
1

Lexicographically Optimal Balanced Networks
Leonidas Georgiadis
Aristotle Univ. of Thessaloniki

Dept. of Elect. and Comp. Eng

P.O. Box 435

Thessaloniki 54006, GREECE

e-mail: leonid@eng.auth.gr

Panos Georgatsos
A.T.T.S. Dept, Algosystems S.A.

4 Sardeon str, 171 21 N.Smyrni

Athens, GREECE

e-mail: pgeorgat@algo.com.gr

Kostas Floros
Aristotle Univ. of Thessaloniki

Dept. of Elect. and Comp. Eng

P.O. Box 435

Thessaloniki 54006, GREECE

e-mail: kflo@intranet.gr

Stelios Sartzetakis
ICS-FORTH

Science and Technology Park of Crete

P.O. Box 1385, Heraklion-CRETE

GREECE GR-711 10

e-mail: stelios@ics.forth.gr

Abstract– We consider the problem of allocating band-
width between two endpoints of a backbone network so that
no parts of the network are unnecessarily loaded. We formu-
late the problem as lexicographic optimization, and develop
algorithms for its solution. The solution consists of a) iden-
tifying a cut in the network where the optimal load can be
determined on all the links of the cut, and b) considering
the same problem for each of the subnetworks to which the
cut is dividing the original network.

I. Introduction

Consider the situation depicted in Figure 1. Private net-
work A needs a total bandwidth Bw in order to satisfy
its communication needs with private network B. This is a
practical situation arising to any connectivity provider do-
main, offering (semi-permanent) connection services to its
customers (e.g. ISP providing VPN or leased line services).
In the above context, the treatment of (semi-permanent)
connection requests so that the provider’s domain remains
in a “balanced” state, is the main concern of the paper.
Of course, there are many other issues that need to be ad-
dressed in this situation, such as, network design, resource
dimensioning, reliability , routing and admission control
techniques, assurance that the selected paths satisfy qual-
ity of service related constraints etc. [16], [9], [10], [3], [19].
However, within our framework, the allocation of band-
width in a manner that avoids overloading parts of the net-
work is a basic concern and can serve as building block for
addressing problems related to the above mentioned issues.
Usually bandwidth allocation and the accompanying route
determination is related to an optimization problem with
objective function representing an overall network cost, or
performance measure such as average delay, or average loss
probability [17], [8], [10], [19]. The model we consider in

The work of this author was supported by the ACTS project AC208-
REFRORM and the IST project IST-1999-11253-TEQUILA
The work of this author was supported by the ACTS project AC208-

REFRORM and the IST project IST-1999-11253-TEQUILA
The work of this author was supported by the ACTS project AC208-

REFRORM

this paper is different. It is assumed that the customer
requests from the network certain bandwidth. This band-
width is to be used by various customer applications, and
is sufficient to satisfy the customer’s desired call blocking
probability. In addition, if the notion of equivalent band-
width is incorporated into the model [13], [11], [15], [7],
then certain QoS criteria per customer, e.g., loss proba-
bility can be taken into account. The network then seeks
to provide the requested bandwidth without overloading
unnecessarily any part of the network. As a result the net-
work

• may be able to accept unpredictable traffic reservation
requests that may occur in various parts of the network
• can accommodate best effort traffic that may be gener-
ated in an unpredictable manner in various parts of the
network
• facilitates the process of finding alternate routes in case
of component failures [20].

The bandwidth allocation thus obtained can be used as
a basis for dynamic resource management. For example,
the routes obtained from such a bandwidth allocation may
be used as candidate routes for performing dynamic ad-
mission control [14], [12], [18]: when a new connection re-
quest arrives, the candidate routes are searched (the route
bandwidth can affect the order of search) and if there are
enough resources in one of routes, the connection is admit-
ted. Hence, overloading parts of the network is avoided by
design. In addition, since only a small number of routes
needs to be monitored, the complexity of the admission
control is reduced.
The problem we consider in this paper is how to pick

the routes and the associated route bandwidth within the
backbone network, so that the bandwidth request is satis-
fied and the backbone network is left in a “balanced” state.
Intuitively a network is balanced if the bandwidth alloca-
tion results in an even spreading of the load to various links
of the network. The simplest optimization criterion that
reflects this requirement is the minimization of the load

PRIVATE
NETWORK A

PRIVATE
NETWORK B

BACKBONE
NETWORK

Fig. 1. System Configuration

of the maximally loaded link in the network. This crite-
rion is one of the basic requirements from Internet Service
Providers (ISPs) [4], [21]. However, such an optimization
does not provide a means of allocating bandwidth to links
that are not maximally loaded. In this paper, we consider a
stronger minimization criterion, namely, lexicographic op-
timization. More specifically, we consider a network as bal-
anced if the vector of bandwidths allocated to each link is
lexicographically optimal with respect to certain link costs
representing the degree by which the link is loaded (also
known as a min-max vector [6, page 526]). Lexicographic
optimization attempts to first reduce as much as possible
the load of the maximally loaded link in the network. Next,
if there are many choices available, it attempts to reduce
as much as possible the second maximally loaded link cost
in the network, and so on. With the appropriate choice
of link cost functions, the degree of loading of a link may
be adapted. Hence certain links may be kept more or less
loaded according to administrative policies.
An example of the effect of balancing the network load

in a lexicographically optimal fashion is given in figure 2.
Assume that all links have the same capacity equal to one,
and that one unit of bandwidth is to be allocated. Assume
also that the link utilization is taken as the link cost. In
part a), this bandwidth is allocated on a single path, with
the result that all links on the path have load 1. In part
b), the allocation is made over two separate paths, and as
result the load on the six links of these paths is 1/2. This
is one of the allocations that could result if one is trying
to minimize the maximum loaded link in the network. In
part c), the lexicographically optimal allocation is shown.
In this case, in effect four paths are chosen and the resulting
link loads are 1/2 on two of the links and 1/4 on the rest.
Hence there are four more links with maximum load in case
b) than in case c), that is, case c) leaves the network in a
more balanced state.
Using lexicographic optimization of link cost functions as

the criterion for load balancing, we develop in this paper
algorithms for providing the optimal solution. Link cost are
continuous and increasing functions of link loads and may
be so defined to incorporate varying link capacities. The

b(A)=1

b(A)=1

b(A)=1

a) Imbalanced Allocation

b) Allocation Minimazing the Maximum Link Load

c) Lexicographically Optimal Allocation

1
1

1

1/2
1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/4
1/4

1/4
1/4 1/4

1/4

1/4
1/4

A

B

C

D

E

F

G

H

b(H)=-1

b(H)=-1

b(H)=-1

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

•All links have capacity 1
•The numbers next to links
denote flow values

•Links with no numbers have
flow value zero

Fig. 2. Methods of Bandwidth Allocation

solution is recursive and consists of a) identifying a cut in
the network where the optimal link load can be determined
on all links of the cut, and b) considering the same problem
for each of the subnetworks to which the cut is dividing
the original network. For general link cost functions the
solution may take exponential number of steps, while for
piecewise linear cost functions the required number of steps
is polynomial in the network size and the maximal number
of linear pieces in any link cost function.
The rest of the paper is organized as follows. In Sec-

tion II we present the notation used in the paper and some
prior results. In Section III we formulate the optimiza-
tion problems of interest and provide the basic approach
to the solution. Numerical results are presented in Section
IV. We summarize our results and provide suggestions for
further work in Section V. Finally, in the Appendix we
provide the proofs of Lemmas used in the paper.

