horizontal poles
and dropping to half a meter above the seabed. Their typical surface
is 15�100 m, and they are installed in relatively shallow waters (3–
6 m depth), usually 150 m apart to allow sufficient nutrition. This is
the oldest system, introduced in 1955, and the most productive,
reaching an average annual yield of 150–400 tons/ha. Long line
farms are rectangular grids of plastic buoys (4 m3 each) at 8–10 m
apart, which are connected with lines and are anchored on the
seabed using cement weights. They are difficult to discern on the
and area of aquacultures.



Fig. 2. Illustration of pole (a) and long line (b) mussel farms that occur in the study
area.
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water, as a fraction of the buoy is emergent (about 0.5 m). Mussel
bunches are hung from the horizontal connecting ropes and drop to
half a meter above the seabed. Their typical surface is 100�150 m,
and they are installed in deeper waters (8–20 m depth), usually
250 m apart. It was introduced in 1995, and its average annual yield
is 100 tons/ha. The number of pole and long line farms in the area is
estimated to 300 and 160, respectively [31].

Due to the fact that they were introduced recently, long line
farms are located in deeper waters. They are a rather extensive
culture and do not cause serious problems in terms of management
and compatibility with the environment. On the other hand, pole
farms are concentrated in more closed and limited areas. They are
an intensive culture, and the lack of any management plan and
control of their density have caused serious problems (malnutrition
and suffocation of the mussels), which led to loss of production.
Inversely, during years of high production, social problems have
risen due to lower commercial prices [7].

The uncontrolled increase in number and area of the mussel
cultures has several impacts on the wetland and marine environ-
ments, and has been recognized as a contributing factor to the
wetland complex degradation. These include excessive amounts of
discarded cells and decaying biomass, accumulation of large
quantities of mud as a mussel metabolism product, and disturbance
of local and migrating wildlife. The aesthetic value of the coastal
zone is also reduced, repelling eco-tourism activities. In addition,
the mussel farms can act as water current blockades, which, in
cases of low winds and high temperatures, have caused toxic or
potentially toxic phytoplankton blooms [7,8].

3. Materials and methods

3.1. Description and preparation of data sets

Extensive fieldwork was carried out in spring and summer 2005
by the Thessaloniki Port Authority and the Prefecture of Thessalo-
niki, to locate and map existing mussel farms. The survey was
conducted using a hand-held GPS receiver (3 m horizontal accu-
racy) carried on a vessel. The resulting vector map described the
location and size of a sample of mussel farms (60 pole and 36 long
line in total) and was used as reference data set. Analyses that
follow were based on this stratified sample of farms, which
accounts for 20% of the estimated total.

A wide variety of satellite images were used in this study. Images
from passive optical sensors included a Landsat 7 ETMþ panchro-
matic (15 m resolution) acquired on August 5, 2002 at 9:45 a.m.
(wind speed 0.5 m/s from NW), a SPOT-5 multispectral (10 m res-
olution) acquired on August 19, 2004 at 9:49 a.m. (wind speed
0.9 m/s from SSW), and a QuickBird bundle (0.6 and 2.4 m resolu-
tion in panchromatic and multispectral, respectively) acquired on
April 24, 2002 at 9:24 a.m. (wind speed 1.3 m/s from NE). Images
from active microwave sensors included a RADARSAT SAR (HH
polarization) in fine beam mode (8 m resolution) acquired on
August 4, 2004 at 4:29 a.m. (wind speed 0.5 m/s from N), and an
ENVISAT ASAR (HH polarization) in image mode (25 m resolution)
acquired on February 17, 2005 at 11:36 a.m. (wind speed 5.3 m/s
from NW).

The QuickBird image was rectified into Greek Geodetic Refer-
ence System ’87 using the satellite’s rational polynomial co-
efficients and ground control points from 1:5000 photomaps.
Afterwards, the remaining four images were geo-registered to the
rectified QuickBird image, which acted as base map. The horizontal
registration error obtained was less than one pixel for each rectified
image.

Several enhancement techniques were tested on the satellite
images to enhance the mapped features’ identification, and the
optimal technique was selected for each image, according to its
nature and individual conditions. Linear radiometric enhancement
was applied to the marine area of QuickBird, SPOT and Landsat
images to increase contrast of mussel farms from the surrounding
sea surface. Furthermore, the QuickBird image was subjected to
pan-sharpening. The forward–reverse principal component trans-
form was used to merge information from panchromatic and
multispectral images [32,33]. Spatial filtering techniques were
applied to the microwave images to remove noise and therefore
improve information extraction. A Lee-sigma (5� 5 moving win-
dow) and two variance filters (15�15 and 31�31 moving window,
respectively) were applied on each microwave image. The resulting
enhanced images were displayed in a pseudo-color composite (R, G,
B¼Variance 15�15, Lee-sigma 5� 5, Variance 31�31), as it of-
fered a higher amount of detail and facilitated visual interpretation,
in comparison to the raw black and white microwave images [34].

