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A sufficient stability condition for the standard token passing ring has been "known" 
since the seminal paper by Kuehn in 1979. However, this condition was derived without 
formal proof, and the proof seems to be of considerable interest to the research community. 
In fact, Watson observed that in the performance evaluation of token passing rings, "it 
is convenient to derive stability conditions... (without proof)". Our intention is to fill 
this gap, and to provide a formal proof of the sufficient and necessary stability condition 
for the token passing ring. In this paper, we present the case when the arrival process 
to each queue is Poisson but service times and switchover times are generally distributed. 
We consider in depth a gated f-limited (f< ~)  service discipline for each station. We 
also indicate that the basic steps of our technique can be used to study the stability of 
some other multiqueue systems. 

Keywords: Token passing rings, stability, substability, ergodicity, Markov chains, Loynes' 
scheme, stochastically dominant, Little's formula, regenerative processes. 

1. Introduction 

Distributed multiqueue systems which share a single scarce resource (i.e. 
server) such as a communication channel or a processor, have received a considerable 
amount of attention in the recent literature. Important examples of such distributed 
multiqueue systems are local area networks (e.g. ALOHA systems, Ethernet, token 
passing ring, FDDI ring, etc.), multiprocessor systems, distributed computations, 
distributed data bases, and so forth. Of special interest is the token passing ring (cf. 
Kuehn [12], Takagi [26,27]) for a number of reasons. In particula r, it appears that 
determination of sound measures of performance for such a system, under realistic 
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assumptions such as asymmetric traffic, finite or infinite buffers, non-exhaustive 
service and general input are fairly difficult to obtain, as can be witnessed from the 
literature (Boxma [2], Coffman and Gilbert [5], Kleinrock and Levy [11], 
Levy et al. [13], Takagi [27]). For example, it is known that obtaining the distribution 
of the number of messages queued in each station is a formidable open problem, 
as is the problem of obtaining the waiting time distribution. Surprisingly enough, 
the stability condition for the token passing ring was heuristically predicted by 
Kuehn [12] in 1979, and then reproduced with some minor changes in many other 
papers (e.g. Ibe and Cheng [9]). However, Watson [30] observed that in the performance 
evaluation of token passing rings, "it is convenient to derive stability conditions. . .  
(without proof)". In fact, no formal proof of the stability condition for the token 
passing ring was published (for some preliminary results, see Szpankowski [24]). 
Our intention is to fill this gap, and to provide a formal proof of the sufficient and 
necessary stability condition for the token passing ring. 

There is a version of the token passing ring, one on which the original token 
passing LAN was defined, which is particularly formidable for the analysis, and 
therefore it will be our prime interest. This is the problem of nonexhaustive service 
on an asymmetric system with M stations, where at most ~-messages are transmitted 
by station i ~ M= { 1 . . . . .  M} each time the ith station acquires the free token. 
Following the literature, we call such a system/-limited token passing ring. It must 
be stressed that up to the present, no exact analysis of such a system exists except 
for two-station systems with ~ = 1 for i = 1, 2 (cf. Boxma [2]). Nevertheless, even 
without such an explicit analysis we present in this paper a rigorous proof for the 
stability conditions of such a system with Poisson arrivals, and general service and 
switchover times. 

Stability is of considerable importance to the engineering and scientific 
communities. It is a fundamental issue in the design of any distributed system since 
only stable systems can work in practice. Hereafter, by stability we understand the 
existence of the limiting distribution of a quantity of interest. This will imply that 
the queue lengths process stays in a bounded region with high probability. 

Despite vigorous research in the area of stability over the last twenty years 
(cf. Tweedie [28], Szpanskowski [24], Walrand [29]), very few computable stability 
criteria are known for multidimensional processes, in particular multidimensional 
Markov chains. The most popular approach through the Lyapunov test function 
(cf. Tweedie [28]) did not succeed in the past to provide general computable criteria 
for multidimensional Markov chains. However, due to the pioneering work of 
Malyshev [15], continued by Mensikov [17], and Malyshev and Mensikov [16], 
some progress has been made in obtaining stability conditions for a class of 
two-dimensional and three-dimensional Markov chains. Recently, stronger stability 
criteria for two-dimensional chains have been presented by Fayolle [7] and 
Rozenkrantz [21]. Unfortunately, these conditions are still difficult to apply in 
practice for higher dimensional processes (see Karatzoglu and Ephremides [10] for 
an application of this to a multidimensional ALOHA system). A more practical 
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approach to stability of multidimensional Markov chains arising in queueing 
applications was discussed in Szpankowski [23] (for more details, see the survey 
in Szpankowski [24]). 

Our approach to the stability of token passing rings follows the idea suggested 
in Szpankowski [25], and differs significantly from the standard methodology of the 
test function (cf. Tweedie [28]). Our approach is based on a simple idea of a 
stochastic dominance technique and the application of Loynes' [ 14] stability criteria 
for an isolated queue. We use the stochastic dominance to verify technical stationarity 
requirements in Loynes' criteria. We shall indicate that this approach is not restricted 
to f-limited token passing rings, and stability of several other distributed systems 
can be assessed by this methodology (cf. [8] and [25]). 

In the rest of this paper, we will consider the gated version of the t'-limited 
policy, i.e. the customers that are allowed to be served at queue i are only those 
that are present at the instant of token arrival at that queue. We shall 
analyze the token passing ring with Poisson arrivals with parameter Xi for 
the ith station, general distribution of service times [S/k}~*=l and switchover times 

ko*  {U~ }k=l. Our main result can be formulated as follows (see also theorem 7 and 
theorem 10). 

PROPOSITION 

Consider a token passing ring consisting of M stations with ~-limited service 
schedule for the ith station, and Poisson arrivals. Then the system is stable if and 
only if P0 = ~=lPj  < 1 and 

fj 
~ , j < - - ( 1 - p o )  for all j ~ 9 , ( = { 1 , . . , M } ,  with fj<, ,o,  

Uo 

M 1 where Uo = ~-j=l  EUi is the average total switchover time, and pj = ,~j sj with s i = ESi 
being the average service time at the ith station. [] 

Note that the above stability criteria are represented in terms of a set of linear 
inequalities with respect to input rates Xi for i ~ M. Figure 1 shows the stability 
region for M = 3. 

The paper is organized as follows. In the next section, we present our 
preliminary results which in themselves are of interest for the per formance  
evaluation of the token passing ring. In particular, we find Markovian representations 
of the system (cf. theorem 1), establish some Wald-type formulas (cf. theorem 3), 
and prove a crucial stochastic dominance relationship (cf. theorem 4). Finally, in 
section 3, we present our main construction, which leads to the proof of the above 
proposition. 
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Fig. 1. Stability region for the token passing ring with M = 3 users. 