II. Notation Definitions and Prior Results

Given an n-dimensional real vector x define by φ(x) the
n-dimensional vector whose coordinates are those of x ar-
ranged in non-increasing order, i.e.,

φ(x) = (φ1(x), φ2(x), . . . , φn(x)) = (xi1 , xi2 , . . . , xin)

where xi1 ≥ xi2 ≥ . . . ≥ xin . Vector x is called lexi-
cographically smaller than or equal to vector y, if either
φ(x) = φ(y), or there exists a number l, 1 ≤ l ≤ n such
that φi(x) = φi(y), for 1 ≤ i ≤ l − 1 and φl(x) < φl(y).
We write x ¹ y, and if in addition φ(x) 6= φ(y), x ≺ y.
In the example of Figure 2, the vector of link loads in

case c) is lexicographically smaller than the vector of link
loads in case b), which in turn is lexicographically smaller
than the vector of link loads in case a).
The following observation, which is immediate from the

definition, will be needed in the sequel.
Property 1. Let x and y be n-dimensional vectors such
that xi = yi for all i in a set M ⊆ {1, . . . , n} and define
M = {1, . . . , n}−M . If maxi∈M {xi} < maxi∈M{yi}, then
x ≺ y.

In the sequel we will need the following definitions and
notations. Consider a network G = (N,A) with a set N of
nodes and a set A of directed arcs (links).
Let a quantity be indexed by a link l ∈ A, sayWl, where

l = (i, j), i, j ∈ N . To avoid cumbersome notation, instead
of W(i,j) we write Wij .
A cut is a set of links whose removal divides network G

in two disconnected subnetworks G1 = (S,A1), and G2 =
(S,A1), where S = N − S. The set of forward links, i.e.,
links with tail in set S and head in set S is denoted by
(S, S). Similarly, the set of backward links, i.e., links with
head in set S and tail in set S is denoted by (S, S).We also
denote the set of links in the cut as, [S, S] = (S, S)∪(S, S).
The network induced by node set S ⊆ N, is a network

with node set S and link set the links in A with both end-
points in the set S.
Let the real numbers b(i), uij ≥ 0, be given for any

i ∈ N and (i, j) ∈ A. The number uij will be re-
ferred to as the “capacity” of link (i, j). Assume also
that

P
i∈N b(i) = 0. We denote Ns = {i ∈ N : b(i) > 0}

and Nt = {i ∈ N : b(i) < 0} . For a set S ⊆ N we define
b(S) =

P
i∈S b(i)

The capacity of a cut [S, S] is defined as the sum of the
capacities of the forward links of the cut, i.e.,

U [S, S] =
X

i∈(S,S)
uij .

Note: In the discussion below, uij will not necessarily rep-
resent the physical link capacities in bps. To avoid confu-
sion, we will refer to the latter explicitly as the “physical
link capacity”.
The following theorem will be needed [2, Theorem 6.12

, page 196] in the sequel.
Theorem 1: The system of constraintsX
j:(i,j)∈A

xij −
X

j:(j,i)∈A
xji = b(i), for all i ∈ N (1)

0 ≤ xij ≤ uij , for all (i, j) ∈ A
(2)

has a feasible solution if and only if for every subset S ⊆ N ,
b(S)− U

£
S, S

¤ ≤ 0.
A vector x = {xij}(i,j)∈A that satisfies the constraints of

Theorem 1 and in addition does not contain positive cycles
(i.e., cycles (i1, ..., iK = i1) such that mink

©
xik−1ik

ª
> 0)

will be referred to as a “flow” on G. We denote by FG,b,u
the set of all flows on G. Whenever there is no possibility
for confusion we use the simpler notation FG.
The problem of finding a feasible flow satisfying the con-

straints (1) and (2) can be solved by solving a maximum
flow problem defined on an augmented network [2]. Specif-
ically, network G is augmented with two nodes s, t, and
with arcs (s, i) for i ∈ Ns, and (i, t) for i ∈ Nt. The capac-
ity of an arc (s, i) for i ∈ Ns is b(i) and the capacity of an
arc (i, t) for i ∈ Nt is −b(i). Then the maximum flow from
s to t in the augmented network is solved. If the maximum
flow saturates all links (s, i), i ∈ Ns and (i, t), i ∈ Nt, then
there is a feasible flow satisfying the constraints (1) and
(2). Otherwise, there is no feasible solution.

III. Problem Formulation and Solution

We will need to address a more general problem than the
one presented in the introduction, which is also of interest.
Consider a network G = (N,A). Assume that there is a
set Ns of supplier (ingress access) nodes and a set Nt of
consumer (egress access) nodes, with Ns ∩Nt = ∅. A node
i ∈ Ns produces b(i) > 0 units of a commodity (bandwidth)
and a node i ∈ Nt consumes b(i) < 0 units of the same
commodity. For the rest of the nodes (transit nodes), N −
Ns − Nt assume that b(i) = 0. To avoid trivial cases we
assume that Ns 6= ∅. We also assume thatX

i∈N
b(i) = 0.

For the problem discussed in the introduction, we have
|Ns| = |Nt| = 1, i.e., there is one supplier node (ingress
node of private network A to backbone network) and one
consumer node (egress node of backbone network to private
network B); nodes with zero b(i) are transit nodes of the
backbone network.
Assume that physical link capacities for network G are

infinite (see the note below on how to incorporate physical
link capacities into the problem). Let x be a flow on G.
With each link l ∈ A, there is an associated cost Cl(xl),
where Cl(xl) is a continuous strictly increasing function.
We assume that Cl(0) = 0 for all l ∈ A. The problem
we consider is to find a flow x = {xl}l∈A such that the
induced vector of link costs {Cl(xl)}l∈A is lexicographically
optimal:

Problem A: Among the vectors x = {xl}l∈A satisfying
the constraints

X
j:(i,j)∈A

xij −
X

j:(j,i)∈A
xji = b(i) for all i ∈ N

xij ≥ 0 for all (i, j) ∈ A

find one, bx, such that the vector of link costs {Cl(bxl)}l∈A
is lexicographically optimal.

A solution to problem A will be referred to as a “lexico-
graphically optimal” flow.
The finding of a lexicographically optimal flow will be

based on the properties of the solution to the following
min-max problem.

Problem B: Solve

min
x∈FG

max
l∈A

{Cl(xl)} ,

where X
j:(i,j)∈A

xij −
X

j:(j,i)∈A
xji = b(i) for all i ∈ N

xij ≥ 0 for all (i, j) ∈ A

In the following we assume that the constraint set of prob-
lems A and B is not empty. This will be the case if, for

example, there is a path in G from any node in Ns to any
node in Nt.
Note: The physical link capacities are not included in the
constraints of problem A or B. These constraints can be
taken into consideration by defining appropriately the cost
functions. Specifically, let Bl be the physical capacity of
link l. Let the cost functions satisfy the condition

Cl(Bl) = U > 0, for any link l.