Spectral signatures were collected from mussel farms and open
water of each image separately, by overlaying the reference data set
on the image and sampling the respective areas of the two features,
while avoiding the mixed pixels that may occur near the border of
the two features. Mapping the outline of the mussel farms was per-
formed using computer-assisted photo-interpretation and manual
on-screen digitizing. The simplest of the mapping techniques among
those reported in literature (computer-assisted photo-interpretation,
image segmentation, and digital classification) was preferred, as
a comparison among methods was not in the aims of this work.
Although images were acquired in various seasons, implying differ-
ent atmospheric conditions, atmospheric correction and radiometric
calibration were not necessary, as comparisons were based on post-
mapping results [35,36]. The optimum enhancement techniques that
were selected were sufficient to facilitate independent mapping on
individual images.

3.2. Assessing mussel farms’ identification on the satellite images

The ability to identify mussel farms on the satellite images, i.e.
the strength of the return signal as compared to the background
open water, was assessed both visually and statistically. Visual
assessment was performed by overlaying the reference data on
the mussel farms digitized from each image to check their level of
identification from background (open water). The total number of
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mussel farms that were mapped on each image, using on-screen
digitizing, was compared with the number obtained from the
reference data set. Statistical comparison was based on the
spectral signatures selected from mussel farm pixels and nearby
open water pixels, which were extracted from each satellite im-
age. Identification ability was defined as the spectral difference
between mussel farm signatures and open water signatures.
Among the available methods for assessing spectral difference
[37,38], transformed divergence was selected, as it offered several
advantages: it has discrete upper and lower bounds which facil-
itate interpretation, does not have a saturating behavior in high
values, and is computationally efficient [39–41]. Transformed
divergence ranges from 0 to 2000, with 2000 being the maximum
spectral difference, between 1700 and 1900 moderate, and below
1700 low. The highest number of visible farms and the highest
value of transformed divergence were the objective functions to
select the image with the highest level of mussel farms’ identi-
fication from background open water.

3.3. Assessing mussel farms’ mapping accuracy on the satellite
images

The accuracy of mapping mussel farms on the satellite images
was assessed using several methods. First, a mussel farm’s
positioning accuracy was tested by comparing the centroid
location mapped on each image with the equivalent location
obtained from the reference data set, using root mean square
(RMS) error. Second, the area of each mussel farm mapped on
each image was compared with the equivalent area obtained
from the reference data set. Third, the ability to map the correct
shape of mussel farms was tested using a modification of the
shape index [42]. While the original index reports deviation of
a polygon’s shape from the perfect circle [43], this modified
shape index identifies deviation from the ‘‘normal’’ shape, which
is the rectangular shape of the mussel farms. It can be calculated
using formula (1):

MSI ¼ L

4
ffiffiffi

A
p (1)

where MSI is the modified shape index, L is the perimeter and A is
the area of each tested mussel farm. Values of MSI equal to 1 in-
dicate square shape, lower than 1 indicate circular or convex shape,
and higher than 1 indicate rectangular or concave shape. Estimated
values of MSI for mapped mussel farms on each image were com-
pared with the values obtained from reference data. The lowest
RMS error, and the lowest mean difference of area and MSI were the
objective functions to select the image with the highest mapping
accuracy. The statistical significance of the differences was tested
with paired T-test.

3.4. Assessing the wave influence on the identification of mussel
farms

Waves on the sea surface were expected to influence the sea
surface reflectance, and thus the level of mussel farms’ identifi-
cation. From the available data set, the ENVISAT image was
severely influenced by waves on the western side, while the
eastern side was free of waves. In order to investigate the in-
fluence of waves in the identification of mussel farms on the
image, the study area was divided into two zones: the wave zone
and the calm zone. Spectral signatures were collected from
mussel farms and open water in both zones, and the spectral
difference of mussel farms from open water was estimated using
transformed divergence, similar to the identification ability. The
objective function to detect the waves’ influence was a significant
deterioration of the ability to identify mussel farms from the
background open water.