2. P r e l i m i n a r y  resu l t s  

In this section, we present several results that are required to establish our 
main finding regarding the stability of  the token passing ring. These results are of  
independent interest, and can be used to obtain some estimates for the performance 
evaluation of the system. In the sequel, we list our main assumptions, prove the 
Markovian character of  an embedded queueing process, show two simple Wald-type 
identities and, finally, establish a stochastic dominance relationship. 

We start with a precise definition of  our stochastic model. We shall adopt the 
following assumptions. 

(A1) There are M stations (queues) on a loop, each having an infinite capacity 
buffer. 

(A2) The maximum number of  customers served during the token visit at the ith 
queue is limited to f~ < ~,. Only customers that are present at the instant of  
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(A3) 

(A4) 

(A5) 

token arrival can be served. This assumption will be relaxed later to include 
the case E/= o0 (see corollary 9). 

Arrival process A~, t ~ [0, ~) ,  to the ith queue is a Poisson process with 
parameter  2i > 0. Here, A~ is the number  of  arrivals at queue i up to t ime t. 
The arrival process at a queue is independent  of  the arrival processes to other 
queues. 

k** Service time process {SI }k=l at queue i is i.i.d, with si = ES:  > 0. The service 
t ime process at a queue is independent  of the arrival processes at all queues 
and independent  of  the service t ime processes at other queues. 

The switchover t imes between i and i + 1 mod M queue {U~ }k=l are i.i.d, with 
M 1 the average total switching t ime equal to Uo =Y.i=IEUI,  and the process is 

independent of  the arrival and the service time processes. To avoid unnecessary 
complications,  we assume that Pr{U/l > 0} = 1 for i = 1 . . . . .  M. 

Now we are ready to present a Markovian description of  the system. We need 
some notation. By (A1), the token visits stations in a cyclic order. Let n denote the 
nth visit of  the token to any queue. Then, k,, = L(n - 1)/MJ + 1 denotes the cycle 
number  in which the nth visit occurs (we start counting cycles from one and assume 
that the token starts from queue 1). Note that the queue visited at the nth visit is 
just  .In = n - M ( k ,  - 1). Let  also T,, be the time instant of the nth visit of  the token 
to any queue. Define an M-dimensional  process lq" = (N~' . . . . .  ~r~t), where N/' is 
the number  of  customers in queue i at t ime T,. In addition, by N/ '  we mean the 
total number  of  customers served from queue i up to t ime Tn. Theorem 1 below 
proves that /~1 '~ is a Markov chain. 

THEOREM 1 

The process 1~/" is a (in general nonhomogeneous)  Markov chain. 

P r o o f  

Let L~ be the number  of customers served from queue Jn at the nth visit of  
the token. According to (A2), L n,J. = min{N~, t'j, } and L7 = 0 for i ~ Jn. The t ime 
Bn that elapses between the nth and (n + 1)st visit of  the token to any queue is 

L ' ~ I I  _ t n . 

~ ' S  :~t)" +j U ~' (1) B n = L ,  j. + j ,  
j= l  

and the number  of  arrivals X~' to queue i between the nth and (n + 1)st visit are 

X n = AT,+B,_ AT,. (2) 

Finally, the following recursions hold for the queue size in the ith station 
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/(':+' = [N2~ - l'n ]++ X :  

if i ~ J n ,  

if i = Jn, (3) 

where [x]+= max{x, 0}. Since the transmission policy is nonpreemptive and does 
not depend on the service times of the customers, no information is obtained from 
the history up to time Tn about the service times of the customers that are in the 
queue at time Tn. Taking also into account assumptions (A3)-(A5), we conclude 

N~ + j ~ Tn +t Tn �9 k,, that the processes {Si_ }i-1,- A., - A., , t ~ [0, ~), and the random vanable Ujn, 
are independent of N m, 1 < m < n. From the above discussion, we conclude that 
1~1 n+l is of the form l~I n+l = f ( ~ I n , y  n) for some (measurable) function f (  �9 ), where 

~.n+j Ta+t T~ kn ~n Yn is composed of the processes S i , A i - A  i and U~" Therefore, is a 
Markov chain (see, for example, p. 34 of Nevelson and Hasminskii [20]). [] 

There are other Markovian descriptions of the system. For example, define 
NT(i) to be the number of customers at queue j when the token visits queue i for 
the nth time. Then, the process Nn(i) = (N'~(i) . . . . .  Nnu(i)) can be deduced from 1~" 
since Nn(i) = ~<n-l)u+i. This implies that for a fixed i, Nn(i) is a Markov chain 
too. In fact, repeating the arguments of the proof of theorem 1, it can be seen that 
Nn(i) is a homogeneous Markov chain. It is also easily verified that the chain is 
irreducible and aperiodic. Hence, we have the following. 

COROLLARY 2 

The process Nn(i) of the queue lengths registered by the token when it visits 
(reference) queue i is a homogeneous, irreducible and aperiodic Markov chain. [] 

We will need some Wald-type relationships between the average number of 
customers served per token visit and the average cycle time. Let L~ be the number 
of customers served by queue i during the nth visit of the token to this queue. Also, 
let C~ be the cycle length, that is, the length of time between the nth and (n + 1)st 
visits of the token to the reference queue i. By EL i and EC, we denote the long run 
averages of L~ and C n, if they exist (it will be seen that the limiting average of the 
cycle length C~' does not depend on the reference queue i). The following result is 
known from Kuehn [12] (cf. Takagi [26]). We provide here a proof based on 
regenerative arguments since we will need some of the steps of the proof in later 
sections. 

THEOREM 3 

Let the Markov chain N"(i) be positive recurrent (ergodic) for some i ~ M. 
Then 
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(1) Nn(j )  is ergodic for all j ~ 9~. 

(2) Under any initial condition on NI(i), the long run averages of {Ln},,~l and 
{C~}n**__ 1 exist and are unique. Moreover, Po = Y.~t=lPj < 1, 

ELi = ~.jEC, j ~ 91( (4) 

and 

EC = uo 
M ' ( 5 )  

1 - Z j=l PJ 

where u0 is the total average switchover time (cf. assumption (A5)) and 
Pi = ~isi is the utilization coefficient for the ith queue. 