Then, if there is a flow x satisfying the physical link ca-
pacity constraints, the solution to problem A or B will also
satisfy these constraints. Indeed, since xl ≤ Bl and the
cost functions are increasing, we have

max
l∈A

{Cl(xl)} ≤ max
l∈A

{Cl(Bl)} = U.

On the other hand, for an optimal flow bx of problem A or
B, we have for any link k,

Ck(bxk) ≤ max
l∈A

{Cl(bxl)} ≤ max
l∈A

{Cl(xl)} ≤ U = Ck(Bk),

and therefore, bxk ≤ Bk. Hence, with this choice of cost
functions, if it turns out that the solution to problems A
or B does not satisfy the physical link capacity constraints,
then we know that no feasible solution exists for the prob-
lem.
Note that without loss of generality we may restrict at-

tention to flows that satisfy

xl ≤
X
i∈Ns

b(i).

Thus the constraint set is compact, and since we also as-
sume that it is nonempty, there exists a solution to problem
B. Using the fact that the set of solutions to problem B is
compact, it can also be shown that a solution to problem
A exists (see the Appendix for an outline of the argument).
We will refer to these solutions in the sequel without fur-
ther comments.
Given a number α ≥ 0, define the capacity of link l as

ul(α) = C−1l (α), where C−1l (·) is the inverse of Cl(·). Let
also Uα[S, S] be the capacity of the cut [S, S]:

Uα[S, S] =
X

(i,j)∈(SS)
uij(α).

The following two lemmas provide the basic properties of
a solution to problem B, on which the solution to problem
A will be based. The proofs of all lemmas, corollaries and
theorems are given in the appendix.
Lemma 2: Let x∗ solve Problem B and let β =

maxl∈A {Cl(x
∗
l)} > 0. Then there is a node set T ⊆ N ,

such that b(T) = Uβ[T, T] > 0.
Lemma 3: a) Let x∗ solve Problem B. Let the node set

T ⊆ N , be such that b(T) = Uβ [T, T] > 0. Any flow x0

that solves Problem B satisfies

Cl(x
0
l) = β, for every l ∈ (T, T) (3)

Cl(x
0
l) = 0, for every l ∈ (T , T) (4)

where β = maxl∈A {Cl(x
∗
l)} > 0.

b)Conversely, if a flow x0 ∈ FG,b,u(β) satisfies conditions
(3) and (4) for some set T with (T, T) 6= ∅ and some number
β > 0, then b(T) = Uβ [T, T] > 0, x0solves problem B and
the optimal value is β.
A link k such that Ck(xk) = β = maxl∈A {Cl(xl)} will be

called “maximally loaded”. A cut [T, T] such that b(T) =
Uβ [T, T] > 0 will also be called maximally loaded.
The previous two lemmas state that for any solution to

problem B there is a set T such that a) all links emanating
from T are maximally loaded and b) there is no load on
links entering T . Moreover, these two properties of set T
remain true under any other solution to problem B. Since
the cost functions Cl(x) are strictly increasing, this implies
that all solutions to problem B have the same values on
the links of the cut [T, T]. Consider for example the
solution to problem B in Figure 2 b). The set T in this
case is T = {A,B,C,D}, and the corresponding cut is
[T, T] = {(A,E), (D,H)}. Hence x(A,B) = x(D,H) = 1/2
for all solutions to problem B. Note that the same is not
true for other maximally loaded links, e.g., link (B,D).
Assume for the moment that β and a maximally loaded

cut [T, T] are known, and let bx be a lexicographically opti-
mal flow. Since bx solves problem B, according to the previ-
ous argument, the values of bx on any link in (T , T) are zero,
and the value on any link l in (T, T) is bxl = C−1l (β) > 0.
Therefore, it remains to find the values of the lexicograph-
ically optimal flow on the links of each of the networks
induced by the nodes in the sets T and T . Let us denote
these networks by GT = (T,AT) and GT = (T ,AT) respec-
tively. Define next for any node i in network GT ,

bT (i) = b(i)−
X

j:(i,j)∈(T,T)
C−1ij (β) (5)

(we use the convention that summation over an empty set
is zero). Similarly, define for any node i in the network GT ,

bT (i) = b(i) +
X

j:(j,i)∈(T,T)
C−1ij (β). (6)

Within each of the networks GT and GT , bx solves problem
B with the parameters bT , bT respectively. Indeed, assume
that bx does not solve problem B in, say, network GT . Then
there is a flow y on GT such that

max
(i,j)∈AT

{Cij(yij)} < max
(i,j)∈AT

{Cij(bxij)}.
Consider the vector {zij}(i,j)∈A defined as follows.

zij =

½ bxij if (i, j) /∈ AT

yij if (i, j) ∈ AT

Such a definition constitutes a feasible flow on G. More-
over, by Property 1, we have that z ≺ bx, which contradicts
the assumption that bx is optimal.
To summarize, we have seen that starting from problem

B defined on network G, and provided that we know the
optimal value β and a maximally loaded cut [T, T],

• we determine uniquely the lexicographically optimal val-
ues of the flow on the links of the cut
• to find the lexicographically optimal flow on the rest of
the links, we need to solve problem B on the smaller (in
terms of links and nodes) networks GT and GT
Continuing the subdivision of the networks in this fashion,
we eventually end up either with a single node network, or
with a network for which bT (i) = 0 for all i ∈ AT , for which
the solution is obviously xl = 0 for all links. Therefore,
we eventually determine the values of the lexicographically
optimal flow on all the links. Note that since the values
of the lexicographically optimal flows are uniquely deter-
mined on each of the maximally loaded cuts, the resulting
lexicographically optimal flow is also unique. We state this
fact as a corollary.
Corollary 4: The lexicographically optimal flow (solu-

tion to Problem A) is unique.
The basic algorithm described above, is shown in the

following pseudocode.

algorithm A:
INPUT: A network G = (N,A), link cost functions Cl(x) for
all l ∈ A, node commodities b(i), for all i ∈ N .
OUTPUT: Lexicographically optimal flow bx.
lexicographically_optimal_flow(G,C, b):
if |N | = 1 return;
if (b(i) = 0 for all i ∈ N) then {bxl = 0 for all l ∈ A;

return(bxl);}
β =min_max(G,Cl, b).value;
x∗ =min_max(G,C, b).argument;
[T, T] =maximally_loaded_cut(G,C, b);
for {all l ∈ [T, T]} do bxl = x∗l ; end;
lexicographically_optimal_flow(GT ,C