4. Results and discussion

4.1. Identification of mussel farms on various satellite images

Overlaying the reference data set on each enhanced image
provided the means for visual assessment of the latter, regarding its
level of identifying the individual mussel farms. Landsat image
provided the least information, as no mussel farms could be clearly
identified. SPOT provided adequate information for mapping pole
mussel farms (51 of 60), but no long line could be identified.
QuickBird has very accurately described pole mussel farms (56 of
60), but no long line farm. Active microwave sensors provided
a completely different view. RADARSAT was successful in identi-
fying pole and long line mussel farms (54 of 60 and 28 of 36, re-
spectively). ENVISAT was also successful in identifying pole and
long line mussel farms (32 of 36 and 5 of 5, respectively, only in the
calm water zone), although the mapping detail was limited due to
lower spatial resolution. Despite the efforts to enhance the ENVISAT
image, it was severely influenced by sea waves. As a result, in-
formation was obscured in the wave-affected areas, therefore
reducing the potential number of mussel farms to be mapped to 36
pole and 5 long line. The identified mussel farms (pole and long
line), together with a subset of each image, are displayed in Fig. 3. A
sample of the study area is only displayed in this figure in order to
achieve sufficient scale for display.

The statistical comparison confirms the findings of the visual
assessment. Results of spectral distance (transform divergence)
between mussel farms and open water using the enhanced chan-
nels for the five images are displayed in Table 1. Pole mussel farms
were easily recognized emergent constructions, thus, their identi-
fication on the image is related to the sensor’s spatial resolution.
Therefore, spatial resolution lower than 10 m, such as with Landsat,
seems to hamper mussel farm mapping.

The inability of the passive optical sensors to identify long line
farms could be attributed to the small size and low density of buoys
and their color (dark blue). It is unlikely that the limited amount of
information for QuickBird is related to the time of acquisition (3
years prior to the fieldwork), as no major changes have occurred
[31]. Also, no algal blooms were recorded in the study area on the
days of image acquisition [44,45]. On the other hand, the sensitivity
of active microwave images to surface roughness is the major factor
contributing to the successful identification of long line farms. Al-
though buoys’ size is significantly lower than the sensors’ spatial
resolution, the repeated appearance of buoys increases local sur-
face roughness, thus creating a higher return signal than the sur-
rounding sea surface.

4.2. Mapping accuracy of mussel farms on various satellite images

Results from assessing the mapping accuracy for pole mussel
farms using the three methods are displayed in Table 2. Landsat’s
limited spatial resolution could not provide sufficient detail for
any measurement, and was not included in the analyses. Among
the other images, QuickBird’s location ability was superior, which
was expected due to the highest spatial resolution. It is noted that
part of the RMS error could be attributed to the accuracy of the
reference data set (3 m horizontal accuracy). Area measurements
of the mapped pole farm sample in SPOT, RADARSAT and ENVISAT
were significantly different from the reference data set, with SPOT
being relatively superior. Area measurements performed with
QuickBird image closely matched those from the reference data
set. Similarly, the mapped pole farm’s shape was more accurately
mapped on the QuickBird image. A negative sign in MSI difference



Fig. 3. Visual assessment of images’ ability to identify mussel farms (pole and long line) in a subset of the study area. Each case includes a grey scale view of the enhanced satellite
image and the resulting digitized mussel farms.
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from reference data set indicates that mussel farms were de-
lineated in a circular shape in SPOT, RADARSAT and ENVISAT
images.

The results from the mapping accuracy assessment are di-
rectly related to the sensor’s spatial resolution and positioning
accuracy. The significantly higher area estimate for RADARSAT
and ENVISAT could be attributed to the adjacency effect, which
Table 1
Spectral distance (transformed divergence, no units) between mussel farms and
open water

Landsat SPOT QuickBird RADARSAT ENVISAT

Pole 107 1989 1993 2000 2000
Long line 0 0 0 1982 2000
is the influence of a very bright pixel on the surrounding darker
pixels [46,47].

The analyses listed in this section were not performed for long
line farms, as they can drift several meters depending on wind
direction, therefore inserting a significant error in the positioning
assessment.
4.3. Influence of waves on mussel farms’ identification

The spectral difference of mussel farms from open water was
estimated for the calm zone and the wave zone in the ENVISAT
image. Transformed divergence was 2000 in the calm zone and 258
in the wave zone for pole farms, and 2000 and 114, respectively, for
long line farms. This proves that mussel farms’ identification
deteriorates drastically in the presence of waves. This is attributed



Table 2
Images’ accuracy for mapping pole mussel farms

Method Landsat SPOT QuickBird RADARSAT ENVISAT

Location (RMSE in m) – 10.8 7.9 12.1 21.77
Area (mean difference

from reference in m2)
– 485.6* 117.8 2440.6** 2294.9**

MSI (mean difference
from reference, no units)

– �0.031 0.007 �0.131** �0.118**

*Significant at 95% level.
**Significant at 99% level.
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to the interaction of microwave image’s signal to surface roughness.
A sea surface that is wavy appears as an area of high roughness,
therefore providing a high return signal, which is similar to the
mussel farms’ signal.