Proo f  

Without loss of generality, let i = 1. By the assumption, Nn(1) is an ergodic 
Markov chain. Note that Nn(1) has a natural regeneration structure, namely when 
all queues are empty, that is, when the process returns to zero state 0 = (0, 0 . . . . .  0). 
Assume NI(1) = 0, and K 1 = 1. Define 

K "+1 = min{m > Kn:Nm(1) = 0}, 

n o o  and R n = K" + 1 _ K n. We shall also denote R = R 1. It is well known that {R }n=l are 
i.i.d, random variables. Due to the ergodicity of N"(1), we have ER < ~.  Observe 
that f o r j  ~ M, Nn( j )  is regenerative with respect to R n. Since it is easily seen that 
R n is aperiodic, it follows (see Asmussen [1, chapter 5]) that  the process Nn( j )  has 
a steady-state distribution and therefore is ergodic. 

n OO  The sequences {C['}n**= 1 and {LT},,__. 1 are regenerative with respect to R n. 
Therefore (cf. Asmussen [1, corollary 1.5 and theorem 3.1 in chapter 5]), 

n k _ 

lim ~k=l L) E ( ] ~ = I  L~) 
n ~  n ER 

lim ]~--1Clk - E(~kR=IC~) a.s. (6) 
n ~ . ~  n ER 

Moreover, L~ and C~' converge in distribution to Lj and C1 such that 

- , - ( 7 )  
ER ER 

If NI(1)~: 0, then the involved sequences constitute delayed regenerative 
processes for which R 1 = min{m > 1 �9 Nm(1) = 0} - 1, has a different distribution 
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than {Rn}n~=2 . Since N"(1) is ergodic, R 1 is an honest random variable (Pr(R 1 = ~,) = 0), 
and formulas (6) and (7) still hold, with the provision that the averages now involve 
the corresponding quantities in the regenerative cycle R 2. Now we are in a position 
to prove (4) and (5). Note first that Z~=I~ -< R/1 and since ER < ~,, we also have 
that E(Y~= 1L~) < ,,~ Observe next that in the interval [0, ~R Cka all the arriving 

- " Z ~ k = l  1 J '  

customers from all queues must be served. If Aj is the number of arrivals to queue 
j in the interval [0, Y.~=IC(), then E A j =  E(]~=IL~), and due to the Poisson 
assumption (A3) we also-have E Aj = ZjE(Y~=IC~. ~. The last formula follows from 
the fact that ERIC ~ is a stopping time for ilae Poisson arrival process to the j th 
station. Therefore, 

and 

< (8) 

j ~ Yv[. (9) 

The above and (7) lead to ELi = ~,jEC1, which completes the proof of (4). 
To prove (5), we note that the cycle length C~ is 

M L~ 
S" .grn+Ek:,L~ (10) c =u"+Z . , k  z ~ o j  

j=l m=l 

where U" = ]~t=lU ].  Summing the above over the first R visits of the token, taking 
the expectation of it, and using (9), one obtains the following: 

E C~ = Uo" ER + t],jSj E C 1 . (11) 

Since ER > 1 and by (8) R E(Y~n__IC~') < ~, using (7) we obtain from the above that 
]~M=lpj < 1 and EC 1 EC Uo ] (1 M = = --Y.i=lPi), as needed for (5). [] 

Remark 

As can be seen from the proof, for the first assertion of the theorem the 
finiteness of ~ is not needed. Also, for the second assertion, only the finiteness of 
(/for some i ~ 9V( is needed. 

The next result is our main finding in this section. Before we plunge into 
technical details, we first give a brief overview of our approach. In the process of 
estimating stability, we need to build several dominant systems of the original token 
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passing ring. For example, we partition the set of  users into a class S of  nonpersistent 
queues and a class q./of persistent queues. A nonpersistent queue serves customers 
in the normal  way as in the original token passing ring. A persistent queue, however,  
always sends the maximum allowable number  of  customers, that is, ~ for i ~ qd, by 
sending, if necessary, "dummy"  customers. In other words, the token spends [/i.i.d. 
service times, identically distributed to S~, in the ith queue before it starts walking 
to the next queue. A question is whether  such a new system dominates the original 
token passing ring in some sense. If  the answer is yes, then by proving stability of  
the dominant  system we establish stability of the original token passing ring. 

Let ('L/, S) be a partitioning of  the set of M queues. The system that results 
from this partitioning can be viewed as a token ring that operates under the same 
policy as the  original system, but in which the vacation times have been increased. 
In theorem 4, we show that under  the Poisson assumption of  the arrival processes, 
an increase in the vacation time implies, under  certain statistical assumptions,  an 
increase (in a stochastic sense) of  the queue sizes seen by the token at the instants 
it visits the queues. The Poisson assumption i sc ruc ia l  t o  this result. To see that, 
in general, this may not be true even if the vacation times are i.i.d., consider the 
following example. 

EXAMPLE: Counter-example 

Consider a single queue with gated service. Assume that the service t ime is 
1 and that the i.i.d, interarrival times Ak have distribution 

P r { A k = l . 9 } = a ,  P r { A k = 5 } = l - a .  

Consider two versions of  the system: the first with vacations 1.5 and the second 
with vacations 2. Let N~, k = 1, 2 . . . .  ; i = 1, 2 be the queue size in system i at the 
instant of  the kth visit of  the token to the queue. We also assume that N~ = 0, 
i = 1, 2, and at t ime zero the first vacation begins. Let us consider in detail the first 
system. The first vacation ends at time 1.5 and since there is no arrival, the token 
resumes the second vacation that ends at t ime 3, which is also the time of  the third 
token arrival to the queue. Consider the queue length at this time, that is N3 ~. 
Clearly, N ] < 1, and N] = 0 if and only if  A1 = 5, that is Pr{N31 = 0} = 1 -  a,  
Pr{N ] = 1 } = a. For the second system, we also have N 2 < 1; however,  N 2 = 0 if 
and only if one of  the following mutually exclusive events happens: (i) A 1 = 5 or 
(ii) A1 = 2 and A2 = 5. Therefore, P r (N  2 = 0} = 1 - a +  a(1 - a).  Since Pr{N] < 0} 
< Pr{N~ < 0}, we have that N~ >stN~. [] 

The next result holds for general service disciplines of  the type in 
Levy et al. [13]. Specifically, in the terminology of  Levy et al. [13], we consider 
the class of "monotonic",  "contractive" policies. This amounts to replacing assumption 
(A2) with the following more general one. 
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(A2') Le t~(n)  be the number of customers served from queue i when there are n 
queued messages at the instant of token arrival at queue i. We assume that 
Z(n) is a non-decreasing function of the number of customers in the ith 
queue. In addition, the following relation holds: 

f / ( n l )  - j ~ ( n 2 )  <- n l - -  n2 i f  nl > n2 .  (i2) 

Now we are ready to formulate our result. Consider two token passing rings, 
say 0 and O. Both satisfy assumptions (A1)-(A4) with (A2) replaced by the weaker 
assumption (A2'). System 0 satisfies also assumption (A5) and represents our original 
token passing ring. System O differs only in the switchover times, namely, we 
assume that the switchover times for O are replaced by {A~ + Uik}i=lM for 
k = 0, 1 . . . . .  where U/k are the corresponding switchover times in system 0. We 

k ~  assume that for every i ~ 91,land every k> 0 we have A~ > 0. The processes {Ai}k= 1, 
i ~ M, may depend on the rest of the processes; however, we make the following 
"independence of future" assumption: 

(A6) The random variable A~ is independent of the service times, switchover times 
k*,,  {UI }k=l and the Poisson increments of the arrival processes to all stations 

after time TM(k_ 1) § (i § 1) - U/k (see fig. 2). 