T, bT); /*CT
l (x) =

Cl(x) for all l ∈ T */
lexicographically_optimal_flow(GT , C

T , bT); /*C
T
l (x) =

Cl(x) for all l ∈ T */
return(bx);
It is important to note that there may be more than one

maximally loaded cuts in the network. Therefore, the speed
of the algorithm will increase if we identify the links that
belong to all such cuts and then set their values accordingly.
Consider for example the network in Figure 3. One maxi-
mally loaded cut is {(L,E), (D,H)}. Hence the two smaller
networks on which Problem B will be solved next are those
induced by the node sets T = {E,F,G,H} and T =
{I,K, J, L,A,B,C,D}. However link (L,A) also belongs
to a maximally loaded cut, i.e. the cut {(L,E), (L,A)}.
Hence the lexicographically optimal flow on link (L,A)
is also .5 and we can proceed by solving Problem B on
the networks induced by the node sets T = {E,F,G,H},
T1 = {A,B,C,D} and T2 = {I, J,K,L}.
Next we propose a method for finding all the links that

belong to the maximally loaded cuts in network G if a
solution to problem B, x∗, is known. Define a networkeG(N, eA), where
• The direction of a link such that x∗l = 0 (zero loaded
links) is inverted
• A link that is neither maximally loaded nor zero loaded
is replaced with a bidirectional link (or two links, one in

b(I)=1

.5
.5

.5

.5 .5
.5

A

B

C

D

E

F

G

H

I

J
K

L

b(H)=-1

.5

.5
.5

.5

•All links have capacity 1
•The numbers next to links denote flow values
•Links with no numbers have flow value zero

Fig. 3. Multiple Maximally Loaded Cuts.

each direction)
Note that since Cl(0) = 0, and the cost functions are
strictly increasing, it is not possible for a node to simulta-
neously be maximally and zero loaded (barring the trivial
case where b(i) = 0 for all i ∈ N).
If [T, T] is a maximally loaded cut, then there is no path ineG(N, eA) from a node in T to a node in T. Therefore networkeG(N, eA) has at least two strongly connected components.
Assume now that we find the strongly connected compo-
nents of eG(N, eA), eG1, eG2, . . . , eGL, L ≥ 2. Observe that any
maximally loaded cut [T, T] partitions the strongly con-
nected components into two subsets such that

T = ∪i∈s1 eGi, T = ∪i∈s2 eGi, s1 ∩ s2 = ∅, s1 ∪ s2 = {1, .., L}

Therefore, the links that belong to maximally loaded cuts
are links that connect the components eG1, eG2, . . . , eGL. In
fact, the load of all the links that connect these components
is the load induced by the lexicographically optimal point.
This fact is based on the following lemma.
Lemma 5: Any link that connects components eG1, eG2,

. . . , eGL has either zero load under any flow, or belongs to
one or the maximally loaded cuts of network G.
Combining now the previous lemma with Lemma 3 a) we

see that the load of the links that connect the componentseG1, eG2, . . . , eGL is the load induced by the lexicographically
optimal point.
The modified algorithm is given in the pseudocode that

follows. In this pseudocode, Gk is the subnetwork of net-
work G having the same nodes as component eGk of eG, and
bk are the respective commodities, determined in a manner
similar to (5), (6).
algorithm B:
INPUT: A network G = (N,A), link cost functions Cl(x) for
all l ∈ A, node commodities b(i), for all i ∈ N .
OUTPUT: Lexicographically optimal link load vector bx.
lexicographically_optimal_flow(G,C, b):
If |N | = 1 return;
If (b(i) = 0 for all i ∈ N) then {bxl = 0 for all l ∈ A;

return(bxl);}
β =min_max(G,C, b).value;

x∗ =min_max(G,C, b).argument;eG =create_network(G,x∗) ;n eG1, eG2, . . . , eGL

o
=strongly_connected_components(eG)

for {all links connecting the strongly connected compo-

nents
n eG1, eG2, . . . , eGL

o
}

do bxl = x∗l ; end;
for k = 1 to L
do lexicographically_optimal_flow(Gk,bk);end;

return(bx);
Procedure create_network
INPUT: Network G(N,A), x flow on G.
OUTPUT: A network consisting of the same nodes as G and
with modified links.
create_network(G,x)eA = A;
for l ∈ A do
if (xl = 0) then invert direction of link l in eA;
else if (l is not maximally loaded) replace link l in eA

with a bidirectional link;
end;
return eG(N, eA);
It remains to determine a method for finding β and x∗.

This is presented in the next section.

A. Algorithm for Solving Problem B

In [1], an algorithm for solving Problem B for the trans-
portation problem and for linear cost functions was pre-
sented. The general approach in [1] can be adapted to
the problem at hand. However, intricacies arise due to the
fact that we consider general networks and nonlinear cost
functions. We address these issues in this section.
We assume that the solution in α to the equationX

l∈S
C−1l (α) = r, S ⊂ A, r ≥ 0 (7)

can be computed exactly (or with very high accuracy), as,
for example, in the case where the costs are piecewise linear
functions.
First, a positive lower bound on the value z∗ of Problem

B is determined based on the following lemma.
Lemma 6: Let the cut

£
T0, T 0

¤
be such that Ns ⊆ T0. If

z0 > 0 is the solution to equationX
l∈(T0,T0)

C−1l (z0) =
X
i∈Ns

b(i), (8)

then, z0 ≤ z∗.
Note that we can pick T0 = Ns and hence obtain a lower

bound z0 according to Lemma 6. Having determined z0
we can proceed to compute an increasing sequence of lower
bounds as follows. Let zk ≤ z∗ be a lower bound. Augment
network G with two nodes s, t, and with arcs (s, i), i ∈ Ns,
(i, t), i ∈ Nt. Also, define the link capacities, ul = C−1l (zk),
l ∈ A and u(s,i) = b(i), i ∈ Ns, u(i,t) = −b(i), i ∈ Nt. Let

bGk be the augmented network. The next lemma provides
a means of improving the lower bound.
Lemma 7: Let x(k) be the maximum flow on the aug-

mented network bGk. If x(k) saturates all links (s, i),
i ∈ Ns, then x(k) solves Problem B. Otherwise, any cut

[Tk+1, T k+1] in G such that
h
{s} ∪ Tk+1, {s} ∪ Tk+1

i
is a

minimum cut in bGk satisfiesX
i∈Tk+1

b(i) >
X

l∈(Tk+1,Tk+1)
C−1l (zk).

If zk+1 solvesX
i∈Tk+1

b(i) =
X

l∈(Tk+1,Tk+1)
C−1l (zk+1), (9)

then zk < zk+1 ≤ z∗.
It is important to note that the cuts [Tk+1, T k+1] thus

generated are all different from each other since if we have
Tl = Tk for some k 6= l, then by (9) we must haveX

l∈(Tk,Tk)
C−1l (zk) =

X
l∈(Tk,Tk)

C−1l (zl),

which is impossible since both zk and the cost functions
are strictly increasing. Since the number of cuts in G is
finite, the above procedure must stop in a finite number of
steps. By the end of the procedure the optimal solutions is
found.
From the above discussion we have the following generic

algorithm for solving problem B.
algorithm C:
INPUT: A network G = (N,A), link cost functions Cl(x) for
all l ∈ A, node commodities b(i), for all i ∈ N .
OUTPUT: A link load vector x∗ solving Problem B.
min_max(G,C, b):
solve

P
l∈(Ns,Ns)C

−1
l (z0) =

P
i∈Ns

b(i);

for k = 0 to ∞ do
form network bGk with link capacities ul = C−1l (zk), l ∈

A;
xk =maximum_flow(bGk).argument;
if (all links (s, i), i ∈ Ns are saturated) then

do value = zk;
argument= xk;
return(value,argument);

else do
find a minimum cut

h
{s} ∪ Tk+1, {s} ∪ Tk+1

i
ofbGk;

solve X
l∈(Tk+1,Tk+1)

C−1l (zk+1) =
X

i∈Tk+1
b(i);

end;
return;
While the algorithm thus obtained is guaranteed to ter-

minate in a finite number of steps, it may take a long time

since the number of candidate cuts may exponential in the
size of the network. However, as we will see next, in the
important case of piecewise linear costs, it can be shown
that the algorithm terminates in polynomial time. It will
facilitate the discussion if we consider first linear cost func-
tions.
Linear Cost Functions.
Define FTk =

P
i∈Ns−Tk b(i) −

P
i∈Nt∩Tk b(i). Then we

have the following lemma
Lemma 8: If the link costs are linear, Cl(x) = x/cl, and

zk < z∗then
FTk < FTk+1 , k ≥ 1.