The influence of waves on passive optical images was not tested
due to lack of appropriate wave-infected data sets.

Mussel farms of this type are typically installed near the coastal
zone of bays protected from large open sea waves. The waves dis-
cussed in this section refer to small-scale waves caused by wind,
which may vary within the bay according to local conditions.
Therefore, the wave-affected area in each image depends on the
local wind conditions, and may obscure entirely the mapped
features.
4.4. Analysis of costs and images’ availability

As already discussed [15,17], the cost of employing satellite re-
mote sensing in coastal resources’ surveys is lower as compared to
field surveying approaches. Remote sensing is even more cost-
effective when the optimum source of satellite imagery is chosen,
carefully considering the size of the study area and accuracy
requirements [48].

In this study, the costs were kept on the low side because field
survey, which can reach as much as 80% of a coastal mapping
project’s total cost [17], provided auxiliary data to validate the ac-
curacy of the remote sensing work. Regarding the processing costs,
all options examined could be handled using standard image pro-
cessing software (ranging from 10,000V for an ERDAS Imagine
Professional license to 850V for an Idrisi Andes license), the same
trained personnel and similar image processing effort. The in-
dividual costs of purchasing the images and their spatial coverage
are listed in Table 3. Although Landsat appears to be the most cost-
effective, the comparison should be limited to RADARSAT and
ENVISAT (0.8 and 0.19V/km2 of study area, respectively), which
were the images displaying both mussel farm types in the study
area. The high mapping accuracy offered by the QuickBird satellite
comes at the considerably higher cost of 16.54V/km2 of study area.

All images were acquired from commercial satellite sensors,
therefore their availability was only limited by the satellite’s revisit
period (Table 3) and unexpected system malfunctions. Thus, it
should be noted that all tested satellite sensors are able to provide
images with the frequency required in an operational monitoring
project [11,12]. Recently launched satellites may offer additional
instruments for monitoring aquacultures with characteristics sim-
ilar to the images already tested in this work: ALOS (Advanced Land
Table 3
Purchase costs (prices of 2008), spatial and temporal coverage of images

Landsat SPOT QuickBird RADARSAT ENVISAT

Image cost (V) 1500 2700 4500 2000 600
Image dimensions (km) 172.8� 183 60� 60 16.5� 16.5 50� 50 56� 56
Relative cost (V/km2) 0.05 0.75 16.54 0.80 0.19
Revisit period (days) 16 1–2 1–3 2–5 3–7
Observation Satellite) can acquire every 2 days optical and radar
images at spatial resolutions as high as 2.5 and 10 m, respectively;
TerraSAR can acquire radar images every 2–4 days at 1, 3 or 16 m
spatial resolution.

5. Conclusions

Five commercial satellite sensor images of various spatial and
spectral characteristics have been assessed for mapping mussel
farms off a coast of northern Greece, where the intensity and un-
controlled expansion of aquacultures is a pressure to a nearby
wetland of international importance. The level of identification of
mussel farms from surrounding open water and accuracy of map-
ping them on each image were tested separately for the two types
of mussel farms present in the study area. The influence of waves
on the mussel farms’ identification was also investigated.

The best satellite for mapping mussel farms in the study area
varied for the two types of farms. Pole farms were identified in all
images that bore a spatial resolution superior to 10 m, but better
located and delineated with a high-resolution QuickBird image.
Long line farms, on the other hand, were indistinguishable by
passive optical sensors, and could only be identified on active
microwave images. Therefore, the finest resolution is not neces-
sarily the best for mussel farm mapping. However, it is important
for accurate location and delineation.

The identification of mussel farms declined drastically in the
presence of waves. This was attributed to the higher sea surface
roughness, which resulted in an increased return signal in micro-
wave images, rendering the farms indistinguishable from wavy sea.
Therefore, the presence of waves is a parameter that significantly
decreases the image’s monitoring ability, and so far has not been
included in any image ordering form.

Considering these results, it is suggested that commercial
satellite sensors can provide the means for operational mapping of
aquaculture activities. Size, density, and proximity of aquaculture
activities can be included as pressure indicators in an estuarine or
coastal wetland monitoring project, which can be estimated using
satellite remote sensing. Therefore, the pressure and state analysis
using monitoring indicators can provide valuable information in
coastal zone management plans. Furthermore, their effectiveness
can be evaluated by detecting the changes before and after the
adoption of measures. Future work could extend mussel farm
monitoring with a remotely sensed phytoplankton monitoring and
warning system, to assist environmental and aquaculture
management.
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