System O 

System 

new arrival 

sl s~ 
I 

identicaJ 

arrivals 

new arrival 

vo  To Do T ~ 

AI ) ul I s~ s~ a~ 4 u~ I ) I . 
�9 �9 I t J  t 

�9 I I  I I t �9 I t �9 
fldentical t identical - "  / , / . . - ' "  ident ical  . . 

�9 arrivals," arrivals , -"  arrivals,-" 
I I I ! i  t t  �9 

I ~" ~" t ~" ~ " "  
Df T~ D~ T~ 

Fig. 2. Illustration to the proof of theorem 4. 

THEOREM 4 

Let/(/n(0) and /~ln(O) denote the queue lengths in both systems. Then, under 
the above assumptions, and under the condition that the token starts from the same 
queue, say queue number one, and with the same number of initial customers in 
both systems, the following holds: 

Nn(O) -<st ]~n(o) ,  (13) 

w h e r e  -----st means stochastically smaller. 
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Proof 
To avoid cumbersome notation, we present the proof only for M = 2 users. 

The proof can be easily extended to any number of users. 
We define some new variables. For system 0, let T ~ and D ~ denote the 

instants of the nth visit and the nth token departure from any queue, respectively. 
As before, j o  denotes the queue number visited at the nth visit of  the token. Finally, 
L'~(O) denotes the number of customers served from queue i at the nth visit of  the 
token. Clearly, for our two-station system, L'~(O) = 0 for n even and L~(O) for n odd. 
In a similar manner, we define respective quantities in the O system. 

We assume that S~ are assigned upon the beginning of the service. Since the 
service policies we are considering do not depend on the knowledge of  the service 
requirements of the customers, this assumption does not change the distributions of 
the processes involved, hence also stochastic dominance property of the systems. 
Under this modification, we show how to construct from the system O a token 
passing ring O, which is  stochastically equivalent to the system 0 and for which 
we have that 

~,t(~) < 1~t"(0). (14) 

Figure 2 should help to understand our construction. Assume N~(O) = N/I(O) for 
i =  1, 2. Now, we assign to the ,~(O) customers of O the service times S/k 
exactly as in O. The same functions~(n), i = 1, 2 are used in both systems. Therefore, 
the decision to switch to queue 2 will occur at the same time, namely D ~ = D ~  
The switchover time for 0" now becomes UI, and of course T ~ < T ~ since A] >-0 

(see fig. 2). 

The interarrival times in the interval [Tl~ Dl~ [_Tl~ ~  are identical 
for both systems. The interarrival times in system 0" in [D ~ T ~  are constructed 
identical to the interarrival times in [D ~ + b 1, TO) in system O. Therefore, clearly 
/~2(~) < ~2(O ) for i=  1, 2. We continue our construction and at time T ~ , service 

times are assigned from S2kin the same order as in O. Also, the interarrival times 
to system 0 in 

. . . .  s 8(-a)) tr2 r 2 + s l +  + 2 

are taken to be identical to the interarrival times in 

tro, T0 + S 1 + . . . +  

Note that by (A2'), we have /_Jz(O)</Jz(O) and therefore 

- -  r ?  + + . .  + <_ D ?  

(cf. fig. 2). 
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i 

To complete the description of the system 0,  we have to specify the interarrival 
t imes in [D ~ , D ~ + U~). These are taken to be the same as the interarrival t imes in 
[D2 ~ + A12, D ~ + Alz + U2 I) in system O (see fig. 2). Note from the construction that 

~13('0) = ~:?(-ff) + A[ To,T:) < N2(O) + A[T2~162 = ~13(0) 

and also by (12), 

~[3('~) = ~[2('~)_ L~('O) + Ai T~ T3~ + A2 [~' 37~) =/V3(O). 

We_can now repeat exactly the same procedure to construct 0 in the interval 
IT, ~ T~+I), n _> 3, in the same manner  as it was constructed in the interval IT2, ?'3). 
By construction, the service times and switchover times of  system 0 are identically 
distributed to the corresponding variables of  system 0 and are independent  of  the 
interarrival processes. In addition, assumption (A6) and the independence of  the 
increments of  the Poisson process imply that the constructed interarrival process 
in system 0 is Poisson with rate ~i for queue i. Moreover, by construction (14) 
holds. Since 0 is stochastically equivalent to 0, we have that the distribution of  
Eln(O) is identical to the distribution of  N~(O). This completes the proof  of  
theorem 4. [] 

3. Main results 

In this section, we present a proof  of  our proposit ion in the introduction. 
However,  before we plunge into technical details, an overview of our stability 
approach is discussed. We shall argue that our idea is novel and can be successfully 
used to establish stability of  some other distributed systems (see Szpankowski 
[25,24] for applications to the ALOHA system and coupled-processors system). 

Let us introduce some notations. If  Nn=  (N~' . . . . .  N~t) is a nonnegative 
stochastic process - not necessarily a Markov chain - then we say the process is 
stable if the distribution of N" as n ---) ~ exists and the distribution is honest. In 
other words, N n is stable if for x ~ R M, where R is the set of  real numbers,  the 
following holds for all points of  continuity of  F(x) 

lim Pr{N ~ <x} = F(x)  and lim F(x)  = 1, (15) 
n -"-> ~ 1 7 6  X - - " ~  ~ 

where F(x) is the limiting distribution function, and by x ---> ~ we understand that 
xj --. ~ for all j ~ 91/(= { 1 . . . . .  M}. If a weaker condition holds, namely, 

lim lim inf Pr{N n < x} = 1, (16) 
X "---> o o  n ---> ~ 

then the process is called substable or tight or bounded in probability sense. Otherwise, 
the system is unstable (for more details, see Loynes [14]). The isolation property 
ment ioned above can be formally presented as follows. 
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LEMMA 5 

(i) If for all j ~ M the one-dimensional processes N] are stable (substable), 
then the M-dimensional process N n = (N~', N~ . . . . .  N~t) is substable. 

(ii) If for some j, say j*, Nn. is unstable, then N n is also unstable. 
J 

Proof 

The proof is simple and can be found in Szpankowski [24, 25]. For example, 
part (i) follows from the following inequality: 

1 > lim lim inf Pr{N)' < xj, for j = 1,2 . . . . .  M} 
X - - - - ) ~  n ---) e~ 

M 

> 1 - y ,  lim lim sup Pr{N~' > xj} = 1, 
j=l xi---)~ n---)~ 

and the last equality is a simple consequence of the substability of N} for every 
j e f f , .  [] 

Our approach is based on the following observations. If the Markov chain 
defined on a countable state space is irreducible and aperiodic, then substability 
implies ergodicity of the process since every such Markov chain converges to a 
distribution (not necessarily honest). This is a well-known fact, and the reader is 
referred to any book treating Markov chains, for example Chung [4] (cf. Meyn and 
Tweedie [19]). ~ 

By lemma 5 and the above, we need only to establish substability of every 
isolated queue. To obtain such stability conditions, we apply the technique of 
Loynes [14], who proved that a single G/G/1 queue is stable if the input rate is 
smaller than the average service time provided that service times and interarrival 
times are jointly stationary and ergodic. To verify a technical stationarity condition 
in Loynes' criteria, we apply the stochastic dominance result of theorem 4. More 
precisely, we partition the set of queues Minto a set S of nonpersistent queues and 
into a set U of persistent queues, as was described in section 2. By theorem 4, the 
new system stochastically dominates the original one, and by proving stability of 
it, we clearly establish stability conditions for the original token passing ring. We 
use the mathematical induction to establish stability conditions for the nonpersistent 
queues in the new system, while the stability condition for a persistent queue is 
shown by using Loynes' criteria. 