Assume now that for the maximum flow problem in Al-
gorithm C, an algorithm based on augmenting paths on the
residual network (see [2] for the definition) is used, and as
an initial flow at iteration k+1, the flow x(k) is used. Since
the links

Lk = {l : l = (s, i), i ∈ (Ns − Tk) ,

or l = (i, t), i ∈ (Nt ∩ Tk)},

in bGk are all loaded to capacity by x(k), it can be seen that
these links will all be loaded to capacity in bGk+1 by flow
x(k+1). Taking into account Lemma 8 we conclude that
Lk+1 is a strict superset of Lk. This means that at each
iteration for k ≥ 1, at least one of the links in the set

L = {l : l = (s, i), i ∈ Ns, or l = (i, t), i ∈ Nt}

is loaded to capacity. Hence the algorithm will com-
plete at most in |Ns| + |Nt| iterations. We conclude that
for linear link costs, the complexity of Algorithm C is
O((|Ns|+ |Nt|) |N |3), or in terms of the number of nodes,
O(|N |4). In fact, if |Ns| = |Nt| = 1, then Algorithm C
can terminate in one iteration. Indeed, in this case either
x(0) is the optimal flow, or the cut [T1, T 1] is separating the
nodes Ns = {is} and Nt = {it} , and since it is a minimum
cut for bG0, we have,

x
(0)
l = clz0, for all l ∈ (T1, T 1) and

x
(0)
l = 0 for all l ∈ (T 1, T1) (10)

Moreover,

x
(0)
l ≤ clz0, for all l ∈ A. (11)

Set now

z1 =
b(is)P

l∈(T1,T1) cl
(12)

and
x(1) =

z1
z0
x(0),

From (10), (11), (12) and Lemma 3 b) it follows that x(1)

solves problem B.
The difference between linear and nonlinear costs can

be seen in the example in Figure 4. For linear costs, the
algorithm terminates in one iteration. If, however, the link

1 23

4

b(1)

b(1)

Cut inverse cost functions
1 2 3 4

3z2z1z0z z

)(],[zf TT

NOTE: The numbers next to the function plots correspond to the cuts in the graph.

Fig. 4. Algorithm C for non-linear costs

cost functions are such that the resulting cut “inverse” cost
functions, i.e., the functions

f[T,T](z) =
X

l∈(T,T)
C−1l (z)

are the ones plotted in the figure, then the algorithm ex-
amines all 4 cuts before termination.
Complexity of Algorithm A for linear costs. The com-

plexity of algorithm C for linear costs is O(|N |4). If
f(|N |) is the number of computations needed for Algo-
rithm A and φ(|N |) is the worst-case number of computa-
tion needed for Algorithm C, then we have for some k1,
1 ≤ k1 ≤ f(b|N | /2c)

f(|N |) ≤ φ(|N |) + f(|k1|) + f(|N |− |k1|) (13)

It is easy to see by induction from (13) that f(|N |) ≤
|N | f(1) + P|N|

k=1 φ(|k|) and since φ(|N |) = O(|N |4), we
have that f(|N |) = O(|N |5). The complexity of Algorithm
B is the same as algorithm A.
Piecewise Linear Cost Functions
Assume that the links costs are of the form

Cl(x) = max
j=1,..,Ml

½
x

cl,j
+ σl,j

¾
, cl,1 > cl,2,... > cl,Ml

,

(14)

σl,1 = 0 > σl,2 > ... > σl,Ml
.

For z > 0, let x/bcl(z) + bσl(z) be the “linear segment of
Cl(x) at z”, i.e.,

z = x/bcl(z) + bσl(z),
(bcl(z), bσl(z)) ∈ {(cl,1, σl,1), ..., (cl,Ml

, σl,Ml
)} .

With a slight modification of the proof of Lemma 8 it can
be proved that
Lemma 9: If the link costs are piecewise linear as in (14)

and zk < z∗ , then either bcl(zk+1) < bcl(zk) for at least one
l, or

FTk < FTk+1 , k ≥ 1.

Arguing as in the case of linear costs, we conclude that
if FTk < FTk+1 then at least one of the links in the set

L = {l : l = (s, i), i ∈ Ns, or l = (i, t), i ∈ Nt}

will be loaded to capacity. According to Lemma 9, at it-
eration k + 1, either at least one of the links in the set
L is loaded to capacity, or at least one of the slopes of
the linear segments of Cl(x), at zk, l ∈ A, is increas-
ing. Therefore, the algorithm will terminate in the worst
case in

P
l∈A (Ml − 1) + |Ns| + |Nt| iterations. We con-

clude that the complexity of Algorithm C in this case
is O(

¡P
l∈AMl + |Ns|+ |Nt|

¢ |N |3), or in terms of the
number of nodes and links, O(|N |4 + |N |3 |A|M), where
M = maxl∈A{Ml}. Arguing as for the case of linear cost
functions, we see that the complexity of Algorithms A and
B is O(|N |5 + |N |4 |A| (M − 1)).

IV. Numerical Results

In this section we present numerical results regarding the
computational efficiency of the algorithm presented in Sec-
tion III. We created random networks with fixed number,
N , of nodes as follows.
The nodes are numbered from 1 to N . We select uni-

formly K random variables, K ∈ {1, ..., N} and then, for
k = 1, ...,K, we select a random sequence of nk distinct
numbers ik1 , i

k
2 , ..., i

k
nk , where ikm ∈ {1, ..., N}. Node ik1 is

considered a source node and node iknk a destination node.
We connect node ikm to ikm+1, if they are not connected al-
ready. Hence, with the above process we create a path from
source ik1 to destination iknk . Note that using this process
it is possible that a node is assigned both as a source and
as a destination. We resolve this issue below.
Next we assign numbers to flows for the source nodes by

picking random numbers between 1 and 120. Once these
flows are assigned, we pick flows for the destination nodes.
These latter flows are assigned so that there is always a
feasible solution to the problem at hand. This is done as
follows. For each source node, we find the corresponding
reachable destination nodes. Note that by the construc-
tion of the network for every source node there is always a
reachable destination. We split the flow of the source node
to the destinations randomly. For each destination node
we add all flows that have been assigned in this manner.
Finally, if a node has been assigned both as a source and
a destination, we subtract the output flow from the input
flow of that node. If the result is positive (negative), the
node is a source (destination) node. If the result is zero,
the node is a transit node. Hence, according to the above
process the number of source (destination) nodes is at most
K.
Finally we assign capacities to each of the links of the

network by picking randomly numbers between 1 and 120.
As cost functions we consider the link utilizations, Cl(xl) =
xl/Bl, where Bl is the physical capacity of link l.
We run the simulations on a 300MHz PC. For each net-

work size, we created 10 networks. For algorithms A and

Nodes Links min - max Alg. A Alg. B

60 146-355 2,4 2
70 173-478 4,45 3,64
80 181-563 5,44 4,93
90 199-691 7,4 6,89
100 223-814 8,3 7,67
110 246-920 12,9 12,7
120 317-1070 21,24 19,7
130 271-1172 23,65 20,4
140 243-1214 28,1 24,6
150 403-1452 31,2 26,8

TABLE I

Running Times of Algorithms A and B

0

5

10

15

20

25

30

35

60 80
100

120
140

Algorithm A

Algorithm B

Fig. 5. Performance Comparison of Algorithms A and B

B, Table I shows, for each network size, the minimum and
maximum number of links of the networks selected and the
average run time in seconds. Recall that at each iteration
algorithm A splits the network in two, while algorithm B
splits it in a number that depends on the strongly con-
nected components of the modified network. We observe
that for either algorithm the performance is very satisfac-
tory even for fairly large networks. Regarding the compar-
ison between the two algorithms, we see (see also Figure 5)
that as expected, Algorithm B performs better. The differ-
ence in performance is more significant for larger number
of nodes. A probable reason for this observation is that the
number of strongly connected components in the random
networks created is rarely more than two when the number
of nodes is small.

V. Conclusions

We provided an algorithm to determine the lexicograph-
ically optimal bandwidth allocation in order to satisfy
the communication needs between two private networks.
The algorithm is guaranteed to converge in finite num-
ber of steps. For piecewise linear costs its complexity is
O(|N |5+|N |4 |A| (M−1)), whereM is the maximum num-
ber of linear segments that a cost function may contain.

Numerical results show that the algorithm is computation-
ally efficient even for fairly large networks. While there are
various steps in the proposed algorithm, each of the steps
is based on algorithms (max-flow, min-cut) that are easily
available. Hence its implementation is simple.
As was mentioned in the introduction, the problem we

considered addresses only one of the many issues related to
bandwidth allocation and can serve as a building block for
them. We indicate in the following some topics that need
further investigation.
• The generalization of the problem we addressed is to con-
sider the communication needs of multiple private networks
and to provide a solution for the associated multicommod-
ity lexicographically optimal bandwidth allocation prob-
lem. Note that the algorithm as it stands now, can also
solve the following problems. a) given an ingress node and
multiple egress nodes with bandwidth demands for each
egress node, to find the lexicographically optimal flow sat-
isfying the demands, b) given an egress node and multiple
ingress nodes with given bandwidth demands from each
of the ingress nodes to the egress node, to find the lexico-
graphically optimal flow satisfying the demands. However,
the generalization to multiple ingress and egress nodes
with specific demands for each ingress-egress pair needs
further work.
• The solution provided is noninteger, which is a good
assumption when the application needs are much smaller
than the total requested bandwidth (e.g., voice 64kbps ver-
sus total in the range of Mbps). In case the application
needs are comparable to the requested bandwidth and all
the application traffic needs to be routed through a fixed
path (connection oriented network), then integer solutions
should be sought.
• In integrated networks where applications with varying
Quality of Service (QoS) requirements may exist in the
network, it is desirable to impose additional constraints
on the paths followed through the backbone network. In
this case, the optimization problem should take these QoS
constraints into account.
• We addressed in this paper the dimensioning problem
of providing in a centralized fashion optimal routes, given
requested or anticipated demands. These routes can be
used during the real-time operation of the network in or-
der to route connection requests. The real-time operation
of the network must further take into account demand
fluctuations above or below the anticipated demands. In
this respect, it is important to investigate the possibil-
ity of implementing in a distributed fashion the proposed
algorithms and to study their convergence.

References
[1] R. K. Ahuja, “Algorithms for the Minimax Transportation Prob-

lem,” Naval Research Logistics Quarterly, 33, pp 725-740, 1986.
[2] R. K. Ahuja, T. L. Magnati, J. B. Orlin, Network Flows, Theory,

Algorithms, and Applications, Prentice Hall, 1993.
[3] G. R. Ash, R. H. Cardwell and R. P. Murray, “Design and Opti-

mization of Networks with Dynamic Routing,” Bell Syst. Tech.
J., vol 60, pp. 1787-1820, 1981.

[4] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell and J. Mc-
Manus, “Requirements for Traffic Engineering Over MPLS,” In-
ternet Draft, RFC2702, September 1999

[5] D. Bertsekas, Nonlinear Programming, Athena Scientific, 1995.

[6] D. Bertsekas, R. Gallager, Data Networks, Prentice Hall, 1992.

[7] C. S. Chang, “Stability Queue Length and Delay of Determinis-
tic and Stochastic Queueing Networks,” IEEE Transactions on
Automatic Control, Vol 39, 913-931, 1994.

[8] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation
method: An approach to store-and-forward communication net-
work design,” Networks, vol 3, pp 331-340, 1978.

[9] A. Girard, Routing and Dimensioning in Circuit-Switched Net-
works. Readin, MA: Addison-Wesley, 1988.

[10] A. Girard and B. Sanso, “Multicommodity Flow Models, Failure
Propagation, and Reliable Loss Network Design,” IEEE/ACM
Transactions on Networking, Vol 6, No 1, February 1998.

[11] R. J. Gibbens and P. J. Hunt, “Effective Bandwidths for multi-
type UAS Channel,” Queueing Systems, Vol 9, 17-28, 1991.

[12] A. Greenberg, R. Srikant, “Computational Techniques for Accu-
rate Performance Evaluation of Multirate Multihop Communi-
cation Networks,” IEEE/ACM Trans. on Networking, vol 5, no
2, April 1997, pp 266-277.

[13] R. Guerin, H. Ahmadi, N. Naghshineh, “Equivalent Capacity
and its Applications to Bandwidth Allocation in High-speed Net-
works,” IEEE J. Select. Areas in Commun., Vol. 9, 968-981,
1991.

[14] F. P. Kelly, “Loss Networks,” Ann. App. Prob. vol 1, pp 319-378,
Aug 1991.

[15] F. P. Kelly, “Effective Bandwidths at multi-class queues,”
Queueing Systems, Vol. 9, 5-16, 1991.

[16] A. Kerhenbaum, Telecommunications Network Design Algo-
rithm, New York: Mac Graw-Hill, 1993.

[17] L. Kleinrock, CommunicationNets:Stochastic Message Flow and
Delay. New York: McGraw-Hill, 1964.

[18] L. Li and A. K. Somani, “Dynamic Wavelength Routing Us-
ing Congestion and Neighborhood Information,” IEEE/ACM
Transactions on Networking, Vol. 7, No 5, 779-786, 1999.