To fulfill the above plan, we start by considering the stability condition of 
a queue that is related to the operation of a persistent queue in the dominant system. 

*For a general Markov chain defined on a general space, this is not necessarily true; however, as proved 
by Meyn and Tweedie [19], very weak conditions regarding compact sets are sufficient for this 
assertion to be true. 
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More formally, we consider a single queue that always services/(dummy if necessary) 
customers, even if there are less than I customers in the queue when the token 
(server) arrives. The server is of walking type, and after servicing I customers, it 
goes for a vacation. It is assumed that the cycle time C n represents a stationary and 
ergodic sequence with mean EC (no independence is required). T h e  arrival process 
A t to this queue is a Poisson process with parameter ;I,, independent of the process 
of  cycle times. Let N" represent the queue length at the beginning of the nth cycle. 
By X n we denote the number of customers arriving during the nth cycle. Note that 
since the processes C n and A t are independent and A t is Poisson, the process X n is 
a stationary and ergodic sequence with mean EX = ~EC. Then, the queue length 
satisfies the following recurrence: 

Nn+l = max{N n+ X n -  l ,Xn} .  (17) 

Lemma 6 below provides the stability condition for the system governed by (17). 
The proof is standard and it is based on Loynes' technique [14]. Therefore, it is 
omitted: 

LEMMA 6 

Consider the queueing system just described. If &EC < l, then the queue is 
stable in the sense of  definition (15). 

Now we are ready to prove our main result, already described in the proposition 
of the introduction. In the next theorem, we show that the conditions of  the proposition 
are sufficient. The proof uses the idea presented in the above overviews; however, 
due to technical reasons, we carry it out formally through mathematical induction. 

THEOREM 7 

The Markov chain Nn(i) representing the queue lengths in the token passing 
ring when it visits queue i ~ M is ergodic if 

,~,j < [ J  (1 -- P0) for all j ~ M ,  (18) 
uo 

where Po = Y,M=IPj. 

Proof  

We use mathematical induction. For M = 1, the proof is simple. Applying the 
Lyapunov test function method (cf. Szpankowski [24], Tweedie [28]) to the 
Markov chain {Nn(1)}~'= 1, we have E{N n+ 1 _N,~INn = k> l} = ~([S 1 "4" UO) -- [ =  ~U 0 

-/(1 - Po), where P0 = ;tsl. Note that this drift is negative when ;t < / (1  - po)/Uo, 
as needed. 
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Now we assume that the theorem is true for M -  1 and prove that it can be 
extended to the M > 2 queue case. We will show that if there is a partition ('/./, .5), 
with q./~ O and .5 ~: O, of the set 914 of M queues such that 

Uo + ,~--,k~ ~/'ksk 
(19) 

then the system is stable. As will be shown below, this wi l l  imply that the system 
is stable when (18) holds. Assuming (19), we first construct a token ring system 
that dominates stochastically our original token ring system and has stationary 
cycles. Next, we show that the dominating system is substable, which implies the 
substability of the original token ring system. 

Along these lines, we consider the system in which the queues in '/./are 
persistent and the queues in S are nonpersistent. Recall that a persistent queue i 
always sends (/ i.i.d, messages distributed according to S k (if necessary, dummy 
messages distributed in the same manner are transmitted). Note that the cardinality 
ISI of .5 is not larger than M -  1. Let Nn(i )= (N~(i) . . . . .  N~(i)) be the queue 
lengths when the token visits the ith queue for the nth time in the (U, .5) system. 
Observe that the modified system differs from the original token ring system only 
in the switchover time from a persistent queue to the successor of that queue in the 
ring. Specifically, if i ~ q./, then the switchover times become 

+ u:' ,  

where A~ is the time needed to service the dummy messages at node i (if any). Note 
that the number of dummy messages serviced by node i at the ith visit of the token 
to queue i is equal to max{(/-N/k(i),O}. Since N~(i) is independent of future 
arrivals or future service times, and the service times of the dummy messages are 
independent of the rest of the processes in the system, it is clear that A k satisfies 
condition (A 6) of section 2. Therefore, according to theorem 4, if NI(1) = NI(1), 
then 

N"(j)  <st N"(j),  for all n, j ~ 94. (20) 

Note now that in the (q./, S) system the queues in 5 constitute a token passing 
ring with ISI stations satisfying conditions (A1)-(A5) of section 2, whose operation 
is independent of the interarrival processes in the persistent queues. Observe that 
our assumption (A5) holds for the token ring composed of the queue in S, with new 
switchover times that are i.i.d., however, with a new distribution. This is due to the 
fact that every persistent queue i sends exactly Ei i.i.d, messages. Clearly, the total 
average switchover time t~o in such a ring (composed of the queue in S) is equal 
tO 

ao = uo + 
iEqd 
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Let the queue lengths at the nth visit of the token to queue i e S in such a 
system be denoted as N](i) = {N~(i)}j~s. Clearly, {N~(i)}.~ 1 is a Markov chain, 
and since ISI--- M -  1, we can apply the induction hypothesis. Hence, for i ~ S, 
{N~(i)}.~ 1 is ergodic if 

[i ( _ ~pk l  forall ieS.  (21) ~i < 1 
UO + Ekeq.l fkSk kES J 

Consider now a queue in .5, say queue 1, and let C~(1) be the process of cycle 
lengths (successive visits to queue 1). Under our assumption (19), (21) holds and 
the ergodicity of {N~(1)},,~ 1, which is true by the induction hypothesis, implies the 
existence of a unique honest stationary distribution ~r for this process. Let us assume 
that the process {N~(1)}n~ 1 starts with the initial distribution to, that is, N~(1) has 
distribution ~r. Then, it is well known that the resulting process {N~ (1)}~0=I is stationary 
and ergodic. Observe now that the process {N---~(1), C~-1(1)}~'=2 is also a Markov 
chain with uncountable (in general) state space, whose transition probabilities have 
the following properties: 

and 

Pr {(~+I (1), C~ (1)) E B IR~ (1), C~ -I (1)} 

= Pr{(N'~+I(1),C~(1)) e BIN~(1)} = q(N~ (1), B), n _> 2, (22) 

Pr {(N~ (1), C} (1)) e BIN s (1)} = q(N~ (1), B), (23) 

where B is a Borel set in lNI0Sl x P. (11'40 is the set of nonnegative integers) and 
q(., B) is a stationary transition probability function with domain lNI0 sl. From (22), 
it easily follows that the process {N~(1), c~-l(1)}n~=2 has a stationary distribution 

~(B) = ]~ q(x,B)~(x). 
x~lNIo SI 

Since N'~(1) has distribution ~, we see from (23) that (N~(1), C~(1)) has distribution 
and therefore the process {__N--~(1), .-1 C~ (1)}.= 2 is stationary [3, proposition 7.11]. 