[19] D. Medhi and S. Guptan, “Network Dimensioning and Perfor-
mance of Multiservice, Multirate Loss Networks with Dynamic
Routing,” IEEE/ACM Transactions on Networking, vol 5, no
6, December 1997, pp 944-957.

[20] Y. T’Joens, P. Georgatsos, D. Griffin, P-T. Huth. L. Geor-
giadis, G. Pavlou, D. Manikis, E. Mykoniati, “An Integrated
Approach to Switched VC ATM Restoration in the REFORM
System”, Int. Conf. on Design of Reliable Communication Net-
works, DRCN’2000, 10-12 April 2000, Munich, Germany.

[21] Y. Wang, Z. Wang, L. Zhang, “Internet Traffic Engineering Ap-
proaches and Algorithms,” Networld+Interop, Las Vegas, May
2000.

VI. Appendix

EXISTENCE OF LEXICOGRAPHICALLY OPTI-
MAL POINT
The existence of lexicographically optimal point can be

established under very general conditions. We provide here
an outline of the argument.
Let (y1, ...yK) be a K-dimensional vector and let ki, i =

1, 2, ...K be such that

yk1 ≥ yk2 ≥ ... ≥ ykK .

Define
(i)
max {y1, ..., yk} = yki .

It can be seen that max(i) {y1, ..., yK} is a continuous func-
tion of the vector (y1, ..., yK).
Consider next a set A 6= ∅ in an N -dimensional space,

and let fk(x), k = 1, 2, ...,K be real functions defined on
A. Let A0 = A and define Ai, i = 1, 2, ...K recursively as
follows: Ai is the set of solutions to problem

min
x∈Ai−1

(i)
max {f1(x), ..., fk(x)} .

By definition it holds Ai ⊆ Ai−1. Also, using the def-
inition of the lexicographic order, it can be seen that a
point x∗ in A induces the lexicographically optimal vector
(f1(x), ..., fk(x)) among all vectors in A, if and only if x∗

solves

min
x∈Ai−1

(i)
max {f1(x), ..., fk(x)} ,

for all i = 1, 2, ...K. In other words, the set of
points that induce the lexicographically optimal vector
(f1(x), ..., fk(x)) among all vectors in A is A∗ = AK .
Assume now that A is compact and fk(x) are contin-

uous for all k = 1, 2, ...K. Since max(i) {y1, ..., yK} is a
continuous function of vector (y1, ...yK), it follows that

(i)
max {f1(x), ..., fk(x)}

is a continuous function of x. Since A is compact and
nonempty a solution to problem

min
x∈A

(i)
max {f1(x), ..., fk(x)}

exists and A1 is compact and nonempty [5, Appendix A.2].
By induction we conclude that each Ai, i = 2, ...,K, is
compact and nonempty and hence A∗ is also compact and
nonempty.
PROOF OF LEMMA 2
Since Cl(x

∗
l) ≤ β, and the cost functions are increasing,

we have x∗l ≤ C−1l (β) = ul(β) for all l ∈ A. We then have

b(S) =
X

(i,j)∈(S,S)
x∗ij −

X
(i,j)∈(S,S)

x∗ij

≤
X

(i,j)∈(S,S)
uij(β) = Uβ[S, S]

for every set S ⊆ N . Assume that for every subset S ⊆ N
with b(S) > 0 we have b(S) < Uβ [S, S]. Then, since the
cost functions Cl(x) are continuous and strictly increasing,
and β > 0 (recall the assumption Ns 6= ∅), we can pick
ε > 0 small enough so that b(S) ≤ Uβ−ε[S, S] for every
S ⊆ N with b(S) > 0. Since for all sets with b(S) = 0 we
obviously have 0 = b(S) ≤ Uβ−ε[S, S], Theorem 1 implies
that there is a feasible flow for the network with capacities
ul(β − ε), l ∈ N , which in turn implies that there is a flow
whose maximal link cost is at most β − ε. However, this
contradicts the fact that β is the optimal value of problem
B. Therefore, there must be a set T with b(T) > 0 such
that b(T) ≥ Uβ[T, T], which together with the fact that
b(S) ≤ Uβ[S, S] for all S ⊆ N implies that 0 < b(T) =
Uβ [T, T].
PROOF OF LEMMA 3
Since x0 solves Problem B, as in the proof of Lemma 2,

we have,

b(T) =
X

(i,j)∈(T,T)
x0ij −

X
(i,j)∈(T,T)

x0ij

≤
X

(i,j)∈(T,T)
uij(β) = Uβ[T, T].

If any of the values x0ij ∈ (T , T) are positive, the last in-
equality would be strict, a contradiction. Therefore, we
have x0ij = 0 for every (i, j) ∈ (T , T) and

b(T) =
X

(i,j)∈(T,T)
x0ij ≤ Uβ[T, T].

If Cl0(x
0
l0
) < β for some l0 ∈ (T, T), then taking into

account that Cl(x) is strictly increasing, we would have
x0l0 < C−1l0

(β) = ul0(β). Since x0l ≤ ul(β) for all l ∈ A,

and the set (T, T) is nonempty (by virtue of the fact that
b(T) > 0) we would have

b(T) =
X

(i,j)∈(T,T)
x0ij < Uβ[T, T],

a contradiction.
To show the converse, notice first that from (3) and (4),

it follows immediately that b(T) = Uβ [T, T]. Assume that
x0 is not optimal flow for problem B. Let 0 < β(1) < β be
the optimal value of Problem B and let x(1) be an optimal
flow. Taking into account that the set (T, T) is nonempty
and the cost functions are strictly increasing, we then have

b(T) =
X

(i,j)∈(T,T)
x
(1)

ij −
X

(i,j)∈(T,T)
x
(1)

ij

≤
X

(i,j)∈(T,T)
C−1ij (β

(1))

<
X

(i,j)∈(T,T)
C−1ij (β) = Uβ [T, T],

a contradiction (the last inequality is strict since the set
(T, T) is nonempty).

Node s

Node Set Ns

Network G

Node Set Nt

Node t

Cut [T0,T0]

Fig. 6. Augmented Network

PROOF OF LEMMA 5
Let l be a link with, say, tail in eG1 and head in eG2. Then

there is a partition Π1 =
n eGi, i ∈ s1

o
, Π2 =

n eGi, i ∈ s2

o
of eG1, eG2, . . . , eGL, with eG1 ∈ Π1 and eG2 ∈ Π2 such that all
links connecting S1 = ∪i∈s1 eGi to S2 = ∪i∈s2 eGi have tail
in S1 and head in S2. To see this, consider first the par-

tition Π1 =
n eG1o , Π2 = n eGi, i ∈ {2, ...L}

o
, and define

S1 = eG1, S2 = ∪i∈{2,...,L} eGi. If all links in [S1, S2] are not
outgoing, select the components in Π2 which are connected
with S1 with links having head in eG1, and move them to
partition Π1. If again all links in [S1, S2] are not outgoing,
select the components in Π2 which are connected with S1
with links having head in one of the sets in Π1, and move
them to Π1. Note that by construction there is a path con-
necting all components in Π1 to component eG1. Proceeding
in this fashion, we either find a partition for which all links
in [S1, S2] are outgoing, or, since the number of components
is finite, we will have to include eG2 to Π1at some step. The
latter case, however is impossible since including the link l
to the path connecting eG2 to eG1, we create a circle, which
implies that there is a path from every node of eG1 to every
node in eG2 and vice versa, a contradiction.
Let now [S1, S2] be the cut determined with the previous

procedure, having only forward links. Note that each of the
links in the cut [S1, S2] must be either maximally loaded
or zero loaded, since by definition all other links in eG are
bidirectional. Moreover, all maximally loaded links are for-
ward links and all zero loaded links are backward link of
the cut [S1, S2] in network G. If there are no maximally
loaded links in [S1, S2], then there are only backward links
of [S1, S2] in network G, and moreover, since these links
are zero loaded, we have that b(i) = 0 for all i ∈ S1. Hence
any flow on G will have zero load on all the links in S1 and
in [S1, S2]. If some of the links in [S1, S2] are maximally
loaded, then the cut [S1, S2] is a maximally loaded cut
PROOF OF LEMMA 6
Augment network G to bG0, with two nodes s, t, and

with arcs (s, i), i ∈ Ns, (i, t), i ∈ Nt (see Figure 6). The
capacity of an arc (s, i), i ∈ Ns is b(i) and the capacity

Node t

Node s

Node set Ns

Node set Nt

Node set Ta

Node set TaCut [Ta,Ta]

Fig. 7. The Minimum Cut of the Augmented Network

of an arc (i, t), i ∈ Nt is −b(i). Assign capacities ul =
C−1l (z0), l ∈ A and solve the maximum flow problem onbG0 to obtain a value V0 and an optimal flow x(0). Note
that by the definition of the augmented network bG0 we
have V0 ≤

P
i∈Ns

b(i). Therefore, we consider two cases.
a) V0 =

P
i∈Ns

b(i). Then by (8) we also have V0 =

Uz0 [T0, T0]. That is, the cut
£
T0, T 0

¤
is minimum under the

assigned capacities, which implies that x(0)l = C−1l (z0), l ∈¡
T0, T 0

¢
and x(0)l = 0, l ∈ ¡T 0, T0¢. Hence this cut satisfies

the conditions of Lemma 3 b) and therefore z0 = z∗.
b) V0 <

P
i∈Ns

b(i). Then there must be a minimum

cut
£
T, T

¤
in bG0 such that T ∩N 6= ∅. Let this minimum

cut be
h
{s} ∪ Ta, {s} ∪ Ta

i
, where Ta ⊂ N (see Figure 7).

Then
£
Ta, T a

¤
is a cut in G. Moreover, (Ta, T a) 6= ∅. To

see this note that if (Ta, T a) = ∅ then since all links in³
{s} ∪ Ta, {s} ∪ Ta

´
are maximally loaded we would have

V0 =
X

i∈Ns−Ta
b(i)−

X
i∈Ta∩Nt

b(i) <
X
i∈Ns

b(i),

hence
−

X
i∈Ta∩Nt

b(i) <
X

i∈Ns∩Ta
b(i).

However, this is impossible since the facts that problem B
has a solution and there are no links connecting Ta and T a

(by the assumption (Ta, T a) = ∅)), imply by the conser-
vation of flow that

−
X

i∈Ta∩Nt

b(i) =
X

i∈Ns∩Ta
b(i).

Consider now Problem B on network G, but with com-
modities b(0)(i) defined as follows.

b(0)(i) = x
(0)
si =

½
b(i) if i ∈ Ns − Ta

x
(0)
si ≤ b(i) if i ∈ Ns ∩ Ta

b(0)(i) = −x(0)it =

½
b(i) if i ∈ Ta ∩Nt

−x(0)it ≥ b(i) if i ∈ Nt − Ta

b(0)(i) = 0 elsewhere

Since x(0) is the maximum flow, we have x(0)l = C−1l (z0),

l ∈ ¡Ta, T a

¢
and x(0)l = 0, l ∈ ¡T a, Ta

¢
. Since

¡
Ta, T a

¢ 6= ∅,
it follows from Lemma 3 b) that x(0) solves problem B for
network G with commodities b(0)(i) and the optimal value
is z0. Since b(0)(i) ≤ b(i), i ∈ Ns, and b(0)(i) ≥ b(i), i ∈ Nt,
it follows that z0 ≤ z∗.
PROOF OF LEMMA 7
If x(k), saturates all links (s, i), i ∈ Ns, then x(k) is

a feasible flow of problem B and since x(k)l ≤ C
(−1)
l (zk),

l ∈ A, and z∗ is the optimal value of problem B, we have,

z∗ ≤ max
l∈A

n
Cl

³
x
(k)
l

´o
≤ zk.

Since by assumption zk ≤ z∗ we conclude that zk = z∗,
and we have found an optimal solution.
If x(k) does not saturate all links (s, i), i ∈ Ns, then as

with the initial value z0, there must be a cut [Tk+1, T k+1] in

G such that (Tk+1, T k+1) 6= ∅ and
h
{s} ∪ Tk+1, {s} ∪ Tk+1

i
is a minimum cut in bGk. Also, since not all links (s, i),
i ∈ Ns are saturated, the maximum flow in bGk is smaller
than

P
i∈Ns

b(i). Hence,X
i∈Ns

b(i) >
X

i∈NS−Tk+1
b(i) +

X
l∈(Tk+1,Tk+1)

C−1l (zk)

−
X

i∈Nt∩Tk+1
b(i)

≥
X

l∈(Tk+1,Tk+1)
C−1l (zk).

Hence, X
i∈Tk+1

b(i) >
X

l∈(Tk+1,Tk+1)
C−1l (zk). (15)

Since zk+1 is the solution to the equationX
i∈Tk+1

b(i) =
X

l∈(Tk+1,Tk+1)
C−1l (zk+1). (16)

and the cost functions are increasing, it is clear from (15)
and (16) that zk+1 > zk. The fact that zk+1 ≤ z∗ follows
as in the case of z0 in Lemma 6.
PROOF OF LEMMA 8
Since

h
{s} ∪ Tk, {s} ∪ Tk

i
is a minimum cut of bGk−1 we

have

FTk+

 X
l∈(Tk,Tk)

cl

 zk−1 ≤ FTk+1+

 X
l∈(Tk+1,Tk+1)

cl

 zk−1

(17)
On the other hand, if zk < z∗ then xk does not saturate

all links (s, i), i ∈ Ns. Since
h
{s} ∪ Tk+1, {s} ∪ Tk+1

i
is a

minimum cut in bGk and by definition X
l∈(Tk,Tk)

cl

 zk =
X
i∈Tk

b(i),

we have

FTk +

 X
l∈(Tk,Tk)

cl

 zk =
X
i∈Ns

b(i) > FTk+1

+

 X
l∈(Tk+1,Tk+1)

cl

 zk (18)

Subtracting (18) from (17) we have X
l∈(Tk,Tk)

cl

 (zk−1− zk) <
 X
l∈(Tk+1,Tk+1)

cl

 (zk−1− zk)
and since zk > zk−1,X

l∈(Tk,Tk)
cl >

X
l∈(Tk+1,Tk+1)

cl.

It follows from (17) that FTk < FTk+1 .