Using (22) and the fact that {N~ (1)}.~=1 is irreducible and therefore indecomposable, 
we show in appendix A that {N~(1), n-1 C~ (1)}.= 2 is indecomposable as well. It 
follows from [3, theorem 7.16] that ~" is unique and {N~(1), C~1(1)}~=2 is ergodic. 
To complete the definition of the initial conditions, we set N'](1) = 0 for i ~ U. 

Having completed the construction of {N"(1)}.~ 1, it remains to show that this 
process is substable when (19) holds, It will follow that under the same initial 
conditions, the irreducible and aperiodic Markov chain {Nn(1)}.~l is substable and 
therefore ergodic. The fact that Nn(j) is ergodic for all j ~ M will follow from 
theorem 3. 

To show the substability of {N"(1)},,~ 1 in the presence of (19), recall first 
from lemma 50) that it suffices to show that for all i ~ M, the process {N i~n(1)}n= 1 
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is substable. For i ~ S, the stability of {N/"(1)}~ 1 follows by the construction of the 
initial conditions. Indeed, for all n > 1, {N/n(1)}ie S has distribution z. It remains 
to show the substability of a persistent queue, that is, of the process --n ** {N i (1)}n= 1 for 
i ~ U. The idea is to upper bound the process {N/~(1)},,~I, i ~ U, by a process which 
satisfies (17) and then to show stability of the last process using lemma 6. 

Let Tn(i) be the time of the nth visit of the token to queue i. Also, let X'~(i), 
X~(i) be the number of arrivals to queue i in the intervals [Tn(1), Tn(i)) and 
[Tn(i), T n+ 1(1)), respectively. Define also Xn(i) = X~(i) + X~(i). The process N/n(1), 
i ~ U satisfies the relations 

~V/n+l(1) = m a x ( N / n ( 1 )  + X~(i) - l,O) + X~(i) 

< max(~.~(1) + Xn(i) - l, Xn(i)). 

Define now the process {M?}n'=l as follows. Let M~ = 0, and 

(24) 

M? +1 = max(M? + Xn(i) - l, Xn(i)), n = 1,2 . . . . .  (25) 

By definition X~(i) is the number of Poisson arrivals at queue i in the cycle C~(1). 
Since the sequence C~(1) is stationary by the above construction, and independent 
of the arrival process at queue i, using lemma 6 we have that the process {M?}~ 1 
is stable if 

li _ li ( l _ ~ p k ~ ,  i e U ,  
&i < ECJ(1) Uo + ~F"keulkSk t 

(26) 

where the equality in (26) follows from the fact that by theorem 3, 

ecJ(1) ;,o uo + Zj  ljsj 
= = ( 2 7 )  

1 - ~,jesPJ 1 - ~,jesPJ 

Note that (19) implies (26). Since M/1 = N'I(1) = 0, using (24), (25) it follows that 

N/n(1) < M?, n = l , 2  . . . . .  i e U .  

Therefore, the process {N/n(1)}n~ 1, i e U, is substable under our hypothesis (19). 
Putting everything together, from (21) and (26) we finally conclude that the 

Markov chain Nn(j)  is ergodic for every j E M i f f o r  some partition P= (U, S) the 
inequality (19) holds. Therefore, we conclude that the stability region R of the 
whole system becomes 

R = k..) R s ,  (28) 
ScM 

where 
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Rs  = {~. = (~1 . . . . .  gin)" condition (19) holds}. (29) 

The union in (28) ranges over all nonempty strict subsets of  M. Finally, to complete 
the proof  we need to show that 

~j RS = ~1, = ()~1 . . . . .  )~M)"  gi < - -  1 - ~ p k  , i e M . (30) 
ScM UO k=l 

This requires only algebraic manipulations, and is delayed until appendix B (to 
assist the reader to see graphically how (30) arises, we construct in the example 
below the stability region R f r o m  Rs for M = 2 users). This completes the proof  of  
theorem 7. [] 

To illustrate the construction of the stability region R i n  the simplest possible 
case, we discuss M = 2 users token passing ring. 

EXAMPLE: Stability region for M = 2 

L e t u s  assume M = 2 and /i =/'2 = 1. Consider first S =  {1}. In this case, (19) 
leads to 

1 1 - glSl 
A,I< , A,2< , 

UO+ S1 + $2 U o + S 2  

which defines region RIl l  shown in fig. 3. In a similar manner,  for S =  {2}, we have 

1 - ;1,2s2 1 
~l'l < , /]'2 < , 

U0 + s1 U0 + Sl + $2 

which leads to the stability region Rt2} also shown in fig. 3. The total stability 
region R i s  the union of both regions RO} and Rt2~, that is, R = RCI} u RC2}- From 
fig. 3, it is easy to see that R can be equivalently represented as 

1 
~,I < _2__* (1 - ,~ i s1  - ~ 2 s 2  ), 

UO 

1 
A,2 < - -  (1 - ~l, lS 1 - Jl,2s2). 

Uo 

This is in agreement with (30). 
In a similar manner,  one can identify six different sets S in the case M = 3 

and construct the stability regions Rs .  The whole stability region in this case is 
presented in fig. 1. [] 
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1 
tto 4" s2 

A2 

uo + s l  + s2 

.,~282 ) uo + st + s2 

",, Aa 3_( Alsl Aa82 = . I -  

~0 "1" s !  

Fig. 3. Stability subregions R{ll and R{2} for M = 2 
users system. Stability region Ris R = R{1) u ~42). 

We can use theorem 7 to establish some other stability results. Here, we 
concentrate on two problems. First, theorem 7 can be extended to the process of 
queue lengths at arbitrary time instants, that is, the process lq(t) = (Nl (t) . . . . .  NM (t)), 
where Ni(t) is the queue length at queue i at t ime t. The second extension deals 
with the gated-unlimited service discipline, in which we set li = oo in assumption 
(A2). 

Let  us first consider the stability of  l~l(t). Assume that Nn(1) is ergodic. 
Using the notation of  the proof  of  theorem 3, we have from (9) that E(5'.~_-1C~') < oo, 

i.e. the renewal process ~n of  the length of time between two successive returns 
to state 0 of  the process Nn(1) has finite expectation. S ince  the interarrival times 
are exponential,  this renewal process is non-lattice. Since iq(t) is regenerative with 
respect to C'", we conclude that 

COROLLARY 8 

The process l~/(t) is stable if (18) holds. [] 

The next result extends assumption (A2) to gated-unlimited service disciplines. 
In fact, the basic steps of  the methodology presented here can be useful in establishing 
rigorously stability conditions for some other service disciplines such as Bernoulli, 
geometric, time limited, and so forth (cf. Levy et al. [13], Takagi [27]). However,  
additional work may be needed to fill the various steps in each case. Recently, in 
[8] we rigorously proved the stability condition for the time-limited token passing 
ring with the non-preemptive discipline. We plan to extend this analysis to preemptive 
t ime-limited token passing rings. This latter case is particularly interesting from the 
theoretical point of  view. 

Here, we concentrate only on the extension to the gated-unlimited service 
discipline. Assume that a subset Moo of  the queues employs the gated-unlimited 
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service discipline and let N~(i) be the vector of queue sizes at all stations when 
the token visits the ith queue for the nth time. Then we have the following 

COROLLARY 9 

For i ~ M, the Markov chain N~(i) is ergodic if Po = ~,M=IRj < 1 and 

Zj< /J ( l - p 0 ) ,  j e M - M ~ .  
Uo 

(31) 

Proof 
For arbitrary l > 0, let N~(i) be the queue sizes when the queues in M~. are 

employing the/- l imited policy with threshold l. As in theorem 3, define for 1 < l < oo, 
Ntl(1) = O, K] = O, 

K~ +1 = min{m > K/n:N~(1) = 0} 

and R r = K/~§ - K~. In appendix C, we show that R~ < R), l = 1, 2 . . . . .  Therefore, 
for any I, if N~(1) is ergodic, so is N~(1). Since Po < 1, we can choose l large 
enough so that 

l 
;I,j < m (1 - po), j ~ M ~ .  

Uo 

This, together with (31), implies that the Markov chain N~(1) is ergodic, which in 
turn implies that N~ is ergodic. [] 

Finally, we show in the next theorem that the conditions of  corollary 9 are 
also necessary for the ergodicity of the Markov chain Nn~(i), i ~ M. In particular, 
this will establish the necessary condition for stability of  the/- l imited token passing 
ring, and therefore it completes the proof of our proposition from the introduction. 

THEOREM 10 

If for some i ~ M t h e  Markov chain N~(i) is ergodic, then Nn**(j) is ergodic 
for every j ~ M. Moreover, Y.M=lp i < 1, and 

Ii 
;Lj < - -  (1 - po), j e M - M o . .  

U0 

Proof 
The first assertion follows from theorem 3 and the remark following that 

theorem. The second assertion is well known when M =  M~, (Eisenberg [6]). Assume 
now that M e  M=. Without loss of generality, let ll < o~. The fact that Y.M=lp j < 1 



L. Georgiadis, W. Szpankowski, Stability of token passing rings 27 

follows from theorem 3 (see also the remark following theorem 3). All cycles in 
the following will refer to queue 1. For simplicity of notation, we omit the queue 
index from the various variables. Let us define: 

C" : length of the nth cycle. 

Cn(r) : length of the nth cycle during which r customers from queue 1 were 
served. 

M"(r) : number of cycles in regeneration cycle R" (see proof of theorem 3 for the 
definition of R") during which r customers from queue 1 were served. 
Clearly, 

q 
R = ~.,M(r), (32) 

r=0 

where M(r) = Ml(r) and R = R 1. 

Since (by the ergodicity of the chain N~(1)) ER < o0, using regenerative arguments 
again, we have the following formulas for the long-run averages: 

�9 average length of cycle during which r customers from queue 1 were served, 

EC(r) lim Y~=lCk(r) E'----')Ck(r)'(zM(~ ) = - ; (33) 
n-,o~ n EM(r) 

�9 probability (proportion) of cycles during which r customers from queue 1 
were served 

P(r) = lim s'n (),..,~=lMk.r _ EM(r) (34) 
n ~ * ~  n ER 

Consider now the following system. 

System S. Upon arrival of the token to queue 1, the number of customers (from 
queue 1) that will be served in the next cycle enter system S. These 
customers stay in S until the token visits queue 1 for the next time, at 
which time all customers depart. 

Clearly, the number of customers that enter system S in the nth cycle is L n. Let A~ 
be the number of customers that arrived in system S by time t. Recall the definition 
of the renewal process ~,n in the paragraph before corollary 8. A~ is regenerative 
with respect to Cn, and the ergodicity of N~(1) implies by theorem 3 that EC n < oo.  

Hence, we have that 



28 L. Georgiadis, W. Szpankowski, Stability of token passing rings 

(Z R L k) 
~,s = lira A~ = E k=l = ~,1' (35) R k 

where the last equality follows from (9). Similarly, we have the following formulas 
for the long-run average queue size ENs, and the long-run average waiting time 
EWs, in system S: 

E 6 r M(r)Ck r = = ) (36) ENs= (~r=l ]~k=l ( ) )  ~ l r E ( ~ n ! l ) C k ( r )  

6 r M(r) k r E(~r=l Zk=l C ()) ~ l l rE (~ M=( ; )C k ( r ) )  
EWs = = = (37) 

~r=lrE(M(r)) E ( ~ i r M ( r ) )  q 

We explain the middle term in (36). Let Ns(t) be the queue size in system S at time 
t. Observe that r customers were served during Ck(r) and the waiting time in the 
system S of each of these customers is Ck(r). Since there are M(r) cycles of length 
r in a regeneration cycle, the sum in the nominator is the sum of the waiting times 
of the customers that were served in system S during a regeneration cycle. Since 
there are no customers in S when a regeneration cycle starts and ends, this sum is 
equal to the integral of Ns(t) during a regeneration cycle. The denominatoris simply 
EC 1. Therefore, the ratio in the middle term of (36) is exactly the ratio required 
by the regenerative theorem. The middle term in (37) is similarly explained. Note 
that since ~1 6 vM(r)g"kl'rX =E,__l~k= 1 ,~ ~,: and Eta1 < ~,,, we have that E(Y.~=(()Ck(r))<~, 
r =  1 . . . . .  t'l. Also, since A.I>0, it follows from (35) that 0<E(ER=l f f )  
= E(E~LIM(r)). From the previous discussion, we see that ENs < o. and EWs < ~. 
Using (33), (34), we derive from (36), (37): 

EN s = ~ l = l r e ( r )E C ( r ) ,  (38) 
EC 

EI/Vs = 2rC1=1 r e(r)EC(r) q (39) 
]~r=l r P(r) 

Since 0 < ~=irP(r) </1(1 - P(0)) (the first inequality is implied by the fact that 
~1 > 0), we conclude from (39) that 

EWs -> ]~rt~l rP(r)EC(r) 
tl(1 - P(0)) (40) 

Using Little's law (cf. Stidham [22]), (35), (38) and (40), we have 
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ENs = ,a, sEWs >- A1 

and therefore, 

ENsEC 

t'l(1 - P(O))'  

A1EC < t'l(1 - P(0)) .  (41) 

We claim that P ( 0 ) >  0. Otherwise, it follows from (34) that EM(O)= 0, which 
implies that P(L n > 1, n = 1, 2 . . . .  ) = 1. Since L n ___ 1 if and only if Nn(1) > 1, we 
have that P(Nn(1) = 0, n = 1, 2 . . . .  ) = 0, which contradicts the ergodicity of  
the chain Nn(1). Using the last observation, (41) implies that ~,1 < #1/EC, as 
desired. [] 

Appendix A 
w 

In this appendix, we show that if the Markov chain {N~ (1)}n**__l is indecomposable 
then so is {N--'~(1), n-1 ** C~ (1)}n= 2. Recall that a Markov chain with values in the measurable 
space (X, Y) and the transition probability p(x, B) is called indecomposable  if there 
are no two disjoint nonempty measurable sets B1, B2 that are closed. A measurable 
set B is closed if p(x, B) = 1 for all x ~ B. 

The state space of the Markov chain under  consideration is 1Nlo st • 1~ and the 
transition probability has the special structure p((x, y), B) = q(x, B), x ~ ~llo st, y ~ 1~. 
Let  us assume that there are two disjoint, nonempty,  closed measurable sets B1, B2 
in INISl x ~-,. Then, 

q(x, B i )= l  foraU (x,y) EBi, i = 1 , 2 .  (A1) 

Let 1-I(Bi) be the projection ofB i on ~loSl. I fx  ~ II(B1), then by (A1), q(x, BI) = 1 
and since B1 n B 2 = ~ ,  we conclude that q(x, B2) = 0. Therefore, x does not belong 
to 1-I(B2) (again by (A1), and so I'I(B1) n H(B2) = 0 .  Also, since B i r (~, we have 
Il(Bi) ~ 9 .  Final ly ,  since Bi c YI(BI) • ~., we have that  for  all x ~ H(B/) ,  
q(x, YI(B/) x IR) = 1. However, q(x,H(Bi) x IR) = Pr {N~(1) e II(Bi)IN~(1) = x} and 
the discussion in this paragraph shows that with respect to the Markov chain 
{N~(1)}n*~ the sets H(B1), I-I(B2) are dosed,  nonempty and disjoint. The last statement, 
however,  contradicts the fact that {N~(1)}n**= 1 is indecomposable.  

Appendix B 

We prove (30). Let ~ f /=  ~M'- {i}, and denote the RHS of  (30) as 4 ,  that is 

. . . . .  l- pk i e M  . ( m )  
Uo k=l 
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We will prove that 

M 

u RM, = R .  (B2) 
i=1 

First, we show that for every i ~ M we have RM~ c R.  Let ;~ ~ R~.. Then 
by (19) 

li  

Uo + lisi kgi ,1 

and this is equaivalent to 

&i < li  (1 - Po). (B3) 
Uo 

However, (B3) implies that uoPi < lisi(1 - YM=IPk). Using this, after some algebra, 
we conclude that the following also holds: 

(1--~k~iPk) < (1--'~'kMlPk) (B4) 

uo + l~si uo 

Therefore, for every j ~ M/, we have 

M 

; t j  < _< , (B5)  
Uo + lisi Uo 

and (B3), (B5) imply RMi c R,  as needed. 
Now we prove that M Ui=1R M~ ~ R.  Note that 

R M =  ~ E I R M : p j <  , j = l  . . . . .  M, .  
u 0 + l j s j  

(B6) 

Let ~ e R,  and let k be such that pJ( lk  sk) >- pjl(lj sj) for all j e M. Then, 
2 e R implies pjuo < ljsj(1 - Po) + pkljsj - pjlksk, j = 1 . . . . .  M, and this leads to 

~ RMk, as required. This proves (B2). 
Observe that as far as the proof of theorem 7 is concerned, (B2) is sufficient 

since we know that the system is stable when the vector of arrival rates is in 
u ~ l  RMi. Since the stability condition is also necessary by theorem 10, the stability 
region cannot be larger and this shows indirectly that u s e  M R s  = U~l RM~. This 
equality can also be proved directly by applying similar algebraic manipulations as 
above. Details are left to the reader. 
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Appendix C 

Following the notation in Levy et al. [13], we denote by f =  {f~(. )}, n = 1, 2 . . . . .  
a gated policy that during the nth visit of  the token to any queue serves f~(x) 
customers, where x is the number of  customers in that queue at the instant of  token 
arrival. Let iqr~ be the vector of  queue sizes at all queues at the instant of  the nth 
token arrival to any queue. Also, let T r ,  D r be the successive instants of  token 
arrival and departure to any queue under a policy f. The following lemma is derived 
by a simple modification of  the proof of  theorem 1 in Levy et al. [13]: 

LEMMA C 

Let f = {fn(" )}, n = 1, 2 . . . .  and g = {gn(. )}, n = 1, 2 . . . .  be two gated- 
type policies that serve customers in a queue in FCFS order. Assume that the system 
is empty at n = 0 and that the two policies operate with the same realizations of  
arrivals, service times, switchover times and the same polling order. Iff~(x) > g~(x), 
n = 1, 2 . . . .  and g is a monotonic and contractive policy, then 

/~1 g = (0 . . . . .  0) implies that T [ = T g and l~fk = (0 . . . . .  0). 

Proof  

Let W(t) be the sum of  the service times (total work) of  the customers that 
arrive in the system (that is, in all queues) by time t (notice that W(t) is independent 
of  the policy). We need only consider k > 2 since the case k = 1 is obvious by the 
initial conditions. If/(/g = (0 . . . . .  0) for some k > 2, that is, if  all queues are empty 
at the instant of  the kth arrival of  the token to a queue, then 

k-1 

W(Tff ) = Tkg - ~ , ( l j  , (C1) 
j=l 

where U,,, n = 1, 2 . . . . .  are the successive switchover times, that is, with k,,, J,, as 
defined in the paragraph before theorem 1, On = U ~ .  We claim now that Tk r < T g. 
If  this holds, then taking into account the fact that D[_I > Dkg_l (see lemma 1 in 
Levy et al. [13]) and that the switchover times are identical, we will have T f > Tff 
and therefore T [ = Tff. However, then (C1) impl ies  lq f = (0 . . . . .  0) as desired. 

To see that Tk t < Tff, assume the contrary, namely T~ > Tff. Then, if  If(t) is 
the amount of time that the token is idle (switching from one queue to another) up 
to t ime t under  pol icy f, we would  have that •j=Ik-luj- > I r ( T / )  (recall  that 
p(/Tj > 0) = 1). Since we also have W(t) >_ t -  It(t), t >_ 0, we would have that 

k-1 

W(T g) > Tg - E ~Ij , 
j=l 

which contradicts (C1). [] 
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If we now identifyf~(x) = x and gn(x) = min(x,/n), where In = fj,, we immediately 
have from lemma C that R~ < R~, which is what we need in corollary 9. 
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